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ABSTRACT 
This paper presents a new embedded search engine designed for 
smart objects. Such devices are generally equipped with 
extremely low RAM and large Flash storage capacity. To tackle 
these conflicting hardware constraints, conventional search 
engines privilege either insertion or query scalability but cannot 
meet both requirements at the same time. Moreover, very few 
solutions support document deletions and updates in this context. 
In this paper, we introduce three design principles, namely Write-
Once Partitioning, Linear Pipelining and Background Linear 
Merging, and show how they can be combined to produce an 
embedded search engine reconciling high insert/delete/update rate 
and query scalability. We have implemented our search engine on 
a development board having a hardware configuration 
representative for smart objects and have conducted extensive 
experiments using two representative datasets. The experimental 
results demonstrate the scalability of the approach and its 
superiority compared to state of the art methods. 

1. INTRODUCTION 
With the continuous development of sensor networks, smart 
personal portable devices and Internet of Things, the tight 
combination of computing power and large storage capacities 
(Gigabytes) into many kinds of smart objects becomes reality. On 
the one hand, large Flash memories (GBs) are now adjunct to 
many small computing devices, e.g., SD cards plugged into 
sensors [19] or raw Flash chips superimposed on SIM cards [4]. 
On the other hand, microcontrollers are integrated into many 
memory devices, e.g., Flash USB keys, SD/micro-SD cards and 
contactless badges. Examples of smart objects combining 
computing power and large storage capacity (GBs of Flash 
memory) are pictured in Figure 1. 

As smart objects gain the capacity to acquire, store and process 
data, new services emerge. Camera sensors tag photographs and 
provide search capabilities to retrieve them [22]. Smart objects 
maintain the description of the surrounding objects [23] enabling 
the Internet of Things [1], e.g. shops like bookstores can be 
queried directly by customers in search of a certain product. Users 
securely store their personal files (documents, photos, emails) in 
Personal Data Servers [3, 4, 12, 18]. Smart meters record energy 
consumption events and embedded GPS devices track locations 
and moves. A myriad of new applications and services are being 

built by querying these data. So far, all these data end up on 
centralized servers where they are analyzed and queried. This 
centralized model however has two main drawbacks. First, the 
ever increasing amount of data transferred from their source (the 
smart objects) to their destination (the servers) has a dramatic 
negative impact on environmental sustainability (i.e., energy 
waste) and costs (i.e., data transfer). Hence, significant energy 
and bandwidth savings can be obtained by storing data locally in 
smart objects, especially when dealing with large data and seldom 
used records [8, 19]. Second, centralizing data sensed about 
individuals introduces an unprecedented threat on data privacy 
(e.g., at 1Hz granularity, an electricity smart meter can reveal the 
precise activity of the inhabitants [3]). 

 

Figure 1. Smart objects endowed with MCUs and NAND Flash 

This explains the growing interest for transposing traditional data 
management functionalities directly into the smart objects. Simple 
query evaluation facilities have been recently proposed for sensor 
nodes equipped with large Flash memory [8, 9] to enable filtering 
operations. Relational database operations like selection, 
projection and join for new generations of SIM cards with large 
Flash storage capacities have been proposed in [4, 18]. More 
complex treatments such as facial recognition and the related 
indexing techniques have been investigated also.  

In this paper, we make a step further in this direction by 
addressing the traditional problem of information retrieval queries 
over large file collections. A file can be any form of document, 
picture or data stream associated with a set of terms. A query can 
be any form of keyword search using a ranking function (e.g., tf-
idf) identifying the top-k most relevant files. The proposed search 
engine can be used in sensors to search for relevant objects in 
their surroundings [17, 23], in cameras to search pictures by using 
tags [22], in personal smart dongles to secure the querying of 
documents and files hosted in an untrusted Cloud [4, 12] or in 
smart meters to perform analytic tasks (i.e., top-k queries) over 
sets of events (i.e., terms) captured during time windows (i.e., 
files) [3]. Hence, this engine can be thought of as a generalized 
Google desktop or Spotlight embedded in smart objects.  

Designing such embedded search engine is however challenging 
due to a combination of severe and conflicting hardware 
constraints. Smart objects are usually equipped with a tiny RAM 
and their persistent storage is made of NAND Flash badly adapted 
to random fine-grain updates. Unfortunately, state-of-the-art 
indexing techniques either consume a lot of RAM or produce a 
large quantity of random fine-grain updates. Few pioneer works 
already considered the problem of embedding a search engine in 
sensors equipped with Flash storage [17, 20, 22, 23], but they 
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target small data collections (i.e., hundreds to thousands of files) 
with a query execution time which remains proportional to the 
number of indexed documents. By construction these search 
engines cannot meet insertion performance and query scalability 
at the same time. Moreover none of them support file deletions 
and updates, however useful in a number of scenarios.  

In this paper, we make the following contributions: 

• We introduce three design principles, namely Write-Once 
Partitioning, Linear Pipelining and Background Linear 
Merging, to devise an inverted index capable of tackling the 
conflicting hardware constraints of smart objects.  

• Based on these principles, we propose a novel inverted index 
structure and related algorithms to support all the basic index 
operations, i.e., search, insertion, deletion and update.  

• We validate our design through an extensive experimentation on 
a real smart object platform and with two representative datasets 
and show that query scalability and insertion/deletion/update 
performance can be met together in various contexts. 

The rest of the paper is organized as follows. Section 2 details the 
smart objects' hardware constraints, analyses the state-of-the-art 
solutions and derives from this analysis a precise problem 
statement. Section 3 introduces our three design principles, while 
Sections 4 and 5 detail the proposed inverted index structure and 
algorithms derived from these principles. Section 6 is devoted to 
the tricky case of file deletions and updates. We present the 
experimental results in Section 7 and conclude in Section 8. 

2. PROBLEM STATEMENT 

2.1 Smart Objects’ Hardware Constraints 
Whatever their form factor and usage, smart objects share strong 
commonalities in terms of data management architecture. Indeed, 
a large NAND Flash storage is used to persistently store data and 
indexes, and a microcontroller (MCU) executes the embedded 
code, both being connected by a bus. Hence, the architecture 
inherits hardware constraints from both the MCU and the Flash. 

The MCUs embedded in smart objects usually have a low power 
CPU, a tiny RAM (few KB) and a few MB of persistent memory 
(ROM, NOR or EEPROM) used to store the embedded code. The 
NAND Flash component (either raw NAND Flash chip or 
SD/micro-SD card) also exhibits strong limitations. In NAND 
Flash, the minimum unit for a read and a write operation is the 
page (usually 512 Bytes, also called a sector). Pages must be 
erased before being rewritten but the erase operation must be 
performed at a block granularity (e.g., 256 pages). Erases are then 
costly and a block wears out after about 104 repeated write/erase 
cycles. In addition, the pages have to be written sequentially in a 
block. Therefore, NAND Flash badly supports random writes. We 
observed this same bad behavior both with raw NAND Flash 
chips and SD/micro-SD cards. Our own measurements shown in 
Table 1 corroborate the ones published in [6]. 

Table 1. Measured performance of common SD cards 

Time (ms) per I/O Read  Seq.Write Rand. Write
Kingston µSDHC 1.3 6.3 160 

Lexar SDMI4GB-715 0.8 2.1 180 
Samsung µSDHC Plus 1.3 2.9 315 
SiliconPower  SDHC 1.4 3.4 40 

2.2 Search Engine Requirements 
As in [17], we consider that the search engine of interest in this 
paper has similar functionality as a Google Desktop for smart 
objects. Hence, we use the terminology introduced in the 
Information Retrieval literature for full-text search. Then, a 
document refers to any form of data files, terms refers to any 
forms of metadata elements, term frequencies refer to metadata 
element weights and a query is equivalent to a full-text search. 

Full-text search has been widely studied by the information 
retrieval community (see [24] for a recent survey). The core 
problem is, given a collection of documents and a user query 
expressed as a set of terms {ti}, to retrieve the k most relevant 
documents according to a ranking function. In the wide majority 
of the related works, the tf-idf score, i.e., term frequency-inverse 
document frequency, is used to rank the query results. A 
document can be of many types (e.g., text file, image, etc.) and is 
associated with a set of terms (or keywords) describing its content 
and weights indicating their respective importance in the 
document. For text documents, the terms are words composing the 
document and their weight is their frequency in the document. For 
images, the terms can be tags, metadata or visterms describing 
image subparts [22]. For a query Q={t}, the tf-idf score of each 
document d containing at least a query term can be computed as: 
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where fd,t is the frequency of term t in document d, N is the total 
number of indexed documents and Ft is the number of documents 
that contain t. This formula is given for illustrative purpose, the 
weight between fd,t and N/Ft varying depending on the proposals. 

 
Figure 2. Typical inverted index structure. 

Classically, full-text search queries are evaluated efficiently using 
an inverted index, named I hereafter (see Figure 2). Given D={di} 
a set of documents, the inverted index I over D consists of two 
main components [24]: (i) a search structure I.S (also called 
dictionary) which stores for each term t appearing in the 
documents the number Ft of documents containing t and a pointer 
to the inverted list of t; (ii) a set of inverted lists {I.Lt} where each 
list stores for a term t the list of (d, fd,t) pairs where d is a 
document identifier in D that contains t and fd,t  is the weight of 
the term t in the document d (typically the frequency of t in d).  
The dictionary is constituted by all the distinct terms t of the 
documents in D, and is large in practice, which requires 
organizing it into a search-efficient structure such as a B-tree. 

A query Q={t} is traditionally evaluated by: (i) accessing I.S to 
retrieve for each query term t the inverted lists elements {I.Lt}tQ; 
(ii) allocating in RAM one container for each unique document 
identifier in these lists; (iii) computing the score of each of these 
documents using a weight function, e.g., tf-idf; (iv) ranking the 
documents according to their score and producing the k 
documents with the highest scores. 
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2.3 State-of-the-Art Solutions 
Data management embedded in smart objects is no longer a new 
topic. Many proposals from the database community tackle this 
problem in the context of the Internet of Things, strengthening the 
idea that smart objects must now be considered as first-class data 
sources. However, many works [3, 4, 19] consider a traditional 
database context and do not address the full-text search problem, 
leading to different query processing techniques and indexing 
structures. Therefore, we focus below on works specifically 
addressing embedded search engines and then extend the review 
to a few works related to Flash-based indexing when the way they 
tackle the MCU or Flash constraints can enlighten the discussion. 

Embedded search engines. A few pioneer works recently 
demonstrate the interest of embedding search engine techniques 
into smart objects equipped with extended Flash storage to 
manage collections of files stored locally [16, 17, 20, 22]. These 
works rely on a similar design of the embedded inverted index as 
proposed in [17]. Instead of maintaining one inverted list per term 
in the dictionary, each term is hashed to a bucket and a single 
inverted list is built for each bucket. The inverted lists are stored 
sequentially in Flash memory, within chained pages, and only a 
small hash table referencing the head of each bucket is kept in 
RAM. The number of buckets is kept small such that the main 
part of the RAM can be used as an insertion buffer for the 
inverted lists elements, i.e., (t, d, fd,t) triples. This approach 
complies with a small RAM and suits well the Flash constraints 
by precluding fine grain random (re)writes in Flash. However, 
each inverted lists corresponds to a large number of different 
terms, which leads to a high query evaluation cost that increases 
proportionally with the size of the data collection. The less RAM 
available, the smaller the number of hash buckets and the more 
severe the problem is. In addition, these techniques do not support 
document deletions, but only data aging mechanisms, where old 
index entries automatically expire when overwritten by new ones. 
A similar design is proposed in [22] that builds a distributed 
search engine to retrieve images captured by camera sensors. A 
local inverted index is embedded in each sensor node to retrieve 
the relevant images locally, before conducting the distributed 
search. However, this work considers powerful sensors nodes 
(with tens of MB of local RAM) equipped with custom SD card 
boards (with specific performances). At the same time, the 
underlying index structure is based on inverted lists organized in a 
similar way as in [17]. All these methods are highly efficient for 
document insertions, but fail to provide scalable query processing 
for large collections of documents. Therefore, their usage is 
limited to applications that require storing only a small number 
(few hundreds) of documents. 

B-tree indexing in NAND Flash. In the database context, 
adapting the B-tree to NAND Flash has received a great attention. 
Indeed, the B-tree is a very popular index and its standard 
implementation performs poorly in Flash [21]. Many recent 
proposals [2, 13, 21] tackle this problem or the closely related 
problem of a key-value stored in Flash [7]. The key idea in these 
approaches is to buffer the updates in log structures that are 
written sequentially and to leverage the fast (random) read 
performance of Flash memory to compensate the loss of 
optimality of the lookups. When the log is large enough, the 
updates are committed into the B-tree in a batch mode, to 
amortize the Flash write cost. The log must be indexed in RAM to 

ensure performance. The different proposals vary in the way the 
log and the in-memory index are managed, and in the impact it 
has on the commit frequency. To amortize the write cost by a 
significant factor, the log must be seldom committed, which 
requires more RAM. Conversely, limiting the RAM size leads to 
increasing the commit frequency, thus generating more random 
writes. The RAM consumption and the random write cost are thus 
conflicting parameters. Under severe RAM limitations, virtually 
no reduction of random writes can be obtained.  

Partitioned indexes. In another line of work, partitioned indexes 
have been extensively employed in environments with insert-
intensive workloads and concurrent queries on magnetic disks. 
Prominent examples are the LSM-tree (i.e., the Log-Structured 
Merge-tree) [14] and its many variants (e.g., the Partitioned 
Exponential file [10] and the bLSM-tree [15] to name but a few). 
The LSM-tree consists in one in-memory B-tree component to 
buffer the updates and one on-disk B+-tree component that 
indexes the disk resident data. Periodically, the two components 
are merged to integrate the in-memory data and free the memory. 
The benefit is twofold. First the updates are integrated in batch, 
which amortizes the write cost per update. Second, the merge 
operation uses sequential I/Os, which reduces the disk arm 
movements and thus increases the throughput. Note that Google’s 
Bigtable and Facebook’s Cassandra employ a similar partitioning 
approach to optimize the indexing of key-value stores in 
massively parallel and distributed architectures. The search 
engine proposed in this paper shares the general idea of index 
partitioning. However, the similarity stops at the general level 
because of major differences regarding the targeted hardware 
platforms (embedded systems versus high-end servers) and the 
queries of interest (top-k keyword search versus classical key-
value search). Consequently, our solution differs from the above 
mentioned ones in a number of aspects (e.g., RAM usage, 
partitioning organization, management of updates and deletions, 
way of computing the top-k with a minimal RAM consumption). 

As a conclusion, tiny RAM and NAND Flash persistent storage 
introduce conflicting constraints and lead to split state of the art 
solutions in two families. The insert-optimized family reaches 
insertion scalability thanks to a small indexed structure buffered 
in RAM and sequentially flushed in Flash, thereby precluding 
costly random writes in Flash. This good insertion behavior is 
however obtained to the detriment of query scalability, the 
performance of searches being roughly linear with the index size 
in Flash. Conversely, the query-optimized family reaches query 
scalability by adapting traditional indexing structures to Flash 
storage, to the detriment of insertion scalability, the number of 
random (re)writes in Flash (linked to the log commit frequency) 
being roughly inversely proportional to the RAM capacity. In 
addition, we are not aware of works addressing the crucial 
problem of random document deletions in the context of an 
embedded search engine. 

2.4 Problem Formulation 
In the light of the preceding sections, the problem addressed in 
this paper can be formulated as designing an embedded full-text 
search engine that has the following two properties: 

• Bounded RAM agreement: the proposed engine must be able to 
respect a predefined RAM consumption bound (RAM_Bound), 
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precluding any solution where this consumption depends on the 
size of the document set.  

• Full scalability: it must be scalable for queries and updates 
(insertion, deletion of documents) without distinction. 

The Bounded RAM agreement is required to comply with the 
widest population of smart objects. The consequence is that the 
full-text search engine must remain functional even when very 
little RAM (a few KB) is made available to it. Note that the 
RAM_Bound size is a subpart of the total physical RAM capacity 
of a smart object considering that the RAM resource is shared by 
all software components running in parallel on the platform, 
including the operating system. The RAM_Bound property is also 
mandatory in a co-design perspective where the hardware 
resources of a given platform must be precisely calibrated to 
match the requirements of a particular application domain. 

The Full scalability property guarantees the generality of the 
approach. By avoiding to privilege a particular workload, the 
index can comply with most applications and datasets. To achieve 
update scalability, the index maintenance needs to be processed 
without generating random writes, which are badly supported by 
the Flash memory. At the same time, achieving query scalability 
means obtaining query execution costs in the same order of 
magnitude with the ideal query costs provided by a classical 
inverted index I. 

3. DESIGN PRINCIPLES 
Satisfying the Bounded RAM agreement and Full scalability 
properties simultaneously is challenging, considering the 
conflicting MCU and Flash constraints mentioned above. To 
tackle this challenge, we propose in this paper an indexing 
method that relies on the following three design principles. 

P1. Write-Once Partitioning: Split the inverted index structure I 
in successive partitions such that a partition is flushed only once 
in Flash and is never updated. 

By precluding random writes in Flash, Write-Once Partitioning 
aims at satisfying update scalability. Considering the Bounded 
RAM agreement, the consequence of this principle is to parse 
documents and maintain I in a streaming way. Conceptually, each 
partition can be seen as the result of indexing a window of the 
document input flow, the size of which is limited by the 
RAM_Bound. Therefore, I is split in an infinite sequence of 
partitions <I1, I2,…, Ip>, each partition Ii having the same internal 
structure as I. When the size of the current Ii partition stored in 
RAM reaches RAM_Bound, Ii is flushed in Flash and a new 
partition Ii+1 is initialized in RAM for the next window. 

A second consequence of this design principle is that document 
deletions have to be processed similar to document insertions 
since the partitions cannot be modified once they are written. This 
means adding compensating information in each partition that will 
be considered by the query process to produce correct results. 

P2. Linear Pipelining: Compute each query Q with respect to the 
Bounded RAM agreement in such a way that the execution cost of 
Q over <I1, I2,…, Ip> is in the same order of magnitude as the 
execution cost of Q over I. 

Linear Pipelining aims at satisfying query scalability under the 
Bounded RAM agreement. A unique structure I as the one 

pictured in Figure 2 is assumed to satisfy query scalability by 
nature and is considered hereafter as providing a lower bound in 
terms of query execution time. Hence, the objective of Linear 
pipelining is to keep the performance gap between Q over <I1, 
I2,…, Ip> and Q over I, both small and predictable (bounded by a 
given tuning parameter). Computing Q as a set-oriented 
composition of a set of Qi over Ii, (with i=0,...p) would 
unavoidably violate the Bounded RAM agreement as p increases, 
since it will require to store all Qi's intermediate results in RAM. 
Hence the necessity to organize the processing in pipeline such 
that the RAM consumption remains independent of p, and 
therefore of the number of indexed documents. Also, the term 
linear pipelining conveys the idea that the query processing must 
preclude any iteration (i.e., repeated accesses) over the same data 
structure to reach the expected level of performance. This 
disqualifies brute-force pipeline solutions where the tf-idf scores 
of documents are computed one after the other, at the price of 
reading the same inverted lists as many times as the number of 
documents they contain. 

However, Linear Pipelining alone cannot prevent the performance 
gap between Q over <I1, I2,…, Ip> and Q over I to increase with 
the increase of p as (i) multiple searches in several small Ii.S are 
more costly than a single search in a large I.S and (ii) the inverted 
lists in <I1, I2,…, Ip> are likely to occupy only fractions of Flash 
pages, multiplying the number of Flash I/Os to access the same 
amount of data. A third design principle is then required. 

P3. Background Linear Merging: To limit the total number of 
partitions, periodically merge partitions compliantly with the 
Bounded RAM agreement and without hurting update scalability. 

The objective of partition merging is therefore to obtain a lower 
number of larger partitions to avoid the drawbacks mentioned 
above. Partition merging must meet three requirements. First the 
merge must be performed in pipeline to comply with the Bounded 
RAM agreement. Second, since its cost can be significant (i.e., 
proportional to the total size of the merged partitions), the merge 
must be processed in background to avoid locking the index 
structure for unbounded periods of time. Since multi-threading is 
not supported by the targeted platforms, background processing 
can simply be understood as the capacity to interrupt and recover 
the merging process at any time. Third, update scalability requires 
that the total cost of a merge run be always smaller than the time 
to fill out the next bunch of partitions to be merged. 

Taken together, principles P1 to P3 reconcile the Bounded RAM 
agreement and Full scalability index properties. The technical 
solutions to implement these three principles are presented next. 
To ease the presentation, we introduce first the foundation of our 
solution considering only document insertions and queries. The 
trickier case of document deletions is postponed to Section 6. 

4. WRITE-ONCE PARTITIONING AND 
LINEAR PIPELINING 
These two design principles are discussed together because the 
complexity comes from their combination. Indeed, Write-Once 
Partitioning is straightforward on its own. It simply consists in 
splitting I in a sequence <I1, I2,…, Ip> of small indexes called 
partitions, each one having a size bounded by RAM_Bound. The 
difficulty is to implement a linear pipeline execution of any query 
Q on this sequence of partial indexes. 
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Executing Q over I would lead to evaluate:  
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where Topk selects the k documents dD having the largest tf-idf 
scores, each score being computed as the sum, for all terms tQ, 
of a given weight function W taking as parameter the frequency 
fd,t of t in d and the inverse document frequency N/Ft. Our 
objective is to remain agnostic regarding W and then let the 
precise form of this function open. Let us now consider how each 
term of this expression can be evaluated by a linear pipelining 
process on a sequence <I1, I2,…, Ip>. 

Computing N. We assume that the number of documents is a 
global metadata maintained at insertion/deletion time and needs 
not be recomputed for each Q. 

 
Figure 3. Consecutive index partitions (overlapping docs). 

Computing Ft . Ft should be computed only once for each term t 
since Ft is constant for Q. This is why Ft is materialized in the 
dictionary part of the index ({t, Ft}  I.S), as shown in Figure 2. 
When I is split in <I1, I2,…, Ip>, the global value of Ft should be 
computed as the sum of the local Ft of all partitions. The 
complexity comes from the fact that a same document d may 
cross several partitions with the consequence of contributing 
several times to the global Ft if a simple sum is performed. The 
Bounded RAM agreement precludes maintaining in RAM a 
history of all the terms already encountered for a given document 
d across the parsing windows, the size of this history being 
unbounded. Accessing the inverted lists {Ii.Lt} of successive 
partitions to check whether they intersect for a given d would also 
violate the Linear Pipelining since these same lists will be 
accessed again when computing the tf-idf score of each document. 

The solution is then to store in the dictionary of each partition the 
boundary of that partition, namely the identifiers of the first and 
last documents considered in the parsing window. Then, two bits 
firstd and lastd are added in the dictionary for each inverted list to 
register whether this list contains one (or both) of these 
documents, i.e., {t, Ft, firstd, lastd}  I.S. As illustrated in Figure 
3, this is sufficient to detect the intersection between the inverted 
lists of a same term t in two successive partitions. Whether an 
intersection between two lists is detected, the sum of their 
respective Ft is decremented by 1. Hence, the correct global value 
of Ft can easily be computed without physically accessing the 
inverted lists. During the Ft computation phase, the dictionary of 
each partition is read only once and the RAM consumption sums 
up to one buffer to read each dictionary, page by page, and one 
RAM variable to store the current value of each Ft. 

 
Figure 4. Linear Pipeline computation of Q over terms ti and tj. 

Computing fd,t . If a document d overlaps two consecutive 
partitions Ii and Ii+1, the inverted list Lt of a queried term tQ may 
also overlap these two partitions. In this case the fd,t  score of d is 
simply the sum of the (last) fd,t value in Ii.Lt and the (first) fd,t 
value in Ii+1.Lt. To get the fd,t values, the inverted lists Ii.Lt have to 
be accessed. The pointers referencing these lists are actually 
stored in the dictionary which has already been read while 
computing Ft. According to the Linear pipelining principle, we 
avoid reading again the dictionary by storing these pointers in 
RAM during the Ft computation. The extra RAM consumption is 
minimal and bounded by the fact that the number of partitions is 
itself bounded thanks to the merging process (see Section 5). 

Computing Topk. Traditionally, a RAM variable is allocated to 
each document d to compute its tf-idf score by summing the 
results of W(fd,t, N/Ft) for all terms tQ [24]. Then, the k best 
scores are selected. Unfortunately, this approach conflicts with 
the Bounded RAM agreement since the size of the document set 
is likely to be much larger than the available RAM. Hence, we 
organize the query processing in a pure pipeline way, allocating a 
RAM variable only to the k documents having currently the best 
scores. This forces the complete computation of tf-idf(d) to be 
done for each d, one after the other. To meet this requirement 
while precluding any iteration on the inverted lists, these lists are 
maintained sorted on the document id. Note that if document ids 
reflect the insertion ordering, the inverted lists are naturally 
sorted. Hence, the tf-idf computation sums up to a simple linear 
pipeline merging process of the inverted lists for all terms tQ in 
each partition (see Figure 4). The RAM consumption for this 
phase is therefore restricted to one variable for each of the current 
k best tf-idf scores and to one buffer (i.e., a RAM page) per query 
term t to read the corresponding inverted lists Ii.Lt  (i.e., Ii.Lt  are 
read in parallel for all t, the inverted lists for the same t being read 
in sequence). Figure 4 summarizes the data structures maintained 
in RAM and in Flash to handle this computation. 

5. BACKGROUND LINEAR MERGING 
The background merging process aims at achieving scalable query 
costs by timely merging several small indexes into a larger index 
structure. As mentioned in Section 3, the merge must be a 
pipeline process in order to comply with the Bounded RAM 
agreement while keeping a cost compatible with the update rate. 
Moreover, the query processing should continue to be executed in 
Linear Pipelining (see Section 4) on the structure resulting from 
the successive merges. Therefore, the merges have to preserve the 
global ordering of the document ids within the index structures. 

To meet these requirements, we introduce a Sequential and 
Scalable Flash structure, called SSF, pictured in Figure 5. The 
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SSF consists in a hierarchy of partitions of exponentially 
increasing size. Specifically, each new index partition is flushed 
from RAM into the first level of the SSF, i.e., L0. The merge 
operation is triggered automatically when the number of partitions 
in a level becomes b, the branching factor of SSF, which is a 
predefined index parameter. The merge combines the b partitions 
at level Li of SSF, denoted by i

b
i II ,...1 , into a new partition at level 

Li+1, denoted by 1i
jI  and then reclaims all partitions at level Li. 

 
Figure 5. The Scalable and Sequential Flash structure. 

The merge is directly processed in pipeline as a multi-way merge 
of all partitions at the same level. This is possible since the 
dictionaries of all the partitions are already sorted on terms, while 
the inverted lists in each partition are also sorted on document ids. 
So are the dictionary and the inverted lists of the resulting 
partition at the upper level. More precisely, the algorithm works 
in two steps. In the first step, the I.L part of the output partition is 
produced. Given b partitions in the index level Li, b+1 RAM 
pages are necessary to process the merge in linear pipeline: b 
pages to merge the inverted lists in I.L of all b partitions and one 
page to produce the output. The indexed terms are treated one 
after the other in alphabetic order. For each term t, the head of its 
inverted lists in each partition is loaded in RAM. These lists are 
then consumed in pipeline by a multi-way merge. Document ids 
are encountered in descending order in each list and the output list 
resulting from the merge is produced in the same order. A 
particular case must be distinguished when two pairs (d, f1d,t) and 
(d, f2d,t) are encountered in separate lists for the same d; this 
means that document d overlaps two partitions and these two pairs 
are aggregated in a single (d, f1d,t + f2d,t) before being added to 
I.L. In the second step, the metadata I.M is produced (see Figure 
3), by setting the value of firstd (resp. lastd) with the firstd (resp. 
lastd) value of the first (resp. last) partition to be merged, and the 
I.S structure is constructed sequentially, with an additional scan of 
I.L. The I.S tree is built from the leaves to the root. This step 
requires one RAM page to scan I.L, plus one RAM page per I.S 
tree level. For each list encountered in I.L, a new entry (t, Ft, 
presence_flags) is appended to the lowest level of I.S; the value Ft 
is obtained by summing the fd,t fields of all (d, fd,t) pairs in this 
list; the presence flag reflects the presence in the list of the firstd 
or lastd document. Upper levels of I.S are then trivially filled 
sequentially. This Background Merging process generates only 
sequential writes in Flash and previous partitions are reclaimed in 
large blocks after the merge. This pipeline process sequentially 

scans each partition only once and produces the resulting partition 
also sequentially. Hence, assuming b+1 is strictly lower than 
RAM_bound, one RAM buffer (of one page) can be allocated to 
read each partition and the merge is I/O optimal. If b is larger than 
RAM_bound, the algorithm remains unchanged but its I/O cost 
increases since each partition will be read by page fragments 
rather than by full pages. 

Search queries can be evaluated in linear pipeline by accessing 
the partitions one after the other from partitions b to 1 in level 1 
up to level n. Thus, the inverted lists are scanned in descending 
order of the document ids, from the most recently inserted 
document to the oldest one, and the query processing remains 
exactly the same as the one presented in Section 4, with the same 
RAM consumption. The merging and the querying processes 
could be organized in opposite order (i.e., in ascending order of 
the document ids) with no impact. However, order matters as soon 
as deletions are considered (see Section 6). SSF provides scalable 
query costs since the amount of indexed documents grows 
exponentially with the number of levels, while the number of 
partitions increases only linearly with the number of levels. 

Note that merges in the upper levels are exponentially rare (one 
merge in level Li for bi merges in L0) but also exponentially 
costly. To mitigate this problem, we perform the merge operations 
in background (i.e., in a non-blocking manner). Since the merge 
may consume up to b pages of RAM, we launch/resume it each 
time after a new partition is flushed in L0 of the SSF, the RAM 
being empty at this time. A small quantum of time (a few hundred 
milliseconds in practice) is allocated to the merging process. Each 
time this quantum expires, the merge is interrupted and its 
execution status (i.e., a cursor indicating the current Flash page 
position in each partition) is memorized. The quantum of time is 
chosen so that the merge of a given SSF level ends before the next 
merge of the same level need to be triggered. In this way, the cost 
of a merge operation is spread among the flush operations and 
remains almost transparent. This basic strategy is simple and does 
not make any assumption regarding the index workload. 
However, it could be improved in certain contexts, by taking 
advantage of the idle time of the platform. 

6. DOCUMENT DELETIONS 
To the best of our knowledge, our proposal is the first embedded 
search index to implement document deletions. This problem is 
actually of primary importance because deletions are required in 
many practical scenarios. Unfortunately, index updating increases 
significantly the complexity of the index maintenance by 
reintroducing the need for random updates in the index structure. 
We extend here the index structure to support the deletions of 
documents without generating any random write in Flash. 

6.1 Solution Outline 
Implementing the delete operation is challenging, mainly because 
of the Flash memory constraints which proscribe the 
straightforward approach of updating in-place the inverted index. 
The alternative to updating in-place is compensation, i.e., the 
deleted documents’ identifiers (DDIs) are stored in an appropriate 
way and used as a filter to eliminate the ghost documents 
retrieved by the query evaluation process.  
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A basic solution could be to organize the DDIs as a sorted list in 
Flash and to intersect this list at query execution time with the 
inverted lists in the SSF corresponding to the query terms. 
However, this solution raises several problems. First, the 
documents are deleted in random order, according to users' and 
application decisions. Hence, maintaining a sorted list of DDIs in 
Flash would violate the Write-Once Partitioning principle since 
the list has to be rewritten each time a set (e.g., a page) of new 
DDIs is flushed from RAM. Second, the computation of the Ft for 
each query term t during the first step of the query processing 
cannot longer be achieved without an additional merge operation 
to subtract the sorted list of DDIs from the inverted lists of the 
SSF. Third, the full DDI list has to be scanned for each query 
regardless of the query selectivity. These two last elements make 
the query cost dependent of the total number of deleted 
documents and then conflict with the Linear pipelining principle. 

Therefore, instead of compensating the query evaluation process, 
we propose a solution based on compensating the indexing 
structure itself. In particular, a document deletion is treated 
similarly to a document insertion, i.e., by re-inserting the 
metadata (terms and frequencies) of all deleted documents in the 
SSF. The objective is threefold: (i) to be able to compute, as 
presented in Section 4, the Ft for each term t of a query based on 
the metadata only (of both existing and deleted documents), (ii) to 
have a query performance that depends on the query selectivity 
(i.e., number of inserted and deleted documents relevant to the 
query) and not on the total number of deleted documents and (iii) 
to effectively purge the indexing structure from the largest part of 
the deleted documents at Background Merging time, while 
remaining compliant with the Linear Pipelining principle. We 
present in the following the required modifications of the index 
structure to integrate this form of compensation. 

6.2 Impact on Write-Once Partitioning 
As indicated above, a document deletion is treated similarly to a 
document insertion. Assuming a document d is deleted in the time 
window corresponding to a partition Ii, a pair (d, -fd,t) is inserted 
in each list Ii.Lt for the terms t present in d and the Ft value 
associated to t is decremented by 1 to compensate the prior 
insertion of that document. To distinguish between an insertion 
and a deletion, the frequency value fd,t for the deleted document id 
is simply stored as a negative value, i.e., -fd,t. 

6.3 Impact on Linear Pipelining 
Executing a query Q over our compensated index structure sums 
up to evaluate:  
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where D+ (resp. D-) represents the set of inserted (resp. deleted) 
documents. 

Computing N. As presented earlier, N is a global metadata 
maintained at update time and then already integrates all insert 
and delete operations. 

Computing Ft . The global Ft value for a query term t is computed 
as usual since the local Ft values are compensated at deletion time 
(see above). The case of deleted documents that overlap with 

several consecutive partitions is equally treated as with the 
inserted documents. 

Computing fd,t .  The fd,t of a document d for a term t is computed 
as usual, with the salient difference that a document which has 
been deleted appears twice: with the value (d, fd,t) (resp. (d, -fd,t)) 
in the inverted lists of the partition Ii  (resp. partition Ij) where it 
has been inserted (resp. deleted). By construction i < j since a 
document cannot be deleted before being inserted. 

Computing Topk. Integrating deleted documents makes the 
computation of Topk more subtle. Following the Linear Pipelining 
principle, the tf-idf scores of all documents are computed one after 
the other, in descending order of the document ids, thanks to a 
linear pipeline merging of the insert lists associated to the queried 
terms. To this end, the algorithm introduced in Section 4 uses k 
RAM variables to maintain the current k best tf-idf scores and one 
buffer (i.e., a RAM page) per query term t to read the 
corresponding inverted lists. Some elements present in the 
inverted lists correspond actually to deleted documents and must 
be filtered out. The problem comes from the fact that documents 
are deleted in random order. Hence, while inverted lists are sorted 
with respect to the insertion order of documents, a pair of the 
form (d, -fd,t) may appear anywhere in the lists. In case a 
document d has been deleted, the unique guarantee is to encounter 
the pair (d, -fd,t) before the pair (d, fd,t) if the traversal of the lists 
follows a descending order of the document ids. However, 
maintaining in RAM the list of all encountered deleted documents 
in order to filter them out during the follow-up of the query 
processing would violate the Bounded RAM agreement. 

The proposed solution works as follows. The tf-idf score of each 
document d is computed by considering the modulus of the 
frequencies values |±fd,t| in the tf-idf score computation, regardless 
of whether d is a deleted document or not. Two lists are 
maintained in RAM: Topk = {(d, score(d))} contains the current k 
best tf-idf scores of documents which exist with certainty (no 
deletion has been encountered for these documents); Ghost = {(d, 
score(d))} contains the list of documents which have been deleted 
(a pair (d, -fd,t) has been encountered while scanning the inverted 
lists) and have a score better than the smallest score in Topk. Topk 
and Ghost lists are managed as follows. If the score of the current 
document d is worse than the smallest score in Topk, it is simply 
discarded and the next document is considered (step 2 in Figure 
6). Otherwise, two cases must be distinguished. If d is a deleted 
document (a pair (d, -fd,t) is encountered), then it enters the Ghost 
list (step 3); else it enters the Topk list unless its id is already 
present in the Ghost list (step 4). Note that this latter case may 
occur only if the id of d is smaller than the largest id in Ghost, 
making the search in Ghost useless in many cases.  An important 
remark is that the Ghost list has to register only the deleted 
documents which may compete with the k best documents, to 
filter them out when these documents are later encountered, which 
makes this list very small in practice. 

While simple in its principle, this algorithm deserves a deeper 
discussion in order to evaluate its real cost. This cost actually 
depends on whether the Ghost list can entirely reside in RAM or 
not. Let us compute the nominal size of this list in the case where 
the deletions are evenly distributed among the document set. For 
illustration purpose, let us assume k=10 and the percentage of 
deleted documents δ=10%. Among the first 11 documents 
encountered during the query processing, 10 will enter the Topk 
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list and 1 is likely to enter the Ghost list. Among the next 11 
documents, 1 is likely to be deleted but the probability that its 
score is in the 10 best scores is roughly 1/2. Among the next 11 
ones, this probability falls to about 1/3 and so on and so forth. 

Hence, the nominal size of the Ghost list is 



n

i
ik

1

1 , which 

can be approximated by ))(ln(   nk . For 10.000 queried 

documents, n=1000 and the size of the Ghost list is only 
10))(ln(   nk  elements, far beyond the RAM size. In 

addition, the probability that the score of a Ghost list element 
competes with the Topk ones decreases over time, giving the 
opportunity to continuously purge the Ghost list (step 5 in Figure 
6). In the very improbable case where the Ghost list overflows 
(step 6 in Figure 6), it is sorted in descending order of the 
document ids, and the entries corresponding to low document ids 
are flushed. This situation remains however highly improbable 
and will concern rather unusual queries (none of the 300 queries 
we evaluated in our experiment produced this situation, while 
allocating a single RAM page for the Ghost list).  

 

Figure 6. Linear pipeline computation of Q with deletions. 

6.4 Impact on Background Pipeline Merging 
The main purpose of the Background Merging principle, as 
presented in Section 5, is to keep the query processing scalable 
with the indexed collection size. The introduction of deletions has 
actually a marginal impact on the merge operation, which 
continues to be efficiently processed in linear pipeline as before. 
Moreover, given the way the deletions are processed in our 
structure, i.e., by storing couples (d, -fd,t) for the deleted 
documents, the merge acquires a second function which is to 
absorb the part of the deletions that concern the documents 
present in the partitions that are merged. Indeed, let us come back 
to the Background Merging process described in Section 5. The 
main difference when deletes are considered is the following. 
When inverted lists are merged during step 1 of the algorithm, a 
new particular case may occur, that is when two pairs (d, fd,t) and 
(d, -fd,t) are encountered in separate lists for the same d; this 
means that document d has actually been deleted; d is then purged 
(the document deletion is absorbed) and will not appear in the 
output partition. Hence, the more frequent the Background 
Merging, the smaller the number of deleted entries in the index. 

Taking into account the supplementary function of the merge, i.e., 
to absorb the data deletions, we can adjust the absorption rate of 

deletions by tuning the branching factor of the last index level 
since most of the data is stored in this index level. By setting a 
smaller value to the branching factor b’ of the last level, the 
merge frequency in this level increases and consequently the 
absorption rate also increases. Therefore, in our implementation 
we use a smaller value for the branching factor of the last index 
level (i.e., b'=3 for the last level and b=10 for the other levels). 
Typically, about half of the total number of deletions will be 
absorbed for b'=3 if we consider that the deletions are uniformly 
distributed over the data insertions. 

7. EXPERIMENTAL EVALUATION 
7.1 Experimental Setup 
Hardware platform. All the experiments have been conducted 
on a development board ST3221G-EVAL (see www.st.com/web/ 
en/catalog/tools/PF251702) equipped with the MCU STM32-
F217IG (see www.st.com/web/catalog/mmc/FM141/SC1169/ 
SS1575/LN9/PF250172) connected to a micro-SD card slot. This 
hardware configuration is representative of typical smart objects 
[4, 17, 19]. The board runs the embedded operating system RTOS 
7.0.1 (see freertos.svn.sourceforge.net/viewvc/freertos/tags/ 
V7.1.0/). The search engine code is stored on the internal NOR 
Flash memory of the MCU, while the inverted index is stored on a 
micro-SD NAND Flash card. We used for data storage two 
commercial micro-SD cards (i.e., Kingston MicroSDHC Class 10 
4GB and Silicon Power SDHC Class 10 4GB) exhibiting different 
performance (see lines 1 and 4 of Table 1). The MCU has 128KB 
of available RAM. However, the search engine only uses a 
maximum amount of 5KB of RAM, to validate our design 
whatever the available RAM of existing smart objects and the 
RAM consumption of the OS and the communication drivers. 

Table 2. Desktop and synthetic datasets and query sets 

 Desktop Synthetic 
Number of documents 27000 100000 

Total Raw Text 63 MB 129 MB 
Total Unique Words 337952 10,000 

Total Word Occurrences 35624875 10000000 
Average Occurrences per Word 26 988 

Frequent Words 20752 1968 
Infrequent Words 317210 8032 

Frequent Word Occurrences 6.14% 19.68% 
Infrequent Word Occurrences 93.85% 80.32% 
KB per documents (avg, max) 8, 647 1.3, 1.3 

Words per documents (avg, max) 1304, 105162 100, 100 
Total number of queries 837 1000 

Queries with 1, 2 & 3 terms 85, 255, 272 200, 200, 200
Queries with 4 & 5 terms 172, 82 200, 200 

 
Datasets and queries. Selecting a representative data and query 
set to evaluate our solution is challenging considering the 
diversity and quick evolution of smart object usages, explaining 
the absence of recognized benchmarks in this area. We then 
validate our proposal using two use-cases where an embedded 
keyword-based search engine is called to play a central role and 
which exhibit different requirements in terms of document 
indexing with the objective to assess the versatility of the 
solution.  
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The first use-case relates to the Personal Cloud where a secure 
smart object embedding a Personal Data Server [3, 4, 18] is used 
to securely store, query and share personal user's files 
(documents, photos, emails). These files can be stored encrypted 
on a regular server (e.g., in the Cloud or in a PC)  but the 
metadata describing them (keywords extracted from the file 
content, date, type, tags set by the user herself, etc.) are indexed 
and stored by the embedded Personal Data Server acting as a 
Google Desktop or Spotlight for the user's dataspace [12]. Indeed, 
the metadata are as sensitive as the files themselves and must be 
managed in the secure smart object (e.g., a mass storage 
smartcard connected to a PC or an internet gateway) to prevent 
any privacy breach. This use-case is representative of situations 
where the indexing documents have a rich content (tens to 
hundreds of thousands of terms) and documents updates and 
deletes can be performed randomly. To capture the behavior of 
our solution in such context, we use the pseudo-desktop data 
collection and query set provided in [11] which is considered as 
representative of a personal desktop where searches, updates and 
deletes are performed.  

The second use-case is in the smart sensor context. Sensors can be 
smart meters deployed at home to enable new generation of 
energy services, home gateways capturing a variety of events 
issued by a growing number of smart appliances or car trackers 
registering our locations and driving habits to compute insurance 
fees and carbon tax [3]. In this case, documents are time windows 
and terms are events occurring during this time window. Top-k 
queries are useful for analytic tasks and executing them at the 
sensor side helps reducing evaluation time, energy consumption 
linked to data transmission costs and risk of private information 
leakage. We consider that in this use-case the indexing documents 
have a poorer content (hundreds to thousands of terms/event types 
per time window). We are not aware of publicly available datasets 
for this context and then generate a synthetic one. 

The statistics of the desktop dataset and query set are given in 
Table 2. This dataset contains five representative types of 
personal files (i.e., email, html, pdf, doc and ppt). The desktop 
search is an important topic in the IR community, but real 
personal collections of desktop files cannot be published for 
evident privacy issues. Instead, the authors in [11] propose a 
method to generate pseudo desktop collections and show that such 
collections have the same properties as real collections. As 
recommended in [11], we preprocess the files in this collection by 
removing the stop words and stemming the remaining terms using 
the Krovetz stemmer. The obtained number of terms in the 
vocabulary is large, i.e., 337952. We also use a set of 837 queries 
prepared for this dataset and provided in [11]. Different, the 
synthetic dataset has a much smaller vocabulary, i.e., 10000 

terms, and an average of 100 terms per document, chosen using a 
zipfian distribution with a skew of 0.7. For this dataset, we 
generated a query set of 1000 random queries with up to five 
terms per query. In the experiments, we analyze the cost of 
insertions and queries separately, one operation at a time. Indeed 
smart objects, contrary to central servers, rarely support parallel 
or multi-task processing. Moreover, the RAM consumption 
increases linearly with the number of operations executed in 
parallel, a serious constraint in our context. Due to space 
limitation, we focus in this paper on the results obtained with the 
desktop dataset and provide results issued from the synthetic 
dataset only when the differences are significant. The reader 
interested in the full set of measures can refer to a technical report 
[5]. This report also gives the pseudo-code of the measured 
algorithms and discusses results obtained using a third larger 
dataset (the ENRON email dataset available at : https://www.cs. 
cmu.edu/~enron/) which actually gives similar results as those 
presented here.  

7.2 Index Maintenance 
According to the algorithms presented earlier, the insertions and 
deletions of documents produce a sequence of index partitions 
which are subsequently merged in the SSF. Given the 
RAM_Bound of 5KB, we set the branching factor b (intermediate 
levels in the SSF) to ss8 to decrease the merge frequency, and the 
branching factor b’ (last level in the SSF) to 3, to absorb faster the 
document deletions. The insertion or deletion of a single 
document is very efficient, since the document metadata is 
preliminary inserted in RAM. Also, given the small size of the 
RAM_Bound, flushing the RAM content into the level L0 of the 
SSF is fast; it takes on average 6ms to write a partition in L0 in all 
our experiments (see Table 3).  

Table 3 shows also the SSF merge cost, which is periodically 
triggered (i.e., each time the number of flushed partitions in Li 

reaches the branching factor b). The table presents the number of 
IOs for the flush and merge operations performed in the different 
SSF levels, and their execution times for the two tested SD cards, 
while inserting the 27K documents of our dataset and randomly 
deleting 10% of them. In our experiments, the deletions are 
uniformly distributed over the inserted documents and uniformly 
interleaved with the insertions. All these operations lead to an SSF 
with six levels. As expected, the merge time grows exponentially 
from L0 to L5, since the size of the partitions also increases by 
(nearly) a factor of b. It requires a few seconds to merge the 
partitions in the levels L0 to L3 and up to a few minutes in L4 to L5. 
The merge time is basically linear with the size of the merged 
partitions in the number of reads and writes. The merge time can 
vary especially in the first three levels of the SSF, depending on 
the term distribution in the indexed documents. However, the 

Table 3. Statistics of the flush and merge operations 

 Flush 
[RAML0] 

Merge 
[L0L1] 

Merge 
[L1L2] 

Merge  
[L2L3] 

Merge  
[L3L4] 

Merge  
[L4L5] 

Number of Read IOs 1 (1)* 90 (92) 503 (617) 2027 (2570) 11010(15211) 50997(73026) 
Number of Write IOs 9 (9) 71 (100) 339 (548) 1485 (2085) 9409 (14027) 47270 (66335) 

Exec. time on Kingston (sec.) 0.008 (0.0084) 0.58 (0.77) 2.9 (4.44) 13.2 (19.1) 84.6 (124.4) 436 (615) 
Exec. time on Silicon Power (sec.) 0.004 (0.0045) 0.38 (0.48) 1.94 (2.84) 8.67 (11.7) 54.5 (79.3) 278 (393) 

Total number of occurrences 73277 9160 1145 143 18 2 
Inserted docs between flushes/merges 0.42 (16) 3 (42) 24 (232) 189 (1193) 1453 (6496) 8906 (10547) 

  * The numbers given in brackets are maximum values, other values are average values. 
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partitions in L3 contain most of the term dictionary and the 
variation of the merge time in the upper levels is less significant.  

Table 3 indicates that the most costly merges are also the less 
frequent. Only 20 merges costing more than 15 seconds are 
triggered while inserting the complete set of documents and 
deleting 10% of them. However, blocking the index for a long 
duration may be problematic for some applications and justifies 
the non-blocking merge implementation presented in Section 5. 
Table 4 compares the maximum and average insertion/deletion 
time in the index between blocking and non-blocking merge 
implementations. The time is measured as the RAM flush time 
plus the merge time, if a merge is triggered (for the blocking 
merge) or is currently in progress (for the non-blocking merge). 
We observe that the cost of a blocking merge in L5 can take up to 
393 seconds with Silicon Power, while this cost is spread among 
the next 13844 insert/delete operations (each time the RAM is 
flushed) in the non-blocking case. This leads to an extremely 
large gap between the maximum and average insertion times in 
the blocking case. The insertion of the synthetic dataset also leads 
to an SSF with 6 levels [5]. The average insertion time is similar 
to the desktop dataset, e.g., with a non-blocking merge, the 
average cost is 0.29s for Kingston and 0.20s for Silicon Power.  

Table 4. Blocking vs. non-blocking merge performance (sec.) 

Max.  Avg.  
Blocking merge (Kingst./Silicon P.) 615/393 0.16/0.10

Non-blocking merge (Kingst./Silicon P.) 0.23/0.15 0.21/0.13
 

7.3 Index Search Performance 
We evaluated the search performance of our index on our test 
board with the two SD cards, with both the blocking and non-
blocking merge implementations. Due to the similarity of the 
results, we present hereafter only the results obtained with the 
Silicon Power card. Figure 7 shows the average query time for the 
837 search queries of the query set as a function of the number of 
documents. The curves present the query cost before ("max" 
curve) and after ("min" curve) each merge occurring in the higher 
index levels, i.e., from level 3 to level 5. We can observe that 
locally, the query cost increases linearly with the number of 
partitions in the lower levels, and then decreases significantly 
after every merge operation. The large variations in the query cost 
correspond to the creation of a new partition in the fifth level of 
the SSF, while the intermediary peaks correspond to the creation 
of a partition in level 4 of the SSF (see the arrows in Figure 7). 

Globally, the query time increases linearly with the number of 
indexed documents, but with a low factor. For example, after 
inserting 27K documents and deleting 10% of them, the average 
query execution time is only 0.18s (maximum of 0.35s) with the 
non-blocking merge implementation. The query times are lower 
with a blocking merge, i.e., an average execution time of 0.14s 
and a maximum of 0.28s. Indeed, in the non-blocking merge 
implementation, the number of lower level partitions can 
temporarily exceed b, so that more partitions have to be visited. In 
our setting, the increase is on average of about 25% and 
represents approximately 0.04s seconds. This appears to be a fair 
trade-off for applications that cannot accept unpredictable or 
unbounded update index latencies.  

With the synthetic dataset [5], our index exhibits an average 
execution time of only 0.21s and a maximum of 0.42s. The 
slightly higher query times compared to the desktop dataset are 
explained by the larger index size (see Table 6) and by the smaller 
vocabulary (which reduces the average query selectivity). 
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Figure 7. Query times with the non-blocking merge strategy 

7.4 Impact of the Deletion Rate 
Table 5 shows the average query performance for different 
deletion rates with Silicon Power storage (we obtained similar 
results with the Kingston storage). We considered two cases. 
First, we inserted the whole dataset while deleting a number of 
documents corresponding to the deletion rate (first line in Table 
5). In this case, the higher the deletion rate is, the lower the query 
time is since a good part of the deleted documents (app. 50%) will 
be purged from the index and decrease the query processing time. 
In the second case, the total number of active documents in the 
index is the same (i.e., 13500) regardless the deletion rate (second 
line in Table 5). Hence, the higher the deletion rate is, the more 
documents we insert to compensate the deletions. In this case, a 
higher deletion rate leads to larger query times since part of the 
deletions are present in the index and have to be processed by the 
queries. However, the increase of the query times is relatively 
small compared to the case with no deletions, i.e., less than 16% 
for deletion rates up to 50%. Globally, the index is robust with the 
number of deletions in both cases. 

Table 5. Avg. query time (in sec.) with deletion (Silicon P.) 

Deletion rate 0% 10% 30% 50% 
Avg. query time (27k docs) 0.18 0.17 0.16 0.16 
Avg. query time (13k docs) 0.12 0.13 0.13 0.14 

 
Table 6. Index (I.L/I.S) size (MB) varying the deletion rate  

Deletion rate 0% 10% 30% 50% 
Desktop (SSF) 81/1.24 76/1.14 60/0.82 55/0.73 

Desktop (classic) 81/0.4 73/0.4 57/0.4 40/0.4 
Synthetic (SSF) 78 /0.97 74 /0.88 66 /0.78 58 /0.69 

Synthetic (classic) 78 /0.13 70 /0.13 55 /0.13 40 /0.13 
 
Table 6 shows the index size for the desktop and synthetic 
datasets after the insertion of all the documents in the collection 
and the uniform deletion of a certain percentage of the indexed 
documents. In each table cell, the first number indicates the 
cumulated size in MB of all the I.L parts of the SSF (i.e., the 
global size of the inverted lists), while the second number gives 
the cumulated size of all the I.S parts of the SSF (i.e., the global 
size of the search structures). Also, Table 6 gives for each dataset  
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and deletion rate the index size of the classical inverted index 
used as reference (i.e., a single standard B+-Tree built with no 
consideration for the Flash cost). Without deletions, the SSF 
index size is comparable to the classical inverted index size. 
Indeed, the size of the I.L part (inverted lists) is similar in both 
indexes and the overhead introduced by SSF for the I.S part (each 
partition having its own search structure) is negligible since the 
search structure represents less than 1% of the global index size. 
As the deletion rate augments, the difference between SSF and the 
classical index increases. The explanation is that the deleted 
documents are reinserted in SSF, which temporarily increases the 
index size, until a merge is triggered and absorbs part of the 
deleted documents. Typically, we observed that about 45% to 
55% of deletions are not absorbed after a high number of 
document insertions and deletions. This makes the SSF index size 
to be at most 40% larger than the inverted index size. 

7.5 Comparison with the State-of-the-Art 
This section compares our search engine with state of the art 
indexing methods. We choose the classical inverted index (see 
figure 2) to represent the query-optimized index family (although 
it has not been designed with embedded constraints in mind) and 
Microsearch [17] to represent the insert-optimized index family. 
Note that the other embedded search engines presented in Section 
2.3 rely on similar index structures with Microsearch. We used 
the same test conditions as above, i.e., a RAM_Bound equals to 
5KB. The insertions in the classical inverted index are first 
buffered in RAM until the RAM_Bound is reached, then applied 
in batch to the index structure in Flash, generating random writes 
at this time. To be able to evaluate the queries under the RAM 
constraint, the inverted lists have to be maintained sorted on 
document ids, which permits applying a linear pipeline query 
processing similar to the SSF. In the case of Microsearch, we used 
a hash function with 8 buckets, since this value leads to the most 
balanced query-insert performance given the 5KB of RAM. 
Besides, we only considered data insertions and queries in the 
tests below, since Microsearch does not support deletions. 

Insertion performance. Figure 8 shows the average insertion time 
for the three methods (i.e., SSF, Microsearch and the classical 
Inverted Index) while inserting the 27,000 documents in the 
desktop dataset. Microsearch and SSF have similar insert 
performance. On average, a document insertion in Microsearch 
takes about 0.08s and 0.33s in SSF (with Silicon Power). The 
insertion time in the classical Inverted Index is at least two orders 
of magnitude higher (30s with Silicon Power) because of the 
costly random writes in Flash memory, clearly dismissing this 
method in the context of smart objects. For the synthetic dataset, 
the average insertion times are 0.02s, 0.07s and 15s for 

Microsearch, SSF and the inverted index respectively (with 
Silicon Power). The higher insertion cost of the SSF compared to 
Microsearch is generated by the SSF merges. But this gap seems 
acceptable for most of the applications and is outweighed by the 
query performance and scalability benefit of the SSF (see next). 

Query performance. Figure 9 shows the query execution time for 
the three methods in function of the number of indexed 
documents. Unsurprisingly, the Inverted Index reaches the best 
query performance. SSF appears as a good challenger (0.18s on 
the average to process a query compared to 0.07s with the 
Inverted Index, with Silicon Power), this difference being 
explained by the fragmentation of the SSF index structure. 
Microsearch exhibits the worst query performance and can 
definitely not scale to a large number of documents. On average, 
Microsearch takes 880 seconds (14 minutes) to process a query. 
Even for a low number of documents, SSF outperforms 
Microsearch. The first reason is that Microsearch merges many 
terms in the same inverted lists, so that large part of the index has 
to be scanned. Second, Microsearch requires two passes over the 
inverted lists, one to compute the global Ft value of the term and a 
second one to compute the tf-idf score of the documents 
containing the term. For the synthetic dataset, the average query 
times are 0.05s, 0.2s and 355s for the inverted index, SSF and 
Microsearch respectively (with Silicon Power). 

Overall performance. Figure 10 shows the speedup of SSF (i.e., 
the ratio between the throughput of SSF and of the competitors) 
with Silicon Power for workloads containing insertions and 
queries (with the pseudo-desktop collection) in different ratios. 
We obtained similar results with the other dataset or storage card. 
In most cases, SSF has (much) better throughput with both insert- 
and query-oriented workloads, while being the sole versatile 
method. Practically, SSF will be the preferred index method 
unless the expected workload contains in an overwhelming 
proportion either insertions or queries.  

Other concerns. The pros and cons of the SSF approach 
compared to its competitors originates from the specific way the 
index grows (by partitioning and merging)  and the deletes are 
managed (by reinserting deleted documents and absorbing deletes 
during merges). While performances have been extensively 
studied and compared above, the specificities of SSF may impact 
other aspects of an indexing structure, more difficult to weight. 
First, partitioning introduces some variability in the query cost 
(see the stairway-like curves in Figures 8 and 9) which could be 
prejudicial for real-time applications and could perturb a query 
optimizer. Note however that the occurrences of stairs are fully 
predictable, though it complexifies the optimization process. 
Second, the way deletes are processed lead to an increase of the 

 

Fig. 8. Insert time comparison (Silicon P.) 
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index size and consequently, of the query cost. Nevertheless, this 
negative effect is limited by the merge operations that permit to 
purge some of the deleted documents (see Table 6). Moreover, we 
do not see how to manage deletions differently without violating 
any of our design principles. Finally, we do not consider the 
problem of concurrent accesses in SSF, i.e., multiple processes 
that query/update the index at the same time. While this seems not 
a primary concern today, this problem may deserve a deeper 
interest as smart objects become more powerful. 
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9. CONCLUSION 
This paper presents the design of an embedded search engine for 
smart objects equipped with extremely low RAM and large Flash 
storage capacity. This work contributes to the current trend to 
endow smart objects with more and more powerful data 
management techniques. Our proposal is founded on three design 
principles, which are combined to produce an embedded search 
engine reconciling high insert/delete rate and query scalability for 
very large datasets. By satisfying a RAM_Bound agreement, our 
search engine can accommodate a wide population of smart 
objects, including those having only a few KBs of RAM. 
Satisfying this agreement is also a mean to fulfill co-design 
perspectives, i.e., calibrating a new hardware platform with the 
hardware resources strictly necessary to meet a given 
performance requirement. The proposed search engine has been 
implemented on a hardware platform representative of smart 
objects and the experimental evaluation validates its efficiency 
and scalability. We feel that our three design principles may have 
a wider applicability and could pave the way to the definition of 
other embedded indexing techniques. It is part of our future work 
to try to validate this assumption. 
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