Understanding the Causes of Consistency Anomalies in
Apache Cassandra

Hua Fan
University of Waterloo

h27fan@uwaterloo.ca
Wojciech Golab

University of Waterloo
wgolab@uwaterloo.ca

ABSTRACT

A recent paper on benchmarking eventual consistency showed

that when a constant workload is applied against Cassan-
dra, the staleness of values returned by read operations ex-
hibits interesting but unexplained variations when plotted
against time. In this paper we reproduce this phenomenon
and investigate in greater depth the low-level mechanisms
that give rise to stale reads. We show that the staleness
spikes exhibited by Cassandra are strongly correlated with
garbage collection, particularly the “stop-the-world” phase
which pauses all application threads in a Java virtual ma-
chine. We show experimentally that the staleness spikes
can be virtually eliminated by delaying read operations ar-
tificially at servers immediately after a garbage collection
pause. In our experiments this yields more than a 98% re-
duction in the number of consistency anomalies that exceed
5ms, and has negligible impact on throughput and latency.

1. OBJECTIVE AND CONTRIBUTIONS

In this paper, we study the staleness of values returned by
read operations applied to Cassandra—an open-source dis-
tributed storage system that supports eventual consistency
using quorum-based replication. More precisely, we investi-
gate the causes of sharp spikes that occur when a constant
workload is applied to Cassandra and the staleness metric is
plotted as a function of time. Similar anomalies have been
observed by Wada et al., Bermbach et al., and Rahman et
al., leading to speculation regarding possible causes includ-
ing side effects of caching and DDoS countermeasures, as
well as network jitter [2, 5, 7]. Following the methodology
of [5] we run experiments in a single private data center,
which isolates the storage system from the effects of caching
layers, DDoS countermeasures, and ambient network traffic.
None of the mechanisms suggested in prior work account
adequately for staleness spikes in such a controlled environ-
ment.

This work is licensed under the Creative Commons Attribution-
NonCommercial-NoDerivs 3.0 Unported License. To view a copy of this li-
cense, visit http://creativecommons.org/licenses/by-nc-nd/3.0/. Obtain per-
mission prior to any use beyond those covered by the license. Contact
copyright holder by emailing info@vldb.org. Articles from this volume
were invited to present their results at the 41st International Conference on
Very Large Data Bases, August 31st - September 4th 2015, Kohala Coast,
Hawaii.

Proceedings of the VLDB Endowment, Vol. 8, No. 7

Copyright 2015 VLDB Endowment 2150-8097/15/03.

Aditya Ramaraju
University of Waterloo

a2ramaraju@uwaterloo.ca m2mckenzie@uwaterloo.ca

810

Marlon McKenzie
University of Waterloo

Bernard Wong

University of Waterloo
bernard@uwaterloo.ca

Our specific contributions with respect to finding the cause
of consistency anomalies in Cassandra are as follows:

e First, we reproduce the staleness time series experi-
ment of Rahman et al. (see Figure 3 in [5]) in our data
center using a more recent version of Cassandra. Our
experiments use an improved consistency metric that
is more resilient against clock skew, and hence demon-
strate that the staleness spikes are not artifacts caused
by the use of one specific metric.

e Next, we formulate the hypothesis that the observed
spikes are caused by processing delays, specifically de-
lays due to the Java virtual machine’s garbage collec-
tion (GC) “stop-the-world” (STW) pause.

e We test our hypothesis experimentally by plotting both
the GC pauses and consistency spikes against time.
Our results exhibit strong correlations between the
times of occurrence of the GC pauses and consistency
spikes, as well as between the durations of the GC
pauses and the heights of the spikes.

e Guided by insights gained from our experiments we
propose a method of removing the staleness spikes by
delaying read operations artificially at servers in the
time period immediately following a GC pause. This
technique yields more than a 98% reduction in the
number of consistency anomalies that exceed 5ms, and
has negligible impact on throughput and latency.

2. EXPERIMENTS

2.1 Consistency metric

The experiments presented herein use the I' (gamma) met-
ric for consistency [3], which is similar theoretically to the
metric used in [5] but in practice exhibits less noise in envi-
ronments where clock skew across hosts exceeds operation
latencies. The I' metric quantifies how badly the consistency
observed by clients deviates from linearizability [4], which
states (informally speaking) that each operation appears to
take effect instantaneously at some point between its start
and finish times as measured from the perspective of the
client who applied the operation. Our experiments measure
a fine-grained form of the I'" metric called the per-value I'
score, which captures deviations from linearizability asso-
ciated with a collection of operations that access the same

key and read or write the same value. Positive I' scores indi-
cate consistency anomalies, which can be interpreted as stale
reads or as write operations that appear to take effect in a
non-linearizable order. We plot each I' score against a point
in time, defined relative to the beginning of an experiment,
that indicates approximately when the corresponding consis-
tency anomaly occurred. The time values are approximate
since anomalies involve the interaction of multiple storage
operations that may start and finish at different times.

2.2 Hardware and software environment

We use a private cluster of 11 Intel Xeon E5450 8-core
commodity machines with 8GB RAM and 66GB hard disks,
connected by Gigabit Ethernet. The hosts use a 64-bit Linux
kernel version 2.6.18 and provide Oracle Java 1.7.0u71. Cas-
sandra version 2.0.9 is installed and configured using default
parameters except where noted otherwise. We use a modi-
fied version of YCSB 0.1.4, similarly to [5], to collect logs of
operations from which the consistency metric is computed.
One host is used as a coordinator to monitor the experi-
ment and collect logs, five hosts run Cassandra, and up to
five other hosts run multi-threaded YCSB clients.

The Oracle HotSpot JVM provides garbage collectors that
pause the application threads to evacuate the garbage ob-
jects. This pause time is also called “stop-the-world” (STW)
time. Even concurrent garbage collectors such as Concur-
rent Mark Sweep (CMS) include an STW pause in the mark
and remark steps. To correlate the inconsistency spikes with
GC pause time, we collect the STW start and finish times-
tamps by parsing the garbage collection logs of the JVMs
running Cassandra.

We run the YCSB workload against Cassandra for 120
seconds. Unless specified otherwise, the workload settings
are as follows: hotspot distribution with 80% of the load
on 20% of the keys, key space size of 500, 32 client threads
per YCSB process, and 80%/20% read/write operation mix.
We use a skewed distribution to maximize the likelihood of
observing consistency anomalies, as in [3, 5]. Cassandra is
configured with a replication factor of 3 and consistency level
“ONE” is used for both reads and writes, which means that
the client waits for only one replica to return an acknowl-
edgment. For each experiment, we present the result of one
run, but we repeat the experiment five times to confirm that
the pattern observed is reproducible.

2.3 Inconsistency spikes versus STW pause

We reproduce the staleness time series experiment of Rah-
man et al. (see Figure 3 in [5]) using the I" metric, and we
also plot the time and duration of the GC STW pause as
vertical dotted lines in the same graph, shown in Figure 1.
The position of these lines on the x-axis indicates the time
of an STW pause, and the height of these lines on the y-axis
indicates the duration of the pause. Both GC STW pause
times and I" metrics are aggregate results from all hosts. For
the sake of clarity STW times less than 5 ms are not plotted.
The spike pattern in Figure 1 at around 40 seconds is very
similar to Figure 3 in [5] at around 55 seconds.

Informally speaking, the spikes demonstrate a strong cor-
relation with the GC pause. In terms of experiment time
the spikes align precisely with the STW pauses indicated by
the dotted lines perpendicular to the x-axis. Furthermore,
the height of the spikes corresponds closely to the length of
the GC pause, which is indicated by the height of the dot-

811

50 T T T T
gamma +
gc
_ 40t : 4
=
i
E L
5 : H
— = +
T 30 | H H o
E] H i i :
(=] z H +,
: : *
E It i i I
~ 20F Tt & it i + + g
E E + +#
£ io® b :
8 - ks
10 | E ¥ ar R
F ¥ +# 4
g + s 3 “
+ + E s + +
— 4 E o e 4
0 I T T T T T
[¢] 20 40 60 80 100 120

Time(seconds)

Figure 1: Time series of I' score and GC pause time
with five YCSB hosts and replication factor three.

ted lines. In other words, nearly all consistency violations
happen at a time near a GC STW pause, and most of the ob-
served I scores, which quantify the severity of a consistency
violation, are less than the duration of the pause.

To explore the internal cause of the inconsistency spikes,
we run the experiments with a fixed number of Cassandra
hosts but various number of YCSB hosts. In this experiment
the replication factor is set to 5 to allow each Cassandra
host to hold one replica. Figure 2 shows the results using 2-5
YCSB hosts and 5 Cassandra hosts. As the number of YCSB
hosts is varied each YCSB host has similar throughput, and
the aggregate throughput is proportional to the number of
YCSB hosts. We observe that as the number of YCSB hosts
increases the consistency violations become more severe but
generally do not exceed the length of the STW pause—an
observation we exploit later on in Section 2.4. Furthermore,
the number of spikes and the number of positive I" scores
increases more than linearly with the number of YCSB hosts
(e.g., compare Figure 2 (a) with (c)). Thus, consistency
anomalies occur readily as the offered load increases, and
may be of concern in practice even when the storage system
is operating at less than full throttle.

We propose that the GC STW pause is the cause of the
consistency anomalies and the underlying rationale is as fol-
lows. Recall that a value returned by a read is stale if that
value is not the most recent value that was written to Cas-
sandra, meaning that a subset of the replicas did not receive
the last updated value in time for the read to see it. When
the JVM of some replica experiences the GC STW pause, all
application threads are stopped and that delays the process-
ing of updates at this replica, while the same updates may
be applied successfully at other replicas. After application
threads resume from STW, any reads from this replica re-
turn a stale value until the backlogged updates are applied.
Depending on how long it takes to clear the backlog, reads
may in theory return values that are stale by more than the
duration of the STW pause time at a replica, but we rarely
observe this in our experiments.

2.4 Smoothing the inconsistency spikes

In this subsection, we investigate the technique of smooth-
ing out the inconsistency spikes by delaying reads artificially
during a short interval of time following a GC STW pause,
which we call the delay period. The delay period begins as

50

T T
gamma +

gc
40 - m

W

g

=

=3 H

g , :

© 30 H H : : B

= H H H HET

[=]

=

=

w

~ 20 m

s

=

=

£

(&
ol I ; I

0 20 40 60 80 100 120

Time(seconds)

(a) 2 YCSB hosts

50 T T
gamma +
gc
10 : B
@
= +
k=3 - i T .
© 30| : 4
] : f
=~ : ; :
= : N :
— 20 3 : S B : 4
E : H i H H :
i F +
: : E A
E I + i E i
10 Hi 3 B 3 E

Time(seconds)

(c) 4 YCSB hosts

Figure 2: Time series of I' score and GC pause time

soon as the GC STW pause is detected, and lasts for a dura-
tion that depends on the method used to detect the pause.
Operation delays are governed by the following policy: in-
side the delay period read operations are stalled until the
delay period is finished, whereas write operations follow the
usual execution path; outside the delay period reads and
writes both follow the usual execution path.

We experimented with two concurrent garbage collectors:
ConcurrentMarkSweep (CMS), the default GC, and Garbage
First (G1), a newer GC provided by the HotSpot JVM. The
results for both garbage collectors are similar, and so we
only present the results for CMS.

We use two mechanisms to detect the GC STW pause:
G C-notification and Free-heapsize. Since Java 7 update
4, an API called GarbageCollectionNotificationInfo is avail-
able for receiving notifications from the GarbageCollector-
MXBean. It can provide the start time and duration of the
GC, which we use to define the delay period. Once a GC oc-
curs, the delay period is activated in the notification handler
for the GC duration specified by the management bean. We
refer to this method as GC-notification. The Free-heapsize
method instead traces free heap size in the read operation
routine. Once a large free heap size increase (>100MB in
our setting) is detected, we consider it a sign of garbage col-
lection occurring. In that case the delay period is activated
for a fixed period of 50ms—an empirically determined upper
bound on the length of the STW pause in our experiments.
As noted earlier in Section 2.3 the length of the STW pause
is, in turn, an approximate upper bound on the I' scores
observed during inconsistency spikes.

812

50 T T T

T T
gamma +

gc
a0 | N
- 4
£
=
=] 3
T 30| 'f i : B
= i H H . H
a i i i i
= [: -
= : : : :
= 20t o : H .
£ H [: [:
£ t H t H
(&) : B : B
10 |- : : : : -
3 H i H
i s
H i i i
: S U S 3 I L L
o Lmwmi v t |
o] 20 40 60 80 100 120
Time(seconds)
(b) 3 YCSB hosts
50 T T T T T T
gamma +
gc
a0 . i
@
£
s
= ; +
' 30| : + B
5 H : &
a H E i :
= B S He b
E o : = :
— : = : = I
© H i HH e 4
£ . 1 !
£ : £ : N :
s H kS i = —
L] B s *
5 0k B F 0T
: fe B 5 o
. & ¥ i
s i i
e B e e

80

Time(seconds)

(d) 5 YCSB hosts

with replication factor five.

Figure 3 (a) shows the result of using the GC-notification
method with a replication factor of five and five YCSB hosts.
In terms of the number of positive I' scores and the height
of the spikes, the consistency anomalies are less severe than
in Figure 2 (d), which uses the same system and workload
parameters. But there are still three spikes in excess of
20ms in height. Thus, the smoothing is incomplete, possibly
because the GarbageCollection notification handler is not
guaranteed to execute in a timely fashion. In other words,
the execution of the notification handler that activates the
delay period may lag behind the end of the STW pause.

Figure 3 (b) shows the results using the Free-heapsize
method. We find that the spikes are nearly removed and
98.5% T scores more than 5ms are also removed. With the
exception of one I' score of around 6ms at the beginning
of the experiment, and one I' score of around 15ms at the
108th second, all the remaining points are under 5ms.

Table 1 shows the throughput and read latency influence
of the artificial read delays. GC notification has no sig-
nificant drop in throughput, 1% increase in average read
latency, no significant increase in max read latency, and
0.6ms increase in 95%-ile read latency. Free heapsize has
no significant drop in throughput, 1.6% increase in average
read latency, no significant increase in max read latency,
and 0.8ms increase in 95%-ile read latency. Thus, our re-
sults show that the spikes can be virtually eliminated with
very little overhead in terms of throughput and latency.

In future work we plan to explore the following ideas:

e Combination of GC-notification and Free-heapsize. In
hosts with larger main memories, the GC pause time

50

T T
gamma +
ge e

40

30

20 |:

Gamma / STW Duration(ms)

10 :

80

Time(seconds)

(a) GC-notification method

50 T T T

40 |

30

20 |

Gamma / STW Duration(ms)

10 |

S+ il o i i | L L o e S i
o i =
20

40 60 80

Time(seconds)

100 120

(b) Free-heapsize method

Figure 3: Smoothing of inconsistency spikes by delaying reads artificially after a GC STW pause.

#violation | Aggregate Throughput | Average Latency(ms) | Max Latency (ms) | 95%-ile Latency (ms)
(I' > 5ms) | (ops/s) xstandard error +standard error +standard error tstandard error
No delay 133 8604 £+ 10 9.23 £ 0.02 324 £11 25.0£0
GC notification 31 8584 £ 21 9.33 £ 0.03 311 + 4 25.6 £ 0.2
Free heapsize 2 8586 £ 15 9.38 £ 0.03 322 £ 13 25.8 £ 0.2

Table 1: Comparison of consistency violation, throughput and read latency under read delay

may on occasion be much longer than in our exper-
iment, which could require an excessively long fixed
delay period duration in Free-heapsize. On the other
hand, the notification lag of the GC notification method
is usually quite small. Combining the two strategies
could provide both agile reaction and a precise calcu-
lation of the delay period duration.

Garbage collection tuning. As the consistency spikes
result from the GC pause, ordinary GC tuning tech-
niques may reduce the spikes by shortening the STW
pause time. For example, one could tune the size of
the young generation in heap. Real-time JVMs such
as C4 [6], or (nearly) pauseless garbage collectors such
as Shenandoah [1], may also be helpful.

Controlling internal activities in the storage system.
Consistency anomalies could be made more predictable
to avoid inconsistency at inconvenient times, by means
of explicitly invoking GC, or controlling internal activ-
ities that may lead to GC. For example, in Cassandra
such internal activities include the flush, also referred
as minor compaction, which flushes in-memory data
from the memtable to an SSTable file on disk, and
may be accompanied by a substantial GC since a large
chunk of memory becomes available for recycling.

3. CONCLUSION

Our experiments reproduce the inconsistency spikes ob-
served in [5] and demonstrate that the stop-the-world pause
during garbage collection is the cause of these spikes. Specif-
ically, our results show a strong correlation between the GC
pauses and inconsistency spikes in terms of both the time of
occurrence and the GC duration vs. spike magnitude. We
explain this phenomenon by observing that the GC STW
pause causes updates to be applied at different times at var-
ious replicas. Furthermore, we demonstrate two methods

813

of delaying read operations artificially to smooth out the
spikes: GC-notification and Free-heapsize. Both methods
incur only a slight overhead in throughput and read latency.

4. ACKNOWLEDGMENTS

Authors supported in part by the Natural Sciences and
Engineering Research Council of Canada (NSERC).

S. REFERENCES
[1] Shenandoah.

http://icedtea.classpath.org/wiki/Shenandoah.
[2] D. Bermbach and S. Tai. Eventual consistency: How
soon is eventual? An evaluation of Amazon S3’s
consistency behavior. In Proc. Workshop on Middleware
for Service Oriented Computing (MW4SOC), 2011.
W. Golab, M. R. Rahman, A. AuYoung, K. Keeton,
and I. Gupta. Client-centric benchmarking of eventual
consistency for cloud storage systems. In Proc. of the
34th International Conference on Distributed
Computing Systems, pages 493-502, 2014.
M. P. Herlihy and J. M. Wing. Linearizability: A
correctness condition for concurrent objects. ACM
Trans. Program. Lang. Syst., 12(3):463-492, 1990.
M. R. Rahman, W. Golab, A. AuYoung, K. Keeton,
and J. J. Wylie. Toward a principled framework for
benchmarking consistency. In Proc. USENIX Workshop
on Hot Topics in System Dependability (HotDep), 2012.
G. Tene, B. Iyengar, and M. Wolf. C4: The
continuously concurrent compacting collector.
SIGPLAN Not., 46(11):79-88, June 2011.
H. Wada, A. Fekete, L. Zhao, K. Lee, and A. Liu. Data
consistency properties and the trade-offs in commercial
cloud storage: the consumers’ perspective. In
Proc. Conference on Innovative Data Systems Research
(CIDR), pages 134-143, 2011.

(3]

(4]

(5]

6

