
Optimal Probabilistic Cache Stampede Prevention

Andrea Vattani
Goodreads, Amazon Inc.

188 Spear St.
San Francisco, California

avattani@goodreads.com

Flavio Chierichetti
∗

Dipartimento di Informatica
Sapienza University

Rome, Italy

flavio@di.uniroma1.it

Keegan Lowenstein
Bugsnag Inc.

30 7th St.
San Francisco, California

keegan@bugsnag.com

ABSTRACT
When a frequently-accessed cache item expires, multiple re-
quests to that item can trigger a cache miss and start regen-
erating that same item at the same time. This phenomenon,
known as cache stampede, severely limits the performance
of databases and web servers. A natural countermeasure to
this issue is to let the processes that perform such requests
to randomly ask for a regeneration before the expiration
time of the item. In this paper we give optimal algorithms
for performing such probabilistic early expirations. Our al-
gorithms are theoretically optimal and have much better
performances than other solutions used in real-world appli-
cations.

1. INTRODUCTION
The cache stampede problem (also called dog-piling, cache

miss storm, or cache choking) is a situation that occurs when
a popular cache item expires, leading to multiple requests
seeing a cache miss and regenerating that same item at the
same time.

This issue is a consequence of the typical pattern used for
dealing with a cache miss (see Figure 1): a cache item re-
quest checks whether the item is cached, and regenerates the
item if it is not present. The flaw with this approach is that
many different requests may see that cache miss at the same
time and regenerate the item in cache through a potentially
expensive computation. The number of requests seeing the
cache miss (and therefore contributing to the stampede) de-
pends not only on the request rate, but also on the time
needed to recompute the item. For example, if the cache
item is accessed 10 times per second, and the recomputation
of the item takes 3 seconds, then 30 requests will recompute
the item.

Having several re-computations of the same cache item,
apart from being wasteful, often leads to overloading of the

∗Supported in part by a Google Focused Research Award,
and by the MIUR-PRIN National Project “ARS TechnoMe-
dia” (Algorithmics for Social Technological Networks).

This work is licensed under the Creative Commons Attribution-
NonCommercial-NoDerivs 3.0 Unported License. To view a copy of this li-
cense, visit http://creativecommons.org/licenses/by-nc-nd/3.0/. Obtain per-
mission prior to any use beyond those covered by the license. Contact
copyright holder by emailing info@vldb.org. Articles from this volume
were invited to present their results at the 41st International Conference on
Very Large Data Bases, August 31st - September 4th 2015, Kohala Coast,
Hawaii.
Proceedings of the VLDB Endowment, Vol. 8, No. 8
Copyright 2015 VLDB Endowment 2150-8097/15/04.

system or slow-down of the database, which is also why
that particular item was cached in the first place. A cache
stampede is often referred to as a cascading failure because
several concurrent re-computations will increase the time of
each individual recomputation by bogging down the system,
in turn causing even more requests to be part of the stam-
pede.

Due to the widespread nature and the threats associated
with this problem, multiple approaches have been proposed
to mitigate cache stampedes.

• External re-computation: Rather than regenerating the
cache item by the requests themselves upon cache ex-
piration, have a separate background process to peri-
odically regenerate the item. This solution prevents
cache stampedes all together, but it is often discarded
because of the burden of maintaining an external pro-
cess (need to enforce availability of this daemon pro-
cess, need for monitoring, code separation/repetition,
etc.) This becomes even more daunting when dealing
with multiple cache items, as it involves keeping track
of which items to periodically re-compute and when —
in fact, the background process would even regenerate
cache items that were never requested (which can be,
in some settings, a waste of processing time).

• Locking : Upon a cache miss, a request attempts to
acquire a lock for that cache key, and regenerates the
item only if it acquires it. Depending on how the lock
mechanism is implemented (atomically or not), this
approach may mitigate cache stampedes or completely
prevent them. One issue with this approach is that
all requests that would have been part of a stampede
(apart from the one acquiring the lock) have no cache
item to return. There are a few options: have the
client handle the absence of the item properly; have
the requests not acquiring the lock wait for the item
to be regenerated; or, keep a stale item in the cache
to be used while the new value is generated. Apart
from this issue, this approach requires one extra write
for the locking mechanism (doubling the number of
write operations), tuning a time-to-live for the lock
itself (high enough to recompute the item, but less
than the re-computation frequency), and implement-
ing a locking mechanism. Finally, this approach is not
fault-tolerant: if the request acquiring the lock fails
while re-generating the item, no item or a stale item
will be served until the lock expires and a new lock is
acquired.

886

• Probabilistic early expiration: Each individual request
may regenerate the item in cache before its expira-
tion by making an independent probabilistic decision.
The probability of performing an early expiration in-
creases as the request time gets closer to the expiration
of the item. This approach is depicted in Figure 2:
as the figure shows, each request essentially pretends
to be sometime in the future and if at that time the
cache is expired then it regenerates the item. Here, the
leap in the future depends on the probabilistic choice.
Since the probabilistic decision is made independently
by each request, the effect of the stampede is mitigated
as less requests will expire at the same time. The most
amenable feature of this approach is its simplicity. The
drawbacks are the choice of the probabilistic decision
(i.e. how to pick the distribution D in Figure 2); and
the lack of guarantees for its effectiveness, in terms
of assessing both the stampede reduction and when
early expirations happen (i.e. how much earlier than
the desired expiration). For example, if the item in
cache contains hourly statistics, it is important not to
regenerate these stats too much earlier than the hour
mark.

In this paper we show how probabilistic early expiration
can be made extremely effective. In particular, we present
a simple instantiation of the probabilistic decision with the
exponential function Exp(λ), which we demonstrate to be
optimal. A fundamental property we show is that the pa-
rameter λ needs not to depend on the rate of requests in
order to effectively reduce stampedes. This property makes
our solution very attractive in that, in its simplest form, it
requires no parameter tuning to perform effectively. This
implementation, which we call XFetch (for eXponential
fetch), is detailed in Section 5. A higher request rate for
a fixed λ, while not affecting the stampede size, will cause
earlier expirations of the item in cache, but we show that
this dependency is very moderate.

The general problem of efficiently keeping a cache of fre-
quently accessed (but dynamically-changing) results has been
studied in many guises and settings, both from an applied
and a theoretical point of view, e.g.: Web (e.g., dynamic web
pages and search results [3, 4]), networking (e.g., routers’
look-up tables [14]), databases (e.g., [2]). The cache stam-
pede problem strains many software systems [1, 15], specif-
ically those based on decentralized cache value recomputa-
tions (e.g., distributed web servers responding to web re-
quests); these systems are usually backed by caches with
primitive get/set operations, and which do not provide lock-
ing mechanisms, or protection against stampedes (a notable
example is the widely-used distributed caching system Mem-
cached [8]). A number of systems use a probabilistic early
expiration strategy to avoid stampedes. Notably, a prob-
abilistic early expiration strategy is used in Perl’s unified
Cache Handling Interface (CHI) [11] — a module which is
part of many web-applications (e.g., Drupal [5, 10]).

CHI uses the uniform distribution to implement early ex-
piration — as documented in [11], by allowing programmers
to set the length of the interval on which the uniform dis-
tribution will be defined. In this paper, we will show that
the uniform distribution is far from being optimal, while the
exponential distribution is much more efficient (on all axes)
and close to optimality.

function Fetch(key, ttl)
value← CacheRead(key)
if !value then

value← RecomputeValue()
CacheWrite(key, value, ttl)

end
return value

end

Figure 1: Typical pattern for retrieving an item in
cache with a time-to-live. Here ttl is the time-to-live
of the cache item: after CacheWrite(key, value, ttl) is
called, the key will be present in the cache for ttl
units of time after which it will expire. The call to
RecomputeValue() is typically expensive.

The rest of the paper is organized as follows. We start
off with describing a framework to model stampedes in Sec-
tion 2. Our results are then detailed in Section 3. The main
part of our analysis is in Section 4. Section 5 contains some
implementation notes, and Section 6 contains the results of
our experiments. The appendix contains the proofs missing
from the main body.

All the logarithms in this paper are assumed to be natural
(that is, log e = 1, where e is the Napier’s constant).

2. MODEL
In this section we define a general framework to model

the effect of stampedes and the efficacy of probabilistic early
expirations.

Without loss of generality, we restrict our attention to an
arbitrary item in cache whose expiration time we assume to
be τ . We assume that the recomputation of the item takes
one unit of time1. We will use some of the basic terminology
of queueing theory, and of probability theory — the concepts
that we will use can be found in many text-books (e.g., [6,9]).

2.1 Process rate
To capture the notion of process rate, we consider a (pos-

sible infinite) sequence of processes accessing the item in
cache at non-increasing times {si}i. Given a certain n > 0
representing the rate of processes, we model the inter-arrival
times (si−si−1) as independent samples from a non-negative
distribution with expectation 1

n
, so that in average n pro-

cesses will access the item in a single unit of time.

Definition 1 (Process arrival) Let I be an arbitrary non-
negative distribution with expectation 1 and standard devi-
ation σI . The process arrival is defined by inter-arrival
times drawn independently from I

n
. Hence, inter-arrivals

have mean 1
n

and standard deviation σI
n

.

As a notable example, the well-known Poisson point pro-
cess [13] of inter-arrival mean 1

n
= σI

n
satisfies σI = 1 (that

is, mean and standard deviation are equal).
It is important to notice that since the recomputation of

the item takes one unit of time and the process arrival is
such that n processes access the item in a unit of time, we
have stampedes of n processes (in average) if no form of
stampede prevention is implemented.
1This is without loss of generality as we can simply scale
the process rate to allow for a different recomputation time.
See Section 5 for a more detailed discussion.

887

function Fetch(key, ttl; D)
value, expiry ← CacheRead(key)
gap ∼ D
if !value or Time() + gap ≥ expiry then

value← RecomputeValue()
CacheWrite(key, value, ttl)

end
return value

end

Figure 2: Probabilistic early expiration of a cache
item. Here, D is a probability distribution with non-
negative support (i.e. gap ≥ 0). The variable expiry
represents the time at which the key expires from
the cache.

2.2 Probabilistic early expirations
We now proceed with formalizing probabilistic early expi-

rations. As previously discussed, this approach attempts to
mitigate stampedes by having the processes possibly regen-
erate the item in cache before it expires, where this decision
is taken probabilistically and independently by each process.
As depicted in Figure 2, this probabilistic choice can be in-
terpreted as each process pretending to be sent sometime in
the future and checking if at that time the item would be
expired. It is evident that the crux of this approach lies in
choosing a distribution D to stochastically decide the time
gap each process employs.

Definition 2 (Gap distribution) A gap distribution D is
any distribution defined over t ∈ R≥0.

For example, the Cache Handling Interface (CHI) for Perl,
sets D to the uniform distribution over the interval [0, ξ],
where ξ is a user-specified parameter to tune the tradeoff
between stampede prevention and how early expirations can
happen.

For a given gap distribution D, we have that a process
accessing the item in cache (with expiration τ) at time s,
will regenerate it in either of the two following cases:

(i) Early expiration: When s < τ and s + Y ≥ τ , where
Y is sampled from D.

(ii) Regular expiration: When s ≥ τ . The cache item is
expired at this point so the process needs to refresh it.

Observe that as the cache access time s gets closer to τ ,
the probability PrY∼D(s + Y > τ) of an early expiration
increases. For example, in the case of CHI, this probability
increases linearly as s approaches τ .

2.3 Effectiveness
We finally proceed with defining how effective a gap dis-

tribution D is. On one hand, early expirations may reduce
large stampedes since only a fraction of the processes ac-
cessing the item will stampede on an early expiration; at
the same time, we also do not want to expire the item too
much earlier than the desired expiration time. These are the
two quantities that we care about.

Definition 3 (Stampede size) Fix an inter-arrival distri-
bution I, a process rate n and a gap distribution D. Let
Z = Z(I, n,D) be the random variable denoting the first

time a process regenerates the item. The stampede size
SI,n,D is the number of processes re-generating the item in
the time interval [Z,Z + 1).

Observe that if Z ≥ τ (that is, no process regenerates the
item before it expires) then we run into a regular expiration
causing a stampede of roughly n processes during the time
interval [Z,Z+1). Analogously, if Z = τ−ε, with 0 < ε < 1,
then there will be a stampede of roughly (1− ε) ·n processes
in the time interval [τ, τ + (1− ε)).

Definition 4 (Early expiration gap) Fix an inter-arrival
distribution I, a process rate n and a gap distribution D.
Let Z = Z(I, n,D) be the random variable denoting the first
time a process regenerates the item. The early expiration
gap TI,n,D = max{τ − Z, 0} is how much earlier than the
regular expiration time the early expiration occurred (or zero
if no early expiration occurs).

A low early expiration gap is particularly important in ap-
plications where the cache item contains some periodic (typ-
ically hourly or daily) statistics.

Note that both stampede size and early expiration gap
are random variables that depend on the randomness of the
process distribution I and of the gap distribution D.

Intuitively, if the gap distribution D allows for very early
expirations, then it should be more effective in reducing
large stampedes. On the other hand, if it only allows ex-
pirations close to the desired expiration of the item, then
stampedes are more likely to be large. How effective a gap
distribution D is a combination of these two criteria.

Definition 5 (Effectiveness) Fix an inter-arrival distri-
bution I. Then we say that a gap distribution D is (s, γ)-
effective if

1. E[S] ≤ (1 + on(1))s

2. E[T] ≤ (1 + on(1))γ

(In the definition above the “little-o” notation on(1) hides
factors going to 0 as n grows2.)

Consider a scenario where early expirations are never done.
This scenario is obtained by a gap distribution D0 that as-
signs probability one at t = 0 and zero otherwise. Then we
have that D0 is (n, 0)-effective, as the early expiration gap
is always zero but the n processes (in expectation) accessing
the cache between time τ and τ + 1 will all regenerate the
cache item.

The core problem addressed in this paper is whether we
can find a distribution D which gives the best of both worlds.
That is, a distribution D which can substantially reduce the
size of the stampedes, while keeping the early expiration gap
low.

3. OUR RESULTS
We first consider the uniform distribution D = U(0, ξ),

used for instance by the Perl Cache Handling Interface (CHI).
While, by tuning ξ, this distribution is able to reduce stam-
pedes by increasing the early expiration gap, we have that
this trade-off has a linear dependence in ξ. In particular, we
can show the following result.

2By definition, f(n) = o(g(n)) if limn→∞
f(n)
g(n)

= 0.

888

Theorem 6 (Uniform) The uniform distribution U(0, ξ)
is no better than (n

2ξ
, ξ)-effective.

This means that if we want to reduce the stampede size to√
n, then we need to allow for expirations as early as

√
n/2.

In practice this may not been good enough: for example,
suppose we have a frequently-accessed cache item that gets
recomputed once a day and whose recomputation takes one
minute; then if we have 10, 000 processes accessing the item
in a minute, we would need to allow expirations as early as
50 minutes to reduce the stampede size to 100 processes.

We then propose to use an exponential distribution of pa-
rameter λ whose implementation, XFetch, is extremely
simple (see Section 5). We are able to show that the ex-
ponential distribution is able to drastically reduce the size
of a stampede while keeping expirations close to the desired
expiration time.

Theorem 7 (Exponential) The exponential distribution
Exp(λ) is

(
(eλ − 1)(1

λ
+ 1

e
), 1
λ

logn
)
-effective.

For example, for λ = 1, we obtain early expiration gap of
size log n with stampedes of size e− 1

e
. Going back to our ex-

ample above, an exponential distribution with λ = 1 would
reduce the stampede size to merely e − 1

e
≈ 2.4 processes

without having expirations earlier than loge(10, 000) ≈ 9.2
minutes.

It is natural to ask whether there exists a distribution
that would guarantee a constant early expiration gap (rather
than logn) while keeping the stampede low to a constant.
We show that this is not possible and, in fact, that the
exponential distribution is optimal in this respect.

Theorem 8 (Optimality) Consider any distribution D that
is independent of n. If, for each n, D has early expiration
gap at most 1

λ
logn, then it has expected stampede size at

least eΩ(λ).

For concreteness, observe that Theorem 8 implies that the
Exponential distribution is optimal in the full range of λ
— e.g., if we want the early expiration gap to be at most
log logn, then the expected stampede size has to be at least
eΩ(logn/ log logn), and the Exponential distribution matches
this bound. Observe that the above optimality theorem
holds if D is independent of the process rate n — that is,
if the algorithm cannot make any guess on the process rate.
In Section 7, we will see that if we have an approximate
knowledge of n, then we can make the early expiration gap
smaller than O(logn) while keeping the expected stampede
size to a constant.

We then evaluate the performance of XFetch on real-
world and synthetic datasets. Our experiments show that
our approach out-performs current methods from all angles
even when λ = 1. In addition, the experimental results show
that our approach is very robust to bursts.

4. ANALYSIS
In this section we assume that the item in cache we con-

sider has expiration time τ . We start with a couple of defi-
nitions that will turn out useful for the analysis.

Definition 9 (y-early process) For y ≥ 0, we say that a
process is y-early if it arrives at time τ − y. In other words,
a y-early process is a process that accesses the item in cache
y units of time before its expiration time.

Definition 10 (Early expiration probability) Fix a gap
distribution D. We define fD (y) as the probability that a
y-early process performs an early expiration when sampling
from D.

fD (y) = Pr
Y∼D

(Y > y) = 1− Pr
Y∼D

(Y ≤ y).

4.1 Uniform distribution
In this section we instantiate the gap distribution D with

the uniform distribution U(0, ξ); this will serve both as a
warm-up for some of the techniques that we will use in the
paper, as well as a proof of Theorem 6. By definition of
U(0, ξ), we have that

fU(0,ξ) (y) =

{
1− y

ξ
, for 0 ≤ y ≤ ξ

0, for y > ξ

Observe how the probability of a process performing an early
expiration increases linearly as the time approaches the item
expiration.

We will show that the uniform distribution fails to achieve
good efficiency even for the simple case where the process
inter-arrival times are all equal to 1

n
, that is when the process

inter-arrivals distribution is such that σI = 0.
The following lemma shows that the early expiration gap

tends to ξ as n grows.

Lemma 11 (Early expiration gap for U(0, ξ)) Let T =
TU(0,ξ) be the early expiration gap. For any a = a(n) > 0,
we have that

Pr
(
T ≤

(
1− a

n

)
ξ
)
≤ e−(a2ξ/n−1)

1− a
n

Proof. Consider any 0 ≤ y ≤ ξ. In order to have early
expiration gap T ≤ y, it must be that no x-early process
with y ≤ x ≤ ξ performs an early expiration. The proba-
bility that a x-early process does not perform expiration is
1− fU(0,ξ) (x). Since the cadence of the processes is exactly
1
n

, we can write

Pr(T ≤ y) ≤
n(ξ−y)∏
i=0

(
1− fU(0,ξ)

(
ξ − i

n

))

=

n(ξ−y)∏
i=0

(
1− i

nξ

)

= exp

n(ξ−y)∑
i=0

log

(
1− i

nξ

)
≤ exp

(∫ n(ξ−y)−1

z=0

log

(
1− z

nξ

)
dz

)
,

where the last step holds since log
(

1− i
nξ

)
is decreasing in

i.
By solving the integral, we get

Pr(T ≤ y) ≤ exp

(
−(ny + 1) log

y

ξ
+ (ny + 1)− nξ

)
=

(
y

ξ

)−ny−1

e−n(ξ−y)+1

889

By substituting y = (1− a
n

)ξ, we can conclude

Pr
(
T ≤

(
1− a

n

)
ξ
)
≤
(

1− a

n

)−nξ(1− a
n

)−1

e−aξ+1

≤ e
a
n
nξ(1− a

n
)e−aξ+1

1− a
n

=
e−(a2ξ/n−1)

1− a
n

,

where the second inequality holds since 1− x ≤ e−x for any
0 ≤ x ≤ 1.

Applying the lemma above with a = a(n) =
√

1+logn
n

, we

can conclude that the early expiration gap is at least (1 −√
logn
n

)ξ = (1 − o(1))ξ with probability at least 1 − O(1
n

).

This also implies that E[T] ≥ (1− o(1))ξ.

To establish Theorem 6, it is left to show that the stam-
pede size decreases linearly with ξ, which we do in the fol-
lowing lemma.

Lemma 12 (Stampede size for U(0, ξ)) Let S = SU(0,ξ)

be the stampede size. Then,

E[S] ≥ n

2ξ

Proof. Since fU(0,ξ) (y) increases as y decreases and the
early expiration gap cannot be more than ξ, we have that
the size of the stampede starting exactly ξ units of time
before the expiration is a lower bound on the size of any
stampede. Hence,

E[S] ≥
n∑
i=1

fU(0,ξ)

(
ξ − i

n

)
=

n∑
i=1

i

nξ
=
n+ 1

2ξ
.

4.2 Exponential distribution
In this section we instantiate the gap distribution D with

the exponential distribution Exp(λ). By Definition 10 and
the fact that Pr(Y ≤ y) = 1 − e−λy for Y ∼ Exp(λ), we
have that the probability that a y-early process regenerates
the item in cache is

fExp(λ) (y) = 1− Pr
Y∼Exp(λ)

(Y ≤ y) = e−λy.

Since we are dealing with the general class of inter-arrival
distributions as per Definition 1, we are going to use Cheby-
shev’s lemma to bound the number of processes present in
a specific interval.

Lemma 13 (Chebyshev [6, 9]) Let X be a random vari-
able with finite expected value µ and finite non-zero variance
σ2. Then for any real number k > 0,

Pr(|X − µ| ≥ k) ≤ σ2

k2
.

The following lemma uses Chebyshev’s bound to establish
that with high probability the number of processes present in
any interval of unitary length is tightly concentrated around
its expectation n. (The proofs of all claims in this section
are deferred to the Appendix.)

Lemma 14 (Concentration) Let the processes be distributed
according to the inter-arrival distribution from Definition 1.
Consider any interval of unit length and let N be the number
of processes in the interval. For any real number δ > 0, we
have

Pr(N ≥ (1 + δ)n) ≤ (1 + δ)σ2
I

δ2n
.

For any real number 0 < δ < 1, we have

Pr(N ≤ (1− δ)n) ≤ (1− δ)σ2
I

δ2n
≤ σ2

I
δ2n

.

The following lemma shows that the early expiration gap
will not exceed ν = 1+ε

λ
logn with high probability. The cru-

cial observation in the proof is that each of the (roughly) n
processes in the interval right before this threshold performs
an early expiration with probability at most fExp(λ) (ν) =

1
n1+ε , so the probability that at least one of them will re-

generate the item is at most 1
nε

.

Lemma 15 (Early expiration gap for Exp(λ)) Let T =
TExp(λ) be the early expiration gap. Then for any ε > 0,
δ > 0,

Pr

(
T >

1 + ε

λ
logn

)
≤ 1 + δ

nε(1− e−λ)
+O

(
σ2
I

δ2n

)
The analysis of the stampede size is more subtle. It es-
sentially establishes that the probability of an expiration

as early as i + 1
λ

logn is roughly e−e
λi/(eλ−1) and entails

stampedes of size eλi. The expected stampede size is then∑
e−e

λi/(eλ−1)eλi ≈ (eλ − 1)(1
λ

+ 1
e
).

Lemma 16 (Stampede size for Exp(λ)) Let
S = SExp(λ) be the stampede size. Then, for any δ > 0,

E[S] ≤
(

1 +O

(
σ2
I logn

δ2n

))
· e

λ − 1

1− δ

(
1

λ
+

1

e

)
.

Theorem 7 follows by having ε slowly approach zero (e.g.
ε = log logn

logn
) in Lemma 15 (implying an expected early ex-

piration gap of at most (1 + o(1)) 1
λ

logn); and having δ

approach zero (e.g. δ = 1
logn

) in Lemma 16.

4.3 Optimality
We will use a Poisson point process as model for inter-

arrival distribution [13]. That is, in the notation of Defini-
tion 1, we have I = Exp(1) with σI = 1. For a process rate
n, we then have that the number X of processes in any unit
interval is distributed like a Poisson random variable with
parameter n: Pr(X = k) = nke−n

k!
.

Consider any gap distribution D independent of n. By
Definition 10, fD (y) is the probability that a y-early process
performs an early expiration according to the distributionD.

Assuming fD (y) is integrable3, let pi =
∫ i+1

i
fD (y) dy, for

each integer i ≥ 0 — that is, pi is the probability that some
y-early process, where y is chosen uniformly at random in
(i, i+ 1], performs an early expiration. We will show that pi
cannot be much larger than what it is with the exponential
distribution, unless the early expiration gap is larger than
logn.
3Observe that fD (y) is integrable in Riemann terms if it
is monotone, or has finitely many discontinuities; fD (y) is
integrable in Lebesgue terms if it has at most countably
many discontinuities.

890

function XFetch(key, ttl; β = 1)
value,∆, expiry ← CacheRead(key)
if !value or Time()−∆β log(rand()) ≥ expiry then

start← Time()
value← RecomputeValue()
∆← Time() – start
CacheWrite(key, (value,∆), ttl)

end
return value

end

Figure 3: Simple implementation of cache stam-
pede prevention with exponential gap distribution
D = Exp(1

β
). The parameter β defaults to 1 and

already provides effective prevention against cache
stampedes. It can be increased for even better guar-
antees against stampedes, if earlier expirations are
not a concern.

Lemma 17 Fix any ε > 0. Suppose that, for each n ≥ 2,
the early expiration gap TD satisfies E[TD] ≤ ε log(n − 1).

Then pi ≤ e−(1−e−1/3) iε for each integer i ≥ 0.

We will now use Lemma 17 (which upper bounds the prob-
ability that a process, whose arrival is chosen uniformly at
random in a window of size 1, performs an early expiration)
to prove Lemma 18 — which, then, directly entails Theo-
rem 8, our main lower bound.

Lemma 18 Let ε > 0 be small enough. If, for each n ≥ 2,
the early expiration gap TD satisfies E[TD] ≤ ε log(n − 1)

then the expected stampede is at least eΩ(1/ε).

5. IMPLEMENTATION NOTES
In this section we present an explicit implementation of

our cache stampede prevention approach, XFetch (taking
its name by our use of the eXponential function).

The discussion thus far assumed (without loss of gener-
ality) that the recomputation of the item in cache takes
one unit of time. This allowed our analysis to have the gaps
sampled from Exp(λ) to be independent of a particular time
unit. In practice though, the gaps we sample from Exp(λ)
needs to be scaled by the recomputation time. Figure 3
shows how this time ∆ can be recorded upon recomputa-
tion of the item and stored as part of the cache value. The
scaled gap −∆β log(rand()) corresponds to sampling from
D = Exp(1

β
) and scaling by a factor ∆.

The pseudo-code assumes that the cache server is able
to provide the expiration time (expiry) of the item upon a
cache read of the corresponding key. If this is not the case,
this expiration can be stored also as part of the cache value,
which will then become (value,∆,Time() + ttl). Also, to
avoid accumulating the gaps given by the early expirations,
we can simply adjust the ttl← ttl+(expiry−Time()) right
before the cache write.

6. EXPERIMENTS
In this section we describe experimental results based on

the results discussed thus far.
For our experiments we use a real dataset that consists

of a week of requests for a popular cache item used in the
www.goodreads.com website. In particular the cache item in

0

5

10

15

20

25

30

0 15 30 45 60 75 90 105 120 135 150 165 180 195

S
ta

m
p

ed
e

si
ze

Early expiration gap (seconds)

Exp(λ), λ = 1
U(0, ξ), ξ = 10
U(0, ξ), ξ = 20

Figure 4: Scatterplot – regeneration time is 10s.

0

5

10

15

20

25

30

35

40

45

50

55

0 10 20 30

N
u
m

b
er

o
f

o
cc

u
rr

en
ce

s

Stampede size

Exp(λ), λ = 1
U(0, ξ), ξ = 10
U(0, ξ), ξ = 20

Figure 5: Stacked histogram of distribution of stam-
pede sizes – regeneration time is 10s.

consideration is a hourly statistic for the most popular tags
used in all of the user-created quotes. The recomputation
of this cache item takes about 10 seconds. The inter-arrival
time of the requests in this dataset is about 0.07s with a
standard deviation of 0.25s. In the terminology of Defini-
tion 1, this means that σI ≈ (0.25/0.07) ≈ 3.6. Since the
time to regenerate the item is about 10 seconds, we have
that the process rate is n ≈ 140 in average.

Figure 4 shows a scatter plot where each data point for a
specific distribution corresponds to the regeneration of the
cache item with respect to a specific hour-long interval dur-
ing the week of data. Specifically, consider a data point
(x, y) of a specific distribution D and say it corresponds to
a specific hour-long interval ending at time τ . Then this
data point signifies that out of all processes in that inter-
val, the first one to perform an early expiration did so x
seconds before τ , and caused a stampede of size y (that is,
y − 1 more processes performed an early expiration during
the 10-second window starting at time τ − x).

The exponential gap distribution Exp(λ) with λ = 1 clearly
outperforms the uniform distribution U(0, ξ) with ξ = 10,
both in terms of stampede size and early expiration gap.
Even when allowing the uniform distribution to perform ex-

891

0

5

10

15

20

25

30

35

40

45

50

0 1 2 3 4 5

S
ta

m
p

ed
e

si
ze

Early expiration gap (minutes)

Average stampede size for Exp(λ)
Average stampede size for U(0, ξ)

Figure 6: Stampede size as a function of the early
expiration gap – regeneration time is 10s.

0

5

10

15

20

25

30

35

40

45

50

0 0.5 1 1.5 2 2.5 3 3.5 4

0 5 10 15 20 25 30 35 40

S
ta

m
p

ed
e

si
ze

β = 1
λ

ξ

Average stampede size for Exp(λ)
Average stampede size for U(0, ξ)

Figure 7: Stampede size as a function of the distri-
bution parameter – regeneration time is 10s.

pirations twice as early, by setting ξ = 20 (which has been
suggested to be a good choice of parameter for the uniform
distribution in CHI [11,12]), we still get stampedes of much
larger size than the exponential distribution. This fact is
made more clear in Figure 5 where we show the distribu-
tion of stampede sizes. For the exponential distribution,
most stampedes have size 1 (i.e., no stampede) or 2, and
no stampede is larger than 8. On the hand, the uniform
distribution shows average stampede size closer to 10 with
occasional dangerous stampedes of size 20 or more.

Figure 6 shows the average stampede size as a function of
the average early expiration gap where the average is taken
over all the hour-long intervals with 100 trials per interval.
The different values are obtained by varying the distribu-
tion parameter. It is striking how stampedes of size less
than 10 (respectively, less than 5) are achieved with expira-
tions that are less than 20 seconds (respectively, less than
40 seconds) early, especially considering that regenerating
the item in cache takes 10 seconds. Analogously, Figure 7
shows the average stampede size as a function of the distri-
bution parameter. The dashed horizontal line is at y = 2,
and shows that increasing β = 1

λ
to 1.5 already drops the

0

10

20

30

40

50

60

70

80

90

100

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

S
ta

m
p

ed
e

si
ze

Early expiration gap (minutes)

Exp(λ), λ = 1
U(0, ξ), ξ = 10
U(0, ξ), ξ = 20

Figure 8: Scatterplot – regeneration time is 1 minute

0

5

10

15

20

25

30

35

40

45

50

55

0 10 20 30 40 50 60 70 80

N
u
m

b
er

o
f

o
cc

u
rr

en
ce

s

Stampede size

Exp(λ), λ = 1
U(0, ξ), ξ = 10
U(0, ξ), ξ = 20

Figure 9: Stacked histogram of distribution of stam-
pede sizes – regeneration time is 1 minute

average stampede size to less than 2.
Using the same dataset, we now move to the scenario

where the time to regenerate the item is 1 minute. Note
that this could also be viewed as increasing the process rate.
Indeed, in this case we obtain a process rate of n ≈ 840 in
average, which could potentially lead to dreadful stampedes.
Figures 8-9 show that the exponential function Exp(λ) with
λ = 1 is still as effective as before in preventing stampedes,
with no stampede larger than 10. On the other hand, a
higher rate heavily penalizes the uniform distribution which
exhibits alarming stampedes of size over 80 and 50, for
ξ = 10 and ξ = 20, respectively. Figures 10-11 complete
the picture by showing average stampede size under 5 with
early expiration gap less than 5 minutes, still when using
Exp(λ) with λ = 1.

6.1 Bursts
In this section we demonstrate the robustness of our ap-

proach to sudden bursts of requests. We generate a synthetic
sequence of requests using the following model of bursts [7]:
each time interval is either in a “low” or a “high” state, and
from an interval to the next we change state with probability
p. In the low (resp. high) intervals, processes are generated

892

0

10

20

30

40

50

60

70

80

90

100

0 5 10 15 20 25 30

S
ta

m
p

ed
e

si
ze

Early expiration gap (minutes)

Average stampede size for Exp(λ)
Average stampede size for U(0, ξ)

Figure 10: Stampede size as function of the early
expiration gap – regeneration takes 1 minute.

0

5

10

15

20

25

30

35

40

45

50

0 0.5 1 1.5 2 2.5 3 3.5 4

0 5 10 15 20 25 30 35 40

S
ta

m
p

ed
e

si
ze

β = 1
λ

ξ

Average stampede size for Exp(λ)
Average stampede size for U(0, ξ)

Figure 11: Stampede size as function of distribution
parameter – regeneration takes 1 minute.

with a Poisson point process of rate nlow (resp. nhigh). For
our experiments, we test our approach against aggressive
bursts by setting nlow = 50, nhigh = 500 and p = 0.1. Our
intervals are of length 10 seconds, which we also use as the
time to regenerate the cache item.

Figures 12-13 show how the exponential function is prac-
tically immune to sudden bursts, especially when comparing
this behavior with that of Figures 4-5 (where n ≈ 140). On
the other hand, the comparison show that the uniform dis-
tribution suffers of higher fluctuations in stampede size, with
peaks around 70 and 45 for ξ = 10 and ξ = 20, respectively).

7. EXTENSIONS: KNOWN RATE
In this section we propose algorithms that work under the

assumption that the process rate is approximately known.
This knowledge of n will allow us to beat the theoretical
lower bound proved in Theorem 8, which deals with algo-
rithms that are oblivious of n.

We will start by showing that, if we have a constant multi-
plicative approximation of n, then we can decrease the early
expiration gap to O(log logn) while keeping the expected
stampede to a constant independent of n.

0

10

20

30

40

50

60

70

0 15 30 45 60 75 90 105 120 135 150 165 180 195

S
ta

m
p

ed
e

si
ze

Early expiration gap (seconds)

Exp(λ), λ = 1
U(0, ξ), ξ = 10
U(0, ξ), ξ = 20

Figure 12: Scatterplot for bursty data

0

5

10

15

20

25

30

35

0 10 20 30 40 50 60

N
u

m
b

er
o
f

o
cc

u
rr

en
ce

s

Stampede size

Exp(λ), λ = 1
U(0, ξ), ξ = 10
U(0, ξ), ξ = 20

Figure 13: Stacked histogram of distribution of
stampede sizes for bursty data.

We will then move on to show that, with a very precise
knowledge of n, the early expiration gap can be lowered
to O(log? n) — that is, to the iterated natural logarithm of
n: the number of times one can apply the log(·) function,
starting from n, and until reaching a non-positive value4.
The iterated logarithm grows extremely slowly — e.g., to
get log? n ≥ 3, it is necessary that n > 3814279, and to get
log? n ≥ 4, n has to be larger than 101656520.

This other algorithm is then, in theory, much more ef-
fective than the other when the process rate n is known in
advance; unfortunately, though, the process rate is unstable
in real applications. Thus, we believe that the iterated-
logarithm algorithm is not going to be effective in practice.
In terms of our goal of understanding the limits of what a
cache-stampede prevention (early expiration) strategy can
achieve, though, it is quite useful to describe and analyze
this algorithm.

We now describe our approximately-known rate algorithm
that gives a O(log log n) expected early expiration gap. Es-

4The iterated natural logarithm log? n equals 0 if n ≤ 1,
and equals 1 + log?(logn) otherwise.

893

sentially, we will modify the (exponential) gap distribution
of Theorem 7 to get a smaller expiration gap, assuming some
knowledge of n. Suppose that n̂ is our guess of n. Then, the
distribution D = Dn̂ will be defined as follows:

D =

{
Exp(λ) with probability log n̂

n̂

0 with probability 1− log n̂
n̂
.

Observe that, for y > 0, whenever a y-early process samples
D = 0, then it can be disregarded from an early expiration
point of view as it will not trigger a recomputation. In-
tuitively, then, our gap distribution D reduces the process
rate from n to O(logn). Our analysis of the exponential gap
distribution can then be used to bound the performance of
D.

Lemma 19 Suppose n
α
≤ n̂ ≤ αn, for some α ≥ 1. If

α < eo(log logn), then the distribution Dn̂ is((
eλ − 1

)(1

λ
+

1

e

)
,

1

λ
log logn

)
-effective.

Finally, we state our Lemma about the best strategy we
know of for the case of known process rates.

Lemma 20 There exists a known-rate strategy with O(1)
expected stampede size, and O(log? n) expiration gap.

8. CONCLUSIONS
In this paper we presented XFetch, an effective approach

against cache stampedes based on probabilistic early expira-
tions. Our approach is extremely simple to implement and
requires no parameter tuning. Using an analysis based on
general stochastic request distributions, we show that our
approach is immune to high frequency of requests in terms
of reducing stampedes, and that the relationship with how
early the expirations are performed is optimal. Experimen-
tal results on real-world and synthetic datasets demonstrate
how our approach out-performs current methods and also
show its robustness to bursts of requests.

APPENDIX
Proof of Lemma 14. If N ≥ (1 + δ)n, it must be that∑(1+δ)n
i=1 Xi ≤ 1, where Xi are i.i.d. and distributed accord-

ing to the inter-arrival distribution, that is have mean 1
n

and

standard deviation σI
n

. If X =
∑(1+δ)n
i=1 Xi, then we have

µX = E[X] = (1 + δ) and σ2
X = V ar(X) ≤ (1+δ)σ2

I
n

. Using
Lemma 13,

Pr(N ≥ (1 + δ)n) ≤ Pr(X ≤ 1) = Pr(µX −X ≥ µX − 1)

≤ (1 + δ)σ2
I

n(µX − 1)2
=

(1 + δ)σ2
I

δ2n
.

The other case is analogous.

Proof of Lemma 15. Fix any ε = ε(n) > 0, and let
ν = 1+ε

λ
logn. For any i ≥ 0, let Ei be the event that

T ∈ (ν + i, ν + i + 1]. Then, by a union bound we have
Pr(T > ν) ≤

∑
i≥0 Pr(Ei).

Set `i = eλi/2, and let Ni denote the number of y-early
processes with ν + i ≤ y ≤ ν + i+ 1. Fix any δ > 0, and let
Bi,j be the event Ni

(1+δ)n
∈ [j, j + 1).

Pr(Ei) ≤
`i∑
j=0

Pr(Ei
∣∣Bi,j) Pr(Bi,j)+Pr

(
Ni

(1 + δ)n
≥ (`i + 1)

)
.

We can bound Pr(Ei
∣∣Bi,j) < (j+ 1)(1 + δ)ne−λ(ν+i) = (j+

1)(1+δ)e−λin−ε. For 1 ≤ j ≤ `i, this is at most O(`ie
−λi

nε
) =

O(e
−λi/2

nε
). For 1 ≤ j ≤ `i, we can apply Lemma 14 to obtain

Pr(Bi,j) ≤ Pr
(

Ni
(1+δ)n

≥ 1
)
≤ (1+δ)σ2

I
δ2n

= O(σ2
Iδ
−2n−1). Fi-

nally, for Pr
(

Ni
(1+δ)n

≥ (`i + 1)
)

, Lemma 14 yields that this

probability is O(σ2
In
−1`−1

i) = O(σ2
In
−1e−λi/2). Combining

these observations,

Pr(Ei) ≤
(1 + δ)

nε
e−λi +O(σ2

Iδ
−2n−(1+ε)e−

λi
2) +O(σ2

In
−1e−

λi
2)

=
(1 + δ)

nε
e−λi +O(σ2

Iδ
−2n−1)e−λi/2.

Finally, the closed formula for geometric series yields

Pr(T > ν) ≤
∑
i≥0

Pr(Ei) =
1 + δ

nε(1− e−λ)
+O

(
σ2
I

δ2n

)
.

Claim 21 Let T = TExp(λ) be the early expiration gap and
ν = 1

λ
logn. Then, for any integer −ν ≤ i ≤ ν and real

0 < δ < 1, we have

Pr (T ∈ (ν − i− 1, ν − i))

≤
2ν∑
m=0

(
2νσ2

I
δ2n

)m
e
−(1−δ)

eλ(i−m)− 1
n

eλ−1 .

Proof. In order to have T ∈ (ν − i − 1, ν − i), it must
be that no y-early process with y ≥ ν − i performs an early
expiration. Then, if Aj is the event that no y-early process
with ν − (j + 1) ≤ y ≤ ν − j performs an early expiration,
we can write

Pr(T ∈ (ν − i− 1, ν − i)) ≤
i−1∏
j=−ν

Pr(Aj).

Consider any 0 < δ < 1. To bound Pr(Aj), we use Lemma 14
to get a lower bound of (1−δ)n on the number Nj of y-early
processes with ν− (j+ 1) ≤ y ≤ ν− j. We then use the fact
that for each of these (1 − δ)n processes the probability of

performing an early expiration is at least e−λ(ν−j).

Pr(Aj) = Pr(Aj |Nj ≥ (1− δ)n) Pr(Nj ≥ (1− δ)n)

+ Pr(Aj |Nj ≤ (1− δ)n) Pr(Nj ≤ (1− δ)n)

≤ Pr(Aj |Nj ≥ (1− δ)n) +
σ2
I

δ2n

≤
(

1− e−λ(ν−j)
)(1−δ)n

+
σ2
I

δ2n

=

(
1− eλj

n

)(1−δ)n

+
σ2
I

δ2n

≤ e−(1−δ)eλj +
σ2
I

δ2n
,

894

where we used the fact that eλν = 1
n

and the fact that

1− x ≤ e−x. The above implies that

Pr(T ∈ (ν − i− 1, ν − i))

≤
i−1∏
j=−ν

(
e−(1−δ)eλj +

σ2
I

δ2n

)

≤
ν+i∑
m=0

(
ν + i

m

)(
i−m−1∏
j=−ν

e−(1−δ)eλj +

(
σ2
I

δ2n

)m)

≤
ν+i∑
m=0

(
(ν + i)σ2

I
δ2n

)m i−m−1∏
j=−ν

e−(1−δ)eλj

≤
2ν∑
m=0

(
2νσ2

I
δ2n

)m i−m−1∏
j=−ν

e−(1−δ)eλj

To conclude the claim, we use the close formula for geometric
sums and the fact that eλν = n−1.

i−m−1∏
j=−ν

e−(1−δ)eλj = exp

(
−(1− δ)

i−m−1∑
j=−ν

eλj
)

= exp

(
−(1− δ)e

λ(i−m) − eλν

eλ − 1

)
.

Proof of Lemma 16. Let ν = 1
λ

logn. We can write

E[S] = E[S|T ≥ 2ν] Pr(T ≥ 2ν) +
ν∑

i=−ν

E[S|T ∈ (ν − i− 1, ν − i)] Pr(T ∈ (ν − i− 1, ν − i)).

The probability that a y-early process with y ≥ 2ν updates
the cache is at most fExp(λ) (2ν) = e−2λν . Therefore, con-
ditioning on an early expiration gap T greater than 2ν, we
have that E[S|T ≥ 2ν] ≤ ne−2λν = 1/n. Hence, the first
term is O(n−1).

We now consider the summation in the above expression
for E[S]. By Claim 21 and the fact that E[S|T ∈ (ν − i −
1, ν − i)] ≤ ne−λ(ν−i) = eλi, we have

ν∑
i=−ν

E[S|T ∈ (ν − i− 1, ν − i)] Pr(T ∈ (ν − i− 1, ν − i))

≤
ν∑

i=−ν

eλi
2ν∑
m=0

(
2νσ2

I
δ2n

)m
e
−(1−δ)

eλ(i−m)− 1
n

eλ−1

= e
1
n

2ν∑
m=0

(
2νσ2

I
δ2n

)m
eλm

ν∑
i=−ν

eλ(i−m)e
−(1−δ) e

λ(i−m)

eλ−1

≤ e
1
n

2ν∑
m=0

(
2νσ2

I
δ2n

)m
eλm

∞∑
i=−∞

eλie
−(1−δ) eλi

eλ−1

≤
(

1 +O

(
νσ2
I

δ2n

))
·
∞∑

i=−∞

eλie
−(1−δ) eλi

eλ−1 .

We now conclude the proof by showing a bound on the series

above. Let f(x) = eλxe−ce
λx

and x∗ = 1
λ

log 1
c
, where c =

1−δ
eλ−1

. We have that f(x) is increasing for x < x∗, and

decreasing for x > x∗. Therefore, using the fact that F (x) =

∫
f(x)dx = − 1

cλ
e−ce

λx

, we can approximate the series as
follows:

∞∑
i=−∞

f(i) =

x∗−1∑
i=−∞

f(i) + f(x∗) +

∞∑
i=x∗+1

f(i)

≤
∫ x∗

−∞
f(x)dx+ f(x∗) +

∫ ∞
x∗

f(x)dx

≤ F (x∗)− F (−∞) + f(x∗) + F (∞)− F (x∗)

=
1

cλ
+

1

ce

=
eλ − 1

1− δ

(
1

λ
+

1

e

)
.

Proof of Lemma 17. Suppose the contrary, that is, sup-

pose that there exists an i for which pi > e−(1−e−1/3) iε . Fix

n =
⌈
e(1−e−1/3) iε

⌉
, and observe that

log(n− 1) <
(

1− e−1/3
) i
ε
,

which implies i > 1

1−e−1/3 · ε · log(n− 1).

By a standard Chernoff-like bound (for Poissonian vari-
ables), we have that the probability that less than n

2
pro-

cesses end up in the interval [i, i+ 1] is at most:

2e−n
nn/2

(n/2)!
= Θ

(
(2/e)n/2 · n−1/2

)
.

The exponential distribution of the Poisson point process
is such that, if we condition on k process showing up in
that interval, the distribution of each of those k processes is
uniform at random in the interval.

Therefore, under the conditioning that at least n
2

pro-
cesses end up in the interval, we have that the probability
that no y-early process with i ≤ y ≤ i+ 1 performs an early
expiration is at most:

(1− pi)n/2 ≤
(

1− e−(1−e−1/3) iε
)n/2

≤ e−1/2,

since (1− x)d1/xe ≤ e−1, for each x ∈ (0, 1].
Therefore, the expected early expiration gap is at least(

1− e−1/2 −Θ
(

(2/e)n/2 · n−1/2
))
· i > ε log(n− 1),

a contradiction.

Proof of Lemma 18. Assume n ≤
⌊
e−1+(1−e−1/3)/ε

⌋
.

By the union bound, we have that the probability that the
early expiration gap is more than 1 is at most:

Pr(TD > 1) ≤ n
∞∑
i=1

pi ≤ n
∞∑
i=1

e−(1−e−1/3) iε

= n · e−(1−e−1/3)/ε

1− e−(1−e−1/3)/ε

≤ n · e
−(1−e−1/3)/ε

1− e−1
≤ 1

e− 1

Suppose that p0 > e−(1−e−1/3)/(2ε), and fix

n =
⌊
e−1+(1−e−1/3)/ε

⌋
.

895

Again, we have that the probability that the probability that
less than n/2 processes end up in an interval of length 1 is

at most Θ
(

(2/e)n/2 · n−1/2
)

. The expected stampede can

then be lower bounded by:

Pr(TD ≤ 1)p0
n

3
≥ e− 2

3e− 3
e−(1−e−1/3)/(2ε)

⌊
e−1+(1−e−1/3)/ε

⌋
≥ e− 2

3e− 3
e−(1−e−1/3)/(2ε)e−1+(1−e−1/3)/ε − 1

=
e− 2

3e2 − 3e
e(1−e−1/3)/(2ε) − 1

≥ eΩ(1/ε).

Suppose, instead, that p0 < e−(1−e−1/3)/(2ε). Fix n =⌊
e−1+(1−e−1/3)/(2ε)/3

⌋
. The probability that more than 2n

processes end up in an interval of length 1 can be shown to
be (using Poissonian tail bounds) at most

2e−n
n2n

(2n)!
= Θ

(
(e/4)n · n−1/2

)
.

We then have that:

Pr(TD > 0) ≤ 3n · p0 + 3n

∞∑
i=1

pi ≤
1

e
+

1

e− 1
<

19

20
.

If TD = 0, that is no process performs an early expiration,
then we run into a regular expiration with a stampede of
size n. Therefore the expected stampede is at least

1

20
· n ≥ eΩ(1/ε).

The proof is concluded.

Proof of Lemma 19. Recall that if the process arrival
distribution is I, then the distribution of the interval be-
tween two consecutive processes is I/n. Without loss of
generality, say that the expected value of I is 1 and that
σI is its standard deviation. Let p = log n̂

n̂
. Consider a sec-

ond setting where the rate is p ·n, with the exponential gap
distribution Exp(λ), and with a new process arrival distri-
bution I′. To sample from I′, we procede as follows: first,
we flip a coin with head probability p until we get heads; let
k be the number of coin flips (observe that k is distributed
like the geometric distribution Geom(p) with parameter p);
then, sample k i.i.d. variables X1, . . . , Xk ∼ Exp(λ) — the
sample of I′ will be equal to p · (X1 +X2 + · · ·Xk).

A simple coupling shows that the original process (hav-
ing rate n, inter-arrival distribution I, and gap distribu-
tion D) is equivalent to the new process (having rate p · n,
inter-arrival distribution I′, and gap distribution Exp(λ)).
Therefore, after having computed the expectation and the
variance of I′, we can apply Theorem 7 to get our claim.
We have

µI′ = E[I′] = p · E[Geom(p)] · E[Exp(λ)] =
1

λ
,

Var[I′] = p2 · (E[Geom(p)] ·Var[Exp(λ)]

+ E[Exp(λ)]2 ·Var[Geom(p)]
)

=
p

λ2
+

1− p
λ2

= λ−2.

Therefore, σI′ = λ−1. We can then apply Lemma 15 to

get the early expiration gap is at most log(pn)
λ

with high

probability. Observe that

1

α
log(n/α) ≤ pn ≤ α log(αn).

Thus, the early expiration gap is at most log logn+logα
λ

with

high probability. By α < eo(log logn), we get that the expi-
ration gap is at most (1 + o(1)) · log logn

λ
.

We can then use Lemma 16, to conclude that the expected
stampede is at most:(

1 +O

(
σ2
I′ log(pn)

δ2pn

))
· e

λ − 1

1− δ

(
1

λ
+

1

e

)
=

(
1 +O

(
α
λ−2 log(α log(αn))

δ2 log(n/α)

))
· e

λ − 1

1− δ

(
1

λ
+

1

e

)
.

By α < eo(log logn), if we let δ shrink to 0, we get that the
expected stampede is at most

(1 + o(1)) · e
λ − 1

1− δ

(
1

λ
+

1

e

)
.

Proof of Lemma 20. We assume that the rate is known.
Let nk = 1, and, for i ≥ 1, ni−1 = eni .

Fix some k ≥ 1, and let the rate n be equal to n = n0.
Observe that k = log? n.

Now, given a time −t, fix:

pt =

{ nbt/2c
n

if btc < 2k + 1, btc even
0 otherwise

That is, for a time in (−∞,−2k − 1], the probability is
0; for a time in (−2k − 1,−2k], the probability is n−1; for
a time in (−2k,−2k + 1], the probability is 0; for a time in
(−2k+1,−2k+2], it is en−1; for a time in (−2k+2,−2k+3],
it is 0; for a time in (−2k + 3,−2k + 4], it is een−1, . . ., for
a time in (−2, 1] it is 1, and for a time in (−1, 0] it is 0.

If the process passes time −2i − 1, i = 0, . . . , k, without
having ever refreshed then, in expectation, it will make ni
refreshes before reaching time −2i + 1. The probability Pi
of making no refresh in the interval (−2i− 1,−2i+ 1], if the
process has not refreshed before time −2i− 1, is equal to:

Pi = (1− pi)n =
(

1− ni
n

)n
→ e−ni = n−1

i−1.

Observe that Pi+1 · pi · n = Pi+1 · ni = 1. The expected
number of refreshes in the interval (−i− 1,−i] is then equal
to:

Pk · Pk−1 · · ·Pi+1 · pi · n =
k∏

j=i+2

Pj .

The algorithm will refresh with probability 1 in the in-
terval (−2,−1]. Therefore the expected stampede is upper
bounded by:

2 +

k−2∑
i=1

k∏
j=i+2

Pj < 3.

The early expiration gap, on the other hand, is at most
equal to 2k + 1, with k = log? n, since the probability of a
refresh is 0 if t ≤ −2k − 1.

896

A. REFERENCES
[1] J. Allspaw and J. Robbins. Web Operations: Keeping

the Data On Time. O’Reilly Series. O’Reilly Media,
Incorporated, 2010.

[2] J. Anton, L. Jacobs, X. Liu, J. Parker, Z. Zeng, and
T. Zhong. Web caching for database applications with
oracle web cache. In Proceedings of the 2002 ACM
SIGMOD international conference on Management of
data, pages 594–599. ACM, 2002.

[3] X. Bai and F. P. Junqueira. Online result cache
invalidation for real-time web search. In Proceedings of
the 35th International ACM SIGIR Conference on
Research and Development in Information Retrieval,
SIGIR ’12, pages 641–650, New York, NY, USA, 2012.
ACM.

[4] J. Challenger, A. Iyengar, and P. Dantzig. A scalable
system for consistently caching dynamic web data. In
INFOCOM ’99, volume 1, pages 294–303 vol.1, Mar
1999.

[5] Drupal Community. https://www.drupal.org/.
Accessed December 30, 2014.

[6] D. P. Dubhashi and A. Panconesi. Concentration of
Measure for the Analysis of Randomized Algorithms.
Cambridge University Press, New York, NY, USA,
2012.

[7] J. Kleinberg. Bursty and hierarchical structure in
streams. In Proceedings of the Eighth ACM SIGKDD

International Conference on Knowledge Discovery and
Data Mining, KDD, pages 91–101, 2002.

[8] Memcached. http://memcached.org/. Accessed
December 30, 2014.

[9] M. Mitzenmacher and E. Upfal. Probability and
Computing: Randomized Algorithms and Probabilistic
Analysis. Cambridge University Press, New York, NY,
USA, 2005.

[10] J. Sheltren, N. Newton, and N. Catchpole. High
Performance Drupal: Fast and Scalable Designs.
O’Reilly Media, 2013.

[11] J. Swartz. Chi-0.58. http:
//search.cpan.org/~haarg/CHI-0.58/lib/CHI.pm.
Accessed December 30, 2014.

[12] J. Swartz. Problems and solutions for typical perl
cache usage. http://www.openswartz.com/2008/02/.
Accessed December 30, 2014.

[13] H. Taylor and S. Karlin. An Introduction to Stochastic
Modeling. Academic Press, 2010.

[14] M. Waldvogel, G. Varghese, J. Turner, and
B. Plattner. Scalable high speed ip routing lookups. In
Proceedings of the ACM SIGCOMM ’97 Conference
on Applications, Technologies, Architectures, and
Protocols for Computer Communication, SIGCOMM
’97, pages 25–36, New York, NY, USA, 1997. ACM.

[15] P. Zaitsev. Percona mysql performance blog.
http://www.percona.com/blog/2010/09/10/

cache-miss-storm/. Accessed December 30, 2014.

897

