Online Topic-Aware Influence Maximization

Shuo Chent Ju Fan?

Guoliang Lit Jianhua Feng'

Kian-lee Tan* Jinhui Tang*

t Department of Computer Science, TNList, Tsinghua University, Beijing, China.
tSchool of Computing, National University of Singapore, Singapore.
*School of Computer Science, Nanjing University of Science and Technology, Nanjing, China.
{liguoliang,fengjh}@tsinghua.edu.cn; s-chen13@mails.thu.edu.cn;
{fanj, tankl}@comp.nus.edu.sg; jinhuitang@njust.edu.cn

ABSTRACT

Influence maximization, whose objective is to select k users
(called seeds) from a social network such that the number
of users influenced by the seeds (called influence spread)
is maximized, has attracted significant attention due to its
widespread applications, such as viral marketing and ru-
mor control. However, in real-world social networks, users
have their own interests (which can be represented as top-
ics) and are more likely to be influenced by their friends
(or friends’ friends) with similar topics. We can increase
the influence spread by taking into consideration topics. To
address this problem, we study topic-aware influence maxi-
mization, which, given a topic-aware influence maximization
(TIM) query, finds k seeds from a social network such that
the topic-aware influence spread of the k seeds is maximized.
Our goal is to enable online TIM queries. Since the topic-
aware influence maximization problem is NP-hard, we focus
on devising efficient algorithms to achieve instant perfor-
mance while keeping a high influence spread. We utilize a
maximum influence arborescence (MIA) model to approx-
imate the computation of influence spread. To efficiently
find k seeds under the MIA model, we first propose a best-
effort algorithm with 1 — % approximation ratio, which esti-
mates an upper bound of the topic-aware influence of each
user and utilizes the bound to prune large numbers of users
with small influence. We devise effective techniques to esti-
mate tighter upper bounds. We then propose a faster topic-
sample-based algorithm with €- (1 — 1) approximation ratio
for any € € (0, 1], which materializes the influence spread of
some topic-distribution samples and utilizes the material-
ized information to avoid computing the actual influence of
users with small influences. Experimental results show that
our methods significantly outperform baseline approaches.

1. INTRODUCTION

The influence maximization problem seeks to select k users
from a social network through whom the number of influ-
enced users is maximized. The omnipresent, successful so-

This work is licensed under the Creative Commons Attribution-
NonCommercial-NoDerivs 3.0 Unported License. To view a copy of this li-
cense, visit http://creativecommons.org/licenses/by-nc-nd/3.0/. Obtain per-
mission prior to any use beyond those covered by the license. Contact
copyright holder by emailing info@vldb.org. Articles from this volume
were invited to present their results at the 41st International Conference on
Very Large Data Bases, August 31st - September 4th 2015, Kohala Coast,
Hawaii.

Proceedings of the VLDB Endowment, Vol. 8, No. 6

Copyright 2015 VLDB Endowment 2150-8097/15/02.

666

cial networks, like Facebook and Twitter, have boosted re-
search on the influence maximization problem due to its po-
tential commercial value, such as viral marketing |2], rumor
control, and information monitoring |20} {11} [15].

Evidently, in real-world social networks, users have their
own interests (which can be represented as topics) and are
more likely to be influenced by their friends (or friends of
friends) with similar interests. For example, a soccer fan will
more likely be influenced by famous soccer players rather
than basketball players. We can increase the influence spread
by taking into account topics in influence maximization [1].
To address this problem, we study topic-aware influence
maximization. We first model a social network as a topic-
aware graph, where the edge of any two users is associated
with a topic distribution. For example, given an edge from
user u to user v, a topic distribution (soccer:0.6, health:0.7,
high-tech:0.8) on the edge means that the probabilities of
v influenced by u on topics soccer, health, and high-tech
are respectively 0.6, 0.7, and 0.8. Then, given a topic-aware
influence maximization (TIM) query, e.g., Q=((soccer:0.4,
high-tech:0.6), k), we find k seeds such that the topic-aware
influence spread of these k seeds with respect to the TIM
query is maximized.

There are many real-world applications for topic-aware
influence maximization, e.g., topic-aware advertisement and
topic-aware rumor control. For example, a startup company
on e-health wants to pay users to advertise on a social
network. Due to budget constraints, it can only afford to pay
k users, e.g., k = 100, and it wants to maximize the benefit
(i.e., the topic-aware influence spread) given the k selected
users. Obviously the company only cares about the users
with interests in health and high-tech, and thus it can
issue a TIM query Q = ((health:0.8, high-tech:0.2),100).

The difference from traditional influence maximization is
that the influence between two users depends on not only
the social relationships but also the topic distributions on
the social links. There are three main challenges arising in
the topic-aware influence maximization problem. The first
is how to obtain the topic distributions. Thanks to the user-
generated content on social networks like Twitter or Weibo,
we can run text-based topic discovery algorithms to generate
the topic distributions |1]. The second is how to compute
the topic-aware influence spread. We employ a tree-based
model to compute the topic-aware influence by considering
both the social links and the topic distributions (see Sec-
tion . The third is to achieve high performance. Since
there are a large number of TIM queries on a social network
and each query wants to be answered instantly, our goal

is to enable online TIM queries. However, the topic-aware
influence maximization problem is NP-hard and computing
the topic-aware influence spread is #P-hard [1|. Thus, in
this paper we focus on devising efficient greedy algorithms
to achieve real-time performance while keeping a high influ-
ence spread with a theoretical guarantee.

To achieve instant performance for answering a TIM query,
we utilize a maximum influence arborescence (MIA) model

to effectively approximate the computation of influence spread.

Under the MIA model, we propose a best-effort algorithm
with 1 — % approximation ratio, which estimates an upper
bound of the topic-aware influence of each user and utilizes
the bound to prune a large number of users with small influ-
ence. We develop effective techniques to accurately estimate
upper bounds. To further improve the performance, we pro-
pose a faster topic-sample-based algorithm with e - (1 — é)
approximation ratio for any € € (0, 1], which materializes
the influence of some topic-distribution samples and utilizes
the materialized influences to estimate upper bounds and
lower bounds of the influence spread of users so as to avoid
computing the actual influences of users with small influ-
ences. To summarize, we make the following contributions.

e We propose a best-effort method that answers a TIM
query online while keeping a high influence spread with
an approximation ratio of 1 — é under the MIA model.

e We devise effective techniques to estimate the upper
bounds of the topic-aware influence of each user and
utilize the upper bounds to prune a large number of
users with small influences.

e We develop a faster topic-sample-based method to solve
the topic-aware influence maximization problem with
an approximation ratio e (1 — 1).

e Experimental results on real datasets show our meth-
ods significantly outperform state-of-the-art methods.

The rest of this paper is organized as follows. Section 2]
formulates the problem. We devise a best-effort algorithm
with 1—% approximation ratio in Section [3] Section [4| dis-
cusses bound-estimation techniques. A topic-materialization-
based method with €- (1—%) approximation ratio is proposed
in Section 5] Section [f] reports the experiment results. We
review related works in Section [[and conclude in Section

2. PRELIMINARIES

In this section, we first formally define the topic-aware
influence maximization problem in Section [2.1l Then, we
discuss a model for topic-aware influence computation in
Section and devise a greedy solution in Section [2.3

2.1 Problem Formulation

Data Model. We model a social network as a topic-aware
graph G = (V,€), where V is a set of users and £ contains
directed edges connecting the users. Each edge (u,v) € & is
associated with a topic distribution (1);1)71“,,17;1),2“,7 e ,ppfﬂ),
where pp;, , is a weight on topic z (which denotes the acti-
vation probability that user v is activated by user u under
topic z after u becomes active) and Z is the total number
of topics. The topics reflect users’ interests and the topic
distribution on each edge can be computed by text-based
topic discovery algorithms [1].

Query Model. We consider the topic-aware influence max-
imization (TIM) query Q = (¥, k), where ¥ = {y*,4%--- ,74%}

_______________ A
‘ Q=(<0.2,0.8,05,2) I Edge Topicl | Topic2 | Topic3
L J

(1,2) 0.7 03 0
<0,0.5,06> (1,3) 04 08 03
<0.1,04,08> \0 0. 07> (1,5) 06 0 05
(2,3) 06 07 05

0.6,0, 0.5>
(2,6) 0.5 0.1 03
<04,058,0. 2,7 08 0 04
\ 0.6, 0.7, 0.5> (3,4) 0.1 0.4 03
<0.7,0.3, 0> @ @,5) 0 05 06

<0.1,0,0.8
(4,8) 0 0 0.7
<0.5,0.1,0.3
<0.8,0,0.4> (6,7) 0.6 0 0.2
»(u7 (7,8) 0.1 0 08
<0.6, 0, 0.2>

Figure 1: A Running Example.
is a query topic distribution in which +* is the probability
on topic z, and k is an integer which denotes that the query
asks for k users to be selected as seeds.

Topic-Aware Information Propagation. For each query,
initially every user in G is inactive, and then k users are se-
lected as seeds to become active. The active users then start
to activate their neighbors through the edges. In this paper,
we consider the activation is topic-aware, i.e., the propaga-
tion degrees that a user is activated by a neighbor are dif-
ferent across topics. Suppose u is selected as a seed, which
attempts to activate its out-neighbors. Given a query topic
distribution ¥, the activation probability for activating its
out-neighbor v, denoted by pp(u,v|Y), is computed as

z
pp(u,0l9) =Y {ppi. 7'} (1)
z=1

In particular, each active seed u has only one chance to
activate each of its neighbors. After that, u stays active and
stops the activation. Moreover, if v is newly activated, v
will further attempt to activate its neighbors. This process
terminates when there is no new user activated. To evaluate
the effect of the process, we introduce the influence spread.
The influence spread of a seed set S with k seed users under
topic distribution ¥, denoted by o(S|¥), is defined as the

ezpected number of active users after the propagation.

Topic-Aware Influence Maximization Problem. Given
a topic-aware social graph and a TIM query, the problem
finds a k-size set of seed users from the social graph that
maximizes the influence spread of the seeds under the query
topic distribution. Next we give a formal definition.

DEFINITION 1 (TOPIC-AWARE INFLUENCE MAXIMIZATION).
Given a topic-aware social graph G = (V,E) and a TIM
query Q = (7, k), it finds a seed set S = arg maxs o(S|¥),
where S € V,|S| = k.

ExXAMPLE 1. Figure shows a running example, consist-
ing of a social graph and a table providing the topic distri-
bution on each edge. For simplicity, each edge is bidirec-
tional, and the topic distributions in the two directions are
the same. The box with dotted style border contains the query
Q. Under this query Q, the top-2 seed set is S = {us, us},
as they can achieve the mazimum influence spread.

2.2 Influence Computation Model

An essential building block for evaluating a TIM query is
to compute influence spread o(S | 7) of a seed set S given
a topic distribution 4. However, this computation has been
proved to be complex, as stated in the following lemma.

LEMMA 1. [6] Given a topic distribution ¥, the computa-
tion of influence o(S|¥) of a seed set S is #P-hard.

To achieve better performance in computing the influence
spread, we utilize a maximum influence arborescence (MIA)
model [6] as approximation. Under the MIA model, user u
activates user v only through the mazimum influence path
between them. Specifically, a path from u to v, denoted by
Pup = (u = w1, wa, ..., wm = v), is a non-cyclic sequence
of users, where adjacent users are connected by edges in £.
Through Py, u can activate v with the activation proba-
bility

m—1
= [pp(wr, wii119). 2

k=1

pp('Pu’UH/')

As there may be multiple paths from u to v, the maximum
influence path, denoted by u ~» v, is the one with the max-
imum activation probability among them, i.e.,

u~s v =argmaxp, App(Puv[7)}: ®3)

If there are multiple paths with the maximum activation
probability, we select any such path as u ~ v. MIA model
also utilizes a threshold 6 to remove insignificant maximum
influence paths: if pp(u ~ v|y) < 0, v is assumed not to
be activated by u and we do not consider the maximum
influence path from u to v. We set # = 0.1 in the examples
in the remaining of the paper.

By assembling the paths from all users in V to a tar-
get user v, we can build a tree structure with v as its root
and utilize this tree for influence computation. Specifically,
given a topic distribution 4 and a seed set S, we compute ac-
tivated probability ap(v|S,¥), which is the probability that
v is activated by S under 7 as follows. If v is already in
the seed set S, the probability can be computed trivially as
ap(v|S,7) = 1. Otherwise, we consider the child users C(v)
of v in the tree. For each child node w € C(v), its influ-
ence on v consists of both activated probability ap(wl|S,¥)
of § on w and activation probability pp(w,v|¥) of w on v.
To compute ap(v|S,7), we combine influences of all the chil-
dren to obtain the probability that v is influenced by at least
one child in C(v). We first compute the probability of the
complementary event, i.e., v cannot be influenced by any
of its children, while assuming children’s influences are in-
dependent to each other. Then, the activated probability
ap(v|S,¥) is computed as

ap(v]S,7) =1— [(1—ap(wlS,7) pp(w,v7)), (4)

weC(v)

where v ¢ S and, similarly to v, probability ap(w|S,¥) can
be recursively computed from its children.

Overall, based on the MIA model, we compute the influ-
ence o(S|¥) by summing the activated probabilities of all
the users in the social graph, i.e.,

o(S817) =Y ap(v|S,7) (5)

veVY

2.3 Complexity and Greedy Algorithm

Complexity. Even with the approximate computation model
MIA, the evaluation of a TIM query is still computation-
ally complex. It is not difficult to prove that this problem
is NP-hard by a reduction from the conventional influence
maximization problem without topics |15} [6].

668

LEMMA 2. Topic-aware influence mazximization under the
MIA influence computation model is NP-hard.

PrOOF. Given an instance of conventional influence max-
imization, we can always construct an instance of our prob-
lem with a space of Z = 1 topic, and the solution of our prob-
lem embeds a solution of the conventional problem. As the
conventional problem is NP-hard, we prove the lemma. [J

Despite the above lemma reveals that computing the best
seed set is intractable in general, we show that the influence
function o(S]¥) has two properties that enable us to de-
velop a good approximation algorithm. First, the influence
function is monotonic, that is, for any S1 C Sa, o(S1]7) <
0(82]%). Second, this function is submodular, that is, for
any S1 C & and a user u, o(S1 U {u}|y) — o(&1]7) >
o (S2U{u}|¥) —o(S2|¥), which is also known as the property
of diminishing returns. Based on these properties, a greedy
algorithm can achieve an approximation ratio of 1 — =
Greedy Algorithm. Next, we describe details of the greedy
algorithm. Given a TIM query Q = (¥, k), the algorithm
initially computes activation probability pp(u, v|¥) for each
edge (u,v) in &, and builds a tree structure for each v € V
by assembling maximum influence paths {u ~» v} from all
users in V. Next, it selects seeds in k iterations. In each
iteration, the algorithm computes the marginal influence of
every user in V — S, where the marginal influence of user u
given the current seed set S, denoted by Ac(ulS,7), is

Ac(ulS,7) = o(S U{u}y) — o(S1). (6)

The algorithm selects the user «* maximizing the marginal
influence, i.e., u* = argmaxucv—s {Ao(u|S,¥)}, and inserts
u™ into the seed set S. Then, it updates the activated prob-
ability ap(v|S,¥) for each v € V and continues to the next
iteration. Finally, after k iterations, the algorithm outputs
the set S as the selected seed users.

Limitations. The greedy algorithm has a limitation that
it computes marginal influence for every user v in V — § in
each iteration. This computation is rather expensive due to
the following two reasons. First, the algorithm needs to on-
the-fly build maximum influence paths from u to all users in
V, which involves complicated computation including both
edge activation probability computation and path selection
with Equation . Second, even with the computed maxi-
mum influence paths, the algorithm still has to compute the
influence of seed set SU{u} by traversing the tree structure
of every target user v in V (Equations (4) and . For
many users, however, this computation could be avoided if
the users have limited influence under query topic distribu-
tion 4. Therefore, if we can reduce the unnecessary com-
putation for these “insignificant” users, we may essentially
improve the performance. To this end, we first propose a
best-effort algorithm in Section [3] to avoid computing the
actual influence and then develop a much faster algorithm
to further reduce the computation cost in Section

3. A BEST-EFFORT FRAMEWORK

To achieve instant performance in answering a TIM query,
we introduce a best-effort framework. The basic idea is
that given a TIM query we estimate the upper bound of
the marginal influence of each user and preferentially com-
pute exact marginal influence for the users with larger upper
bounds, so as to prune the insignificant users. The pseu-
docode is illustrated in Algorithm[I} The algorithm takes as

input a topic-aware social graph G, a TIM query Q = (¥, k)
and a threshold 6, and outputs a k-size seed set S with the
maximum influence ¢(S}¥) under topic distribution 7.

The algorithm consists of offline indexing and online search.

In the offline phase, for each user u € V, it estimates the up-
per bound of its influence to all users in V, denoted by &(u)
(line [3), and inserts the user with the upper bound into a
priority queue £, where L is sorted in descending order of
the upper bounds.

For online search, given a TIM query Q = (¥, k), the algo-
rithm employs a max-heap H to improve the performance.
It also selects the seeds iteratively. However, the essential
difference is that, in each iteration, instead of computing
accurate influences for all users, our algorithm utilizes H to
preferentially access the users with larger upper bounds. To
this end, on the one hand, it progressively moves the promis-
ing users from the offline computed priority queue £ to the
max-heap H so as to prune the users with insignificant ini-
tial influences. On the other hand, for the users inside H, it
defers the expensive computation of their exact marginal in-
fluence by maintaining a state for each user, which has three
possible values: 1) initial: the upper bound of w in this iter-
ation is obtained from # in the last iteration or added from
L; 2) bounded: the upper bound of the marginal influence
of u is estimated by our estimation algorithm; 3) exact: the
exact marginal influence of u is computed based on Equa-
tion @ Based on the state information, it selects seeds
iteratively as follows.

In the i-th iteration, the algorithm first initializes the can-
didate seeds: setting the state of each user u € H as initial
(because the seed set S has been updated and the marginal
influence of u is not accurate), and then finds the next seed
by repeating the following steps.

(1) Adding possible candidates from L. It examines
if it is necessary to move more candidates from £ to H
(line: it repeatedly pops the front of £ until the criterion
H.top()>L.front() meets, and inserts each user u popped
from £ with its upper bound, i.e., (u,&(u)), into H.

(2) Finding a seed from H. The algorithm pops the top
user u with its upper bound from H (line and considers
the following three cases.
Case 1: the upper bound of u is not updated in this iteration
(u.state = initial). In this case, it estimates the upper
bound of u’s marginal influence by calling ESTMARGINUB
(line and changes u’s state to bounded. Then, it inserts
u with its updated upper bound back into H. More details
of ESTMARGINUB will be described later.
Case 2: the upper bound of u is estimated (u.state =
bounded). In this case, it computes the accurate marginal in-
fluence u given the previous seed set S by calling CALCMAR-
GIN (line and changes the state of u to exact. Then, it
inserts u with its accurate marginal influence back into H.
More details of CALCMARGIN will be described later.
Case 3: marginal influence of u is computed (u.state =
exact). In this case, it can guarantee that u is better than
any user in H and £. Thus, u can be safely inserted into
S as a new seed and the activated probabilities of users in
Y — § are updated. Then, the algorithm stops visits H in
this iteration and continues to the next iteration.

After k iterations, the algorithm produces S as the result.

Since the influence function o(S|¥) has two properties:
monotonic and submodular, it is not hard to prove that

Algorithm 1: BESTEFFORT (G, Q,0)
Input: G = (V,E): Social graph; Q = (¥,k): A query;
0: A threshold
Output: S: A k-size seed set
// 0ffline -- Indexing
Initialize an empty priority queue L ;
for each v in'V do
6(u) < ESTINFUB (v, G,0) ;
L Insert (u, & (u)) into L ;

B W N

// Online -- Search

5 Initialize an empty heap H ;
6 Initialize an empty set S ;
7 for i + 1 to k do
8 for each u in H do u.state < initial ;
9 repeat
10 INSERTCANDIDATES (H, L) ;
11 u < H.pop() ;
12 if u.state = initial then
13 Ao (ulS,7) < ESTMARGINUB (u, G, 0,7) ;
14 u.state < bounded;
15 Insert (u, Ao (u|S,7)) into H;
16 else if u.state = bounded then
17 Ao (u|S,7) < CALCMARGIN (u,G,0,7,S) ;
18 u.state < exact ;
19 Insert (u, Ao (u|S,¥)) into H;
20 else if u.state = exact then
21 S =S U{u};
22 Update ap(v|S,¥) for each v in V — S;
23 break;
24 until H =0 ;
25 return S;

our best-effort algorithm achieves an approximation ratio of
1-— é, as formalized in Lemma

LEMMA 3. Our best-effort algorithm achieves an approz-
imation ratio of 1 — %

EXAMPLE 2. Given the query Q in Figure the algo-
rithm first computes the offline upper bound of influence for
each user. For example, the offline upper bound of us is
4.738. It scans the users ordered by their upper bounds, and
uses ESTINFUB to estimate the influence under query Q.
For example, the influence of us under Q is 6.317. It stops
when H.top()>L.front(). After H is updated, it selects the
vertex with the maximum influence in H, and if the status is
bounded, it invokes the exact method to calculate its actual
influence. For example, the influence of us is 3.107. Then
it re-inserts (us, 3.107) into H. This process stops when the
top user in H has the status exact. It then selects the ver-
tex with the mazimum influence under Q as the next seed,
i.e., vertex ug with influence 3.107. Iteratively the algorithm
selects the next seed us, and returns seed set {us, us}.

Next, we discuss more details of the upper bound estima-
tion and marginal influence computation embedded in the
algorithm mentioned above.

Upper Bound Estimation. It is rather challenging to
estimate the initial upper bound in ESTINFUB (line [3) and
the marginal upper bound in ESTMARGINUB (line [13) of

669

Algorithm because (1) the topic-aware influence is heavily
sensitive to query topic distribution even for the same set of
seeds; (2) it is hard to predict the query topic distribution;
(3) it is space consuming to materialize the influence upper
bound for each user and every possible topic distributions.
To address these inherent challenges, we propose novel topic-
aware bound estimation techniques in Section [

Online Marginal Influence Computation. We discuss
how to on-the-fly compute the marginal influence Ao (u|S,¥)
of u given a seed set S and a query distribution ¥. A
straightforward method is to directly compute the increase
of the activated probability ap(v|S U {u},¥) — ap(v|S,7) for
every target user v € ¥V — S and then sums the increases to
obtain the marginal influence. Specifically, the method first
computes all the maximum influence paths {u ~ v} from w.
Then, it has to visit each individual target user v again and
computes ap(v|S U {u},¥) — ap(v|S,7) using Equation (4.
However this method is rather expensive as it computes
many influence paths. To address this issue, we propose an
alternative algorithm that simultaneously computes marginal
influence paths and activated probability. The basic idea is
similar to the single-source shortest path algorithm. The
algorithm traverses the social graph G from u and updates
the maximum influences of u on visited users and the cor-
responding paths. For each visited user v, it computes the
increase of its activated probability by uw through the current
maximum influence path u ~ v. We use v.A, to denote the
increase in activated probability ap(v|SU{u},¥) —ap(v|S,7)
of v caused by u. As it would incur large cost to compute
v.A, from scratch, we devise an incremental method that
incrementally computes v.A,, from its previous user w in the
maximum influence path u ~» v, as stated as follows.

LEMMA 4. Suppose w is the preceding user to v in the
mazimum influence path u ~ v, and there exists an edge
(w,v) in E. We have:

VAL = w. Ay ~pp(w, UW) - T, (7)

where I' = Hw/ec(v)/{w} {1 = ap(w|S,7) - pp(w’, v7)}.
PROOF. As w is included in maximum influence path u ~»
v, according to Equation , we have ap(v|SU{u},7) =1—
(1—ap(w|SU{u},7) pp(w,v|7)) -T. Similarly, we also have
ap(v|S,7) =1 — (1 — ap(w|S,7) - pp(w, v|7)) - I'. Therefore,
U'Au = ap(U|S U {U},'_};) - ap(v|$,’_y’) = (ap(w|8 U {u}7’7) -
ap(w|S, 7)) - pp(w,v|7) - T'. So we prove the lemma. [J

The pseudocode of online marginal influence computation
is illustrated in Algorithm The algorithm maintains v.inf
and v.A, for each user v, which respectively represent the
influence (pp(u ~ v|¥)) on v and the increase of v’s acti-
vated probability. Based on this, it utilizes a heap M to
access the users in descending order of v.inf. At each time,
the algorithm pops the top user w from M and considers
the following two cases. If w has already been selected as
a seed w € S or the influence of w on w is insignificant
(w.inf < 6), it stops the traversal from w. Otherwise, it
visits each unvisited edge (w,v) of w to update v: if v re-
ceives a larger influence v.inf through the path including w,
it accordingly updates v.A,, based on Equation . Finally,
after traversing G, the algorithm computes the marginal in-
fluence Ao (ulS,7) of u as the summation of v.A,, for the
users with significant influence (v.inf > 0).

Algorithm 2: CALCMARGIN (u,G,0,7,S)
Input: u: A user; G: A social graph; 6: A threshold;
7: A topic distribution; S: A seed set
Output: Ac(u|S,¥): Marginal influence of u
Initialize a max-heap M ;
w.inf < 1; uw.Ay <+ 1 —ap(ulS,7) ;
Insert (u,w.inf) into M ;
while M # () do
w <+ M.pop() ;
if w e S or w.inf < 6 then continue;
for v € C(w) do
if edge (w,v) is visited then continue ;
inf < w.inf X pp(w,v|¥) ;
if v ¢ M or inf > v.inf then
v.inf < inf ;
V.Ay — w.Ay X pp(w, v|y) X
Hw’EC<U)/{w} {1 —ap(w'[8,7) - pp(w',v|7)}
if v ¢ M then Insert (v,v.inf) into M ;
13 else Adjust M due to new v.inf;

14 AO’(U|$,'7) — Zve]},v.infze {UA})
15 return Ao (ulS,7) ;

4. TOPIC-AWARE BOUND ESTIMATION

This section discusses bound estimation techniques to ad-
dress the challenge mentioned in Section We introduce
three strategies for estimating upper bound of the initial in-
fluence o(ul|y) for each user u in Section We discuss
how to estimate the upper bound of the marginal influence
Ao (u|S,¥) given an existing seed set S in Section

© 0 N0 Gk WN -

e e
N = O

4.1 Bound Estimation for Initial Influence

In the following, we discuss several strategies for estimat-
ing upper bounds of initial influences, which can be used in
function ESTINFUB (line [3| of Algorithm []).

Precomputation Based Estimation. A straightforward
method is to pre-compute a query-independent upper bound
for each user u in the offline component, which is then
used for any online query. To this end, we derive a new
graph G’ from G by setting the activation probability of each
edge (u,v) as the maximum probability across topics, i.e.,
pp(u,v) = maxZ_, ppi.. On top of G, we derive the max-
imum influence path u ~" v from u to every user v, and
compute the activation probability pp(u ~»' v). Then, we
estimate an upper-bound of u’s initial influence as

or(u) = > pplu~"v). (8)

veg’

We compute the upper bound 6p(u) offline. For an online
query with topic distribution 4, we compute an upper bound

Z
Ge(uly) = 7" - 6e(u) = 6e(u). 9)

It is easy to prove the derived &p(u|¥) is indeed an upper
bound, as u ~' v in G’ has larger influence than any path
from w to v in G under any 7.

ExamMPLE 3. Figure illustrates this precomputation-
based method to estimate an upper bound for wi. In the
offline component, graph G’ is generated by considering the
maximum probability in each edge and then the mazimum

670

0.68

0.02

(a) Exact Calculation (b) Precomputation based

influence path from ui to other users are computed (as in-
dicated by red lines). For instance, the mazimum influence
path from ui to ua is (u1,us, us) and the corresponding prob-
ability is 0.6 x 0.6 = 0.36. Similarly, we can compute the
upper bound for other users. Ouverall, by summing such prob-
abilities of all users, we obtain an upper-bound p(u1) = 4.8.

However, the precomputation-based upper bounds may be
loose, as the actual activation probability pp(u ~ v) given
query 4 may follow a different path and thus be much smaller
than the pre-computed one pp(u ~' v). For example, given
query ¥ = (0.2,0.8,0.0), the maximum influence path from
u1 to uz changes to (u1,us,u2) and the corresponding in-
fluence is 0.72 x 0.68 = 0.49, as shown in Figure This
actual influence is much smaller than the pre-computed 0.7,
which is derived from the path (u1,us2).

Local Graph Based Estimation. The key problem of the
precomputation based method is that maximum influence
paths are quite sensitive to queries: they may dramatically
change under different topic distributions. This means that
the offline-computed bounds cannot be applied in all cases.
A better estimation method is to (1) on-the-fly compute
maximum influence paths for some users that may be largely
affected by the query and (2) use the precomputation-based
bounds for other users that are insignificantly affected by
the query. To support the first case, on top of the graph G’
derived in the precomputation-based method, for each user
u, we identify each user v such that the influence of u on v is
relatively large, i.e., pp(u ~' v) > 7, where 7 is a parameter
determined by experiments and usually set as v/0. Then, we
materialize a subgraph Gi.(u) of G consisting of the selected
users and the edges among them. For the second case, for
the user u, we also precompute its influence for users with
influence not larger than g, ie.,

ool) = 37 po(uns'v),

veg’

(10)

where pp(u ~' v) < £. We materialize the local graph Gy (u)
and bound 6»(u|2) offline and then utilize them to estimate
tighter upper bounds online.

Given a query with a topic distribution v, we on-the-
fly compute topic-aware local maximum influence path Py,
from u to each user v in the local graph Gi(u) based on
Equation [2] It then considers the following two cases.

On the one hand, if pp(Pu,»|¥) > 7, we can prove that
the path is actually the maximum influence path u ~ v
under distribution ¥, as formally stated as follows. Thus,
pp(Pu,u|¥) > 7 is actual activation probability of u on v.

LEMMA 5. Consider the local mazimum influence path P, »
from u to v in Gu(u). If pp(Puwl|¥) > T, then Py, is the
global maximum influence path u~ v in G.

0.12

671

(¢) Local-graph based

(d) Neighborhood based
Figure 2: Upper Bound Estimation for The Initial Influence of User u;.

On the other hand, if pp(Pu,»|¥) < 7, as Pu,n may not
be the global maximum influence path in G, we simply use
T to estimate the upper bound of u’s influence on v, i.e.,
pp(Puo|¥) = 7.

For any user w outside the local graph, if pp(Pu,w|Y) > 0,
there must exist a user v in the local graph Gi(u) such that
pp(u ~' v) > £. Thus we can use pp(Puu|7) - 6»(v]£) to
estimate the bounds for such users.

Thus the overall bound is computed as below.

N - N, 0
) = X ppPusld) 3500l).
vegr(u)

EXAMPLE 4. Fz'gure shows an example of local graph
based estimation. When T = 0.4, the method materializes a
local graph for uyr consisting of uz,us,us and ur. Given our
example query, it computes the actual probability for each
edge in the local graph and derives the local mazimum influ-
ence paths. For example, the path for uz is (u1, us, uz) with
probability 0.72 x 0.68 = 0.46. As this probability is larger
than T, we must have pp(u1 ~ uz) = 0.46. For another user
us, as the probability of its local maximum influence path is
0.12, we use 7 = 0.4 to estimate its upper bound. QOwverall,
the upper-bound estimate is 4.17, which s tighter than the
estimate computed by the precomputation-based method.

(11)

However, this method is still not satisfactory due to the
following reasons. For the user v such that v € Gi(u) and
pp(Puwly) < 7, 7 may be too loose as an upper bound.
Moreover, the method cannot improve the estimation for the
users outside Gi(u). Although each of such users may not
bring large estimation error as u has quite limited influence
on that user, the number of these users is huge according to
our experimental observations. As a result, the method may
produce large errors due to the “long tail” effect. Moreover,
as the method needs to on-the-fly compute local maximum
influence, it would incur large estimation cost which may
also affect the overall performance.

Neighborhood-Based Estimation. To address the limi-
tations of the aforementioned approaches, we further intro-
duce a neighborhood-based method. The intuition is that,
given a query 9, the maximum influence path u ~ v from
u to v must include a user w; in u’s out-neighborhood and
a user wz in v’s in-neighborhood (sometimes, wi and ws
may be the same user). As such, we can estimate the upper
bound of pp(u ~ v|¥) by considering w1 and ws to reduce
the estimation errors.

Formally, let N°(u) denote the out-neighborhood set of
user u, i.e., N°(u) = {w | (u,w) € £}, and N (u) denote the
in-neighborhood set of user u, i.e., N*(u) = {w | (w,u) € £}.
Given a query topic distribution ¥, let pp°,, be the maximum
influence in N°(u), i.e., ppg maxy,e o (w) {PP(u, w|¥)}.

Algorithm 3: CaLcBounbpLocaAL (u,G,%,S,0,1)

Algorithm 4: CALCBOUNDNEIGHBORHOOD (u,G,S, %)

Input: u: User; G: Social graph; 4: Topic distribution;
0,7: A threshold; S: A seed set;
Output: Ao (u|S,¥): Upper bound of marginal
influence of u
// 0ffline -- Dijkstra bound
1 for each u in V do
2 | oe(uld) =X, cq pP(u~" 0);
3 Calculate Local Graph Gi(u);
// Online -- Local-graph

4 ou(uly) = ZvegL(u) pP(Puw|7) '(}P(U|g)§
5 Au =1- ap(u|87f7))
6 Ac(ulS,7) = Ay - 6(u);
Topics Topics
User User
1 2 3 1 2 3
1 0.7 0.8 0.6 1 3.74 3.2 3.72
2 0.8 0.7 0.5 2 4.64 | 433 | 3.95
3 0.6 0.8 0.5 3 3.96 | 3.68 | 3.55
4 0.1 0.4 0.7 4 169 | 274 | 444

(a) Estimating ppZ (b) Estimating UZ

Figure 3: Example of Neighborhood Estimation.
Similarly, we can compute pfﬂv = MaX,epi(y) 1PP(w, v[7)}

Based on these, we estimate an upper bound of probability
pp(u ~ v|¥), denoted by pp,, ,,, as

PPuyw = {

For example, consider u; and us in Figure Given our
example query, we can compute pp4, = pp(u1, usly) = 0.72

max {ppg, ppi} if (u,v) € €

R . : 12
pps, - PPy if (u,v) ¢ & (12)

and pﬁiug = pp(u7,us|y) = 0.02. As u; and ug are not con-
nected in graph G, we estimate the upper bound as pp,,, ., =
0.72 x 0.02 = 0.01, which is significantly tighter than 0.4 es-
timated by the previous local-graph based method.
However, although the above scheme can achieve tighter
bounds, it may incur large estimation cost. Initially, it needs
to on-the-fly compute the user with the largest influence in
every neighborhood. Even worse, for each user u, it has to
enumerate every influencee v of u to estimate pp, ,, which
is obviously unacceptable for online queries. To reduce the
estimation cost without sacrificing effectiveness, we intro-
duce a lightweight estimation algorithm. The idea is that,
for each user u, we only materialize a vector of Z bounds,
(U, U2,--- ,UZ), where UZ is the bound for topic z. Then,
given online query ¥, we simply estimate the upper bound
of u by computing the dot-product of this vector and ¥, i.e.,

z
on(uly) = > 7" Ui (13)
z=1
Next, we discuss how to derive an upper bound U; for
each topic z in the offline component. To this end, we first
consider u’s out-neighborhood N°(u) and estimate an up-
per bound ppg” as the maximum influence of u on a user
in N°(u) through topic z, i.e., ppo~ = MAaXy,e Ao (u) PDryw-
Similarly we can compute p;g)i,z = MAaX, e ni(v) PPuw,v- Lhen,
we estimate the upper bound of u’s influence on v, denoted
by pp, , based on Equation (12): if there exists (u,v) € &,

672

Input: u: A user; G: A social graph; S: A seed set;
¥: A topic distribution;
Output: Ac(u|S,¥): Upper bound of marginal
influence of u
// 0ffline -- Dijkstra bound
1 for each u in V do
2 L calculate U?,V1 < 2 < Z ;
// Online -- Neighborhood based
on(u) =37,y Ui;
4 Ay =1—apulS,7) ;
5 Ao(u|S,7) = Ay - 6(u);

we estimate ppf, , = max {pﬁzz,pﬁgz}; otherwise, pp;, , =
pp2” -pi)f,z. Finally, we compute U; as summation of bounds
estimated above, i.e.,
U = PP - (14)
veV
It is not difficult to prove that U] is an upper bound, as
formally stated in Lemma@

LEMMA 6. Given any query topic distribution 4, we must
zZ z z -
have Zz:l v Uu Z ZUGV pp'u,,'u'

EXAMPLE 5. Figureprovides the computed pps,” and
pﬁﬁz for each user u in G. For example, the bound of ui on
topic 1, i.e., pﬁglzzl = 0.7, is computed by the mazrimum
of the probabilities pp*=" (u1,u2) = 0.7, pp*=" (u1,us) = 0.4
and pp*=(u1,us) = 0.6 in N°(u1). Then, we can compute
bounds gfpiil, e.g., pApZ?luz = max {0.7,0.8} as (u1,u2) € €
and gfpiilu4 =0.7-0.1 as (u1,us) ¢ €. Finally, we obtain
U; for each user w under each topic z, as shown in Fig-
ure|3(b). Then, given our query (0.2,0.8,0), the estimated
upper bound of ui’s initial influence is 3.3, which is much
closer to the exact influence of 2.7.

4.2 Bound Estimation for Marginal Influence

This section discusses how to estimate an upper bound of
the marginal influence Ao (u|S,¥) of u given a seed set S.
Compared with the bound estimation for initial influence,
the difference is that the activated probability of u changes
from ap(ulS,7) to 1, instead of from 0 to 1, and thus the
marginal influence of u would be smaller than the initial
influence. On the other hand, the marginal influence of u
may be correlated with the previously selected seed set S,
which is also known as co-influence [19]. In our example in
Figure given § = {u2}, the marginal influence of u,
on u3 is heavily correlated with the influence of us.

The basic idea is to consider the marginal influence of u
on itself, denoted by A, = 1 — ap(u|S,¥7), which reflects
the increased activated probability of u. Moreover, we also
consider the upper bound of initial influence of user u es-
timated by the aforementioned method, 6(u|y). We have
a nice property that an upper bound of Ac(u|S,¥) can be
computed as the multiplication of the above two factors, i.e.,

Ao (ulS,7) = (1 - ap(ulS,7)) - 6(ul), (15)

as stated in the following lemma, where & is any estimation
method, e.g., dp, 61, and Gy. The intuition of the lemma is
that if we do not consider the co-influence of existing seeds in
S, we can obtain an upper bound of the marginal influence.

LEMMA 7. Given query distribution 5 and an existing seed
set S, let Ay, =1 — ap(ulS,7), we must have

Ao (ulS,7) < Ao (ulS,7) = (1 - ap(ulS, 7)) - 6 (ul7).

PrOOF. This lemma can be proved based on Lemmas [4]
and[f] We omit the details due to the limitation of space. []

5. A TOPIC-SAMPLE APPROACH

To further improve the performance, this section proposes
a much faster approach. The basic idea is to prematurely
terminate the process of the iterative seed selection in Algo-
rithm [T] with a user-defined approximation ratio €- (1 —1/e)
where € € (0,1]. This approach can significantly improve
the efficiency, while keeping a theoretical guarantee on the
influence spread of the selected seeds.

Formally, given a query topic distribution ¥, suppose we
have already selected i seeds in the set S, Then, instead
of directly computing the remaining seeds, we examine some
pre-materialized k — i users, denoted by S*~% | in the heap
H, and estimate the following two bounds: 1) the lower
bound B of the actual influence of the existing seeds S
plus the upper bounds of the users in S*~%, and 2) the
upper bound B of the influence of any k-size set of users
under 4. More details of estimating these two bounds will
be described later. Obviously, if Bz > B * €, we can safely
terminate the algorithm and return S U S*~% as the se-
lected seeds. It is not difficult to prove that the influence
(8@ US*=D|9) of the selected seeds given 4 must not be
smaller than e - (1 — 1/e) multiplying the influence of the
optimal seed set, which results in an approximation ratio of
e-(1—1/e).

The essential challenge in this approach is to estimate the
lower bound B, and the upper bound B. Notice that B is
different from the upper bound in the previous section: B is
an upper bound of any k-size seed set while the upper bound
in the previous section is only for an individual user. Obvi-
ously, if these bounds are tight enough, then we can achieve
Bz > Bxe in an early iteration (small number of iterations)
and thus may produce a much faster solution for seed se-
lection. A straightforward estimation method is to directly
utilize the techniques introduced in Section we respec-
tively estimate B, as the actual influence of the selected
seeds 0(SW|7) and B as o(S?|7) + D uest—i Ao (ulS,7)
where Ao (u|S,7) is an upper bound of w’s marginal influ-
ence. However, this method is ineffective, because Bz > Bxe
may occur in a large iteration ¢. To provide a tighter bound
estimation, we introduce a topic-sample-based strategy.

Topic-Sample-Based Bound Estimation. The idea of
this estimation strategy is to materialize a sample of Z-
dimensional topic distributions from the space of Z topics.
In the offline component, we employ each of the materialized
topic distributions to formulate a graph and compute the
corresponding k-size seed set. For online estimation, given
a query v, we exploit the materialized topic distributions as
well as their computed seed sets to improve the estimation
of bounds B, and B.

Formally, let p’ denote a Z-dimensional topic distribution
sampled from the topic space. Notice that, different from 7,
P is not necessarily a topic distribution, i.e., ZZZ:1 p® may
not be 1. For example, a sampled topic distribution could
be (0.22,0.83,0) where 3.7 p* is 1.05 instead of 1. Let

673

P = {p1,p2,...,Pm} denote a set of such sampled topic dis-
tributions. The set P is then used for bound estimation.
In the following, we first assume that P has already been
selected and here focus on discussing how to use P to esti-
mate Bz and B. After that, we will discuss how these topic
distributions in P are sampled from the topic space.

In the offline component, for each sampled topic distribu-
tion p' € P, we use the best-effort framework to compute
and materialize the selected seed set, denoted by S(p), and
the influence of the seed set o(S|p).

For online estimation, given a query topic distribution ¥,
we first pick two topic distributions from the sampled set P.
The first topic distribution, called the upper bound sample,
denoted by pu, is pareto-optimal than ¥, that is, for any
topic z from 1 to Z, v* < p{;. If there are multiple topic
distributions satisfying the pareto-optimal requirement, we
choose the sample topic distributions with the smallest KL-
Divergence distance di (¥, pv), where

dic1(pu,7) = Y_ 7' log(--). (16)
i by

If there is no such topic distribution, we have to retreat
to the best-effort framework in Section

The second topic distribution, called the lower bound sam-
ple, denoted by pr,, is pareto-inferior than v, that is, for any
topic z from 1 to Z, v* > pj.

It is not hard to prove that: the influence o(S(pv)|pv)
of seed set S(pv) under py is an upper bound of the influ-
ence o(S|¥), while o(S(pr)|pr) is a lower bound of o(S|7).
Based on these two samples, we estimate B as the above
influence o(S(py)|pv). On the other hand, estimating B is
more tricky. Initially, we utilize o(S(pL)|pr) to estimate B..
Then, if Bz > €- B, we can safely terminate the algorithm
and return S(pr) as the selected seeds for the query topic
distribution 7. Otherwise, we continue to select seeds based
on our best-effort framework in multiple iterations. At each
iteration, if u is selected as a new seed, we will insert u into
S(pL) to replace the existing user in S(pr) with the least
marginal influence. Next, we on-the-fly update the lower
bound B, of the updated S(pr) by directly computing the
influence of S(pr) with a cutoff threshold larger than 0, and
further check if Bz > e - B is satisfied. In particular, as up-
dating the lower bound needs to re-compute the influence,
we do not execute this update in every iteration. Instead,
we update the lower bound periodically with a certain step.

EXAMPLE 6. Given the query Q with ¥ = (0.2,0.8,0) in
Figure suppose we have an offline upper bound sample
(0.22,0.83,0) and a lower bound sample (0.19,0.78,0). The
lower bound sample contains the seed set {us, us}, and the
overall influence is 4.175. The upper bound sample has influ-
ence 4.354. As 4.175>4.354+80%, we can return {us, us}.

Selecting Sampled Topic Distributions. A key prob-
lem to support the aforementioned estimation is to select a
set P of sampled topic distributions in the offline compo-
nent. Intuitively, to make the estimated bounds tighter, the
sampled topic distributions in P are required to be as close
to a query topic distribution 4 as possible. Formally, for a
seed set S, we want the difference of the influence under ¥
and the influence under at least one p'€ P to be as small as
possible, i.e., minimizing the following formula.

Zminﬁep(J(SW) — a(SIp)- (17)

Algorithm 5: TOPICSAMPLE (G, Q, 6)

Input: G = (V,€): Social graph;
Q = (7,k,€): A query; 6: A threshold
Output: S: A k-size seed set
// 0ffline -- Indexing
1 Calculate P from Log ;
2 Calculate upper bound o(S(pv)
Calculate lower bound o (S(pr)|
in P ;
// Online -- Search

[pv) in P ;
pr) and seed set S(Pr)

w

4 Initialize an empty set S(@ ;
5 find closest upper/lower bound sample pu /pr ;
6 B=o(S(pv); Be =o(S(pL) ;
7 if B; > B, - € then
8 | return S(pL) ;
9 for i< 1 to k do
// BESTEFFORT returns one new seed
10 u = BESTEFFORT (G, Q,0) ;
11 SO =80"Yy{u};
12 if u € S(pr) then
13 | S(PL) =SL)/u;
14 else
15 L S(pr) = S(pr)/ arg min{v|Ac(v|S™, 7), vepL };
16 | Be=0o(S(pr)usV);
17 if B; > B, - € then
18 L return S(p1) US®;
19 return S ;

However, the above formula is quite challenging to be min-
imized due to the following reasons. First, the formula as-
sumes that every query # is known in the offline component,
which apparently does not hold in practice. To address this
challenge, we employ a query log based solution that uti-
lizes a set of existing topic distributions to simulate the pos-
sible distribution of 4. This query log can be derived by
the item-purchasing log considered in existing topic-aware
influence studies |4} [1]. For example, in a movie rating web-
site, the log consists of a set of movies, for which users have
purchased tickets. Given this query log, we can use cluster-
ing algorithms to categorize topic distributions in the query
log into m clusters, and then take the central point of each
cluster as the sampled topic distribution. To this end, we
can use K-means algorithms for implementing the clustering
strategy. However, another challenge is that the formula in
Equation requires heavy calculation of o(S|¥) in each
iteration of the K-means algorithm, which may be very time
consuming. To address this issue, we use a close approxi-
mate function as follows. The basic idea is to minimize the
sum of KL-Divergence distance from sampled topic distri-
butions to the distributions in query log, i.e., selecting the
sample set P* such that,

P = argminz Z drr(P,5),

pEP FEP;

(18)

where P; is the subset of the query log in which each topic
distribution § € P; has the smaller distance to the i-th sam-
ple in P than other samples.

The pseudo-code of the topic-sample-based algorithm is
shown in Algorithm

674

Table 1: Datasets.
Datasets 7# Vertices #Edges | AvgD | MaxD | Topic
LiveJournal 4847571 | 68993773 14.23 943 10
DBLP 944679 5255878 5.56 943 9
Flixster 31927 448320 14.04 331 10
DIGGS 14985 390160 26.01 3661 20

6. EXPERIMENTAL STUDY

We conducted extensive experiments to evaluate our pro-
posed methods and compared our methods with the state-
of-the-art approaches on efficiency and influence spread.
Datasets. We used the following four real-world datasets.
DIGGS is an open social news datasetﬂ DIGGS contains an
action log, which records users’ activities of rating news sto-
ries. The propagation traces of the news stories were used
by our TopicSample algorithm as the query log. Flixster
is an American social movie smeEl Flixster also contains
an action log of users’ activities of rating movies. DBLP is a
DBLP co-author graph, which was downloaded from the on-
line academic search servicd’l LiveJournal is a free on-line
community called LiveJournal with almost 5 million mem-
bersﬂ which allows members to maintain journals and blogs.
We adopted the TIC model proposed in |1] to compute topic
distribution in each edge for the first two datasets. Since
DBLP did not have an action log, we used research fields as
topics to classify the conferences and categorized the authors
and their social links by their related conferences. We also
generated a random set of topic distributions as the query
log. Similarly, as LiveJournal did not have an action log,
we had to simulate topic distributions randomly, and also
generated a random set of topic distributions as the query
log. The four datasets are directed graphs and more details
are shown in Table [1} where AvgD (MaxD) is the average
(maximum) degree (all edges are bidirectional).
Algorithms. We implemented our proposed methods and
compared with three state-of-the-art algorithms PMIA [6],
Greedy [15], INFLEX 4] and MIS [5]. As PMIA did not consider
topics, we extended PMIA to support our topic-aware prob-
lem as follows. To answer a query Q = (7, k), we first gen-
erated a graph G’ by computing pp(u, ’U):Zzzzl {ppi -7}
for each edge (u,v), and then used the PMIA algorithm to se-
lect seeds. Similarly, Greedy also constructed a same graph
and utilized the greedy algorithm [15] for seed selection. We
obtained the source codes of PMIA and MIS from the authors.
We implemented INFLEX by ourselves as we could not obtain
the source code from the authors [4]. In all the experiments,
6 and T were set to 0.001 and V@ respectively.
Experiment settings. All the algorithms were imple-
mented in C4++ and compiled using GCC 4.7 with the -O3
flag. All the experiments were conducted on a computer
running 64bit Ubuntu 14.04 with Intel Xeon E2650 2.0GHz
processor and 16GB RAM.

Index Size and Time. Due to space constraints, we only
report the index size and preprocessing time on the DBLP
dataset, as shown in Table with the configuration that
0 = 0.001, the number of samples is 800 and k = 100. We
can see that (1) PMIA did not use any index; (2) BestEffort
and TopicSample utilized indexes for upper bound estima-
tions; (3) TopicSample, INFLEX and MIS also used samples.

http://www.cs.sfu.ca/~sja25/personal /datasets/
*http://www.isi.edu/ lerman/downloads/digg2009.html
3http://arnetminer.org

“http:/ /snap.stanford.edu/data/soc-LiveJournall.html

Precomputation xzzzzi
Local-graph %
Neighborhood

Precomputation &=z
Local-graph
Neighborhood

Cost (Seconds)
5

(4]

y

N
10

(a) LiveJournal (Z = 10)

50

200

50

(b) DBLP (Z = 9)

Figure 4: Evaluating Upper-Bound Estimation Algorithms (6 = 0.001, Bottom bar:

Bar: Accurate Influence Computation Cost).
Table 2: Index Size& Time(DBLP,800 samples,k=100.)

Methods Data | Index | Sample| RT Total | Time(s)
PMIA 337M | — — 986M | 1.32G | 0
BestEffort 337TM | 87M - 1.06G| 1.39G | 7
TopicSample | 337TM | 87M 528K 1.06G | 1.39G | 1200
INFLEX 337TM | — 600K 1.06G | 1.40G | 1400
MIS 337TM | — 140K 986M | 1.32G | 1600

In addition to these indexes, the memory usage of each ap-
proach also included the dataset and runtime usage (RT).
For MIS, we set the number of the precomputed landmarks
to 10. The preprocessing time of TopicSample and INFLEX
included the time for generating samples, and that of MIS
included running PMIA on each landmark.

6.1 Evaluating Bound Estimation Methods
We compared our upper bound estimation techniques,
Precomputation, LocalGraph, and Neighborhood, as dis-
cussed in Section @ Figure @ shows the results and we
had the following observations. First, the precomputation-
based method achieved the worst performance due to the
rather loose upper bounds estimated. These loose bounds
resulted in a large amount of time to compute the actual
influence, as shown in the figures: the estimation only took
a small amount of the total time and the time of actual
influence computation took a much larger proportion. Sec-
ond, LocalGraph achieved much better performance than
Precomputation, because it used local graphs to estimate
tighter bounds. Third, Neighborhood achieved the best per-
formance, as Neighborhood estimated a much tighter upper
bound and avoided many unnecessary actual influence com-
putations, and thus the estimation cost was very low.

6.2 Evaluating Topic-Sample-Based Method

We compared the performance of TopicSample with differ-
ent numbers of samples. We varied percentage of the topic
distributions in the query log that were used to generate
lower /upper bound samples (1%, 5%, 10%, 15%, 20%), and
compared the efficiency of answering queries with k = 100
on the DBLP dataset. As shown in Figure [5, when the num-
ber of sample distributions was small (1%), the lower /upper
bound samples had limited effect, and thus the BestEffort
method was invoked for many times (and prematurely ter-
minated later). As the number of sample distributions in-
creased, the chance that the query found tight enough up-
per/lower bound distributions also increased, and thus the
efficiency was improved as the BestEffort method was in-
voked infrequently (or prematurely terminated earlier). In
addition, for different sample sizes, the influence spread was
nearly the same. This is because, for a small sample size,
TopicSample retreated to BestEffort and thus still got high
influence spread. For a large sample size, TopicSample had
a larger chance to find samples for estimation and thus also
achieved high influence spread. As a large sample size had
additional space overhead, we utilized the space budget to
determine the sample size.

Cost (Seconds)

o

0.3

o
o

675

Precomputation =i
Local-graph
Neighborhood

Precomputation kx=zzi
Local-grap
Neighborhood

Cost (Seconds)
o
¥

\

N

100

(d) p1Ges (Z = 20)
Estimation Cost, Top

M
50

10 20 50

200

(c) Flixster (Z = 10)

Efficiency(Seconds)

0.1 e

Influence spread (*100)

1 5 10 15
Sample Percent (%)

N
S

1 5 10 15 20 5
Sample Percent (%)

(a) Varying Samples (b) Varying Samples
Figure 5: Varying Sample (6 = 0.001, k£ = 100).

6.3 Comparison with Existing Approaches
6.3.1 Comparison on Influence Spread

We compared influence spread of the approaches, as shown
in Figure[6] Note that PMIA and the precomputation step of
MIS ran out of memory on the largest dataset LiveJournal,
and thus their results are not provided. As Greedy took
long time on large datasets, we only reported its results on
DIGGS and Flixster. INFLEX and MIS had the worst influ-
ence spread on all the datasets. For instance, the influence
spread of INFLEX and MIS on DIGGS was about 20% smaller
that those of other approaches at each k, as shown in Fig-
ures [6(c)i6(d)l The reason is due to their precomputation-
based strategy: they identified precomputed topic distribu-
tions, which were most similar to the query, and then ag-
gregated these precomputed information to generate seed
sets. Such a strategy had no theoretical guarantee on influ-
ence spread, and may have weak performance when queries
deviated from the precomputed topic distributions. In con-
trast, both PMIA and our BestEffort achieved larger influ-
ence spread, which was very similar to the influence spread of
Greedy, because they had the theoretical guarantee that the
influence spread of the selected seeds would not be smaller
than 1 — 1/e times that of the optimal solution (under the
MIA model for influence computation). Moreover, we also
had an interesting observation that TopicSample achieved
nearly the same influence spreads as PMIA, BestEffort and
Greedy in practice, although it only had 80% - (1—1/e) or
90% - (1—1/e) approximation ratios. This is attributed to
the “two-pronged” strategy of TopicSample: different from
INFLEX, TopicSample selected high-influence users in the
precomputed lower bound samples when the corresponding
lower bound was tight enough; otherwise, it retreated to
BestEffort to guarantee a theoretical influence spread.

6.3.2 Comparison on Efficiency

We compared the approaches on efficiency. Similar to
the previous section, PMIA and the preprocessing step of
MIS ran out of memory on LiveJournal, and their results
could not be shown. As shown in Figure [7] Greedy took
a much larger amount of time even when k was small on a
small dataset, because it involved many simulations for each
candidate seed. PMIA took longer time than BestEffort,

400

INFLEX INFLEX

Influence spread (*100)

INFLEX

MIS

PMIA =3

BestEffort
TopicSample(e=90%) Em==mm
TopicSample(e=80%) ——

INFLEX
MIS

PMIA =x==d

BestEffort s~y
TopicSample(e=90%) =z
TopicSample(e=80%) ——
Greedy

Influence spread (*100)

20
number of seeds

50 100 200

20
number of seeds

50 100 200

(c) Flixster (Z = 10) (d) pIGGS (Z = 20)

Figure 6: Influence Spread Comparison (6 = 0.001. MIS, PMIA ran out of memory on LiveJournal).

g BestEfiort g MIS
— TopicSample(e=90%) — PMIA E==xz3
*¥_ 300 TopicSample(e=80%) —— s *_ s BestEffort ===y
- Q& 5 20 Topic! ample(g:QO:/o) S
8 §§ g TopicSample(e=80%) ——
S 200 N S
@ §§ @
© \§ ©
5} N Q 10
c \\ c
100 N
g \) g
= NN =
< N <
= NN <.,)
10 20 30 40 50 10 20 50 100 200
number of seeds number of seeds
(a) LiveJournal (Z = 10) (b) DBLP (Z = 9)
100 BestEffort —a— 100 PMIA ——
— TopicSample(e=90%) % —_ BestEffort —a-—
% TopicSample(e=80%) & % TopicSample(e=90%) -
S 10 INFLEX —© g 10 TopicSample(e=80%) - D,,
Q Q MIS ---e
@ o}
2 [
= = -
8 E
S o1 S ot
m i
0.01

0.01

20 50 100
number of seeds

(b) DBLP (Z = 9)

10 20 50 100 200

number of seeds
(a) LiveJournal (Z = 10)

200

Greedy —&— eedy —&—
100 MIA -t 100 PMIA -—-tmeee
estEffort - BestEffort
ple(e=90%) % TopicSample(e=90%)
TopicSample(e=80%) --&@-- TopicSample(e=80%) --&--
1 INFLEX -~ INFLEX -
MIS --e

Efficiency(Seconds)

MIS

o

"

L]::0)
Efficiency(Seconds)

0.0001

10 20 50 100

number of seeds

(d) p1GGs (Z = 20)

20 100 200

number of seeds
(c) Flixster (Z = 10)

200

Figure 7: Efficiency Comparison (6 = 0.001. MIS, PMIA ran out of memory on LiveJournal).

TopicSample, INFLEX, and MIS, because PMIA had to gener-
ate a new graph by computing propagation probability of
each edge and compute an influence in-arborescence of each
vertex, which was obviously not practical for online queries.
Our proposed approach BestEffort outperformed PMIA by
significant margins, and, with the increase of k, the time
used by PMIA increased faster than that of BestEffort in
most of the cases. The main reason is that BestEffort only
calculated the actual influences of the users with large upper
bounds and thus could prune many users with insignificant
influences. Moreover, TopicSample achieved better perfor-
mance on efficiency and selected seeds almost instantly due
to the following reason. The lower bound and upper bound
samples selected by our techniques proposed in Section
were tight and could terminate prematurely once the € ap-
proximation requirement was satisfied. We also observed
that INFLEX and MIS also achieved good performance on ef-
ficiency. This is mainly due to their lightweight online seed
selection that simply selected some precomputed distribu-
tions and then aggregated their seed sets to produce k seeds.
However, this lightweight strategy of INFLEX and MIS may
lead to unsatisfactory influence spreads (much worse than
TopicSample), as discussed in Section

6.3.3 Scalability

We evaluated the scalability of the approaches, BestEffort,
TopicSample and INFLEX on the largest LiveJournal dataset.
Since the preprocessing part of MIS and PMIA ran out of
memory and Greedy took very long time on the LiveJournal
dataset, we did not report their results. We first varied the
number of users in the social graph, i.e., |V| = 1,2,3,4,5
millions. As shown in Figure with the increase of |V|,
the elapsed time of BestEffort increased accordingly, as
BestEffort needed to estimate bounds for more users and
used more efforts to calculate actual influences for each user.
However, the increase was sub-linear since the bounds esti-
mated by BestEffort were tight, so as to prune large num-
bers of insignificant users. The elapsed time of TopicSample,
INFLEX and MIS remained almost the same at each |V, since
these approaches mainly relied on the precomputed distri-
butions to answer a query, which were not much affected
by the size of the social graph. In fact, TopicSample, MIS
and INFLEX were only sensitive to the number of samples (or

Efficiency(Seconds)

676

1000

100 BestEffort —#— BestEffort —a—
TopicSample(e=90%) - —_ TopicSample(e=90%) -~—*--
TopicSample(e=80%) & B 100 TopicSample(e=80%) &

10 INFLEX —o© 2 INFLEX —o
8
D 0y e = *
1 2
=
2 1
c
.2
0.1 Qo
£ 01
w
0.01 0.01
1 2 3 4 5 10 20 30 40 50
VI ¢1M) z

(a) Varying |V| (b) Varying Z
Figure 8: Scalability on LiveJournal (# = 0.001).

landmarks in the terminology of MIS).

We then compared the methods by varying the number
of topics (Z = 10,20, 30,40, 50). As shown in Figure
with increasing Z, the elapsed time of BestEffort increased
slowly. This is because the techniques affected by Z were
propagation probability calculation in Equation and bound
estimation in Equation , which took a small percent-
age in the whole process of seed section and thus different
numbers of topics did not significantly affect the overall per-
formance. TopicSample, INFLEX, and MIS achieved similar
performance at each value of Z due to the similar reason
as before that they utilized the precomputed distributions
to select seeds and these seed selection processes were not
affected by the number of topics. Thus our method scaled
well in terms of number of users and number of topics.

7. RELATED WORKS

Topic-aware Influence Maximization. Barbieri et al. [1]
proposed the Topic-Aware Influence Cascade (TIC) model,
within which the relationship strength between two vertices
was computed by their topic preference learned from history
activities on a social network. Based on the TIC model, Bar-
bieri et al. [4] proposed a similarity-based method, INFLEX,
to support topic-aware influence maximization. They used
the greedy framework to offline calculate the result for some
given topics based a query workload, and in the online pro-
cess, they identified the most similar indexed topics and ag-
gregated their precomputed seeds to answer the query. If
there are no similar indexed topics, their influence spread
may not be satisfactory. Chen et al. |5] introduced a prepro-
cessing based strategy, MIS, for topic-aware influence max-
imization. They offline pre-computed some seed sets for

each topic, which were then used for online seed selection
by aggregating these materialized topics. Our work is dif-
ferent from INFLEX and MIS in that (1) INFLEX and MIS
have no influence-spread guarantee while our method has an
influence-spread guarantee while keeping high performance.
MIS has an influence-spread guarantee on some special kinds
of datasets, such as sub-additive influence-spread functions
and topically separated networks, while our method has an
influence-spread guarantee on any types of datasets; (2)
INFLEX, MIS, and our method use some materialized sam-
ples to improve the performance. However the strategies
and objectives of generating the samples are different. MIS
uses the dataset to generate the samples while INFLEX and
our method utilize a query workload to generate the sam-
ples. INFLEX and MIS use the samples to directly answer a
TIM query while our method utilizes the materialized influ-
ence to estimate upper and lower bounds so as to improve
the performance with an influence-spread guarantee.

Influence Maximization in Social Networks. Domin-
gos et al. proposed the influence maximization problem in
a social graph |20} [11]. However, their proposed methods
are probabilistic and have no guarantee on the influence
spread. Kempe et al. [15] proposed two widely accepted dis-
crete influence propagation models, Independent Cascade
(IC) model and Linear Thresholds model, proved the in-
fluence maximization problem is NP-hard and proposed a
greedy framework with 1 — % approximation ratio guaran-
tee. However, their solution is rather inefficient and takes
several hours on a medium dataset. There are many studies
aiming at improving the performance of the greedy frame-
work (18} 6, [12} |13]. Kimura et al. |17] used the shortest
paths to approximate the actual spread process. Leskovec et
al. [18| proposed a “lazy-forward” approach. Chen et al. [6]
proposed the PMIA algorithm. The main idea is to use a
local maximum influence out-arborescence to approximate
a vertex’s global influence. The arborescence is a tree struc-
ture composed of only shortest paths starting from the root,
and the relationship graph is thus simplified. The similar
idea is then applied to support the linear threshold model
in [8]. Chen et al. 7] proposed degree-discount heuristics
for an IC model where all propagation probabilities are the
same. In [9], a community structure was utilized to aggre-
gate the vertices with similar features to reduce the number
of vertices needed to check. Kim et al. [16] proposed a paral-
lelized approach with OpenMP meta-programming expres-
sions. Jung et al. [14] approximated the real influence with
linear equations. Borgs et al. |3| provided a fast algorithm
to maximize social influence in nearly optimal time. Tang
et al. [21] proposed an algorithm with near-optimal time
complexity and novel heuristics for improving empirical ef-
ficiency. Cheng et al. [10] introduced interesting heuristics
based on self-consistent ranking. Different from these ap-
proaches, we take into consideration topic information and
study online topic-aware influence maximization.

8. CONCLUSION

We have studied the topic-aware influence maximization
problem. We utilized a maximum influence arborescence
(MIA) model to approximate the computation of influence
spread. We proposed a best-effort algorithm with an ap-
proximation ratio of 1 — é under the MIA model. We de-
vised precomputation-based and neighborhood-based tech-
niques to estimate the upper bounds of location-aware influ-

677

ence spread and utilized the bunds to prune large numbers
of users with small influences. We devised a faster topic-
materialization-based algorithm with an approximation ra-
tio of e (1— é), which materialized the topic-aware influences
of some topic distributions, utilized the materialized infor-
mation to estimate the upper bounds and lower bounds of
influence spreads and avoided computing actual influences
of users with small influences based on the bounds. Ex-
perimental results on real-world datasets showed that our
method outperformed the state-of-the-art approaches.

Acknowledgement. This work was partly supported by
the 973 Program of China (2015CB358700 and 2011CB302206),
and the NSFC project (61373024 and 61422205), YETP0105,
Tencent, Huawei, SAP, the “NExT Research Center” (WBS:
R-252-300-001-490), and the FDCT/106/2012/A3.

9. REFERENCES

[1] N. Barbieri, F. Bonchi, and G. Manco. Topic-aware social
influence propagation models. In ICDM, pages 81-90, 2012.

[2] F. Bonchi. Influence propagation in social networks: A data
mining perspective. IEEE Intelligent Informatics Bulletin,
12(1):8-16, 2011.

[3] C. Borgs, M. Brautbar, J. T. Chayes, and B. Lucier.
Maximizing social influence in nearly optimal time. In SODA,
pages 946-957, 2014.

[4] Cigdem Aslay, N. Barbieri, F. Bonchi, and R. A. Baeza-Yates.
Online topic-aware influence maximization queries. In EDBT,
pages 295-306, 2014.

[5] W. Chen, T. Lin, and C. Yang. Efficient topic-aware influence
maximization using preprocessing. CoRR, abs/1403.0057, 2014.

[6] W. Chen, C. Wang, and Y. Wang. Scalable influence
maximization for prevalent viral marketing in large-scale social
networks. In KDD, pages 1029-1038, 2010.

[7] W. Chen, Y. Wang, and S. Yang. Efficient influence
maximization in social networks. In KDD, pages 199-208, 2009.

[8] W. Chen, Y. Yuan, and L. Zhang. Scalable influence
maximization in social networks under the linear threshold
model. In ICDM, pages 88-97, 2010.

[9] Y.-C. Chen, W.-C. Peng, and S.-Y. Lee. Efficient algorithms for
influence maximization in social networks. Knowl. Inf. Syst.,
33(3):577-601, 2012.

[10] S. Cheng, H. Shen, J. Huang, W. Chen, and X. Cheng. Imrank:
influence maximization via finding self-consistent ranking. In
SIGIR, pages 475-484, 2014.

[11] P. Domingos and M. Richardson. Mining the network value of
customers. In KDD, pages 57-66, 2001.

[12] A. Goyal, F. Bonchi, and L. V. S. Lakshmanan. A data-based
approach to social influence maximization. PVLDB,
5(1):73-84, 2011.

[13] A. Goyal, W. Lu, and L. V. S. Lakshmanan. Celf++:
optimizing the greedy algorithm for influence maximization in
social networks. In WWW (Companion Volume), pages 47-48,
2011.

[14] K. Jung, W. Heo, and W. Chen. Irie: Scalable and robust
influence maximization in social networks. In ICDM, pages
918-923, 2012.

[15] D. Kempe, J. M. Kleinberg, and E. Tardos. Maximizing the
spread of influence through a social network. In KDD, pages
137-146, 2003.

[16] J. Kim, S.-K. Kim, and H. Yu. Scalable and parallelizable
processing of influence maximization for large-scale social
networks? In ICDE, pages 266-277, 2013.

[17] M. Kimura and K. Saito. Tractable models for information
diffusion in social networks. In PKDD, pages 259-271, 2006.

[18] J. Leskovec, A. Krause, C. Guestrin, C. Faloutsos, J. M.
VanBriesen, and N. S. Glance. Cost-effective outbreak
detection in networks. In KDD, pages 420-429, 2007.

[19] G. Li, S. Chen, J. Feng, K.-L. Tan, and W.-S. Li. Efficient
location-aware influence maximization. In SIGMOD
Conference, pages 87-98, 2014.

[20] M. Richardson and P. Domingos. Mining knowledge-sharing
sites for viral marketing. In KDD, pages 61-70, 2002.

[21] Y. Tang, X. Xiao, and Y. Shi. Influence maximization:

near-optimal time complexity meets practical efficiency. In
SIGMOD, pages 75-86, 2014.

	Introduction
	Preliminaries
	Problem Formulation
	Influence Computation Model
	Complexity and Greedy Algorithm

	A Best-Effort Framework
	Topic-Aware Bound Estimation
	Bound Estimation for Initial Influence
	Bound Estimation for Marginal Influence

	A Topic-Sample Approach
	Experimental Study
	Evaluating Bound Estimation Methods
	Evaluating Topic-Sample-Based Method
	Comparison with Existing Approaches
	Comparison on Influence Spread
	Comparison on Efficiency
	Scalability

	Related Works
	Conclusion
	References

