
Shared Execution of Recurring Workloads in MapReduce∗

Chuan Lei, Zhongfang Zhuang, Elke A. Rundensteiner, and Mohamed Eltabakh

Worcester Polytechnic Institute, Worcester, MA USA
(chuanlei,zzhuang,rundenst,meltabakh)@cs.wpi.edu

ABSTRACT
With the increasing complexity of data-intensive MapReduce work-
loads, Hadoop must often accommodate hundreds or even thou-
sands of recurring analytics queries that periodically execute over
frequently updated datasets, e.g., latest stock transactions, new log
files, or recent news feeds. For many applications, such recurring
queries come with user-specified service-level agreements (SLAs),
commonly expressed as the maximum allowed latency for pro-
ducing results before their merits decay. The recurring nature of
these emerging workloads combined with their SLA constraints
make it challenging to share and optimize their execution. While
some recent efforts on multi-job optimization in MapReduce have
emerged, they focus on only sharing work among ad-hoc jobs on
static datasets. Unfortunately, these sharing techniques neither take
the recurring nature of the queries into account nor guarantee the
satisfaction of the SLA requirements. In this work, we propose
the first scalable multi-query sharing engine tailored for recurring
workloads in the MapReduce infrastructure, called “Helix”. Helix
deploys new sliced window-alignment techniques to create sharing
opportunities among recurring queries without introducing addi-
tional I/O overheads or unnecessary data scans. And then, Helix
introduces a cost/benefit model for creating a sharing plan among
the recurring queries, and a scheduling strategy for executing them
to maximize the SLA satisfaction. Our experimental results over
real-world datasets confirm that Helix significantly outperforms the
state-of-art techniques by an order of magnitude.

1. INTRODUCTION
MapReduce has recently emerged as a new paradigm for large-

scale data analytics due to its high scalability, fault tolerance, and
flexible programming model. Companies such as Google, Amazon,
Facebook, LinkedIn, and many others have embraced MapReduce,
and its open-source implementation Hadoop, to perform large-scale
analytical applications on massive evolving datasets using recur-
ring queries [5, 13]. These recurring queries are periodically re-
executed on data subsets identified by a sliding window on the
∗This project is supported by NSF grants CNS-1305258 and IIS-
1018443.

This work is licensed under the Creative Commons Attribution-
NonCommercial-NoDerivs 3.0 Unported License. To view a copy of this li-
cense, visit http://creativecommons.org/licenses/by-nc-nd/3.0/. Obtain per-
mission prior to any use beyond those covered by the license. Contact
copyright holder by emailing info@vldb.org. Articles from this volume
were invited to present their results at the 41st International Conference on
Very Large Data Bases, August 31st - September 4th 2015, Kohala Coast,
Hawaii.
Proceedings of the VLDB Endowment, Vol. 8, No. 7
Copyright 2015 VLDB Endowment 2150-8097/15/03.

evolving data, e.g., processing the last n hours, days, weeks, or
even months worth of data depending on the granularity of inter-
est. Nevertheless, with the increasing complexity of these recurring
workloads, Hadoop may need to execute hundreds or even thou-
sands of these queries at the same time [8]. Typically, many queries
within a given workload perform similar tasks, e.g., accessing the
same input files, having partial or total computations in common,
feeding the results of one task to another task, etc. Therefore, sig-
nificant gains could be achieved if we can exploit these sharing op-
portunities. However, the diversity and variation in these recurring
queries w.r.t their window, slide, and SLA constraints combined
with the evolving nature of the data, i.e., not static input, pose new
complications and challenges to the sharing techniques.

Recent work has emerged to address multiple query sharing in
MapReduce systems [7, 16, 23]. However, these sharing techniques
target traditional ad-hoc map-reduce jobs. They take neither the
recurring nature of our target workload nor the embedded service-
level agreements (SLAs) in these queries into account. The fol-
lowing examples showcase the unique characteristics of recurring
queries, and highlight the new sharing challenges and opportunities
the are overlooked in literature.

Motivating Example - Social Network Analytics. Social net-
work companies, such as Facebook, Twitter, and LinkedIn, rely on
online news services to extract insights and build product features
from massive datasets [4, 19, 21]. For example, a LinkedIn member
may receive periodic updates from various recurring applications,
including “people you may know”, skill endorsement, collaborative
filtering, and so on. A common theme among these recurring appli-
cations is the large set of feature extraction tasks, e.g., the number
of common connections, company and school overlap, geograph-
ical distance, age similarity, among many others. These tasks are
then followed by model building and verification tasks. These tasks
are often specified as recurring queries performing similar work
over the latest batches of data over time. Consider the following
three recurring queries:
• Query q1: A company recruiter attempts to find candidates that

she may know based on her connections for job references. She
wants to be updated about new potential candidates having suf-
ficiently strong connections made in the past week (window w).
The query will be issued every morning (slide s), and the results
will have the highest utility if returned within 5 minutes (SLA con-
straint) such that she can refine her search and quickly identify po-
tential candidates before moving on to other tasks.
• Query q2: A LinkedIn member is searching for openings from

companies at which his connections work. He subscribes to a daily
service from LinkedIn indicating that he wants to be alerted about
attractive new positions shortly after they appear on the job market
(say within 1 hour or latest by end of day).

714

• Query q3: LinkedIn data scientists design a mining application
that detects emerging patterns from online discussion groups over
the last 10 days (window w). They would like to find out the most
sought-after skills required by mining job openings at the big data
companies. The identified skills should be updated on a daily basis
(slide s), and the results should be produced within 2 hours (SLA
constraint) such that other predictive models can consume these
results and decide on the recommendations to provide to LinkedIn
service subscribers.

Computing the above queries involves deep analytical processing
over large-scale data sets across multiple sources. However, these
queries differ in their requirements and constraints, e.g., the SLA
requirements for the three queries above vary significantly. With-
out taking these SLAs into consideration, existing multi-query opti-
mization (MQO) techniques [16, 23] in MapReduce would choose
to share the above three queries as one single map-reduce job to
minimize the I/O overheads and the total execution time. However,
this decision may fail to meet q1’s SLA requirements since it has a
tight constraint and may be penalized by being forced into sharing
with q3, which involves a data-intensive mining task. In contrast,
an optimal solution could be the sharing between q2 and q3, while
executing q1 independently. Worse yet, the evolving nature of data
sources - in contrast to the static sources explored by the current
techniques - adds more complications. For example, without care-
ful intervention, sharing q1 and q2 may not be beneficial due to
their different job granularities, i.e., q1 (w = 1 week, s = 1 day),
versus q2 (w = 1 day, s = 1 hour).

Many data analytics applications, such as search query log pro-
cessing [4], web crawling [3], and more, share similar character-
istics as those illustrated in the above mentioned example. These
applications involve the execution of many recurring jobs that may
differ in their window constraints, SLAs, or both. Without taking
these constraints into account, the sharing strategy employed by the
state-of-art techniques [7, 16, 23] may cause more harm than good,
e.g., missing important deadlines, and missing critical optimization
opportunities.

State-of-the-Art Techniques. The closest related work falls into
two major categories, namely MQO sharing techniques, and SLA-
aware strategies in MapReduce. Recently, MQO techniques for
sharing similar work among a batch of ad-hoc map-reduce jobs
have emerged [7, 16, 21, 23]. These techniques fall short in iden-
tifying and leveraging optimization opportunities unique to recur-
ring queries. Wang et al. [23] proposed to group multiple jobs into
a single job, and to share materialized map outputs among jobs.
However, their solution, being oblivious to SLAs and window con-
straints, does not provide any system-level optimizations for recur-
ring queries.

On the other hand, recent efforts in SLA-aware MapReduce tech-
niques [3, 22, 25] either dynamically adjust resource allocation
or exploit profiling to help jobs provision resources statically at
startup. However, none of these efforts consider sharing among
multiple map-reduce jobs. Moreover, they do not address chal-
lenges specific to recurring queries, e.g., understanding window se-
mantics, incremental processing, and intermediate data reuse across
the consecutive execution of a recurring query. The proposed He-
lix system is the first to combine the three worlds of multi-query
sharing, recurring query execution, and SLA-driven computations
together into a single coherent system.

Challenges. Sharing multiple recurring queries in MapReduce
is an NP-hard problem. Its sub-problem, MQO in MapReduce, has
been already established as an NP-hard problem [23]. Our problem
is more challenging due to the following combined characteristics:
• Unmatched Scope of Interest. The scope of interest (window

w) and execution frequency (slide s) of recurring queries may not
be well aligned. Hence sharing recurring queries involving of iden-
tical (or similar) map-reduce jobs may not always be beneficial due
to their differences in time and scope granularities.
• Variation in SLA Requirements. Each query has its own SLA

parameter. This may prevent queries from fully sharing their exe-
cution with others−even if the other constraints are matching. That
is, grouping queries without differentiating their SLAs may contra-
dict their respective high-responsiveness requirements.
• Processing Evolving Datasets. Existing shared execution tech-

niques in MapReduce [16, 23] assume that the inputs to their map-
reduce jobs are static. In contrast, recurring queries consume evolv-
ing datasets and do not exhibit this convenient property of static in-
puts. Since the volume of the newly arriving data for a given query
can have significant fluctuations, the optimization and sharing tech-
niques are further complicated by having to adapt over time.

Contributions. To address the above challenges, we propose
the “Helix” system, the first MapReduce-based infrastructure for
shared execution of recurring workloads under SLA-constraints.
Given a workload composed of recurring queries and their associ-
ated window and SLA constraints, Helix constructs a global shared
execution plan over the evolving data sources. Helix first deploys
sliced window-alignment techniques to discover sharing opportu-
nities among the recurring queries. It then models the problem as
the stochastic knapsack problem with uncertain weights [9]. He-
lix divides the optimization problem into two interleaved phases:
(1) Creating a potential sharing plan that divides the queries into
groups, and (2) Computing an execution scheduling for the groups
within the given sharing plan. Helix iterates over these two phases
and prunes the sub-optimal solutions as early as possible until it
reaches an optimized shared execution plan for all recurring queries
in one pass. This approach enables Helix to maximize the overall
SLA satisfaction of the given recurring queries, while concurrently
reducing the resources consumed due to shared execution. Our key
contributions include:
• We formulate the problem of optimizing multiple recurring

queries in MapReduce. We incorporate the queries’ properties, e.g.,
window semantics, and SLA constraints, into the interleaved shar-
ing and scheduling algorithms.
• We propose techniques for solving the unmatched of Interest

problem over evolving data sources. We introduce the sliced win-
dow alignment strategy for pre-processing and partitioning the data
into smaller segments. These techniques not only align queries for
better sharing, but also reduce costs associated with the repeated
loading costs among overlapping windows.
• We develop an SLA-driven optimizer that generates an exe-

cution plan for a given set of recurring queries which maximizes
the overall SLA satisfaction. The optimizer exploits a Branch-and-
Bound search strategy with various pruning strategies that effec-
tively prune sub-optimal solutions as early as possible from the ex-
ponential search space - rendering the search tractable in practice.
•We build the Helix prototype engine on top of the open-source

Hadoop platform. Our experimental study using real-world datasets
demonstrates that Helix consistently outperforms state-of-the-art
techniques. In many cases, Helix achieves an order of magnitude
improvement in satisfying the SLAs by leveraging recurrence spe-
cific sharing decisions.

The rest of the paper is organized as follows. Section 2 in-
troduces the recurring query model and the sharing techniques in
MapReduce. Section 3 describes the window alignment techniques.
Section 4 presents the proposed Helix optimization technique. Sec-
tions 5 and 6 discuss experimental results and related work, respec-
tively. Section 7 concludes the paper.

715

2. PRELIMINARIES
Next, we introduce the recurring query model followed by a re-

view of sharing techniques in MapReduce.

2.1 Recurring Query Model
Query Parameters. Recurring queries in MapReduce are first

introduced in [13]. They execute periodically over evolving disk-
resident datasets, i.e., datasets stored in HDFS. In each execution,
a recurring query q(w, s) bounds its computations over the evolving
datasets by two configuration parameters w and s. The window w
specifies the scope of data to process, while the slide s specifies the
frequency of execution. For example, q(w = 12 hours, s = 1 hour)
specifies a recurring query that executes every hour and processes
all data within the last 12 hours.

Input Timestamps. Recurring queries process evolving data over
time. Thus the timestamps associated with the data are important in
our model. A data batch fi received at time Tfi is annotated by the
time Tfi. We assume that time ranges covered by different batch
files do not overlap. That is, the time ranges covered by the tuples
in files f1, f2, ..., fn, are in the range of [Ti, Tf1), [Tf1, Tf2), ...
, [Tfn−1, Tfn) with Tfi < Tfi+1. Therefore, there is an order
among the files, but there are no order constraints among the tu-
ples within each file. The above model is common in most data
analytics applications. For example, in log processing, the system
may collect the log files every other hour from multiple machines,
merge them without sorting, and upload the file into HDFS as a new
batch. Between two consecutive executions Ei and Ej at times Ti

and Tj , where Ti < Tj , the system may receive multiple batches
of data in the form of HDFS files, say f1, f2, ..., fn at times Tf1,
Tf2, ..., Tfn, where Ti < Tf1 < Tf2 < ... < Tfn < Tj .

Execution Model. The Redoop system [13] is proposed to treat
recurring queries as first-class citizen in the MapReduce infrastruc-
ture. A recurring query q(w, s) is registered in Redoop, where the w
and s properties are defined as configuration parameters. Once reg-
istered, Redoop periodically triggers the execution of q according
to its w and s parameters. The evolving inputs of q are consumed
from a specific HDFS directory, while the outputs are also peri-
odically produced to another HDFS directory. Given a recurring
query q(w, s), Redoop pre-processes the input data and subdivides
the input files into smaller segments, called panes, with a refined
granularity. The goal is that when the window of interest w slides
by s, any overlapping data segments between the two consecutive
executions do not need to be processed again. Therefore, the pane-
based partitioning divides a single query execution into a sequence
of map-reduce jobs over non-overlapping pane inputs, each produc-
ing partial results. These partial results are then combined—using
a user-defined function—to generate the final desired results. In
order to do so, we assume that such recurring queries (e.g., aggre-
gation and SPJ queries) are composable and can be incrementally
computed. This execution strategy reduces the unnecessary I/O and
CPU costs otherwise associated with repeated work across overlap-
ping windows. Redoop also offers inter-window caching mecha-
nisms that cache reduce input and output data for subsequent reuse.
The cached data reduces redundant disk I/O operations. Although
Redoop enables several unique optimizations to recurring queries,
it is limited to processing the recurring queries in isolation, i.e., no
sharing, and it also does not support SLA specifications.

The proposed Helix system overcomes the limitations of Redoop
by enabling the sharing among multiple recurring queries and spec-
ifying the queries’ SLAs. We extend Redoop’s query model to en-
able the specifications of the SLAs, i.e., the query is defined as q(w,
s, SLA). The SLA parameter is expressed as a time-based function
ϑ(t) that indicates the merit of the query’s results (a utility score)

if delivered at a certain time t. Figure 1 shows two sample SLAs.
The function in Figure 1(a) indicates that the results produced after
time Td are useless to the application, i.e., its utility becomes zero.
Figure 1(b) shows an SLA function that decreases the result’s util-
ity monotonically as the query execution exceeds Td = 10 minutes.
In general, Helix supports any non-increasing utility function as an
SLA for recurring queries. In the remainder of this paper, we will
use the SLA utility functions depicted in Figure 1 for demonstration
purposes, both used in previous studies [17].

1"

0"
$me"

U$lity"Score"

Td"="10"mins"

(a) SLA Function 1

1"

0"
$me"

U$lity"Score"

Td"="10"mins"

(b) SLA Function 2

Figure 1: SLA Function

2.2 MapReduce Sharing Techniques
We now briefly review sharing techniques among ad-hoc queries

in MapReduce and discuss the associated key observations [16, 23].
For simplicity, we limit our example below to two jobs J1 and J2.
However, the sharing principles are generally applicable across n
queries. In Section 3, we will explain why these techniques are
not directly applicable to recurring workloads without customized
optimizations.

Sharing map input scans. For two jobs J1 and J2 to share their
map input scan, typically the input files, the input key, and the value
types of J1 and J2 must all be the same in MapReduce settings.
This allows J1 and J2 to be combined into one integrated job that
shares the map input scan for the two jobs. To distinguish between
the map outputs for such two jobs, we attach tags to the map out-
puts M1 and M2 respectively. In the reduce phase, the key/value
pairs are pushed to appropriate reduce functions according to their
attached tags. When all values associated with a key have been
consumed, we generate the results for the jobs associated with that
key. In this scenario, the savings result from scanning and parsing
the map input only once.

Sharing map functions. Sometimes the map functions are identi-
cal and thus the map function can be executed only once. At the end
of the map stage two streams are produced, each tagged with its job
tag. If the map output is shared, then only one stream needs to be
generated. Even if only some filters are common across both jobs,
then it is possible to share parts of the map functions. Sharing parts
of map functions involves identifying common subexpressions and
filter reordering, both known to be hard problems.

Sharing map outputs. Assume that in addition to sharing map
input scans, the map output keys K1 and K2 are the same for both
jobs J1 and J2. In that case, the map outputs for J1 and J2 can
also be shared. Here map functions map1 and map2 are applied to
each input tuple. Then the map output tuples produced bymap1 are
tagged with tag(1) only. If a map output tuple was produced from
an input tuple by both map1 and map1, it is tagged by tag(1, 2).
In the reduce phase, tuples in each group are distributed to the ap-
propriate reduce function according to their tags. For example, if
the tag of the value is tag(1, 2), we distribute the same value to
both reduce functions of J1 and J2 separately. In this scenario,
sharing map outputs reduces the total size of the map outputs and
hence the I/O sorting costs and communication costs.

716

Sharing reduce inputs. This technique requires that the map out-
put keys K1 and K2 are identical for both jobs J1 and J2. The key
idea is to materialize the reduce input in the reduce phase of a job
J1 so that subsequently it can be reused also by the reduce phase of
J2. In this way, the sorting and communication costs required for
processing the reduce input are eliminated when processing J2. Re-
duce inputs can be shared by a sequence of executions of one single
recurring query. In this case, the amount of savings is determined
by the overlapping data across multiple consecutive executions.

The Redoop system [13] exploits reduce input sharing to elimi-
nate the unnecessarily I/O costs resulting from the overlapping win-
dows. It maintains the reduce inputs on its local file system for sub-
sequent reuse. Therefore these reduce inputs need not to be loaded,
processed or shuffled again across windows. Hence the processing
time for recurring queries is reduced.

In Helix, all of the above techniques for sharing recurring map-
reduce jobs are taken into account. The Helix’s optimizer (Sec-
tion 4) exploits all appropriate sharing techniques in its branch-
and-bound optimization algorithm.

2.3 Helix Problem Definition

DEFINITION 1. Given a workload of recurring queries Q =
{q1, q2, . . . qn}, where each recurring query qi(wi, si, ϑi) is de-
fined with the three constraints window size (w), slide (s), and SLA
function (ϑ), the SLA-aware multiple recurring query optimiza-
tion problem is to find a shared execution strategy Eshared of the
workload that maximizes the cumulative utility score of the queries
in Q. Our goal is to

Maximize :

|Q|∑
i=1

uScore(qi, ϑi(t), Eshared) (1)

where uScore is defined as the utility score for qi ∈ Q computed
from its SLA function ϑ(t), assuming that the results are generated
at time instant t.

Finding the optimal solution for this problem is prohibitively ex-
pensive as discussed in Section 1. Orchestrating a shared execution
of recurring queries with different SLAs is a stochastic knapsack
problem, where the stochasticity comes from the fact that the utility
score of a query is variable and depends on all previous decisions.
Any solution to this problem would need to consider the unique
characteristics of recurring queries.

3. WINDOW ALIGNMENT FOR
RECURRING QUERIES

In this section, we present a new technique for the shared execu-
tion among multiple map-reduce recurring queries, call the Sliced
Window Alignment (SWA). The goal of SWA is to tackle the prob-
lem of different window constraints among queries, and thus cre-
ate more opportunities for fine-grained sharing among recurring
queries. Our approach first identifies the differences among the
scope of interest of each query, and then partitions each of the in-
put data sources into non-overlapping slices. The query processing
over the slices produces partial results that can be used to answer
multiple queries with little overhead. We first analyze the issues
caused by the differences among the scope of interest of query exe-
cutions (Section 3.1). And then, we propose a logical window slic-
ing approach that partitions recurring query windows into aligned
slices (Section 3.2). Since in Hadoop’s context the slices will map
to HDFS files, then special considerations needs to be taken into
account to avoid creating many small files, which is not optimal

for Hadoop. Therefore, in Section 3.3, we presenting the mapping
procedure from the logical sliced window to physical HDFS files.

3.1 Alignment Problem with Diverse Window
Constraints

Given a set of recurring queries with varying window constraints,
i.e., window (w), slide(s), and start time (start), these parameters
may not be well aligned. In this case, sharing work among re-
curring queries—even if they otherwise have identical tasks (e.g.,
map input scan, map task, etc.)—may not be beneficial due to their
different time scope granularities. Shared query execution with-
out proper data preparation may result in inefficiencies caused by
problems of redundant data loading and/or repeated partial data re-
computation, as illustrated in the following example.

F1 F2

0 10 20 30

q1.w1

q2.w1

(a) Naive Sharing

S1 S4

0 10 20 30

q1.w1

q2.w1

S2 S3

(b) Sharing with SWA

Figure 2: Relation between Windows

EXAMPLE 1 (NAIVE SHARING). Assume that two queries q1
and q2 consume the same input data source and have identical map
outputs, with q1.w = 20, q2.w = 15, q1.s = 10, q2.s = 10, q1.start
= 0, and q2.start = 10 (Figure 2(a)). Assume the input files [0-20]
(F1), and [20-30] (F2) are received in two batches at time T =
20 and T = 30, respectively. Although q2 can share its execution
(i.e., partial input scan and the associated map output) with the
first execution of q1 over the input file [0, 20], the remaining data
[20-25] for the execution of q2 would still need the data from [10-
20] in order to produce complete results for q2. In this case, the
input file [0-20] has to be loaded and processed again for q2, caus-
ing redundant data loading and repeated computations. Moreover,
the execution of q2 would also need the data from [20-25] in the
second input file [20-30], incurring unnecessary data loading from
[25-30]. These operations are very expensive and would consume
significant system’s resources.

EXAMPLE 2 (OPTIMIZED SHARING). The ideal case would
be to partition the received input files into smaller slices [0-10],
[10-20], [20-25], and [25-30] (Figure 2(b)). The slice [10-20]
serves both queries, while the slice [0-10] and [20-25] only serve
q1 and q2, respectively. In this case, each slice with appropriate
time granularity would be processed only once - serving both jobs
rather than causing unnecessary data loading and computation.

3.2 Aligning Queries in Sliced Windows
We now explain how to best partition an input data source for

evaluating recurring queries that reduces both the required I/O op-
erations and computation costs. The idea of partitioning a data
stream into slices was first introduced by Li et al. [14] in the pane-
based window approach. In this approach, all slices, also called
panes, are of equal size. While this may be appropriate for parti-
tioning the input data source for a single recurring query, it is not
be the most effective approach in the multi-query scenario. Instead,
we propose to partition a data source into possibly unequal slices
for multiple queries with varying window constraints. We define
the sliced window as follows.

717

DEFINITION 2. A window W of size |W | = w can be decom-
posed into m slices pi with p1.start = 0, pi.end = pi+1.start, and
pm.end = w. Each slice pi has size ri = (pi.end− pi.start) ∀ 1
≤ i ≤m. The slices of W are denoted as W (r1, . . . , rm), and the
ending position of the i-th slice pi is defined relative to the start of
W as pi.end = r1 + . . .+ ri.

We start withQ, a set of n recurring queries that access the same
input data sources, where each query qi in Q has different window
sizes w, slides s and logical start times start. For simplicity, here
we first assume that the start time is the same across all queries.
Later, we will relax this constraint. With varying window sizes and
slides, we need to find a single common window that consists of at
least one or multiple consecutive executions of each query qi. Thus
the period of this common window is the lowest common multiple
(LCM) of the slide qi.s of each query.

EXAMPLE 3. Given two queries q1 and q2, with q1 (w = 7,
s = 4) and q2 (w = 9, s = 6). We note that q1 and q2 have
different slides, namely, 4 and 6. We thus stretch them respectively
by factors of 3 and 2 to produce a common window of period 12.

Knowing the size of the common window, we adopt the paired
window approach [10] to partition it with unequal slice sizes ac-
cording to the window sizes and slides of qi ∈ Q. A sliced window
of period s is partitioned into a pair of slices, i.e., p1 = w mod
s and p2 = s − p1. Partitioning a window into two slices never
creates more slices than the pane-based window approach. Thus it
is always better than, or at least as good as, pane-based windows in
the context of MapReduce systems. The reason is that in general it
may not always be beneficial to execute a job with very small files.
The detailed reasons will be explained in Section 3.3.

12 0
Q1!

Q2!

Sliced Common window � (3,1,2,1,1,1,2,1)

(a) Common Sliced Window

14 0
Q1!

Q2!

Q3!

Tstr

Wstart! Sliced Common window � (1,2,1,1,1,2,1,3)

(b) Start time

Figure 3: Sliced Window Example

EXAMPLE 4. Here we continue using Example 3 to demon-
strate our solution. The paired windows for q1 and q2 are (3,1)
and (3,3), respectively. Then the common window W = 12 can
be partitioned into either (3,1,3,1,3,1) based on q1’s paired win-
dow or (3,3,3,3) based on q2’s paired window. Lastly, we combine
these two partition plans together to produce the sliced window W
= (3,1,2,1,1,1,2,1), which can serve as the common executions of
both queries. The thicker bars show the boundaries in the common
sliced window W as shown in Figure 3(a).

We now relax the constraint of identical logical start times of
queries in Q. Namely, we allow queries with arbitrary logical start
time. First we sort all queries by their logical start time in an as-
cending order. Then we define the time period from the start time
of the first query and the start time of the last query as Wstart.
The period Wstart can then be partitioned based on each query’s
qi.start. The remaining part of the window of each query becomes
the new window size w′, i.e., qi.w′ = qi.w + qi.start −Wstart.
The new qi.w

′ with qi.s are used to generate the common sliced
window as described above.

EXAMPLE 5. Now assume we have three queries q1, q2, and q3,
with q1 (w = 9, s = 4, start = 0), q2 (w = 9, s = 6, start = 2),
and q3 (w = 5, s = 2, start = 1). First, we have three queries q1,
q3, and q2 in an ascending order of their start time. Thus the period
Wstart is 2, and this time period is partitioned into 2 slices due to
q3.start = 1. The remaining part of the window of each query is
q1.w

′ = 7, q2.w′ = 9, and q3.w′ = 4. With these new window
sizes qi.w′ and slides qi.s, we have a common sliced window as
shown in Figure 3(b)

In general, our SWA approach is a combination of building a
common sliced window for all queries and using unequal slide
sizes. The solution produced by the SWA algorithm is a set of
boundaries that partition the common window into unequal slices.
By processing at the sliced level of input data, we create more op-
portunities for fine-grained sharing among recurring queries. More-
over, having the input data in such fine-granularity can alleviate
or even avoid redundant data loading and repeated partial data re-
computation.

3.3 From Slices to Physical Files
After computing the optimal slicing boundaries for input pre-

processing, we need to store the data within each slice into physical
HDFS files. However, this mapping is not straightforward because
the size of each slice varies depending on the actual arrival rate
of the corresponding data source. And thus, slices may generate
many small HDFS files, which is not optimal for Hadoop’s execu-
tion. The reason is that HDFS is optimized for processing large
data files [13]. Therefore, reading through small files may cause
lots of seeks and communications from datanode to datanode to re-
trieve each small file. If the file is very small and there are many
such files, then each map task processes very little input yet im-
poses extra bookkeeping overhead. Such overhead may offset the
potential computational savings from our sliced window alignment
solution. To avoid such scenario, we propose a strategy that maps
a common sliced window plan to physical files in HDFS. The de-
cision chooses the most effective method of representing the slices
according to a predefined minimal granularity. The following two
cases show the options that Helix adaptively chooses from.

First, one slice corresponds to exactly one physical file. Depend-
ing on the chunk size on HDFS (e.g., default size 64MB), this file
may have one or more chunks. On the other hand, multiple slices
together may correspond to one physical file. Namely, when the
input data rate is not intensive, multiple logical slices are mapped
to one physical file by a partition executor that implements the in-
structions encoded in the common sliced window produced by the
SWA approach. The data records are hashed to their correspond-
ing slices based on their timestamps during the loading time. The
partition executor piggybacks the slice creation step with the load-
ing step, i.e., while a given input file is being loaded into HDFS,
the partition executor partitions the records on-the-fly to the corre-
sponding slices.

We also introduce a special file header to boost performance for
locating selected slices in the second case. Specifically, when a sin-
gle file contains multiple logical slices, the entire file is not always
required by an operation. Thus, a special header for such a file is
designed to reduce the latency of finding the required logical slices.
This is particularly effective when a file contains a large number of
slices caused by a relatively low input rate over a given time period.
Having such optimization on mapping logical data units to physical
files, Helix avoids creating excessively small files in Hadoop.

718

4. SHARED RECURRING QUERY
OPTIMIZATION

In this section, we describe how to find a shared execution plan
for a given set of recurring queries Q. Each of these queries re-
trieves its inputs in the form of sliced windows described in Sec-
tion 3.3. The shared execution plan should maximally satisfy the
SLA associated with each query qi ∈ Q, i.e., maximizing the sum
of the utility score of Q. The problem has two dimensions: (1)
identifying the sharing groups, i.e., the queries that will be grouped
together to share their executions, and (2) identifying the execution
order among these groups. What makes our optimization prob-
lem challenging is not only that the solution to each of these sub-
problems is NP-hard, but also that they are interdependent, as illus-
trated in the following example.

EXAMPLE 6. Continuing with our motivating example in Sec-
tion 1, assume that the utility score for all three queries q1, q2, and
q3 follows the SLA function depicted in Figure 1(a), i.e., the score
is 1 if the queries finish before time Td, and 0 otherwise. Assume
that {{q1, q3},{q2}} is the best grouping solution w.r.t computa-
tional savings, e.g., q1 and q3 share a lot of their computations.
However, sharing q1 and q3 would result in missing q1’s deadline
due to the data-intensive tasks involved in q3. The estimated utility
score of group {q1, q3} in turn would be 1. Therefore, q2 would
be scheduled ahead of {q1, q3} because it has shorter execution
time compared to group {q1, q3}. This way only q1’s deadline will
be missed and hence the total utility score of executing all three
queries would be 2. On the contrary, if we choose to share q1 and
q2 together (although their amount of sharing can be small), then
the utility score of this group will be 2 since the execution time can
meet the SLA functions from both queries. In this case, {q1, q2}
is scheduled ahead of q3 since q3 has a relatively loose deadline.
Therefore the total utility score would be 3 in total.

In brief, we may need to change the execution order of query
groups according to different grouping decisions in order to achieve
a better shared execution plan. In the following, we define the con-
cepts of shared grouping and execution ordering.

DEFINITION 3 (SHARED GROUPING). Given a set of recur-
ring queriesQ = {q1, q2, . . . , qn}. A set of query groupsG = {G1,
G2, . . . , Gk}, where each Gi is a subset of Q, is called a shared
grouping solution GS, if it satisfies the following two conditions:

(1) Gi

⋂
Gj = ∅, ∀i, j : 1 ≤ i, j ≤ k, i 6= j;

(2)
⋃
Gi = Q, namely, the union of all Gi forms the entire set of

recurring queries Q.

DEFINITION 4 (EXECUTION ORDER). In a shared grouping
solution GS, the start execution time of Gi is denoted by tstarti ,
and its end execution time is denoted by tfinish

i . We assume that
each query group will use all of the available resources to finish
as early as possible. Therefore, a valid execution order, denoted
as EO = 〈Gi → Gj → . . .→ Gx〉, is a sequential ordering for
Gi ∈ GS.

Problem Complexity. Sharing among nmap-reduce jobs without
taking into account the recurring query constraints has been shown
to be an NP-hard problem [16, 23]. Adding the execution ordering
problem of the shared query groups to the optimization problem in-
troduces a second dimension, which turns the shared execution of
recurring workloads into a bilinear optimization problem. As we
illustrated in Example 6, if we change which queries to share then
this also affects the overall ordering of shared query execution, and
vice versa. The bilinear nature of the problem renders exhaustive

techniques, like brute-force and greedy optimization, infeasible.
Solving the ordering problem independently of the sharing prob-
lem will result in sub-optimal solutions for this bilinear problem.
In essence, the shared execution of recurring workloads problem
is equivalent to the stochastic knapsack problem [9] with uncertain
weights, where the stochasticity comes from the fact that the utility
score of a query is variable and depends on all previous decisions.

Worse yet, in order to decide on the best execution ordering
within a shared grouping solution, accurate progress estimations
for map-reduce jobs are required to estimate when each group ends,
and thus compute its expected utility score. Progress estimation
in MapReduce is in itself a challenging task due to the factors of
distributed processing, concurrency, failures, data skew, and other
issues. This problem has received relatively limited attention, e.g.,
ParaTimer [15], which attempted to estimate the progress of ad-hoc
map-reduce jobs.

In the proposed technique, we will explore a branch-and-bound
(B&B) optimization strategy that solves a wide variety of combi-
natorial problems. Conceptually, B&B systematically enumerates
a lattice-shaped search space, where each node represents a pos-
sible shared grouping. In each node, all possible execution order-
ings are considered. Figure 4 demonstrates a lattice-shaped search
space for a set of queries of size n = 4. Node “1/2/34” corre-
sponds to a shared grouping that consists of three query groups
{{1}, {2}, {3, 4}}. This particular shared grouping is associated
with a list of 6 execution orderings, in which 〈{1}, {2}, {3, 4}〉
is assumed to achieve the highest utility score among 6 different
orderings. This score, 2.6 in this case, is attached to the node
“1/2/34”. Clearly, a brute-force searching algorithm for the entire
space is prohibitively expensive. Our proposed B&B algorithm ef-
ficiently traverses this search space using two strategies as pruning
functions to effectively discard the sub-optimal candidates at the
sharing group level and the execution order level, respectively.

1234

14/23 1/234 124/3 13/24 123/4 134/2 12/34

1/23/4 14/2/3 1/24/3 13/2/4 12/3/4 1/2/34

1/2/3/4

Shared Grouping

Execution Ordering

�1-�2-�34�!
�1-�34-�2�
�2-�34-�1�
�2-�1-�34�
�34-�1-�2�
�34-�2-�1�

Utility Score

2.0!

2.6!

2.4!

Figure 4: Lattice-Shaped Search Space

4.1 Optimization Strategies
In the following subsections, we present two strategies that help

pruning the exponential search space and reaching a solution in a
practical way.

4.1.1 Sharing Strategy
The goal of the proposed sharing strategy is to efficiently pro-

duce a good shared grouping solution SG. This solution can SG
then be used as a bound to evaluate how good other candidates are
and to prune sub-optimal candidates as early as possible.

The sharing strategy first identifies all query groups from the
given set of recurring queries Q. Each group is associated with a
weight which represents the benefit of exploiting the sharing tech-
niques described in Section 2.2 versus not exploiting them w.r.t the

719

utility score gain. The benefit value bV al is obtained as follows:

bV al =
ϑ(tshared)

Costshared(Gi)
−

∑|Gi|
j=1 ϑ(tj)∑|Gi|

j=1 Cost(qj)
(2)

where Costshared(Gi) and
∑|Gi|

j=1 Cost(qj) denote the estimated
costs of executing shared query group Gi and the total costs of
executing each query in Gi in isolation, respectively. ϑ(tshared)
and

∑|Gi|
j=1 ϑ(tj) denote the utility score of the shared execution of

Gi, i.e., all queries in Gi end at time tshared and the total utility
score by running these queries in a non-shared fashion. The in-
tuition behind Equation 2 is to show the utility benefit per unit of
cost between the shared and non-shared executions. A higher bV al
indicates that the sharing in Gi is rewarding and should be given
a higher priority. To avoid re-inventing the wheel, we exploit the
cost model established in [23] to obtain the costs of shared execu-
tion ofGi. This cost model takes into consideration all MapReduce
sharing techniques to estimate the costs.

Conceptually, the next step is to form all possible shared group-
ings based on the identified query groups, calculate the total bV al
of each query group, until we select the shared grouping with the
largest total bV al as the final solution. Given Definition 3, and the
benefit model of each candidate, our shared grouping problem can
be mapped to a well-known graph problem, i.e., finding the Maxi-
mum Independent Set.

DEFINITION 5 (PROBLEM MAPPING). Given a set of all pos-
sible query groups, we define an undirected graph G = (V,E),
where vi denotes a query group, and an edge e(vi, vj) denotes that
vi and vj do not meet Definition 3. Now, our goal is to find a maxi-
mum independent vertex set Vi, among all possible Vi ⊂ V , where
no vertices in Vi are connected, with the largest overall bV al, i.e.,
maxV i(

∑
vi∈Vi

bV al(vi)) with
⋃
Vi = Q.

The maximum independent set is known to be a NP-hard prob-
lem [8]. Clearly, it is prohibitively expensive to create all possi-
ble shared groupings and to select the one with largest total bV al.
Therefore, we now propose a greedy search strategy to find a good
shared grouping solution (shown in Algorithm 1).

Algorithm 1 SharedGrouping() Algorithm
Input: A set of query groups G
Output: A shared grouping solution sol
1: for Gi:G do
2: if Gi.bV al < 0 then
3: G.remove(Gi) // remove groups with negative benefits
4: end if
5: end for
6: sort(G) // sort groups by Gi.bV al
7: sol← φ
8: for Gi:G do
9: if !isOverlapping(Gi, sol) then

10: sol.add(Gi) // add query group Gi to the solution
11: end if
12: end for
13: return sol

The time complexity of Algorithm 1 depends on the number of
query groups |G|. Suppose there are n candidates, the sorting func-
tion can finish in O(nlogn) time. The time complexity of conflict
check depends on the size of sol set, which is at most n. Thus,
the upper bound complexity of conflict check for n candidates is

O(n2). However, the solution set sol would not be large in practi-
cal due to the sharing conflict check as discussed above. Thus the
worst case time complexity of our greedy algorithm is O(n2).

The solution produced by Algorithm 1 serves as an initial and
reasonable guideline about which queries should be shared. The
overall SLA satisfaction of such shared grouping solution serves as
a bound for B&B algorithm as well. More specifically, any other
shared grouping solutions should have better or at least identical
SLA satisfaction in order to be considered as a final solution for our
shared execution problem. In Section 5.3, our experimental results
illustrate that this strategy effectively helps the B&B algorithm find
the optimized shared execution plan for given recurring workloads.

4.1.2 Ordering Strategy
In addition to the sharing strategy, our Helix optimizer also uses

the ordering strategy. Based on the shared grouping (e.g., Node
{{1},{2},{3,4}} in Figure 4) produced by Algorithm 1, we make
a decision on the global execution ordering EO of its groups (e.g.,
〈{q1} → {q2} → {q3, q4}〉 in Figure 4). If the global execution
ordering EO based on the given shared groups is found to be sub-
optimal (described in Section 4.2.1), then the Helix’s optimizer will
repeatedly request other shared groupings. The ordering solution
for a given shared grouping can be easily computed, provided that
the utility scores of all recurring queries are known at given time
t. This is a big advantage of recurring queries that Helix will make
use of. In the recurring workload context, all queries periodically
execute over the same evolving data sources. Thus, Helix deploys a
monitoring and profiling techniques that tracks the consecutive ex-
ecution of each recurring query, and builds a profile for each query.
The profile contains statistics for each execution, e.g., the execution
time, the amount of data processed, the number of mapper and re-
ducers used. According to these statistics, the estimation accuracy
of the current execution as well as the associated utility score can
be gradually improved.

The ordering strategy exploits the observation that if a sequence
of recurring queries or query groups are to be executed, executing
the one with the higher utility score first and also the lower exe-
cution costs first likely results in higher global utility scores. The
benefits come mainly from the fact that choosing such query can
return a higher utility score per unit of cost, ϑi(t0)/Cost(qi), in
which ϑi(t0) is the initial utility score of qi. In order to efficiently
produce the solution, we exploit greedy approximation algorithm
to solve the relaxed problem of stochastic knapsack problem [9].
In this case, all queries and query groups are sorted in decreasing
order of utility score per unit of cost ratio. The ordering strategy
then computes the total utility score achieved by this order. For
instance, if q1, q2, and q3 have exactly the same costs, but their
utility scores at a given time t are 1, 0.2, and 0.6, respectively, then
the ordering should be q1, and then q3 followed by q2.

The ordering strategy is not reducing the solution space by omit-
ting sub-optimal decisions, but instead it gives us a greedy direction
on how to start exploring the solution space.

4.2 Helix Algorithm
Now we present our Helix optimization algorithm. The goal is to

produce a globally efficient shared execution plan, given a recurring
workloadQ with resourcesR. Before presenting the algorithm, we
will discuss how to use the solution produced from the above two
strategies as bounds to safely prune the sub-optimal candidates.

4.2.1 Pruning in B&B
As already explained in the previous two strategies, we have two

initial bounds for the B & B method, a bound for sharing groups

720

and a bound for execution ordering. Given that both bounds can
be produced by fast run-time algorithms, they can be used as effec-
tive approximations towards the final solution. The key idea of the
proposed B&B algorithm is that if the initial bounds are better than
the upper bound (optimistic bound) for the current candidate under
consideration, then this candidate—and all its sub-solutions—can
be safely discarded from the search. If a candidate has a higher
utility score compared to the initial bounds, then they will be re-
placed by this new candidate. Hence, these two bounds record the
minimum upper bound seen among all candidates examined so far.
Next, we introduce two lemmas that guarantee the safe pruning for
the B&B method. Thus the B&B method is guaranteed to find the
optimal solution of shared execution of recurring workloads.

LEMMA 1. Given an execution ordering of a subset of query
groupsGi ∈ SG and the utility score associated with this ordering
(denoted as uScoreGi), and the rest query groupsGj ∈ SG, if the
highest utility score of Gj (denoted as uScoreGj) plus uScoreGi

is less than the utility score of the ordering bound uScoreOB , then
the candidates constructed by combining the existing ordering of
Gi and all permutations of the execution ordering of Gj can be
pruned safely.

EXAMPLE 7. Assume that we have 5 recurring queries and the
query groups are {q1, q2}, {q3}, {q4}, and {q5}. We further as-
sume that the highest utility score seen so far is 4.2 (i.e., the or-
dering bound). Assume that the utility score of the execution or-
dering of 〈{q3} → {q4}〉 is 1, and the highest utility score of the
other two query groups, i.e., assuming they will execute at the same
time, is 3. Then the highest utility score achievable (1+3=4) is
still less than the ordering bound (4.2). In this case, we do not
need to examine the detailed execution ordering among {q1, q2}
and {q5}, and all shared groupings resulted from their different
execution ordering, i.e., 〈{q3} → {q4} → {q1, q2} → {q5}〉 and
〈{q3} → {q4} → {q5} → {q1, q2}〉, can be pruned safely.

LEMMA 2. Given a shared query group, if the utility score of
this query group at time t is less than the one of executing all
queries in this group in a sequential order, all candidates that con-
tain this query group can be safely pruned.

EXAMPLE 8. Assume that we have 4 recurring queries q1, q2,
q3, and q4. If the utility score of a shared query group {q1, q2} is
less than executing q1 and q2 in a sequential order, grouping q1 and
q2 together is not beneficial with respect to the utility score, even
they may have significant computational savings. Any solution can-
didates with group {q1, q2} should be pruned from consideration.

Due to the space limitation, the detailed proof of Lemmas 1 and
2 can be found in our technical report [12].

4.2.2 Branch and Bound Algorithm
Now we present our B&B method for determining shared exe-

cution plans of recurring workloads. The algorithm uses “nodes”
to keep intermediate states. There are three types of nodes: the so-
lution node, the live nodes and the dead nodes. A solution node
contains a solution to the problem with highest utility score seen so
far. The score assigned to a solution node is computed directly from
the SLA functions. The algorithm may change the solution node as
it explores the solution space. The solution with the highest score
is the output of the algorithm.

Live nodes contain possible solution candidates to our problem
and they are connected with other nodes. Once visited without be-
ing changed into a solution node, a live node is turned into a dead

node, meaning that we do not have to visit it again. In order to
calculate the utility score of a live node, we plug in the estimated
execution time into the SLA functions associated with the queries
in this node, and the above two bounds to estimate the remaining
part of the solution. A feature of Branch and Bound is that once
we have reached a solution node, we can prune all live nodes that
have a score lower than the score of the solution node. Recall that
a live node has an estimated utility score (an upper bound score).
Therefore, pruning these live nodes does not affect the optimality
of the algorithm because the score of a live node means that as we
explore this node and fully traverse all children, we will never reach
a solution with a higher utility score. In other words, the score of a
live node is the theoretical bound of the sub-tree of nodes.

The algorithm, described in Algorithm 2, uses a heap to maintain
the set of live nodes sorted by their scores. The first node that enters
the heap is the root node, a node that contains the solution produced
based on our two strategies described in Section 4.1. The algorithm
proceeds by removing the first node of the heap, and testing if it is
a better solution or not. In case it is a solution that has a higher
utility score than any solution we have seen before, we keep it. In
the case that the active node is not a solution, all its child nodes are
inserted into the heap. As already explained, we can prune a node
and its corresponding sub-tree if it meets the pruning conditions we
introduced in Section 4.2.1.

Algorithm 2 Helix Optimizer Algorithm
Input: Query Set Q, Heap heap, Node root, Node tmp
Output: Node solution
1: solution← SharedGrouping(Q) // call sharing algorithm
2: solution.score← order(solution) // call ordering algorithm
3: Push(heap, root)
4: while !isEmpty(heap) do
5: tmp← Pop(heap)
6: tmp.score← order(tmp)
7: if tmp.score > solution.score then
8: solution← tmp
9: Node[] children← childrenOf(tmp)

10: for Node c ∈ children do
11: c.score← order(c)
12: Push(heap, c)
13: end for
14: else if !groupPrune(tmp.score) then
15: Node[] children← childrenOf(tmp)
16: for Node c ∈ children do
17: c.score← order(c)
18: Push(heap, c)
19: end for
20: end if
21: end while
22: return solution

Figure 4 shows an example of how Algorithm 3 explores the
search space by traversing nodes. The root node at the bottom of
the lattice-shape space holds a set of recurring queries with their op-
timal execution ordering (i.e., 〈{1} → {2} → {3} → {4}〉). The
value of the node is its estimated utility score. In the example of
Figure 4, the root node has six child nodes. These child nodes
have their query grouping fixed, meaning that this part of the so-
lution will remain constant in their child nodes. For instance, a
group of queries {3,4} is part of the query groups {{1,2},{3,4}}
and {{{1},{2},{3,4}}}. During node traversal all possible sets of
groups must be taken into account. In our example the child node
of the root with highest utility score is traversed in the decreasing

721

order of their utility scores. Finally, at this point we should no-
tice the importance of the sharing and ordering strategies. Without
these two strategies, node {{1},{2},{3,4}} has three child nodes
that contains all possible groupings having {3,4} in the same group.
The optimizer would have had to consider them all and their child
nodes as well, for all possible execution orders of a total of 4 nodes
(6+2+2+2+1 = 13 in this case). Given the node {{1},{2},{3,4}}
fails to meet our grouping bound, it can be safely pruned so that
only its siblings and their child nodes will be traversed.

5. EXPERIMENTAL EVALUATION
In this section, we describe the experimental study we conducted

to evaluate Helix. We will show that: (1) Helix effectively supports
shared execution of recurring queries by employing sliced window
alignment techniques, (2) Helix maximally satisfies the SLA re-
quirements specified in recurring queries, and (3) the effectiveness
of Helix’s optimization algorithm of finding the best shared execu-
tion plan for a given set of recurring queries.

5.1 Experimental Setup & Methodology
Experiment Infrastructure. All experiments are conducted on a

shared-nothing cluster with one master node and 40 slave nodes.
Each node consists of 16 core AMD 3.0GHz processors, 32GB
RAM, 250GB disk, and nodes are interconnected with 1Gbps Eth-
ernet. Each server runs CentOS Linux (kernel version 2.6.32), Java
1.6, Hadoop 0.20.1. Each node is configured to run up to 8 map and
8 reduce tasks concurrently. The sort buffer size was set to 512MB,
and speculative execution was disabled to boost performance. The
replication factor is set to 3 unless stated otherwise.

Datasets and Queries. We use two real-life datasets for our ex-
periments. The World Cup Click dataset [1] (256GB) contains
records of more than 1.35 billion web requests made to 1998 World
Cup Website. Another dataset is the latest high volume Wikipedia
database [2] (400GB) being modified and updated continuously.

We focus on queries that involve join, project, and aggregate op-
erations, which are fundamental operations not only in relational
databases, but also in the emerging data analytics tasks described in
Section 1. These queries were generated from the following query
template: select S1.T, sum(value) from S1, S2 where S1.a = S2.b
group by S1.T, where T is a randomly selected list of dimensional
attributes. The default number of queries in a query batch was 20
unless otherwise stated. Each query is also assigned a query dead-
line that ranges from [0.3 - 1] of the query’s window size w. These
20 queries’ deadlines are uniformly distributed within this range.
We execute each experiment three times. In the charts we report
their average results.

Metrics & Measurements. Given a set of recurring queries, we
measure the utility score of each query, and the average execution
time for the recurrences of each query. The execution time of re-
curring queries is a common metric in data management systems,
while the utility score is defined in Section 2.1. We do not include
the data pre-processing time since it is performed on-the-fly during
the loading time. It is hence negligible compared to the disk-based
query processing in Hadoop. We verify Helix’s effectiveness under
different time-based utility functions. Table 1 summarizes the util-
ity functions used in this study, which are also commonly used to
specify SLA requirements [17]. We also evaluate the optimization
overhead incurred by our optimizer with respect to its optimization
time.

Methodology. We adopted the state-of-the-art method [13] to
support single recurring query processing, and implemented the
proposed Helix techniques for sharing execution of recurring work-
loads on top of the extended open-source Apache Hadoop. We

compare three algorithms denoted Redoop, GGTMT, and Helix,
respectively. Redoop [13] is the state-or-the-art approach for eval-
uating a recurring query in MapReduce. Two, GGTMT [23] only
maximizes computational saving by combining both GGT (general
grouping technique) and MT (materialization technique), without
taking into consideration the SLA satisfactions. Regarding the effi-
ciency of the Helix optimization algorithm, we compare it with the
exhaustive (EXH) and random search (i.e., simulated annealing)
algorithms (RAND).

Utility Functions

F1 θF1(t) =
{
1 for t ≤ td
0 for t > td

F2 θF2(t) = 1/log(t)

F3 θF3(t) =
{

1 for t ≤ td
1/(t− td) for t > td

Table 1: Utility Functions Used in the Experimental Study

5.2 Helix Runtime Performance
We evaluate the effectiveness of our Helix solution from three

perspectives. First, we demonstrate the effectiveness of Helix’s
sliced window alignment technique by comparing with GGTMT as
it only targets on sharing techniques for ad-hoc queries over static
datasets in MapReduce. Second, we demonstrate the sharing ben-
efits gained by our Helix optimizer by comparing against Redoop
as it aims to optimize for a single recurring query. Third, we evalu-
ate the scalability of our Helix solution by varying four parameters,
i.e., data size, number of queries, and cluster size.

5.2.1 Effectiveness of Sliced Window Alignment
Figure 5 illustrates the improvement of Helix over GGTMT. In

this experiment, we fix the number of queries to 20 and the number
of nodes to 40. The size of the dataset is 240 GB for each slide
in the common sliced window. We vary a factor, called overlap,
which corresponds to the amount of overlapping data between two
consecutive windows of each query, to measure the effectiveness of
Helix sliced window alignment technique.

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 4000

 4500

0 0.1 0.5 0.9

E
xe

cu
tio

n
Ti

m
e

(s
ec

)

Overlap Ratio

 Helix
 GGTMT

(a) Execution Time (Aggregate)

 0

 5

 10

 15

 20

0 0.1 0.5 0.9

U
til

ity
 S

co
re

Overlap Ratio

 F1(Helix)
 F1(GGTMT)

 F2(Helix)
 F2(GGTMT)

 F3(Helix)
 F3(GGTMT)

(b) Utility Score (Aggregate)

Figure 5: Effectiveness of Sliced Window Alignment

Helix’s sliced window alignment technique substantially reduces
the execution time while also increasing the SLA satisfaction as il-
lustrated in Figure 5(a). Helix benefits from the sliced window
alignment to avoid unnecessary data processing, resulting in a sig-
nificant advantage over GGTMT. Helix processes the newly arriv-
ing data in a finer granularity. Moreover, the sliced window opens
more sharing opportunities compared to the GGTMT technique.

722

Thus the execution time can be further reduced by up to 83% when
overlap is 0.9. The result in Figure 5(b) show that Helix has a
clear advantage over GGTMT with respect to the SLA satisfaction.
Slicing a window into small chunks breaks the original query into
multiple MapReduce jobs, which in turn provides more flexibility
in choosing the appropriate queries to meet SLA requirements. The
execution time and utility score of the join operation demonstrate a
similar trend to the above aggregation operation. Due to the space
limit, the join operation’s results are given in [12].

5.2.2 Effectiveness of Shared Execution
In this sharing benefit experiment, we also use 20 queries, 40

nodes, and 240 GB data sets for each query recurrence. We again
vary the overlap to evaluate the effectiveness of sharing techniques
on multiple recurring query processing. Helix’s sharing techniques
significantly improve the performance in both metrics (i.e., the exe-
cution time and the utility score). The execution time of Helix is up
to a maganitute faster compared to Redoop when there is no over-
lap. The trend changes when the overlap ratio is high (0.9). In this
case, Redoop system can exploit the reduce input cache which is
equivalent to our reduce input sharing in Helix. The savings gained
from the reduce input caches contribute to the total savings more
than other sharing opportunities such as map input scan or map out-
put sharing. However, when overlap ratio decreases, the benefits
of the other sharing techniques become significant. The total sav-
ings gained from all sharing techniques make the performance of
our Helix system substantially exceeds that of the Redoop system.

 0

 5000

 10000

 15000

 20000

0 0.1 0.5 0.9

E
xe

cu
tio

n
Ti

m
e

(s
ec

)

Overlap Ratio

 Helix
 Redoop

(a) Execution Time (Aggregate)

 0

 5

 10

 15

 20

0 0.1 0.5 0.9

U
til

ity
 S

co
re

Overlap Ratio

 F1(Helix)
 F1(Redoop)

 F2(Helix)
 F2(Redoop)

 F3(Helix)
 F3(Redoop)

(b) Utility Score (Aggregate)

Figure 6: Significance of Sharing Benefits

The results in Figure 6(b) illustrate the improvement of Helix
over Redoop. In all cases, even when overlap is 0, our Helix sys-
tem achieves much better SLA satisfaction compared to Redoop.
The reason is that Helix’s shared execution plan is optimized for
maximizing the SLA satisfaction. On the contrary, Redoop system
is neither equipped with as many sharing techniques as Helix nor
aware of SLA requirements associated with recurring queries. As
expected, the results of the join operation verify the superiority of
our Helix solution over Redoop in both metrics. These results can
be found in [12].

5.2.3 Putting It All Together
In this set of experiments, we evaluate the effectiveness and scal-

ability of our Helix solution by varying three parameters, i.e., data
size, number of queries and cluster size. Figures 7, 8, and 9 show
the experimental results of Helix over GGTMT indicated. Each fig-
ure shows the aggregation operations with respect to two metrics
(the execution time and the utility score). Due to space constraint,
the results of the join operation are given in [12].

Effect of number of queries. Figure 7 compares the performance
as the size of a query batch is increased. We observe that our

algorithm significantly outperforms GGTMT. For example, Helix
outperforms GGTMT by 178% on average and up to 204% with
respect to the execution time when the number queries is 30. Fur-
ther more, as the number of queries increases, the winning margin
of our solution over GGTMT also increases. This is expected as
the conflicts between sharing opportunities and SLA requirements
across queries also increase with the number of queries.

Regarding the utility score, the advantage of Helix is more ob-
vious compared to GGTMT. In Figure 7(b), The total utility score
achieved by Helix is up to 1089% more than the one achieved by
GGTMT. The winning margin is similar to the observation in Fig-
ures 7(a). The reason is that Helix optimization is SLA-oriented.
When the number of queries is small, Helix and GGTMT may hap-
pen to produce an identical shared execution plan for given queries
due to the relatively small search space. However, when the num-
ber of queries increases, the solution produced by Helix is opti-
mal with respect to the SLA requirements whereas GGTMT tries
to maximize computational savings only.

 400

 600

 800

 1000

 1200

 1400

 1600

 1800

 2000

 2200

 5 10 15 20 25 30

E
xe

cu
tio

n
tim

e
(s

ec
s)

Number of Queries

Helix
GGTMT

(a) Execution Time (Aggregate)

 0

 5

 10

 15

 20

5 10 15 20 25 30

U
til

ity
 S

co
re

Number of Queries

F1(Helix)
F1(GGTMT)

F2(Helix)
F2(GGTMT)

F3(Helix)
F3(GGTMT)

(b) Utility Score (Aggregate)

Figure 7: Varying Number of Queries

Effect of cluster size. Figure 8 compares the scalability of all
methods by varying the number of nodes in the cluster used. Here
again our Helix solution significantly outperforms GGTMT in the
execution time. For example, Helix outperforms GGTMT by 202%
when the number of nodes is 10. Helix outperforms GGTMT by
232% when the number of nodes is 40. Moreover, the improvement
factor of Helix over GGTMT does not show significant differences
for both aggregation and join operations.

 1000

 1500

 2000

 2500

 3000

 3500

 4000

 10 20 30 40

E
xe

cu
tio

n
tim

e
(s

ec
s)

Cluster Size

Helix
GGTMT

(a) Execution Time (Aggregate)

 0

 5

 10

 15

 20

5 10 15 20 25 30

U
til

ity
 S

co
re

Cluster Size

F1(Helix)
F1(GGTMT)

F2(Helix)
F2(GGTMT)

F3(Helix)
F3(GGTMT)

(b) Utility Score (Aggregate)

Figure 8: Varying Number of Nodes

Furthermore, as the cluster size increases, the running time for
both approaches decreases. In particular, the running time of He-
lix decreases much faster than the one of GGTMT solution which
therefore enlarges the winning margin as cluster size increases.
Thus, the performance improvement from the increased parallelism

723

using a larger cluster benefits Helix more than the GGTMT tech-
nique. The reason is that Helix system’s sliced window alignment
technique provides appropriate sized inputs. That enables Helix to
make full use of the parallelism with more nodes are available.

In Figure 8(b), the utility score results confirm the superiority of
our Helix approach over GGTMT as well. Helix is able to win in
all cases. The winning margin becomes more substantial when the
number of nodes increases.

Effect of data size. Figure 9(a) examine the execution times
of Helix with different data sizes per job ranging from 80GB to
400GB. Helix significantly outperforms GGTMT again. For exam-
ple, Helix outperforms GGTMT by up to 128% when the data size
is 400GB for aggregation queries. This is verified by the increase of
the execution time for both approaches as the data size increases.
In particular, the running time of GGTMT increases much faster
than for the Helix approach. This shows that the robustness of our
Helix approach against varying data size. The reason behind this is
that by exploiting the sliced window alignment technique and the
sequential sharing method, the Helix approach can significantly re-
duce or even eliminate the unnecessary data recomputations.

The results in utility score metric, as depicted in Figure 9(b),
prove the success of Helix approach as well. The reason behind
this is that the decision of the execution ordering becomes more
critical when the data size increases. Making an inappropriate or-
dering decision may significantly reduce the utility scores of other
queries as they are blocked from processing for a long time. The so-
lution produced by Helix can always guarantee the optimality of the
execution order of the shared query groups. In other words, most
useful and urgent queries are processed ahead of other queries in a
shared fashion. This greatly helps the system to maximally satisfy
the SLA requirements associated with the queries.

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 80 160 240 320 400

E
xe

cu
tio

n
tim

e
(s

ec
s)

Size of Dataset (GB)

Helix
GGTMT

(a) Execution Time (Aggregate)

 0

 5

 10

 15

 20

80 160 240 320 400

U
til

ity
 S

co
re

Size of Dataset (GB)

F1(Helix)
F1(GGTMT)

F2(Helix)
F2(GGTMT)

F3(Helix)
F3(GGTMT)

(b) Utility Score (Aggregate)

Figure 9: Varying Size of Dataset

5.3 Efficiency of Helix Optimizer
In this section, we evaluate the efficiency of our Helix’s B&B al-

gorithm by comparing against two extreme solutions: a brute-force
algorithm that generates the optimal sharing solution (denoted by
EXH) and a random approach using the simulated annealing algo-
rithm (denoted by RAND). We measure the optimization times to
evaluate query batches of different sizes. We choose not to evalu-
ate the quality of solutions produced by all three methods, because
Helix always produces the optimal solution as EXH approach does.
While the RAND methods often chooses a sub-optimal solution be-
cause it might be stuck in a local optima.

For each query size, our Helix approach outperforms both the
exhaustive and random approaches by up to 7 and 2 times, respec-
tively. When the number of queries is small (10 and 15), all three
methods feature a similar optimization time. As expected, EXH is
not a scalable solution when the number of queries increases. On

the contrary, the Helix method achieves the same quality shared
execution plan as EXH but does so in a much smaller optimization
time. The random method RAND does not suffer from a significant
increase of optimization time for large numbers of queries. How-
ever, it cannot guarantee any optimality regarding the produced so-
lution.

In summary, the Helix approach guarantees to produce an opti-
mal solution for shared execution of recurring workloads with neg-
ligible optimization time overhead.

6. RELATED WORK
Recurring Query Processing. Recurring query processing sys-

tems [4, 5, 13] have been proposed to support large-scale data ana-
lytics applications over evolving data streams. SCOPE [4, 5] han-
dles recurring queries by instrumenting queries to piggyback statis-
tics collection with its normal execution. Collecting such statistics
makes it possible to create a statistical profile that can be fed to the
optimizer on a future invocation of the same job. Redoop [13] em-
ploys window-aware optimization techniques for recurring query
execution including adaptive data partitioning, window-aware task
scheduling and inter-window caching. However, none of the above
systems support the optimization of multiple recurring queries.

Multi-Query Optimization (MQO): MQO is known to be an ef-
ficient method for handling large query workloads in traditional
database systems [6, 18, 20]. Techniques have been proposed for
tackling MQO problems in relational database systems, in partic-
ular, materialized views [6, 18] and common sub-expression shar-
ing [20]. In [18], materialized views are effective techniques for
implementing common sharable processing across queries. Chaud-
huri et al. [6] proposed to pre-compute views over static data to
be used by other subsequent queries. In the Cache-on-Demand
(CoD) system [20], the intermediate and final results from exist-
ing queries are treated as caches that are usable by future queries.
Such principles of keeping data generated from one query in views
(i.e., caches) more recently have been leveraged in MapReduce as
well as explained below.

Multi-Query Optimization in MapReduce: Several techniques
have been proposed for sharing or reusing work across multiple
queries on MapReduce. MRShare [16] aims to partition a batch
of jobs into disjoint sharing groups. Specifically, MRShare com-
bines queries that share similar MapReduce jobs into a group and
processes such group as a single MapReduce job. However, MR-
Share does not support general jobs that use multiple inputs (e.g.,
joins) nor sharing parts of the map functions. Also MRShare does
not support window constraints and SLA requirements specified in
recurring queries. Thus the sharing groups produced by MRShare
would not provide any guarantee of exploiting unique sharing op-
portunities in recurring queries and thus satisfying the associated
SLA requirements.

The ReStore [7] system manages the storage and reuse of in-
termediate results produced by MapReduce workflows. ReStore
materializes map and/or reduce output of MapReduce jobs to iden-
tify reuse opportunities by future jobs, therefore avoiding redun-
dant work. Our work differs from ReStore in both the problem
focus and the developed techniques. The sharing decisions made
by our technique are SLA-targeted and thus guarantee immediate
reuse of materialized results whereas the materialized output pro-
duced by ReStore might not be reused at all. Moreover, our He-
lix system exploits sharing opportunities by executing a group of
queries together as one MapReduce job. In contrast, ReStore does
not support such shared query executions.

Wang el at. [23] propose two sharing techniques, the general-
ized grouping technique (GGT) and the materialization technique

724

(MT), to refine multi-query optimization in MapReduce. They also
design a cost-based two-phase approach to find shared execution
plans. Compared with [23], our work focuses on the unique chal-
lenges of shared execution of recurring queries and not just ad-hoc
jobs on static datasets. Moreover, our work is more comprehensive
by targeting additional optimization objectives such as maximizing
SLA. This leads to a more complex optimization problem. We pro-
pose a novel SLA-driven approach with effective pruning heuristics
that exploit the characteristics from both MapReduce jobs and re-
curring queries to find optimal shared execution plans, which better
meet SLA requirements in recurring queries.

Service Level Agreement: Meeting certain SLA constraints has
been addressed in the context of stream processing systems [11,
24]. Prior work [11] has leveraged specific workload characteris-
tics to meet SLAs without losing efficiency or utilization. To pro-
vide real-time responses, [11] enable the user to specify a contract
in terms of latency, data freshness, CPU and memory usage. Its
main method is to shed data from incoming streams to handle load
and meet the desired QoS. Our aim is not load shedding but in-
stead sharing of workloads. The second solution in [24] employs
scheduling technique to leverage small, uniform task durations to
trade short-term SLA violations for efficiency. However, these
workload characteristics are not universal. In contrast, our Helix
solution is independent of workload characteristics. Moreover, the
scheduling technique in Helix captures not only SLA requirements
but also computational savings from shared query executions.

Several techniques [3, 22, 25] have been proposed for achiev-
ing SLAs of MapReduce jobs. These methods either dynamically
adjust resource allocation or they exploit profiling to help jobs pro-
vision resources statically at startup. However, none of these efforts
consider sharing such as merging similar jobs into one MapReduce
job. Moreover, they do not address any unique challenges derived
from targeting recurring queries as done in our work.

7. CONCLUSION
This paper presented the first targeted optimization for shared

execution of recurring workloads on MapReduce. Our Helix sys-
tem offers 3 key innovations. (1) The recurring query model estab-
lished for Helix integrates the multiple recurring query optimiza-
tion problem in MapReduce with the SLA satisfaction. (2) The
sliced window alignment technique opens new sharing opportuni-
ties by partitioning the data sources into sharing-appropriate granu-
larities. (3) Two novel strategies, sharing and ordering methods, ef-
fectively prune sub-optimal solutions from the search space. They
guide the Helix optimizer to explore the more promising part of the
search space first, thus succeeding to efficiently produce the opti-
mal global shared execution plan. Our experimental results on a
rich variety of workloads show that our proposed techniques out-
perform the state-of-the-art approaches consistently by up to an or-
der of magnitude.

8. REFERENCES
[1] 1998 world cup. http://ita.ee.lbl.gov/html/

contrib/WorldCup.html.
[2] Wikipedia database. http:

//dumps.wikimedia.org/enwiki/latest/.
[3] G. Ananthanarayanan, C. Douglas, et al. True elasticity in

multi-tenant data-intensive compute clusters. In SoCC, pages
24:1–24:7, 2012.

[4] N. Bruno, S. Agarwal, et al. Recurring job optimization in
scope. In SIGMOD, pages 805–806, 2012.

[5] N. Bruno, S. Jain, and J. Zhou. Recurring job optimization
for massively distributed query processing. IEEE Data Eng.
Bull., 36(1):46–55, 2013.

[6] S. Chaudhuri, R. Krishnamurthy, S. Potamianos, and
K. Shim. Optimizing queries with materialized views. In
ICDE, pages 190 – 200, 1995.

[7] I. Elghandour and A. Aboulnaga. Restore: reusing results of
mapreduce jobs. Proc. VLDB Endow., 5(6):586–597, 2012.

[8] G. Giannikis, D. Makreshanski, G. Alonso, and
D. Kossmann. Shared workload optimization. PVLDB,
7(6):429–440, 2014.

[9] A. J. Kleywegt and J. D. Papastavrou. The dynamic and
stochastic knapsack problem. Operations Research,
46:17–35, 1998.

[10] S. Krishnamurthy, C. Wu, and M. Franklin. On-the-fly
sharing for streamed aggregation. In SIGMOD, pages
623–634, 2006.

[11] A. Labrinidis, H. Qu, and J. Xu. Quality contracts for
real-time enterprises. In BIRTE, pages 143–156, 2007.

[12] C. Lei, E. Rundensteiner, and M. Eltabakh. Technical report:
Shared execution of recurring workloads. http:
//users.wpi.edu/˜chuanlei/TR1114.pdf.

[13] C. Lei, E. A. Rundensteiner, and M. Eltabakh. Redoop:
Supporting recurring queries in hadoop. In EDBT, pages
817–828, 2014.

[14] J. Li, D. Maier, K. Tufte, et al. No pane, no gain: efficient
evaluation of sliding-window aggregates over data streams.
SIGMOD Rec., pages 39–44, 2005.

[15] K. Morton, A. Friesen, M. Balazinska, and D. Grossman.
Estimating the progress of mapreduce pipelines. In ICDE,
pages 681–684, 2010.

[16] T. Nykiel, M. Potamias, et al. Mrshare: sharing across
multiple queries in mapreduce. Proc. VLDB Endow., pages
494–505, 2010.

[17] V. Raghavan and E. A. Rundensteiner. Caqe: A contract
driven approach to processing concurrent decision support
queries. In EDBT, pages 121–132, 2014.

[18] P. Roy, S. Seshadri, S. Sudarshan, and S. Bhobe. Efficient
and extensible algorithms for multi query optimization. In
SIGMOD, pages 249–260, 2000.

[19] R. Sumbaly, J. Kreps, and S. Shah. The big data ecosystem at
linkedin. In SIGMOD, pages 1125–1134, 2013.

[20] K.-L. Tan, S.-T. Goh, and B. C. Ooi. Cache-on-demand:
Recycling with certainty. In ICDE, pages 633–640, 2001.

[21] A. Thusoo, Z. Shao, et al. Data warehousing and analytics
infrastructure at facebook. In SIGMOD, pages 1013–1020,
2010.

[22] A. Verma, L. Cherkasova, and R. H. Campbell. Aria:
Automatic resource inference and allocation for mapreduce
environments. In ICAC, pages 235–244, 2011.

[23] G. Wang and C.-Y. Chan. Multi-query optimization in
mapreduce framework. PVLDB, 7(3):145–156, 2013.

[24] M. Zaharia, D. Borthakur, J. Sen Sarma, K. Elmeleegy,
S. Shenker, and I. Stoica. Delay scheduling: A simple
technique for achieving locality and fairness in cluster
scheduling. In EuroSys, pages 265–278, 2010.

[25] Z. Zhang, L. Cherkasova, A. Verma, and B. T. Loo.
Automated profiling and resource management of pig
programs for meeting service level objectives. In ICAC,
pages 53–62, 2012.

725

