
Persistent B+­Trees in Non­Volatile Main Memory

Shimin Chen
State Key Laboratory of Computer Architecture

Institute of Computing Technology
Chinese Academy of Sciences

chensm@ict.ac.cn

Qin Jin∗

Computer Science Department
School of Information

Renmin University of China

qjin@ruc.edu.cn

ABSTRACT

Computer systems in the near future are expected to have Non-

Volatile Main Memory (NVMM), enabled by a new generation of

Non-Volatile Memory (NVM) technologies, such as Phase Change

Memory (PCM), STT-MRAM, and Memristor. The non-volatility

property has the promise to persist in-memory data structures for

instantaneous failure recovery. However, realizing such promise

requires a careful design to ensure that in-memory data structures

are in known consistent states after failures.

This paper studies persistent in-memory B+-Trees as B+-Trees

are widely used in database and data-intensive systems. While

traditional techniques, such as undo-redo logging and shadowing,

support persistent B+-Trees, we find that they incur drastic perfor-

mance overhead because of extensive NVM writes and CPU cache

flush operations. PCM-friendly B+-Trees with unsorted leaf nodes

help mediate this issue, but the remaining overhead is still large.

In this paper, we propose write atomic B+-Trees (wB+-Trees), a

new type of main-memory B+-Trees, that aim to reduce such over-

head as much as possible. wB+-Tree nodes employ a small indi-

rect slot array and/or a bitmap so that most insertions and deletions

do not require the movement of index entries. In this way, wB+-

Trees can achieve node consistency either through atomic writes

in the nodes or by redo-only logging. We model fast NVM using

DRAM on a real machine and model PCM using a cycle-accurate

simulator. Experimental results show that compared with previ-

ous persistent B+-Tree solutions, wB+-Trees achieve up to 8.8x

speedups on DRAM-like fast NVM and up to 27.1x speedups on

PCM for insertions and deletions while maintaining good search

performance. Moreover, we replaced Memcached’s internal hash

index with tree indices. Our real machine Memcached experiments

show that wB+-Trees achieve up to 3.8X improvements over previ-

ous persistent tree structures with undo-redo logging or shadowing.

1. INTRODUCTION
Two general trends motivate the investigation of persistent data

structures in Non-Volatile Main Memory (NVMM). The first trend

∗Corresponding author, also affiliated with Key Lab of Data Engi-
neering and Knowledge Engineering, Renmin University of China.

This work is licensed under the Creative Commons Attribution­
NonCommercial­NoDerivs 3.0 Unported License. To view a copy of this li­
cense, visit http://creativecommons.org/licenses/by­nc­nd/3.0/. Obtain per­
mission prior to any use beyond those covered by the license. Contact
copyright holder by emailing info@vldb.org. Articles from this volume
were invited to present their results at the 41st International Conference on
Very Large Data Bases, August 31st ­ September 4th 2015, Kohala Coast,
Hawaii.
Proceedings of the VLDB Endowment, Vol. 8, No. 7
Copyright 2015 VLDB Endowment 2150­8097/15/03.

is the advancement of a new generation of Non-Volatile Memory

(NVM) technologies, including Phase Change Memory (PCM) [4],

Spin-Transfer Torque Magnetic Random Access Memory (STT-

MRAM) [2], and Memristor [34]. There are significant challenges

in scaling the current DRAM technology to even smaller feature

sizes. For example, it would be more and more difficult to create

reliable capacitance to store charges in a DRAM cell [14]. The

emerging NVM technologies provide promising answers to this

problem; their physical mechanisms are amenable to much smaller

feature sizes. These NVM technologies all support byte-addressable

reads and writes with performance close to that of DRAM, and re-

quire much lower power than DRAM due to non-volatility. As a

result, there are widespread interests in the research community

and in the industry to consider incorporating NVM technologies

to substitute or complement DRAM as the main memory in future

computer systems [5, 9, 36, 15, 26, 7, 31, 8, 33, 29, 20].

The second trend is the fast increasing capacity of main mem-

ory and its more and more significant role in database and data-

intensive systems. Ten years ago, main memory database systems

are mainly a research topic with products in niche markets. Today,

major database vendors seriously consider main memory data pro-

cessing. Examples include the IBM Blink project [3], the Hekaton

OLTP engine in Microsoft SQL Server [10], and SAP HANA [24].

Moreover, in the broader data-intensive computing world, there

are many proposals and products based on the principle of stor-

ing and processing data in main memory, such as Memcached [19],

Pregel [17], Ramcloud [22], and Spark [35].

Combining the two trends, we see an important future need to

take advantage of the non-volatility property provided by NVMM

to support persistent data structures for instantaneous failure recov-

ery. This paper focuses on persistent B+-Trees because B+-Trees

represent an important class of tree-based structures, and are widely

used in database and data-intensive systems.

At first glance, it seems straightforward to employ traditional

techniques such as logging and shadowing. What we find is that the

problem of supporting persistent B+-Trees in NVMM has very dif-

ferent characteristics from that of disk-based B+-Trees. First, soft-

ware have only limited control of the CPU caches. There is gener-

ally no guarantee on when and in which order modified CPU cache

lines are written back to main memory. While the ordering of write-

backs can be forced by special CPU cache line flush and mem-

ory fence instructions, these instructions incur non-trivial overhead.

Second, different NVM technologies have different characteristics.

For example, PCM has slower writes with energy consumption and

endurance issues [7]. In comparison, STT-MRAM and Memris-

tor have both shown promise to have comparable performance to

DRAM. Reducing writes is an important goal for PCM, but may

not be as significant for fast DRAM-like NVM.

786

We find that undo-redo logging and shadowing can both incur

drastic overhead because of extensive additional NVM writes and

cache line flush instructions. We discuss other recent solutions

related to persistent B+-Trees, including Mnemosyne [31], NV-

heaps [8], WSP [20], and CDDS Btree [29], but find they are insuf-

ficient for persistent B+-Trees.

In this paper, we propose write atomic B+-Trees (wB+-Trees),

a new type of main-memory B+-Trees, that aim to reduce the over-

head of extra NVMwrites and cache line flush instructions as much

as possible. wB+-Tree nodes employ a small indirect slot array

and/or a bitmap so that most insertions and deletions do not re-

quire the movement of index entries. In this way, wB+-Trees can

achieve node consistency either through atomic writes in the nodes

or by redo-only logging. In performance evaluation, we use DRAM

in a real machine to model DRAM-like fast NVM, and we model

PCM with a cycle-accurate simulator. We perform experiments

with both fixed-sized keys and variable sized keys. We also study

the performance of our solution in a full system, Memcached, by

replacing its internal hash index with our tree indices. Experimen-

tal results show that compared with previous persistent B+-Tree

solutions, wB+-Trees achieve up to 8.8x speedups on DRAM-like

fast NVM and up to 27.1x speedups on PCM for insertions and

deletions while maintaining good search performance. Our real

machine Memcached experiments show that wB+-Trees achieve

up to 3.8X improvements over previous persistent tree structures

with undo-redo logging or shadowing.

The contributions of this paper are fivefold: (i) We characterize

the mechanism of clflush and mfence to force the order to write

back modified cache lines; (ii) We propose a set of metrics to ana-

lyze persistent data structures, including number of words written,

and counts of clflush and mfence; (iii) Using these metrics, we

analyze and compare a number of previous solutions; (iv) We pro-

pose wB+-Tree structures for both fixed sized and variable sized

keys, which achieve good insertion and deletion performance for

persistent B+-Trees; and (v) We present an extensive performance

study on both a real machine modeling fast DRAM-like NVM and

a cycle-accurate simulator modeling PCM.

The rest of the paper is organized as follows. Section 2 pro-

vides background on NVMM and main memory B+-Trees, then

drills down to understand the challenge of supporting persistent

B+-Trees. Section 3 analyzes existing solutions. Then Section 4

proposes our wB+-Tree structures. Section 5 presents an extensive

performance evaluation. Finally, Section 6 concludes the paper.

2. BACKGROUND AND CHALLENGES
We begin by describing NVMM in Section 2.1 and B+-Trees in

Section 2.2. Then we analyze the problem of data inconsistency in

Section 2.3, and describe and characterize the mechanisms to ad-

dress the problem in Section 2.4. Finally, we propose three metrics

to analyze persistent data structures in NVMM in Section 2.5.

2.1 Non­Volatile Main Memory (NVMM)
There are wide-spread discussions on incorporating NVM tech-

nologies to substitute or complement DRAM as the main memory

in future computer systems [5, 9, 36, 15, 26, 7, 31, 8, 33, 29, 20].

A distinctive property of NVMM is its non-volatility. Data writ-

ten to NVMM will persist across power failures. Following previ-

ous work [9, 31, 8], we assume that an NVM chip can guarantee

atomic writes to aligned 8-byte words. That is, the capacitance on

the NVM chip is powerful enough to guarantee the completion of

an 8-byte word write if a power failure occurs during the write1.

1
We do not assume atomic cache line sized writes because there is no way

to “pin” a line in the cache. Suppose a program writes to word A and word

leaf

non-leaf k1
ch1

k2
ch2

kn
chn

num

ch0

k1
p1

k2
p2

kn
pn

num

next

Figure 1: The main-memory B+-Tree structure.

There are several competing NVM technologies based on differ-

ent underlying physical mechanisms, e.g., the amorphous and crys-

talline states in phase change materials [4], the spin-transfer torque

effect in a magnetic tunnel junction in STT-MRAM [2], or the im-

pact of different directions of electrical currents on the resistance

of Memristive devices [34]. The most mature NVM technology,

PCM, sees much slower writes (e.g., ∼200 ns–1 us) than reads

(e.g., ∼50ns), and a PCM cell can endure only a limited number

(e.g., ∼108) of writes [7, 11, 4]. In comparison, studies on STT-

MRAM andMemristor show faster read and write performance and

higher endurance [2, 34], while it still remains to be seen if produc-

tion quality memory chips can achieve the same performance.

In this paper, we would like our design to support diverse NVM

technologies, including both PCM and fast DRAM-like NVM (such

as STT-MRAM and Memristor). In our experiments in Section 5,

we model PCM with a cycle-accurate simulator and we use DRAM

in a real machine to model fast DRAM-like NVM.

2.2 B+­Trees in NVMM
Figure 1 illustrates the main-memory B+-Tree structure. A B+-

Tree is a balanced tree structure with all the leaf nodes on the same

level. Compared to disk-based B+-Trees, the node size of main-

memory B+-Trees is typically a few cache lines large (e.g., 2–8

64-byte cache lines) [28, 6, 12], rather than disk pages (e.g., 4KB–

256KB). Moreover, nodes store pointers instead of page IDs for

fast accesses. (We will revisit this point later in Section 3.1).

As shown in Figure 1, a non-leaf node contains an array of index

entries, i.e. n keys and n + 1 child pointers. More concretely,

suppose each tree node is eight 64-byte cache lines large. If the

keys are 8-byte integers in a 64-bit system, then n = 31. A non-

leaf node can hold 31 8-byte keys, 32 8-byte child pointers, and a

number field. Similarly, a leaf node has space for 31 8-byte keys,

31 8-byte record pointers, a number field, and an 8-byte sibling

pointer. Here, we would like to emphasize the fact that the leaf

nodes of B+-Trees are connected through sibling pointers for the

purpose of efficient range scans. As we will discuss in Section 3.2,

this complicates the use of shadowing for persistence.

Previous work proposed CPU cache optimized B+-Tree solu-

tions [28, 6, 12]. However, cache-optimized trees may incur extra

NVM writes. For example, CSB+-Trees require all the child nodes

of a node to be contiguous in main memory [28]. To maintain this

property when splitting a tree node A, a CSB+-Tree has to copy

and relocate many of A’s sibling nodes, incurring a large number

of NVM writes. In this paper, we choose prefetching B+-Trees

as our baseline main memory B+-Trees. The basic idea is to is-

sue CPU cache prefetch instructions for all cache lines of a node

before accessing the node. The multiple prefetches will retrieve

multiple lines from main memory in parallel, thereby overlapping

a large portion of the cache miss latencies for all but the first line

in the node. We choose this scheme because it does not incur ex-

tra NVM writes and achieves similar or better performance than

CSB+-Trees [6]. For fairness in performance comparison in Sec-

tion 5, we employ the same principle of prefetching to improve the

CPU cache performance for all the B+-Tree variants.

B in the same cache line with two consecutive instructions. It is possible
that the new value of A and the old value of B are written to main memory,
e.g., if a context switch occurs in between the two writes.

787

1 2 3 7 95 9 2 3 1 75 9 2 3 1 7
1011

0110

num index entries num index entries bmp index entries

(a) Sorted entries (b) Unsorted leaf (c) Unsorted leaf w/ bitmap

Figure 2: Tree nodes of PCM-friendly B+-Trees.

1 2 4 7 95

num index entries

Insert 3 1 2 3 4 7 96

num index entries

1 2 4 7 7 95

1 2 3 4 7 95

1 2 3 7 96

normal case

several

inconsistent

cases

1

2

3cache line 2cache line 1

Figure 3: Potential inconsistencies upon failure.

Recently, we have proposed PCM-friendly B+-Trees in a study

of database algorithms for PCM [7]. The goal is to redesign B+-

Trees to reduce PCMwrites in light of their significant performance

penalty. As shown in Figure 2, PCM-friendly B+-Trees intention-

ally allow leaf nodes to be unsorted. As shown in Figure 2(a), a

normal B+-Tree node contains a sorted array of index entries. To

keep this sorted property, an insertion or a deletion will have to

move half of the entries in the array on average, incurring a large

number of PCM writes. Unsorted nodes avoid this penalty. Fig-

ure 2(b) shows an unsorted node with packed index entries, and

Figure 2(c) shows an unsorted node with holes of unused entries.

A bitmap replaces the number field to remember the locations of

valid entries. A PCM-friendly B+-Tree consists of sorted non-leaf

nodes and unsorted leaf nodes. The former maintains good search

performance, while the latter reduces PCM writes for updates. Our

current work extends this previous work to support persistent B+-

Trees. As will be discussed, in order to ensure persistence, other

performance factors besides PCM writes become significant, ask-

ing for new solutions.

2.3 Data Structure Inconsistency Problem
The non-volatility nature of NVMM makes it feasible to realize

persistent data structures in the face of power failures and system

crashes2. In the following, we will not distinguish the two types of

failures and use the word “failure” to mean both.

Without careful designs, data structures may be in inconsistent

non-recoverable states after failures. Figure 3 depicts what may

happen if a failure occurs in the middle of an insertion to a sorted

tree node J . Normally, the insertion algorithm will move 9, 7 and 4
one slot to the right, insert 3, and increment the number field, lead-

ing to the correct end state shown at the top in Figure 3. The figure

shows three inconsistent cases. In the first case, the failure occurs

before the algorithm moves 4. In the second case, the failure occurs
before the algorithm increments the number field. While case 1 and

case 2 are quite straightforward, case 3 is non-obvious. In the third

case, the algorithm has actually completed the insertion but not all

the data has been written back to NVMM. Suppose node J consists

of two cache lines. The number field and the first three slots are in

cache line 1, while the last four slots are in cache line 2. Case 3 oc-

curs if cache line 1 has been written back to NVMM, but cache line

2 is still in the CPU cache when the failure occurs. Therefore, line 1

reflects the states after the insertion but line 2 reflects the states be-

fore the insertion. From the same start state, the above three cases

lead to three different inconsistent states. Similarly, it is easy to

show that the same inconsistent state can be reached from multi-

ple start states with different failure cases. Consequently, using the

information of an inconsistent tree node alone, it is impossible to

2
We focus on failures that can be recovered by utilizing data in NVMM.

Other types of failures (e.g., hardware component failures, and software
corruptions) require additional mechanisms (such as replication and error
correction codes), which are orthogonal and beyond the scope of this paper.

0

50

100

150

200

250

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

ti
m

e
 p

e
r

li
n

e
 (

n
s
)

number of lines flushed between 2 mfences

seqwr+clf+mf ranwr+clf+mf
seqwr+clf ranwr+clf
seqwr ranwr

Figure 4: Performance impact of clflush and mfence instruc-

tions on sequential and random writes on a real machine.

recover from the failure because there is no way to tell which start

state is the correct one.

From this example, we can see that the modern CPU cache hi-

erarchy can be at odds with the goal of achieving persistent data

structures in NVMM. Many of the design decisions of the cache

hierarchy target system performance without consideration of non-

volatility. The CPU considers a store instruction to have completed

when it is sent to the caches. Dirty lines may be cached for a long

time, and there are no guarantees on the order of dirty line write

backs. Compared to the memory buffer pool of disk-based database

systems, we do not have the same level of control for CPU caches.

Intel has recently introduced restricted hardware transactional

memory (RTM) in its Haswell processors [13]. During a hardware

transaction on a CPU core, RTM keeps a limited number of modi-

fied dirty cache lines in the CPU cache private to the core. When the

hardware transaction commits, RTM makes the dirty cache lines in

the transaction visible to the whole system. However, there is still

no guarantee on the order and the timing of writing the dirty lines

back to main memory. Therefore, RTM does not provide a solution

to the data inconsistency problem.

2.4 Clflush and Mfence Instructions
X86 processors provide limited capability for software to control

CPU caches [13]. In this paper, we exploit two x86 instructions,

clflush and mfence, in order to protect NVM writes from fail-

ure3. Note that other processors (e.g., ARM) have similar support.

• clflush: Given a memory address, the clflush instruction in-

validates the cache line that contains the address from all levels

of caches, and broadcasts the invalidation to all CPU cores in

the system. If the specified cache line is dirty, it will be written

to memory before invalidation.

• mfence: The mfence instruction guarantees that all memory

reads and memory writes issued before the mfence in program

order become globally visible before any reads or writes that

follow the mfence instruction. However, mfence alone does

not write back any dirty cache lines.

Multiple clflush instructions may be executed in parallel. How-

ever, dirty cache lines may be wrtten back in arbitrary order. To en-

sure the write-back order of two dirty cache lines, we leverage the

fact that clflush is also ordered by mfence. Therefore, we can in-

sert mfence between clflush instructions to force the write-back

order of dirty cache lines.

Figure 4 measures the impact of clflush and mfence instruc-

tions on an Intel Xeon x86-64 machine with 64-byte cache lines

(cf. machine configuration in Section 5). We model the typical

case in database and data intensive systems where the total data

3
One can also use x86 non-temporal store instructions (e.g., movntdq) to

write data back to memory. For space limitation, we focus on clflush
and mfence as the underlying hardware mechanism in this paper. Micro-
benchmarks show similar performance for non-temporal stores especially
for random writes, which are typical for B+-Trees.

788

Table 1: Terms used in analyzing persistent data structures.

Term Description

Nw Number of words written to NVMM

Nclf Number of cache line flush operations

Nmf Number of memory fence operations

n Total number of entries in a B+-Tree node

n
′ Total number of entries in a wB+-Tree node

m Number of valid entries in a tree node

l Number of levels of nodes that are split in an insertion

size is much larger than the CPU cache size, by making the data

in the experiments 10 times as large as the last level CPU cache.

The data consists of cache line sized records aligned on cache line

boudaries. We perform sequential write and random write exper-

iments. The sequential write experiment writes an 8-byte integer

in every consecutive record. For the random write experiment, we

first randomize the order of the records and construct a linked list

among the records. We then measure the elapsed time of writing

an 8-byte integer in every record following the linked list. In this

way, processor optimizations such as hardware prefetching are not

effective. In Figure 4, there are three curves for sequential writes

(lower), and three for randomwrites (upper). The Y-axis reports the

average elapsed time for accessing each record. The three curves

show the performance of (1) writes only, (2) issuing a clflush af-

ter writing every record, and (3) issuing a mfence every i records
for (2) where i varies from 1 to 16 as shown on the X-axis.

From the figure, we see that clflush significantly slows down

sequential writes, because clflush forces dirty cache lines to be

written back. This disrupts the CPU and the memory controller’s

optimizations for sequential memory accesses (e.g., combining mul-

tiple accesses to the same open memory row). In comparison, since

random writes are not amenable to such optimizations, clflush

has neglegible impact on random writes. Moreover, inserting an

mfence after every clflush incurs significant overhead for both

sequential and random writes, because the mfence waits for the

previous clflush to complete. This overhead is reduced as the

number of clflush-ed records between two mfences increases.

Therefore, it is important to reduce the relative frequency of mfence.

Insertions and deletions in B+-Trees contain a mix of random

and sequential writes. The leaf nodes to be updated are usually

randomly distributed (e.g., in OLTP workload). Depending on the

node structure, writes in a leaf node can be sequential (e.g., for the

sorted nodes) or not (e.g., for unsorted leaf nodes). Therefore, we

may see a mix of the effect of Figure 4 for B+-Tree updates.

2.5 Metrics for Persistent Data Structures
Summarizing the discussion in this section, we propose to use

three metrics to analyze algorithms for achieving persistent data

structures. We follow previous work [7] to analyze writes (Nw)

because writes are bad for PCM [7], and NVM writes must be pro-

tected by clflush and mfence from failure4. Moreover, we pay

special attention to clflush (Nclf) and mfence (Nmf) because

they may result in significant overhead. The terms used in this pa-

per are summarized in Table 1.

3. ANALYZING EXISTING SOLUTIONS
Existing solutions mainly follow two traditional principles, log-

ging and shadowing, to achieve persistent data structures in NVMM.

Both principles have been long studied in database systems [27]. In

this section, we first analyze the two approaches in the context of

NVMM and then discuss other related proposals.

4
Other metrics proposed in previous work [7], e.g., number of lines fetched,

do not vary much across different persistent B+-Tree structures.

1: procedure WRITEUNDOREDO(addr,newValue)

2: log.write (addr, *addr, newValue);

3: log.clflush mfence ();

4: *addr= newValue;

5: end procedure

6: procedure NEWREDO(addr,newValue)

7: log.write (addr, newValue);

8: *addr= newValue;

9: end procedure

10: procedure COMMITNEWREDO

11: log.clflush mfence ();

12: end procedure

Figure 5: NVMM write protected by undo-redo logging.

3.1 Undo­Redo Logging
The first question that arises is whether the idea of a traditional

buffer pool can be employed for persistent B+-Trees. We could

divide the main memory into two parts: a persistent part where

persistent tree nodes are stored, and a volatile part that holds the

buffer pool. The content of the buffer pool is deemed useless upon

recovery. The buffer pool caches all the tree nodes to be accessed.

Dirty nodes are held in the buffer pool, and write-ahead logging en-

sures data persistence. However, like disk-based database systems,

tree nodes must be copied into the buffer pool, and be referenced

by node IDs, which are mapped to the actual memory location of

the buffered nodes through a hash table. The hash table will typi-

cally be larger than the CPU cache, and thus a (random) node ID

dereference operation will often incur an expensive cache miss. In

real-machine experiments, we see a 2.3x slowdown for search per-

formance of main memory B+-Trees with a buffer pool. Conse-

quently, we mainly focus on in-place update in this subsection.

Protecting in-place NVM writes requires undo-redo logging. As

shown in Figure 5, WriteUndoRedo first records the address, the

old value (∗addr), and the new value to the log in NVMM. Then it

issues a clflush and a mfence to ensure the log content is stable

before performing the actual write. In this way, failure recovery

can use the logged information to undo the change if the tree update

operation is to be aborted, or redo the change if the tree update has

committed. This algorithm requires a clflush and a mfence per

NVM write, and performs multiple NVM writes to the log (e.g.,

three extra 8-byte writes for each 8-byte update).

We can reduce the overhead of logging if a write W is to a pre-

viously unused location, using NewRedo and CommitNewRedo, as

shown in Figure 5. Since the old value is meaningless, NewRedo

logs the address and only the new value. Then it performsW with-

out flushing the log. Later, a CommitNewRedo flushes the log and

calls mfence once for all the previous NewRedos. This approach

performs fewer clflush and mfence operations, and writes less

to the log. If a failure occurs before the log record for W is stable,

we can safely ignore any change because the location is previously

unused. If the log record is stable in the log, we can use the redo

information to ensureW ’s correctness.

Figure 6 shows a more aggressive optimization. It is applicable

only if a newly written value is not to be accessed again before

commit. WriteRedoOnly does not perform the actual write. In-

stead, it only logs the intention of the write (addr, newV alue). At
commit time, CommitRedoWrites issues clflush instructions to

flush all the redo log records to memory. A single mfence ensures

redo log records are stable in NVMM. The impact of mfence will

be amortized across all the cache line flushes. Then the algorithm

reads the log records and performs the actual in-place writes. Note

that this optimization can be applied only judiciously because re-

reading the newly written value before commits will cause an error.

789

1: procedure WRITEREDOONLY(addr,newValue)

2: log.write (addr, newValue);

3: end procedure

4: procedure COMMITREDOWRITES

5: log.clflush mfence ();

6: for all (addr,newValue) in log do

7: *addr= newValue;

8: end for

9: end procedure

Figure 6: Redo-only logging.

1: procedure INSERTTOLEAF(leaf,newEntry,parent,ppos,sibling)

2: copyLeaf= AllocNode();

3: NodeCopy(copyLeaf, leaf);

4: Insert(copyLeaf, newEntry);

5: for i=0; i < copyLeaf.UsedSize(); i+=64 do

6: clflush(©leaf + i);

7: end for

8: WriteRedoOnly(&parent.ch[ppos], copyLeaf);

9: WriteRedoOnly(&sibling.next, copyLeaf);

10: CommitRedoWrites();

11: FreeNode(leaf);

12: end procedure

Figure 7: Shadowing for insertion when there is no node splits.

Let us consider an insertion into a B+-Tree leaf node without

node splits. Suppose the sorted leaf has m index entries, each con-

taining an 8-byte key and an 8-byte pointer. The insertion moves an

average m/2 entries, inserts a new entry, and increments the num-

ber field, writingm+3 words. For each word write, the undo-redo
logging incurs 3 extra writes, a clflush and a mfence. Hence,

Nw = 4m+ 12, Nclf = m+ 3, and Nmf = m+ 3.
Table 3 in Section 4.7 shows the cost analysis for nine persistent

B+-Tree solutions. B+-Tree with undo-redo logging is in the first

row. From left to right, the table lists the costs of insertion without

node splits, insertion with l node splits, and deletion without node

merges. Compared to insertion, a deletion in a leaf node moves

an average (m − 1)/2 entries, and thus has a slightly lower cost.

On the other hand, the cost of an insertion with node splits grows

dramatically because of the node split operation.

If an insertion does not lead to node splits, a PCM-friendly B+-

Tree writes the new index entry to an unused location and updates

the number/bitmap field. We use NewRedo for the former and

WriteUndoRedo for the latter. Nw = 2∗3+1∗4 = 10,Nclf = 2,
and Nmf = 2, as shown in row 2 and row 3 in Table 3. However,

the two types of trees have different deletion costs. For a packed

unsorted leaf node, a deletion needs to move the last entry to fill the

hole of the deleted entry. This is an overwrite operation and must

use WriteUndoRedo. Therefore, Nw = 3 ∗ 4 = 12. In contrast,

for an unsorted leaf node with a bitmap, only the bitmap needs to

be overwritten. Therefore, it sees lower costs andNw = 4. Finally,
when an insertion causes node splits, PCM-friendly B+-Trees be-

have the same as B+-Trees except for the leaf node split. Therefore,

they have similar costs to B+-Trees.

3.2 Shadowing
The second method to achieve persistence is shadowing. To

make changes to a node J , we first create a copy J ′ of J , then
update the copy J ′. We flush J ′ and commit it as the new update-

to-date node. However, since J is pointed to by J’s parent node,
we will have to update J’s parent to point to J ′. Then we follow

the same shadowing procedure to create a new copy of the parent

node. This process will continue until the root node.

To avoid the extensive copy operations in a Btree-like structure,

Condit et al. [9] proposed a technique called short-circuit shadow-

ing. The idea is to take advantage of the 8-byte atomic write fea-

ture in NVM. For the above example, it will atomically modify

the leaf node pointer in J’s parent. In essence, when there is a

single 8-byte pointer that points to the newly created node copies,

short-circuit shadowing can avoid propagating the copy operation

further. Unfortunately, the B+-Tree structure introduces additional

complication— the leaf sibling pointers. Both the pointer in the leaf

parent and the pointer in its sibling leaf node need to be updated,

which cannot be handled by short-circuit shadowing.

We employ clflush and mfence to solve this problem, as shown

in Figure 7. The algorithm creates a copy of the leaf node, in-

serts the new entry, and flushes the shadow node. Then it uses two

WriteRedoOnlys to log the update intentions to the two pointers in

the parent and the sibling. Finally, it calls a CommitRedoWrites to

commit the changes. Note that CommitRedoWrites will flush the

log and perform a mfence before actually updating the two point-

ers. This sequence of operations guarantees that the modifications

to both the parent and the sibling occur after the shadow node and

the redo log records are stable in NVMM. In the case of a failure,

if the mfence in CommitRedoWrites has not yet completed, then

the original tree structure is kept intact. If the mfence has suc-

ceeded, then we can always use the redo log records to recover and

complete the insertion operation.

This shadowing procedure requires copying the entire leaf node.

Suppose that the leaf node contains m used entries and each en-

try consists of an 8-byte key and an 8-byte pointer. Shadowing

incurs 2m + 4 writes for copying the entries, the number field,

and the sibling pointer field, and inserting the new entry. The two

WriteRedoOnlys require 4 word writes, and the actual pointer up-
dates require 2 writes. AllocNode will require an additional log

write, clflush, and mfence to ensure persistence of the alloca-

tion operation. Therefore, Nw = 2m + 11. The algorithm flushes

the shadow node and the redo log records. Nclf = (2m+ 4) 8

64
+

1+ 1 = 0.25m+2.5. CommitRedoWrites and AllocNode both

perform a mfence. Thus Nmf = 2.
Table 3 shows the cost analysis for three shadowing solutions.

For each solution, it shows insertion without node splits, as well

as deletion without node merges, and the complex case where an

insertion triggers node splits. We see that the deletion cost is similar

to the insertion cost except that m − 1 entries are copied to the

shadow node. For PCM-friendly B+-Trees, the cost of shadowing

is the same as normal B+-Trees because the node copy operation

removes any benefits from reducing writes in a leaf node.

3.3 Other Related Work
In late 1980s, Agrawal and Jagadish [1] designed recovery al-

gorithms for databases running on Ferroelectric Random Access

Memories based NVMM. To our knowledge, this is the earliest

study of NVMM for a database system. This work assumes that

main data is on disks, and exploits NVMM with logging and shad-

owing to reduce the overhead of traditional disk-based recovery. In

contrast, we assume that the data in NVMM is the primary copy.

Hence, updates to persistent B+-Trees must persist across failures.

In 1990s, several pieces of work studied storage systems, file

systems, and database systems on NVMM [32, 16, 21]. eNVy is

a Flash memory based storage system [32], which deals with the

draw-backs of Flash (e.g., erase, wear-leveling). The Rio project [16,

21] designed a Rio file cache from NVMM and exploited the Rio

file cache for databases. The work assumes that each individual

store instruction immediately persists the data in NVMM. Unfor-

tunately, in the present CPU cache hierarchy, this assumption can

790

be only achieved by issuing a clflush and a mfence after every

write, which would result in significant performance degradation.

Several recent studies considered the same NVMM setting as

this paper. Mnemosyne [31] and NV-heaps [8] aimed to provide

general libraries and programming interfaces to use NVMM. Both

studies exploited software transactional memory (STM) and redo-

only logging at transaction commit time to support in-place up-

dates to NVMM. However, STM may incur significant overhead

(up to 20x slowdowns) [18]. WSP [20] proposed to take advantage

of a small residual energy window provided by the power supply

to flush cache and register states to NVMM after a power failure.

However, a software routine is responsible for coordinating the sav-

ing of transient states to NVMM when a power failure is detected.

Such design cannot cope with operating system crashes. Pelley et

al. [23] performed trace-based analysis to understand the NVM de-

sign space in a traditional page organized OLTP system. The study

indicates that disk-like organization incurs significant performance

overheads. Our study considers main memory data structures in

NVMM. As discussed previously, we studied index and hash join

algorithms on PCM [7]. Viglas [30] studied sorting and join algo-

rithms on NVMM. Both of these studies focus on the efficiency of

algorithm designs without persistence.

Venkataraman et al. [29] proposed a consistent CDDSBtree struc-

ture for NVMM. This is the closest to our work. The proposal does

not employ logging or shadowing. It enhances each index entry

with a pair of start version and end version fields, and keeps a global

version for the entire tree. All the updates are performed in place

and flushed to memory. When an entire update operation succeeds,

the global version is atomically incremented. In this way, the de-

sign can carefully use the global version to remove any on-going

uncommitted updates during failure recovery. While this design

supports persistence, there are several drawbacks. First, it requires

a clflush and a mfence for every write, which can lead to signif-

icant time overhead compared to plain Btrees. Second, a version is

an 8-byte integer in the CDDS Btree. This means that the size of an

index entry is doubled if the key size is 8 byte. Basically, this leads

to 50% space overhead. Third, the use of a single global version es-

sentially serializes any update operations. Therefore, updates must

be performed sequentially, which is undesirable.

4. WRITE­ATOMIC B+­TREES
In this section, we propose a new persistent B+-Tree structure,

Write-Atomic B+-Trees (a.k.a. wB+-Trees). We first describe the

design goals, then present wB+-Tree structures and operations with

fixed-sized keys and with variable sized keys, such as strings.

4.1 Design Goals
We would like our design to achieve the following three goals:

• Atomic write to commit all changes: Since logging incurs extra

NVM writes and cache line flushes, it is desirable to optimize

away the need for logging in the common cases, where an inser-

tion or a deletion is handled within a node without node splits

or merges. It would be nice to be able to apply the insertion or

the deletion while maintaining the original state of the node, and

then allow a single atomic write to commit all changes.

• Minimize the movement of index entries: In a sorted node, half

of the entries have to be moved on average for an insertion or

a deletion. As discussed in Section 2.2, unsorted nodes sig-

nificantly reduce the movement of index entries. An insertion

writes to an unused entry without moving existing entries. The

best deletion scheme updates only the bitmap field in a node.

We would like our design to achieve similar update efficiency.

k1
ch1

k2
ch2

kn
chnch0

slot
array

k1
p1

k2
p2

kn
pnnext

slot
array

bmp

ch0

k1
ch1

kn’
chn’

slot
array

slot
array

bmp

next

k1
p1

kn’
pn’

k1
p1

k2
p2

kn
pn

bmp

next

(a) Slot array with 1-byte slots (b) Bitmap-only leaf

(c) Slot-only nonleaf (n<8) (d) Slot-only leaf (n<8)

(e) Slot+bitmap nonleaf (f) Slot+bitmap leaf

Slot array

Index
entries 9 2 3 1 7

5

Figure 8: wB+-Tree node structures. (For a slot+bitmap node,

the lowest bit in the bitmap indicates whether the slot array is

valid. Slot 0 records the number of valid entries in a node.)

Table 2: wB+-Tree structures considered in this paper.

Structure Leaf Node Non-leaf Node

wB+-Tree slot+bitmap leaf slot+bitmap non-leaf

wB+-Tree w/ bitmap-only leaf bitmap-only leaf slot+bitmap non-leaf

wB+-Tree w/ slot-only nodes slot-only leaf slot-only non-leaf

• Good search performance: The structure of non-leaf nodes is

important for search performance. Since the node size of main-

memory B+-Trees is relatively small compared to disk-based

B+-Trees, main-memory trees are much taller. For example,

a B+-Tree with 512-byte sized nodes will have 11 levels after

being bulkloaded with 50 million index entries to be 70% full. If

a scheme incurs a delay of f to search a non-leaf node, then the

overall search time will see a delay of 10f . Previous work [7]

observes this effect and recommends to keep sorted nodes for

non-leaf nodes. However, sorted nodes would have very poor

update performance when there are node splits or node merges.

We would like our design to achieve good update performance

while maintaining good search performance.

4.2 wB+­Tree Structures
Figure 8(b) shows the previous proposal of bitmap-only unsorted

leaf nodes. If the bitmap size is bounded by an 8-byte word, then

this structure can achieve the goal of write atomicity. However, the

unsorted nature of the node makes binary search impossible. Can

we achieve both write atomicity and good search performance?

We introduce a small indirection array to a bitmap-only unsorted

node, as shown in Figure 8(e) and (f). This solution is inspired by

the slotted page structure of NSM disk pages. The indirection slot

array remembers the sorted order of the index entries, as shown in

Figure 8(a). A slot contains the array offset for the corresponding

index entry. Slot 0 records the number of valid entries in the node.

The resulting slot+bitmap nodes contain both a bitmap and an

indirection slot array. The bitmap is used to achieve write atomicity.

Like bitmap-only nodes, the bitmap always contains the locations

of valid index entries. In addition, we use the lowest bit of the

bitmap to indicate whether the slot array is valid. Normally, the

slot array is valid and a binary search can take advantage of the slot

array to obtain the sorted order of index entries. However, after

a failure, the slot array may be invalid. Then the bitmap is used

to do the search as in bitmap-only nodes. We will describe failure

recovery in depth in Section 4.3.

If the tree node size is small so that the maximum number of

index entries (n) in a node is less than 8, then the entire slot ar-

ray can fit into an 8-byte word. The slot array itself can achieve

write atomicity without the help of the bitmap. For such cases, we

propose slot-only nodes, as shown in Figure 8 (c) and (d).

We combine slot-only nodes, slot+bitmap nodes, and bitmap-

only leaf nodes to form three types of wB+-Tree structures, as

791

1: procedure INSERT2SLOTONLY ATOMIC(leaf, newEntry)

2: /* Slot array is valid */

3: pos= leaf.GetInsertPosWithBinarySearch(newEntry);

4: /* Write and flush newEntry */

5: u= leaf.GetUnusedEntryWithSlotArray();

6: leaf.entry[u]= newEntry;

7: clflush(&leaf.entry[u]); mfence();

8: /* Generate an up-to-date slot array on the stack */

9: for (j=leaf.slot[0]; j≥pos; j - -) do

10: tempslot[j+1]= leaf.slot[j];

11: end for

12: tempslot[pos]=u;

13: for (j=pos-1; j≥1; j - -) do

14: tempslot[j]= leaf.slot[j];

15: end for

16: tempslot[0]=leaf.slot[0]+1;

17: /* Atomic write to update the slot array */

18: *((UInt64 *)leaf.slot)= *((UInt64 *)tempslot);

19: clflush(leaf.slot); mfence();

20: end procedure

Figure 9: Insertion to a slot-only node with atomic writes.

listed in Table 2. When the node size is small, slot-only nodes are

the best node organization. When the node size is large, we con-

sider both wB+-Tree and wB+-Tree with bitmap-only leaf nodes.

A non-leaf node is always a slot+bitmap node, while a leaf node

contains a bitmap with or without a slot array.

It is easy to see that the above wB+-Tree structures support any

fixed sized keys. An 8-byte bitmap can support up to 63 index

entries, and 1-byte sized slots can support up to 255 index entries.

For example, if an index entry is 16-byte large (with 8-byte keys

and 8-byte pointers on an 64-bit machine), then a slot+bitmap node

can be as large as 1KB (i.e. 16 cache lines), which is often sufficient

for main memory B+-Trees [28, 6, 12]. Support for variable sized

keys will be described in Section 4.6.

4.3 Insertion
Figure 9 shows the algorithm for inserting a new entry to a slot-

only node using atomic writes. The algorithm starts by finding the

insertion position using the sorted slot array (line 3). Then it ex-

amines the valid slots to locate an unused entry (line 5) and writes

to the new entry (line 6). It ensures that the new entry is stable in

NVMM with a clflush and a mfence (line 7). Then it generates

an up-to-date slot array using an 8-byte space from the call stack

(line 8–16). Finally, it performs an atomic write to update the slot

array (line 17–19). Upon failure recovery, if this atomic write suc-

ceeds, the insertion has successfully completed. If the atomic write

has not occurred, the original data in the node is kept intact because

the insertion uses an unused entry. Both states are consistent. As

shown in Table 3, Nw = 3 for writing the new entry and the slot

array, Nclf = 2, Nmf = 2. For bitmap-only leaf nodes, we can

apply a similar algorithm with the same cost, which writes the new

entry to an unused location and atomically updates the bitmap.

Figure 10 shows the algorithm for inserting into a slot+bitmap

node using atomic writes. It clears the slot array valid bit in the

bitmap (line 6–8). Then it writes and flushes the new entry to an

unused location (line 9–12), and modifies and flushes the slot ar-

ray (line 13–24). Next, it issues a mfence to ensure the new entry

and the slot array are stable in NVMM (line 25). Finally, the algo-

rithm updates the bitmap atomically to enable the slot valid bit and

the new entry (line 26–28). During failure recovery, a slot+bitmap

node may be in one of three consistent states: (i) the original state

before insertion, (ii) the original state with invalid slot array, or (iii)

1: procedure INSERT2SLOTBMP ATOMIC(leaf, newEntry)

2: if (leaf.bitmap & 1 == 0) /* Slot array is invalid? */ then

3:
Recover by using the bitmap to find the valid entries,

building the slot array, and setting the slot valid bit;
4: end if

5: pos= leaf.GetInsertPosWithBinarySearch(newEntry);

6: /* Disable the slot array */

7: leaf.bitmap = leaf.bitmap - 1;

8: clflush(&leaf.bitmap); mfence();

9: /* Write and flush newEntry */

10: u= leaf.GetUnusedEntryWithBitmap();

11: leaf.entry[u]= newEntry;

12: clflush(&leaf.entry[u]);

13: /* Modify and flush the slot array */

14: for (j=leaf.slot[0]; j≥pos; j - -) do

15: leaf.slot[j+1]= leaf.slot[j];

16: end for

17: leaf.slot[pos]=u;

18: for (j=pos-1; j≥1; j - -) do

19: leaf.slot[j]= leaf.slot[j];

20: end for

21: leaf.slot[0]=leaf.slot[0]+1;

22: for (j=0; j≤leaf.slot[0]; j += 8) do

23: clflush(&leaf.slot[j]);

24: end for

25: mfence(); /* Ensure new entry and slot array are stable */

26: /* Enable slot array, new entry and flush bitmap */

27: leaf.bitmap = leaf.bitmap + 1 + (1<<u);

28: clflush(&leaf.bitmap); mfence();

29: end procedure

Figure 10: Insertion to a slot+bitmap node with atomic writes.

successful insertion with valid bitmap and valid slot array. If the

failure occurs before the first atomic bitmap write, the node will be

in state (i). If the failure occurs between the first and the second

atomic writes, the node will be in state (ii). The slot array is dis-

abled. The insertion is to a previously unused entry. Therefore, any

potentially partial writes of the new entry and the slot array have

not modified the original valid entries in the node. The algorithm

checks and recovers for this case (line 2–4). If the second actomic

write to the bitmap also completes, the node will be in state (iii).

Insert2SlotBmp Atomic incurs an NVM write, a clflush,

and a mfence for either atomic bitmap write. It performs 2 NVM

writes and a clflush for the new entry. For the slot array, it writes

and flushes (m + 2) bytes, leading to (m + 2)/8 NVM writes

and (m + 2)/64 clflushs. Then it issues a mfence at line 25.

Putting it all together,Nw = 0.125m+4.25,Nclf = 1

64
m+3 1

32
,

Nmf = 3, as shown in Table 3.

When an insertion leads to the split of a leaf node J , we allocate
a new leaf node J̃ and balance the index entries between J and J̃ .
Note that the balance operation simply copies index entries from J
to J̃ . As entries are unsorted, there is no need to move any entries

in J . Then we write the bitmap/slot fields and the sibling pointer

field of the new node. The new node can be updated in place. On

the other hand, we also need to update the bitmap/slot fields and

the sibling pointer field of J . While we cannot perform a single

atomic write in this case, it is easy to employ redo-logging. Then

we insert the new leaf node to the parent node using the algorithms

in Figure 9 or Figure 10, and commit the redo writes.

4.4 Deletion
The deletion algorithm is similar to the insertion algorithm. As

the index entries are unsorted, we do not need to move any entries

792

Table 3: Comparison of persistent B+-Tree solutions.
Solution Insertion without node splits Insertion with l node splits Deletion without node merges

B+-Trees
undo-redo logging

Nw = 4m+ 12,
Nclf = Nmf = m+ 3

Nw = l(4n + 15) + 4m + 19, Nclf = l(0.375n + 3.25) +
m+ 4.125, Nmf = l(0.25n+ 2) +m+ 5

Nw = 4m,
Nclf = Nmf = m

Unsorted leaf
undo-redo logging

Nw = 10,
Nclf = 2, Nmf = 2

Nw = l(4n+15)+n+4m+19,Nclf = l(0.375n+3.25)+
0.25n+m+ 4.125,Nmf = l(0.25n+ 2) + 0.25n+m+ 5

Nw = 12,
Nclf = 3, Nmf = 3

Unsorted leaf w/ bitmap
undo-redo logging

Nw = 10,
Nclf = 2, Nmf = 2

Nw = l(4n+15)−n+4m+19,Nclf = l(0.375n+3.25)−
0.25n+m+ 4.125,Nmf = l(0.25n+ 2)− 0.25n+m+ 5

Nw = 4,
Nclf = 1, Nmf = 1

B+-Trees
shadowing

Nw = 2m+ 11, Nmf = 2,
Nclf = 0.25m+ 2.5

Nw = l(2n+ 5) + 2m+ 12,
Nclf = l(0.25n+ 1.5) + 0.25m+ 2.625, Nmf = 2

Nw = 2m+ 7, Nmf = 2,
Nclf = 0.25m+ 2

Unsorted leaf
shadowing

Nw = 2m+ 11, Nmf = 2,
Nclf = 0.25m+ 2.5

Nw = l(2n+ 5) + 2m+ 12,
Nclf = l(0.25n+ 1.5) + 0.25m+ 2.625, Nmf = 2

Nw = 2m+ 7, Nmf = 2,
Nclf = 0.25m+ 2

Unsorted leaf w/ bitmap
shadowing

Nw = 2m+ 11, Nmf = 2,
Nclf = 0.25m+ 2.5

Nw = l(2n+ 5) + 2m+ 12,
Nclf = l(0.25n+ 1.5) + 0.25m+ 2.625, Nmf = 2

Nw = 2m+ 7, Nmf = 2,
Nclf = 0.25m+ 2

wB+-Tree
Nw = 0.125m+4.25,Nclf =
1

64
m+ 3 1

32
, Nmf = 3

Nw = l(1.25n′ + 9.75) + 0.125m+ 8.25,

Nclf = l(19

128
n
′ + 1 105

128
) + 1

64
m+ 3 13

32
, Nmf = 3

Nw = 0.125m + 2, Nclf =
1

64
m+ 2, Nmf = 3

wB+-Tree
w/ bitmap-only leaf

Nw = 3, Nclf = 2,
Nmf = 2

Nw = l(1.25n′ + 9.75)− 0.25n′ + 0.125m+ 7.5,

Nclf = l(19

128
n
′+1 105

128
)− 3

128
n
′+ 1

64
m+3 43

128
,Nmf = 3

Nw = 1, Nclf = 1,
Nmf = 1

wB+-Tree
w/ slot-only nodes

Nw = 3, Nclf = 2,
Nmf = 2

Nw = l(n+ 9) + 7,
Nclf = l(0.125n+ 1.75) + 2.375, Nmf = 2

Nw = 1, Nclf = 1,
Nmf = 1

Note: The estimated Nclf s are lower bounds because they do not cover the case where a log record spans the cache line boundary, and requires two flushes.
For 512-byte sized nodes, n = 31, n′ = 29, m is about 21 if a node is 70% full.

for deletion in a leaf node. The algorithm simply updates the slot

array and/or the bitmap to reflect the deletion. Either atomic writes

or redo-only logging can be employed in a fashion similar to the

insertion algorithms. The main difference is that there is no need to

write any index entries for deletion without node merges.

4.5 Search
One benefit provided by the slot array is that it maintains the

sorted order of the index entries in a node. This is especially use-

ful for non-leaf nodes. Let us consider the search operation in an

unsorted non-leaf node without the slot array. For a search key, we

will have to examine every entry in the node to find the largest en-

try that is smaller than the search key. Note that this can be more

expensive than searching a leaf node, which requires only equality

comparison. If the search key exists in a leaf node, it is expected

to examine only half of the entries in the leaf node, while all the

entries in an unsorted non-leaf node must be examined.

With the slot array, we apply binary search with logarithm com-

parisons. In our implementation, we find that the slot array deref-

erence incurs certain non-trivial overhead due to memory access to

retrieve the slot contents. We optimize the search procedure to stop

the binary search when the range narrows down to less than eight

slots. Then we retrieve all the remaining slots into an 8-byte inte-

ger variable. From then on, we use shift and logic operation on this

integer to obtain slot contents avoiding further slot dereferences.

4.6 wB+­Trees for Variable Sized Keys
While primary key indices and foreign key indices usually con-

tain fixed-sized keys, variable sized keys are also widely used. For

example, in the Memcached key-value store [19], a key can be a

string with up to 250 characters. Memcached maintains a slab-

based memory allocation pool, and all the key-value items are stored

in this pool. Memcached constructs a hash index for associative

lookups. The hash index stores pointers to the key-value items.

We would like to extend wB+-Trees to support variable sized

keys. When the key size is similar to or larger than a cache line,

it is less beneficial to store all the keys of a node contiguously in

order to reduce CPU cache misses. Therefore, we instead store 8-

byte pointers to the variable sized keys rather than the actual keys

in the trees. That is, the tree structure contains 8-byte keys, which

are pointers to the actual variable sized keys. We call these 8-byte

keys as key pointers. In this way, the above wB+-Tree structures

can be easily adapted to support variable sized keys. Essentially, a

slot+bitmap node has two indirection layers. The first indirection

layer is the key pointers, while the second indirection layer is the

slot array. With this simple extension, we are able to support string

keys and achieve similar benefits as fixed sized keys.

Compared to wB+-Trees with fixed sized keys, wB+-Trees with

variable sized keys incur larger key comparison costs because of

(i) the key pointer dereference to access the actual key, and (ii) the

usually larger size of the key. As a result, the performance benefit

of maintaining the sorted order in a slot array will be higher because

it effectively reduces the number of unnecessary key comparisons.

4.7 Comparison with Previous Solutions
Table 3 compares the cost of all the persistent B+-Trees that we

have discussed, assuming 8-byte keys. We apply undo-redo logging

and shadowing to main-memory B+-Trees and the two variants of

PCM-friendly B+-Trees. Then we consider three wB+-Tree struc-

tures. From the table, we see that wB+-Tree schemes reduce the

number of NVM writes, and / or the number of CPU cache flushes

and memory fences compared to the previous solutions based on

shadowing and undo-redo logging.

5. EXPERIMENTAL RESULTS
We conduct an extensive performance study for persistent B+-

Tree solutions with different key types and different NVMMs.

5.1 Experimental Setup

Real machine modeling DRAM-like fast NVMM.We model fast

NVMM using DRAM on a real machine. The machine configura-

tion is shown in Table 4. It is an Intel Xeon x86-64 machine running

Ubuntu 12.04. For each real-machine experiment, we perform 10

runs and report the average performance across the 10 runs.

Simulation modeling PCM-based NVMM. We model PCM us-

ing a cycle-accurate out-of-order x86-64 simulator, PTLsim [25],

PTLsim has been used in our previous work [7]. However, we find

that the simulator does not implement the actual functionality of

clflush. It is treated as a nop and ignored. We extended the sim-

ulator with the following modifications to support clflush: (i) the

reorder buffer in the processor checks the dependence between a

clflush and prior memory accesses; (ii) when a clflush com-

mits in the reorder buffer, it issues a memory store operation for the

specified cache line if it is dirty; (iii) a mfence will check all prior

stores initiated by clflush instructions, and wait for them to com-

plete. We tune the implementation so that the impact of clflush

793

btree (volatile)

btree log

unsorted leaf log

uleaf bmp log

btree shadow

unsorted leaf shadow

uleaf bmp shadow

wbtree

wbtree w/ bmp-leaf

btree (volatile)

btree log

unsorted leaf log

uleaf bmp log

btree shadow

unsorted leaf shadow

uleaf bmp shadow

wbtree

wbtree w/ bmp-leaf

3
.4

E
+

9

6
.3

E
+

9

1.0E+8

1.2E+8

1.4E+8

1.6E+8

1.8E+8

2.0E+8

2-line
nodes

4-line
 nodes

8-line
nodes

c
y
c
le
s

0.0E+0

1.0E+9

2.0E+9

3.0E+9

4.0E+9

2-line
nodes

4-line
 nodes

8-line
nodes

c
y
c
le
s

0.0E+0

1.0E+9

2.0E+9

3.0E+9

4.0E+9

2-line
nodes

4-line
 nodes

8-line
nodes

c
y
c
le
s

0.0E+0

5.0E+8

1.0E+9

1.5E+9

2-line
nodes

4-line
 nodes

8-line
nodes

c
y
c
le
s

0.0E+0

2.0E+9

4.0E+9

6.0E+9

8.0E+9

1.0E+10

2-line
nodes

4-line
 nodes

8-line
nodes

c
y
c
le
s

0.0E+0

1.0E+9

2.0E+9

3.0E+9

2-line
nodes

4-line
 nodes

8-line
nodes

c
y
c
le
s

(a) Search, 70% full nodes (b) Insertion, 70% full nodes (c) Zoom of (b)

(d) Insertion, 100% full nodes (e) Zoom of (d) (f) Deletion, 70% full nodes

Figure 11: Index performance on a cycle-accurate simulator modeling PCM-based NVMM. (We bulkload a tree with 20M entries,

then perform 100K random back-to-back lookups, insertions, or deletions. Keys are 8-byte integers.)

Table 4: Experimental Setup.

Real Machine Description
Processor 2 Intel Xeon E5-2620, 6 cores/12 threads, 2.00GHz

CPU cache
32KB L1I/core, 32KB L1D/core, 256KB L2/core
15MB shared L3, all caches with 64B lines

OS
Compiler

Ubuntu 12.04, Linux 3.5.0-37-generic kernel
gcc 4.6.3, compiled with -O3

Simulator Description
Processor Out-of-order X86-64 core, 3GHz

CPU cache

Private L1D (32KB, 8-way, 4-cycle latency),
private L2 (256KB, 8-way, 11-cycle latency),
shared L3 (8MB, 16-way, 39-cycle latency),
all caches with 64B lines,
64-entry DTLB, 32-entry write back queue

PCM

4 ranks, read latency for a cache line: 230 cycles,
write latency per 8B modified word: 450 cycles,
Erb = 2 pJ, Ewb = 16 pJ

and mfence on writes are similar to that shown in Figure 4 on the

real machine. We use the same simulator configurations as in pre-

vious work [7]. Table 4 lists the detailed configuration.

B+-Trees Implementations. We compare a total nine B+-Tree so-

lutions for fixed-sized keys: (1) btree (volatile): cache optimized

prefetching B+-Tree; (2) btree log: employ undo-redo logging for

btree; (3) unsorted leaf log: employ undo-redo logging for B+-Tree

with unsorted leaf nodes; (4) uleaf bmp log: employ undo-redo log-

ging for B+-Tree with bitmap-only unsorted leaf nodes; (5) btree

shadow: employ shadowing for btree; (6) unsorted leaf shadow:

employ shadowing for B+-Tree with unsorted leaf nodes; (7) uleaf

bmp shadow: employ shadowing for B+-Tree with bitmap-only un-

sorted leaf nodes; (8) wbtree: wB+-Tree; (9) wbtree w/ bmp-leaf :

wB+-Tree with bitmap-only leaf nodes. If the node size ≤ two

cache lines, we use wB+-Tree with slot-only nodes to replace both

(8) and (9), and report results as wbtree. We employ the principle

of cache optimized prefetching B+-Trees [6] for all the B+-Tree

solutions. All but (1) are persistent B+-Tree solutions.

We compare a total seven B+-Tree solutions for variable sized

keys. All the above variants of B+-Trees are included except for

the two variants involving unsorted leaf nodes, as we have seen

similar performance between unsorted leaf nodes and bitmap-only

unsorted leaf nodes.

Memcached Implementation. We have replaced the hash index in

Memcached 1.4.17 to use our tree implementations with variable

sized keys. We modified about 100 lines of code in Memcached to

use tree-based indices.

B+-Tree Workload. Unless otherwise noted, we bulkload a tree

withB entries that are randomly uniformly generated, and perform

back-to-back random search, insertion, or deletion operations. We

use 8-byte integer keys for fixed-sized keys and 20-byte strings for

variable sized keys . We make B large enough so that the tree

size is much larger than the last-level cache in the system. For

fixed-sized keys, we perform real-machine experiments and sim-

ulation experiments. For simulation, B = 20 million. For real

machine experiments, B = 50 million. Thus, the total size of

valid leaf entries is 320MB in simulation and 800MB on the real

machine, respectively. For variable sized keys, we perform only

real-machine experiments because experiments on fixed sized keys

have already contrasted the two types of NVMM models. B = 50
million. There will be an additional 1GB memory space for storing

the actual strings on the real machine.

5.2 Simulation Modeling PCM
Figure 11 reports simulation results for 100 thousand search, in-

sertion, and deletion operations on B+-Trees bulkloaded with 20

million entries, while varying the tree node size from 2 cache lines

to 8 cache lines. From Figure 11, we see the following:

• The wB+-Tree achieves similar search performance compared

to the baseline main-memory non-persistent B+-Trees. The in-

direction through the slot array incurs 2%–4% slowdowns. So-

lutions using bitmap-only leaf nodes see up to 16% slowdowns

because of the sequential search overhead in leaf nodes.

• Applying undo-redo logging incurs drastic 6.6–13.7x slowdowns

for B+-Trees and 2.7–12.6x slowdowns for PCM-friendly B+-

Trees. This is because undo-redo logging requires a significant

794

5
.8

E
+

97
.5

E
+

95
.6

E
+

9

0.0E+0

5.0E+7

1.0E+8

1.5E+8

2.0E+8

2.5E+8

3.0E+8

b
tr

e
e
 (

v
o

la
ti
le

)

b
tr

e
e
 l
o

g

u
n

s
o

rt
e

d
 l
e
a
f
lo

g

u
le

a
f
b
m

p
 l
o
g

b
tr

e
e
 s

h
a

d
o
w

u
n

s
o

rt
e

d
le

a
f
s
h

a
d
o

w

u
le

a
f
b
m

p
 s

h
a
d

o
w

w
b

tr
e
e

w
b

tr
e
e
 w

/
b

m
p
-l
e
a

f

b
it

s
 m

o
d

if
ie

d

0

2

4

6

8

10

12

b
tr

e
e
 (

v
o

la
ti
le

)

b
tr

e
e
 l
o

g

u
n

s
o

rt
e

d
 l
e
a
f
lo

g

u
le

a
f
b
m

p
 l
o
g

b
tr

e
e
 s

h
a

d
o
w

u
n

s
o

rt
e

d
le

a
f
s
h

a
d
o

w

u
le

a
f
b
m

p
 s

h
a
d

o
w

w
b

tr
e
e

w
b

tr
e
e
 w

/
b

m
p
-l
e
a

f

e
n

e
rg

y
 (

m
J

)

0.0E+0

5.0E+5

1.0E+6

1.5E+6

2.0E+6

2.5E+6

3.0E+6

3.5E+6

b
tr

e
e
 (

v
o

la
ti
le

)

b
tr

e
e
 l
o

g

u
n

s
o

rt
e

d
 l
e
a
f
lo

g

u
le

a
f
b
m

p
 l
o
g

b
tr

e
e
 s

h
a

d
o
w

u
n

s
o

rt
e

d
le

a
f
s
h

a
d
o

w

u
le

a
f
b
m

p
 s

h
a
d

o
w

w
b

tr
e
e

w
b

tr
e
e
 w

/
b

m
p
-l
e
a

f

c
o
u
n
ts

clflush mfence

Figure 12: Wear, energy, and clflush/mfence counts of index operations for Figure 11(b) with 8-line nodes.

btree (volatile)

btree log

unsorted leaf log

uleaf bmp log

btree shadow

unsorted leaf shadow

uleaf bmp shadow

wbtree

wbtree w/ bmp-leaf

btree (volatile)

btree log

unsorted leaf log

uleaf bmp log

btree shadow

unsorted leaf shadow

uleaf bmp shadow

wbtree

wbtree w/ bmp-leaf

6
.3

E
+

9

200

250

300

350

400

2-line
nodes

4-line
 nodes

8-line
nodes

e
la

p
s

e
d

 t
im

e
 (

m
s

)

0

500

1000

1500

2000

2-line
nodes

4-line
 nodes

8-line
nodes

e
la

p
s

e
d

 t
im

e
 (

m
s

)

0

1000

2000

3000

4000

2-line
nodes

4-line
 nodes

8-line
nodes

e
la

p
s

e
d

 t
im

e
 (

m
s

)

0

200

400

600

800

1000

2-line
nodes

4-line
 nodes

8-line
nodes

e
la

p
s

e
d

 t
im

e
 (

m
s

)

0

2000

4000

6000

8000

2-line
nodes

4-line
 nodes

8-line
nodes

e
la

p
s

e
d

 t
im

e
 (

m
s

)

0

400

800

1200

1600

2000

2-line
nodes

4-line
 nodes

8-line
nodes

e
la

p
s

e
d

 t
im

e
 (

m
s

)

(a) Search, 70% full nodes (b) Insertion, 70% full nodes (c) Zoom of (b)

(d) Insertion, 100% full nodes (e) Zoom of (d) (f) Deletion, 70% full nodes

Figure 13: Index performance on a real machine modeling DRAM-like fast NVMM. (We bulkload a tree with 50M entries, then

perform 500K random back-to-back lookups, insertions, or deletions. Keys are 8-byte integers.)

number of PCM writes and cache line flushes. The worst slow-

downs happen in Figure 11(d), where there are many node splits.

• Shadowing incurs 2.1–7.8x slowdowns because it performs ex-

tensive data copying to create a new node for every insertion or

deletion. The benefits of unsorted leaf nodes are lost; unsorted

leaf shadow and uleaf bmp shadow are as slow as btree shadow.

• For each update experiment, we compare the performance of

wB+-Trees with the slowest and the fastest previous persistent

solutions. Our wB+-Trees achieve a factor of 4.2–27.1x im-

provement over the slowest previous persistent solution. The

best wB+-Tree result is 1.5–2.4x better than the fastest previous

persistent solution in each insertion or deletion experiment.

• wbtree w/ bmp-leaf achieves slightly better insertion and dele-

tion performance than wbtree, but sees worse search perfor-

mance. wbtree w/ bmp-leaf saves the cost of updating the slot

array for insertions and deletions, but pays the cost of sequential

search in leaf nodes. Note that for 2-line nodes, the figure shows

only wB+-Tree with slot-only nodes as wbtree.

Figure 12 shows the wear (bits modified), energy, and counts of

clflush and mfence for Figure 11(b). Comparing the counts with

the cost analysis in Table 3, we see that the mfence counts are esti-

mated accurately, while the clflush estimations are smaller than

the real measurements. This is because our clflush estimation

has not considered the case where a log record spans the cache line

boundary causing two flushes.

5.3 Real Machine Experiments Modeling
Fast DRAM­Like NVM

Figure 13 reports the elapsed time for 500 thousand random

search, insertion, and deletion operations on B+-Trees bulkloaded

with 50 million keys on the real machine. The layout of Figure 13 is

the same as Figure 11. Similar to the simulation results, we see that

(i) the wB+-Tree achieves similar search performance compared to

the baseline main-memory non-persistent B+-Trees; (ii) Applying

undo-redo logging incurs 1.6–11.8x slowdowns; (iii) Shadowing

incurs 1.7–3.3x slowdowns; and (iv) Our wB+-Trees achieve 2.1–

8.8x improvement over the slowest previous persistent solution,

and the best wB+-Tree result is 1.2–1.6x better than the best previ-

ous persistent solution in each insertion or deletion experiment.

There are interesting differences between real machine and sim-

ulation results. We redraw Figure 13 and Figure 11 as bar charts,

795

0

200

400

600

800

1000

1200

b
tr

e
e

 (
v
o

la
ti
le

)

b
tr

e
e

 l
o

g

u
le

a
f

b
m

p
 l
o

g

b
tr

e
e

 s
h

a
d

o
w

u
le

a
f

b
m

p
 s

h
a

d
o

w

w
b

tr
e

e

w
b

tr
e

e
 w

/
b

m
p

-l
e

a
fe

la
s

p
e

d
 t

im
e

 (
m

s
)

0

400

800

1200

1600

2000

b
tr

e
e

 (
v
o

la
ti
le

)

b
tr

e
e

 l
o

g

u
le

a
f

b
m

p
 l
o

g

b
tr

e
e

 s
h

a
d

o
w

u
le

a
f

b
m

p
 s

h
a

d
o

w

w
b

tr
e

e

w
b

tr
e

e
 w

/
b

m
p

-l
e

a
fe

la
p

s
e

d
 t

im
e

 (
m

s
)

3
9
1
4

0

2000

4000

6000

8000

10000

12000

b
tr

e
e

 (
v
o

la
ti
le

)

b
tr

e
e

 l
o

g

u
le

a
f

b
m

p
 l
o

g

b
tr

e
e

 s
h

a
d

o
w

u
le

a
f

b
m

p
 s

h
a

d
o

w

w
b

tr
e

e

w
b

tr
e

e
 w

/
b

m
p

-l
e

a
fe

la
p

s
e

d
 t

im
e

 (
m

s
)

0

400

800

1200

1600

2000

b
tr

e
e

 (
v
o

la
ti
le

)

b
tr

e
e

 l
o

g

u
le

a
f

b
m

p
 l
o

g

b
tr

e
e

 s
h

a
d

o
w

u
le

a
f

b
m

p
 s

h
a

d
o

w

w
b

tr
e

e

w
b

tr
e

e
 w

/
b

m
p

-l
e

a
fe

la
p

s
e

d
 t

im
e

 (
m

s
)

3
6
2
2

(a) Search, 70% full nodes, (b) Insertion, 70% full nodes, (c) Insertion, 100% full nodes, (d) Deletion, 70% full nodes,

20-byte string keys 20-byte string keys 20-byte string keys 20-byte string keys

Figure 14: Index performance with string keys on a real machine. (We bulkload a tree with 50M entries, then perform 500K random

back-to-back lookups, insertions, or deletions).

0.0E+0

5.0E+4

1.0E+5

1.5E+5

2.0E+5

2.5E+5

3.0E+5

b
tr

e
e

 (
v
o

la
ti
le

)

b
tr

e
e

 l
o

g

u
le

a
f

b
m

p
 l
o

g

b
tr

e
e

 s
h

a
d

o
w

u
le

a
f

b
m

p
 s

h
a

d
o

w

w
b

tr
e

e

w
b

tr
e

e
 w

/
b

m
p

-l
e

a
f

re
q
u
e
s
ts
/s
e
c
o
n
d

0.0E+0

4.0E+4

8.0E+4

1.2E+5

1.6E+5

2.0E+5

b
tr

e
e

 (
v
o

la
ti
le

)

b
tr

e
e

 l
o

g

u
le

a
f

b
m

p
 l
o

g

b
tr

e
e

 s
h

a
d

o
w

u
le

a
f

b
m

p
 s

h
a

d
o

w

w
b

tr
e

e

w
b

tr
e

e
 w

/
b

m
p

-l
e

a
f

re
q
u
e
s
ts
/s
e
c
o
n
d

0.0E+0

4.0E+4

8.0E+4

1.2E+5

1.6E+5

2.0E+5

b
tr

e
e

 (
v
o

la
ti
le

)

b
tr

e
e

 l
o

g

u
le

a
f

b
m

p
 l
o

g

b
tr

e
e

 s
h

a
d

o
w

u
le

a
f

b
m

p
 s

h
a

d
o

w

w
b

tr
e

e

w
b

tr
e

e
 w

/
b

m
p

-l
e

a
f

re
q
u
e
s
ts
/s
e
c
o
n
d

(a) Search, 70% full nodes (b) Insertion, 70% full nodes (c) Insertion, 100% full nodes

Figure 15: Memcached throughput on a real machine. (We replace the hash index in Memcached with various types of trees. We

bulkload a tree with 50M entries, and use mc-benchmark to insert and search 500K random keys. Keys are 20-byte random strings.)

and generate the wear, energy, and clflush/mfence counts fig-

ures for all experiments. These charts are omitted from the paper

because of space limitation. Comparing the figures, we find that

the bar charts of the simulation results have similar shape to the

bits modified charts, while the bar charts of the real machine re-

sults have similar shape to the clflush charts. This means that

PCM writes play a major role in determining the elapsed times on

PCM based NVMM, while on fast DRAM-like NVMM, cache line

flushes are the major factor affecting the elapsed times.

5.4 Real Machine Experiments for Trees with
String Keys

Figure 14 shows the real machine experimental results for index

operations with 20-byte string keys. The trees use the structure for

the variable sized keys as described in Section 4.6. The actual keys

are stored in a separate memory area outside the trees, and the trees

contain 8-byte sized key pointers that point to the actual string keys.

Compared to 8-byte integer keys in Figure 13, the key compari-

son operation becomes much more expensive because of the pointer

dereference and the significantly larger key size. A search is about

3 times as expensive as that in the trees with 8-byte integer keys, as

can be seen by comparing Figure 14(a) and Figure 13(a).

From Figure 14(a)–(d), we see that wbtree is the best persistent

tree solution. It achieves 1.2–5.6x speedups compared to previous

persistent tree solutions based on undo-redo logging or shadowing.

On the other hand, wbtree w/ bmp-leaf has significantly poorer per-

formance because it has to perform very costly sequential search

and compare many more keys.

5.5 Real­Machine Memcached Performance
Figure 15 reports the throughput of Memcached with various

tree implementations as its internal index. (Note that unlike the

elapsed time, throughput is the higher the better.) We run the mc-

benchmark5, which performs a set of insertions followed by a set

of search operations over network. The experiments use two ma-

chines, one running the Memcached server, the other running the

mc-benchmark tool, with a 1Gbps Ethernet switch connecting the

two machines. By default, the mc-benchmark uses 50 parallel con-

nections to maximize the throughput. Memcached employs a lock-

ing based scheme to protect shared data structures. We see that the

performance difference across solutions is smaller than Figure 14

because of the communication overhead and the parallel execu-

tion. This effect is more pronounced for search because the shorter

search time is outweighed more by the communication overhead,

and read-only operations can be executed fully in parallel. We see

that wbtree achieves the highest throughput for insertions among

persistent tree structures. It achieves 1.04–3.8X improvements over

previous persistent tree structures with undo-redo logging or shad-

owing. Similar to Section 5.4, we see non-trivial overhead for using

5
https://github.com/antirez/mc-benchmark

796

bitmap-only leaf nodes. In essence, for variable sized keys, it is im-

portant to employ the slot array in leaf nodes.

6. CONCLUSION
This paper studies persistent B+-Trees that take advantage of

the non-volatility provided by NVMM for instantaneous failure re-

covery. We propose and evaluate write atomic B+-Trees (wB+-

Trees), a new type of main-memory B+-Trees. Based on our anal-

ysis and experiments, we draw the following conclusions. (i) Tra-

ditional solutions, such as undo-redo logging and shadowing, can

incur drastic overhead because of extensive NVM writes and cache

line flushes. (ii) The factors affecting performance have different

weights for different NVM technologies. The number of NVM

writes plays a major role in determining the elapsed times on PCM

based NVMM, while cache line flush is the major factor for fast

DRAM-like NVMM. (iii) Compared to previous persistent B+-

Tree solutions, our proposed write atomic B+-Trees (wB+-Trees)

significantly improve the insertion and deletion performance, while

achieving good search performance similar to that of non-persistent

cache-optimized B+-Trees.

Acknowledgment. We thank the anonymous reviewers for their

valuable comments. This work is partially supported by the CAS

Hundred Talents program and by NSFC Innovation Research Group

No. 61221062. The second author is supported by the Fundamen-

tal Research Funds for the Central Universities and the Research

Funds of Renmin University of China (No. 14XNLQ01), and Bei-

jing Natural Science Foundation (No. 4142029).

7. REFERENCES
[1] R. Agrawal and H. V. Jagadish. Recovery algorithms for

database machines with nonvolatile main memory. In IWDM,
pages 269–285, 1989.

[2] D. Apalkov, A. Khvalkovskiy, S. Watts, V. Nikitin, X. Tang,
D. Lottis, K. Moon, X. Luo, E. Chen, A. Ong,
A. Driskill-Smith, and M. Krounbi. Spin-transfer torque
magnetic random access memory (stt-mram). JETC, 9(2):13,
2013.

[3] R. Barber, P. Bendel, M. Czech, O. Draese, F. Ho, N. Hrle,
S. Idreos, M.-S. Kim, O. Koeth, J.-G. Lee, T. T. Li, G. M.
Lohman, K. Morfonios, R. Müller, K. Murthy, I. Pandis,
L. Qiao, V. Raman, S. Szabo, R. Sidle, and K. Stolze. Blink:
Not your father’s database! In BIRTE, pages 1–22, 2011.

[4] G. W. Burr, M. J. Breitwisch, M. Franceschini, D. Garetto,
K. Gopalakrishnan, B. Jackson, B. Kurdi, C. Lam, L. A.
Lastras, A. Padilla, B. Rajendran, S. Raoux, and R. S.
Shenoy. Phase change memory technology. J. Vacuum
Science, 28(2), 2010.

[5] G. W. Burr, B. N. Kurdi, J. C. Scott, C. H. Lam,
K. Gopalakrishnan, and R. S. Shenoy. Overview of candidate
device technologies for storage-class memory. IBM J. Res.
Dev., 52(4):449–464, July 2008.

[6] S. Chen, P. B. Gibbons, and T. C. Mowry. Improving index
performance through prefetching. In SIGMOD, 2001.

[7] S. Chen, P. B. Gibbons, and S. Nath. Rethinking database
algorithms for phase change memory. In CIDR, 2011.

[8] J. Coburn, A. M. Caulfield, A. Akel, L. M. Grupp, R. K.
Gupta, R. Jhala, and S. Swanson. Nv-heaps: making
persistent objects fast and safe with next-generation,
non-volatile memories. In ASPLOS, 2011.

[9] J. Condit, E. B. Nightingale, C. Frost, E. Ipek, B. C. Lee,
D. Burger, and D. Coetzee. Better I/O through
byte-addressable, persistent memory. In SOSP, 2009.

[10] C. Diaconu, C. Freedman, E. Ismert, P.-Å. Larson, P. Mittal,
R. Stonecipher, N. Verma, and M. Zwilling. Hekaton: SQL
server’s memory-optimized OLTP engine. In SIGMOD
Conference, 2013.

[11] E. Doller. Phase change memory and its impacts on memory
hierarchy. http://www.pdl.cmu.edu/SDI/
2009/slides/Numonyx.pdf, 2009.

[12] R. A. Hankins and J. M. Patel. Effect of node size on the

performance of cache-conscious B+-trees. In SIGMETRICS,
2003.

[13] Intel Corp. Intel 64 and ia-32 architectures software
developers manual. Order Number: 325462-047US, June
2013.

[14] ITRS. International technology roadmap for semiconductors
(2011 edition executive summary). http://www.itrs.net/Links/
2011ITRS/2011Chapters/2011ExecSum.pdf.

[15] B. C. Lee, E. Ipek, O. Mutlu, and D. Burger. Architecting
phase change memory as a scalable DRAM alternative. In
ISCA, 2009.

[16] D. E. Lowell and P. M. Chen. Free transactions with Rio
Vista. Operating Systems Review, 31, 1997.

[17] G. Malewicz, M. H. Austern, A. J. C. Bik, J. C. Dehnert,
I. Horn, N. Leiser, and G. Czajkowski. Pregel: a system for
large-scale graph processing. In SIGMOD Conference, pages
135–146, 2010.

[18] V. J. Marathe, M. F. Spear, C. Heriot, A. Acharya,
D. Eisenstat, W. N. S. III, and M. L. Scott. Lowering the
overhead of nonblocking software transactional memory. In
TRANSACT, 2006.

[19] Memcached. http://memcached.org/.
[20] D. Narayanan and O. Hodson. Whole-system persistence. In

ASPLOS, 2012.
[21] W. T. Ng and P. M. Chen. Integrating reliable memory in

databases. In VLDB, 1997.
[22] J. K. Ousterhout, P. Agrawal, D. Erickson, C. Kozyrakis,

J. Leverich, D. Mazières, S. Mitra, A. Narayanan,
D. Ongaro, G. M. Parulkar, M. Rosenblum, S. M. Rumble,
E. Stratmann, and R. Stutsman. The case for ramcloud.
Commun. ACM, 54(7):121–130, 2011.

[23] S. Pelley, T. F. Wenisch, B. T. Gold, and B. Bridge. Storage
management in the NVRAM era. PVLDB, 7(2):121–132,
2013.

[24] H. Plattner. The impact of columnar in-memory databases on
enterprise systems (keynote). In VLDB, 2014.

[25] PTLsim. http://www.ptlsim.org/.
[26] M. K. Qureshi, V. Srinivasan, and J. A. Rivers. Scalable high

performance main memory system using phase-change
memory technology. In ISCA, 2009.

[27] R. Ramakrishnan and J. Gehrke. Database management
systems (3. ed.). McGraw-Hill, 2003.

[28] J. Rao and K. A. Ross. Making B+-trees cache conscious in
main memory. In SIGMOD, 2000.

[29] S. Venkataraman, N. Tolia, P. Ranganathan, and R. H.
Campbell. Consistent and durable data structures for
non-volatile byte-addressable memory. In FAST, 2011.

[30] S. Viglas. Write-limited sorts and joins for persistent
memory. PVLDB, 7(5):413–424, 2014.

[31] H. Volos, A. J. Tack, and M. M. Swift. Mnemosyne:
lightweight persistent memory. In ASPLOS, 2011.

[32] M. Wu and W. Zwaenepoel. eNVy: a non-volatile, main
memory storage system. In ASPLOS, 1994.

[33] X. Wu and A. L. N. Reddy. Scmfs: a file system for storage
class memory. In SC, 2011.

[34] J. J. Yang and R. S. Williams. Memristive devices in
computing system: Promises and challenges. JETC, 9(2):11,
2013.

[35] M. Zaharia, M. Chowdhury, T. Das, A. Dave, J. Ma,
M. McCauly, M. J. Franklin, S. Shenker, and I. Stoica.
Resilient distributed datasets: A fault-tolerant abstraction for
in-memory cluster computing. In NSDI, pages 15–28, 2012.

[36] P. Zhou, B. Zhao, J. Yang, and Y. Zhang. A durable and
energy efficient main memory using phase change memory
technology. In ISCA, 2009.

797

