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ABSTRACT
Enterprise applications need sophisticated in-database analytics in
addition to traditional online analytical processing from a database.
To meet customers’ pressing demands, database vendors have been
pushing advanced analytical techniques into databases. Most major
DBMSes offer User-Defined Aggregate (UDA), a data-driven op-
erator, to implement many of the analytical techniques in parallel.
However, UDAs can not be used to implement statistical algorithms
such as Markov chain Monte Carlo (MCMC), where most of the
work is performed by iterative transitions over a large state that
can not be naively partitioned due to data dependency. Typically,
this type of statistical algorithm requires pre-processing to setup
the large state in the first place and demands post-processing after
the statistical inference. This paper presents General Iterative State
Transition (GIST), a new database operator for parallel iterative state
transitions over large states. GIST receives a state constructed by a
UDA, and then performs rounds of transitions on the state until it
converges. A final UDA performs post-processing and result extrac-
tion. We argue that the combination of UDA and GIST (UDA-GIST)
unifies data-parallel and state-parallel processing in a single system,
thus significantly extending the analytical capabilities of DBMSes.
We exemplify the framework through two high-profile applications:
cross-document coreference and image denoising. We show that the
in-database framework allows us to tackle a 27 times larger prob-
lem than solved by the state-of-the-art for the first application and
achieves 43 times speedup over the state-of-the-art for the second
application.

1 Introduction
With the recent boom in Big Data analytics, many applications
require large-scale data processing as well as advanced statistical
methods such as Random Walk and MCMC algorithms. Connecting
tools for data processing (e.g., DBMSes) and tools for large-scale
machine learning (i.e., GraphLab [14, 15]) using a system-to-system
integration has severe limitations including inefficient data move-
ment between systems, impedance mismatch in data representation
and data privacy issues [13, 25]. In the database community, there is
a renewed interest in integrating statistical machine learning (SML)
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algorithms into DBMSes [11]. Such integration allows both SQL-
based data processing and statistical data analytics, providing a full
spectrum of solutions for data analytics in an integrated system.

Most SML algorithms can be classified into two classes in terms
of parallel execution. The first well studied class of SML algorithm
requires multiple iterations of the same data. Such SML methods
include Linear Regression, K-means and EM algorithms, which can
be parallelized within each iteration using naive data partitioning.
The overall algorithm can be driven by an outside iteration loop. The
parallel implementation of this class of SML algorithm is supported
in MADlib [6, 11] and Mahout [16]. Most commercial databases
incorporate support for such data-parallel SML algorithms in the
form of UDAs with iterations in external scripting languages.

A second class of SML algorithm involves pre-processing and
constructing a large state with all the data. The state space can not
be naively partitioned, because the random variables in the state are
correlated with each other. After the state is built, the algorithms
involve iterative transitions (e.g., sampling, random walk) over the
state space until a global optimization function converges. Such
operations are computation intensive without any data flow. After
convergence is reached, the state needs to be post-processed and
converted into tabular data. We dubbed this class of SML algorithms
state-parallel algorithms, where the states can be graphs, matrices,
arrays or other customized data structures. Examples of this type of
SML algorithms include MCMC and belief propagation algorithms.

Several significant attempts have been made towards efficient
computation frameworks for SML both in MPP databases such as
MADlib [6, 11] and in other parallel and distributed frameworks
such as Mahout [16], GraphLab [14, 15] and GraphX [27]. However,
no previous work can efficiently support both data-parallel and state-
parallel processing in a single system, which is essential for many
new applications that applies SML algorithms over large amounts of
data. To support such advanced data analytics applications, the UDA-
GIST framework developed in this work unifies data-parallel and
state-parallel processing by extending existing database frameworks.

Graph-parallel algorithm is a special type of state-parallel al-
gorithm whose state is an immutable graph. Examples of graph-
parallel algorithms include inference over large probabilistic graphi-
cal models, such as Bayesian Networks [10] and Markov Random
Fields [21], where the graph-based state can have hundreds of mil-
lions of nodes and billions of edges. While parallel DBMSes and
Map-Reduce frameworks can not efficiently express graph-parallel
algorithms, other solutions exist such as GraphLab [14, 15] and
GraphX [27], both of which have graph-based abstractions. These
graph-parallel systems simplify the design and implementation of
algorithms over sparse graphs using a high-level abstraction, but
they miss the opportunity of using more efficient data structures to
represent the state space of a complete/dense graph, a matrix or a dy-
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namic graph. For example, if the state is a matrix, representing it as
a generalized graph can make the state building orders of magnitude
slower and hamper the inference significantly due to worse access
pattern over a generalized graph. Moreover, GraphLab does not sup-
port data-parallel processing for state construction, post-processing,
tuples extraction and querying. As shown in the experiments of this
paper, it is time consuming to build the state, to post-process and to
extract the results, which exceed the inference time. GraphX on the
other hand, has a less efficient edge-centric graph representation.

In this paper we ask and positively answer a fundamental ques-
tion: Can SML algorithms with large state transition be efficiently
integrated into a DBMS to support data analytics applications that
require both data-parallel and state-parallel processing? Such a
system would be capable of efficient state construction, statistical
inference, post-processing and result extraction.

The main challenge to support efficient and parallel large iterative
state transition in-database is the fact that DBMSes are fundamen-
tally data-driven, i.e., computation is tied to the processing of tuples.
However, iterative state transition based algorithms are computation
driven and dissociated from tuples. Supporting such computation
needs additional operator abstraction, task scheduling and parallel
execution in a DBMS. Secondly, the state has to be represented
efficiently inside the DBMS, compatible to the relational data model.
Large memory may be required for large states during state transition
and new state transition operations have to be efficiently integrated
into an existing DBMS.

To solve the first challenge, we introduce an abstraction that gen-
eralizes GraphLab API called Generalized Iterative State Transition
(GIST). GIST requires the specification of an inference algorithm in
the form of four abstract data types: 1) the GIST State represent-
ing the state space, 2) the Task encoding the state transition task
for each iteration, 3) the Scheduler responsible for the generation
and scheduling of tasks, and 4) the convergence UDA ensures the
stopping condition of the GIST operation gets observed.

We solve the second challenge by efficiently implementing and
integrating the GIST operator into a DBMS along with User-Defined
Functions (UDFs) [3] and User-Defined Aggregates (UDAs) [26].
The efficient GIST implementation is achieved using the following
techniques: 1) asynchronous parallelization of state transition, 2)
efficient and flexible state implementation, 3) lock-free scheduler,
and 4) code generation. The key of an efficient integration between
the non-relational GIST operator and a relational DBMS engine
is to use UDAs to build large states from DBMS tuples and to
post-process and extract the result tuples from GIST.

The UDA-GIST framework can support a large class of advanced
SML-based applications where both data-driven computation and
large state transition are required. The specific contributions we
make in this paper are:

• We propose a general iterative state transition (GIST) opera-
tor abstraction for implementing state-parallel SML algorithms.
We provide insights and details into how a high performance
implementation of GIST can be obtained in a DBMS.
• We explain how a GIST operator implementing the abstraction

can be efficiently integrated as a first-class operator in a DBMS.
The deep integration of GIST and UDA results in the UDA-GIST
framework. We intend the framework to be general for most
SML algorithms with support for both data-parallel and state-
parallel computation. Compared with GraphLab, the framework
trades off implementation complexity for expressiveness and
performance. While the application developers may need to im-
plement their own scheduler for synchronization and deadlock
resolution, they are given the flexibility to specify their own
state representation and parallel execution strategy, which as

shown in our experiments can achieve orders-of-magnitude per-
formance gain. The main merits of the UDA-GIST framework
are: 1. building state, post-processing and extracting results
in parallel. 2. unifying data-parallel and state-parallel compu-
tation in a single system. 3. representing states using more
compact application-specific data structures. 4. implement-
ing application-specific scheduler for higher-degree of paral-
lel execution. 5. providing an efficient mechanism to detect
global/local convergence.
• We exemplify the use of the UDA-GIST abstraction by imple-

menting two high impact SML algorithms and applications:
Metropolis-Hastings algorithm [2] for cross-document corefer-
ence and loopy belief propagation [19] for image denoising. We
show that two applications can be executed using the extended
DBMS execution engine with the UDA-GIST framework. These
two applications exemplify the efficiency of the UDA-GIST
framework for large classes of state-parallel SML methods such
as Markov-chain Monte Carlo and message passing algorithms.
• We show that UDA-GIST framework results in orders-of-magnitude

speedup for the two exemplifying applications comparing with
state-of-the-art systems. For the first application, using a sim-
ilar coreference model, features and dataset as described in a
recent effort at Google [24], the UDA-GIST system achieves
comparable results in terms of accuracy in 10 minutes over a
multi-core environment, while the Google system uses a cluster
with 100-500 nodes. Results show that this UDA-GIST system
can also handle a 27 times larger datset for coreference. For
the second application, we show that UDA-GIST outperforms
GraphLab’s implementation of image denoising with loopy be-
lief propagation by three orders of magnitude for state building
and post-processing, and up to 43 times in overall performance.

In the rest of this paper, we first introduce background knowledge
of two SML algorithms in Section 2. A system overview is given in
Section 3 and the GIST API is presented in Section 4. Sections 5
and 6 showcase two high-profile SML algorithms and applications
that involve large-scale state transition and their implementations
using GIST and an integrated DBMS system. Finally, we show that
the GIST and an efficient integration with a DBMS system result in
orders-of-magnitude performance gain in Section 7.

2 Background: Two SML Applications
This section provides background knowledge of two SML applica-
tions and the corresponding algorithms, which are implemented us-
ing the UDA-GIST framework. The two applications are Metropolis-
Hastings algorithm for cross-document coreference and loopy belief
propagation for image denoising, both of which require transition
over a large state space.

2.1 Metropolis-Hastings for Cross-document Coference

Cross-document coreference [2] (CDC) is the process of grouping
the mentions that refer to the same entity, into one entity cluster.
Two mentions with different string literals can refer to the same
entity. For example, “Addison’s disease” and “chronic adrenal
insufficiency” refer to the same disease entity. On the other hand,
two mentions with the same string literal can refer to different
entities. For example “Michael Jordan” can refer to different people
entities. While CDC is a very important task, the state-of-the-art
coreference model based on probabilistic graphical models is very
computation intensive. A recent work by Google Research shows
that such model can scale to 1.5 million mentions with hundreds of
machines [24].
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Figure 1: Combined hierarchical model, a combination of pair-
wise model and hierarchical model. The left graph is a pairwise
model consists of 4 mentions (green circles), 3 entities (blue out-
lined ellipses) and C2

4 = 6 factors. 1 affinity factor is shown
with solid line, and 5 repulsion factors with dashed lines. The
right graph is the hierarchical model with extra two layers:
the super entity and entity. The super entity is identified by
a shared token in the top level. The entity represents a cluster
of mentions that refer to the same real-world entity.

2.1.1 Pairwise Factor Model for Coreference
A pairwise factor model is a state-of-the-art coreference model [24].
As shown in Figure 1, the model consists of two types of random
variables: entities (E) and mentions (M). Each mention can be as-
signed to one and only one entity and each entity can have any
number of mentions. There is one factor between any pair of men-
tions mi and mj . If the two mentions are in the same entity, the
factor is an affinity factor ψa(mi,mj); otherwise, the factor is a re-
pulsive factor ψr(mi,mj). Mathematically, we seek the maximum
a posteriori (MAP) configuration:

argmax
e
p(e) = argmax

e

∑
e∈e

{
∑

mi,mj∈e,mi 6=mj

ψa(mi,mj)+

∑
mi,mj∈e,mi 6=mj

ψr(mi,mj)} (1)

Computing the exact e is intractable due to the large space of possi-
ble configuration. Instead, the state-of-the-art [24] uses Metropolis-
Hastings sampling algorithm to compute the MAP configuration.

2.1.2 Hierarchical Model for Coreference
A hierarchical model is presented in a recent paper [24] to scale up
CDC which improves the pairwise factor model using a two-level
hierarchy of entities in addition to the base mentions: Entities and
Super Entities. Given the following concepts:

• T (m) : a set of tokens in the string literal of mention m.
• T (e) = ∪iT (mi) : a union of tokens in the set of mentions that

belong to entity e.
• P (es : m → et, T (es) ∩ T (et) 6= ∅): a proposal to move

mention m from source es to destination et iff the two token set
T (es) and T (et) have at least one common token.

A Super Entity (SE) is a map(key, value), where the key
is a token t and the value is a set of entities, whose token set T (e)
contains token t. The SE is used as an index to quickly find the
target entity in a proposal which has at least one common token with
the source entity. The use of SE would increase the effectiveness of
the sampling process P to achieve further scalability.

2.2 Loopy Belief Propagation for Image Denoising
The second SML application is image denoising, which is the pro-
cess of removing noise from an image that is corrupted by additive
white Gaussian noise. This is one of the example applications in

Figure 3: An extended DBMS architecture to support data-
parallel and state-parallel analytics.

GraphLab, which uses a 2D grid as the probabilistic graphical model,
and 2D mixture as the edge potentials, which enforces neighbouring
pixels to have close color. The self potentials are Gaussians centered
around the observation. The output is the predicted image. Belief
Propagation (BP) [9] is an inference algorithm on Bayesian net-
works and Markov random fields through message passing. Belief
propagation operates on a bipartite factor graph containing nodes
corresponding to variables V and factors U , with edges between
variables and the factors in which they appear. We can write the
joint mass function as:

p(x) =
∏
u∈U

fu(xu) (2)

where xu is the vector of neighboring variable nodes to the factor
node u. Any Bayesian network or Markov random field can be
represented as a factor graph. The algorithm works by passing
real valued functions called “messages” along the edges between
the nodes. These contain the influence that one variable exerts on
another. A message from a variable node v to a factor node u is the
product of the messages from all other neighboring factor nodes.

µv→u(xv) =
∏

u∗∈N(v)\{u}

µu∗→v(xv) (3)

whereN(v) is the set of neighboring (factor) nodes to v. A message
from a factor node u to a variable node v is the product of the factor
with messages from all other nodes, marginalized over all variables
except x and v:

µu→v(xv) =
∑

x′u:x′v=xv

fu(x
′
u)

∏
v∗∈N(u)\{v}

µv∗→u(xv∗). (4)

BP was originally designed for acyclic graphical models. When BP
is applied as an approximate inference algorithm over general graph-
ical models, it is called loopy belief propagation (LBP), because
graphs typically contain cycles. In practice, LBP converges in many
practical applications [12].

3 System Overview
As we explained in the Introduction, state-parallel SML algorithms
involve iterative state transitions over a large state space. The ex-
ecution pipeline for such SML tasks is shown in Figure 2. UDAs
are used to construct the in-memory state from the database tables.
The GIST takes the state from the UDA and performs iterative state
transition over the shared state. The cUDA inside the GIST is used
to evaluate the convergence of the state. Finally, the UDA Terminate
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Figure 2: ML Pipeline with large state transition. UDAs are used to construct the in-memory state from the database tables. The
GIST takes the state from the UDA and performs computation over the shared state. The cUDA inside the GIST is used to evaluate
the convergence of the state. The UDA Terminate function to the right of GIST supports converting the state into relational data.

function to the right of GIST operator supports post-processing and
converting the converged final state into relational data.

We design an extended DBMS system architecture that supports
the GIST operator and GIST execution engine for iterative state
transition over large state space based on a shared-memory paradigm.
GIST operators together with data-driven operators in DBMSes such
as SQL queries and UDAs can provide efficient and scalable support
for a wide spectrum of advanced data analysis pipelines based on
SML models and algorithms.

As shown in Figure 3, the GIST operators are implemented as
first class citizens, similar as UDAs in an DBMS. UDAs and GIST
operators are implemented using two different APIs and are sup-
ported by two different execution models. In this paper, the data
processing is performed over multi-core machines. Different in-
ference algorithms can be implemented using the GIST and UDA
APIs, including loopy belief propagation (LBP) and Markov-chain
Monte-Carlo (MCMC) algorithms. Using such inference algorithms,
different statistical models can be supported to develop applications
such as image denoising and cross-document coreference.

The UDA-GIST framework expands the space of feasible prob-
lems on one single multi-core machine and raises the bar on required
performance for a complicated distributed system. As an example,
our experiments for the coreference application use a 27 times larger
dataset than the state-of-the-art in a distributed cluster with 100-500
nodes [24]. One premise of this work is that a single multi-core
server is equipped with hundreds of gigabytes of memory, which is
sufficiently big to hold the states of most applications. Second, a
multi-core server is inexpensive to install, administer and is power
efficient. It is hard to acquire and maintain a cluster with hundreds
of nodes.

The UDAs follow the traditional API, consisting of three func-
tions: Init(), Accumulate() and Merge(). The Init is
used to setup the state appropriately before any computation begins.
It is similar to a constructor in many high level languages. Accu-
mulate takes a tuple as input and adds the tuple to the state that
it is maintaining. Tuples can be read from a database or files in
the local file system. Merge combines the state maintained by two
UDA instances of the same type. It requires associativity in nature
for computational efficiency, so that states do not need to be merged
in any particular order.

4 General Iterative State Transition (GIST)
Compared to the framework proposed by GraphLab [14], GIST
API supports more general data structure to represent the state and
supports more flexible scheduler for parallel execution. While, by
design, GraphLab supports only immutable graph-based data struc-
tures, we design GIST to support general data structures to represent
large state spaces, including arrays, matrices, and static/dynamic

graphs. In addition, we further generalize GraphLab’s scheduler in
order to allow efficient, parallel execution. In particular, we split
the scheduler into a single global scheduler (GS) and multiple local
schedulers (LSs). The GS splits the work into large chunks, one for
each local scheduler. The local scheduler manages the chunk and
further partitions it into tasks. As we will see, these generalizations
allow us to implement inference algorithms more efficiently.

In the rest of the section, we introduce the GIST API and its
parallel execution model over a multi-core environment. We then
discuss the implementation details of GIST in DataPath and discuss
ways to implement GIST in other DBMSes.

4.1 GIST Operator API

Like the treatment of UDA in DBMSes, GIST is an abstract interface
that allows the system to execute GIST operators without knowledge
of the specifics of the implementation. In this section, we present
such an interface and refer to it as the GIST API. When designing
the API, we have the following desirable properties in mind:

• Do not restrict the state representation. Any such restriction
limits the amount of optimization that can be performed. For
example, GraphLab limits the state to generalized graphs, which
deteriorate the performance. Graph-based state in Metropolis-
Hastings algorithm in CDC forces the graph to be a fully con-
nected graph. The CDC requires full consistency but the full
consistency locks all the nodes in the graph–which means no
parallelization can be achieved. In the image denoising applica-
tion, it achieves orders of magnitude speedup by using a matrix
state instead of a graph state.
• Allow fine grained control over the parallel execution. The

applications are free to use their own synchronization primitives.
Knowledge of the specifics of the problem allows selection of
custom execution strategies. The problem may be better off to
use lock-free schedulers and the best effort parallel execution
[4, 17], which relaxes the sequential consistency enforced in
GraphLab to allow higher degree of parallelism.
• Allow efficient mechanism to detect state convergence. Efficient

mechanism is needed to detect the convergence in order to make
termination decision. We design a convergence evaluation fa-
cility to gather statistics in parallel during task execution and
make termination decision at the end of each round. This facility
enables the computation of global statistics in parallel during
inference. This mechanism is not supported either in MADlib or
GraphLab.
• Efficient system integration. Inference algorithms might require

large initial states to be built, then post-processing and extraction
of final results from such states. The GIST operator needs to
take over states built by other means and allows efficient post-
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processing and extraction of the result. However, this type of
mechanism is missing in GraphLab.

To achieve the above and allow a systematic GIST specification,
all GIST operators are represented as a collection of five abstract
data types: Task, Local Scheduler, Convergence UDA, GIST
State and GIST Terminate. The GIST state will make use of the
Task, Local Scheduler, Convergence UDA and GIST Terminate to
provide a complete inference model. We discuss each part below
starting with the sub-abstractions and finishing with the GIST State.

Task A task represents a single transition that needs to be made on
the state, and contains any information necessary to perform this
transition. It may be a custom-made class, a class from a pre-made
library, or even a basic C++ type. It is the job of the Local Scheduler
to know what Tasks it needs to produce and the GIST to know what
needs to be done to the state given a certain task. Essentially, the
Task allows separation of planning and execution.

Local Scheduler (LS) A LS is responsible for producing the Tasks
used to perform state transitions. If the ordering of these Tasks is
important, it is up to the LS to produce them in the correct order.
Intuitively, the tasks specified by a LS are executed sequentially,
but multiple LSs and their tasks may be executed in parallel. It is
important to point out that the LSs do not execute tasks, they just
specify which tasks should be executed. Effectively, the LSs contain
part of the execution plan to be used later by the GIST state. There
is no requirement for the LSs to form a task sequence in advance
– creating the task sequence on the fly is allowed. A LS has the
following public interface:

class LocalScheduler {
bool GetNextTask( Task& );

};

The GetNextTask() method stores the next task to be run
in the location specified by the parameter. If there are no more
tasks to be run, the method should return false, and true otherwise.
In addition to this public interface, the LS can have one or more
constructors that the GIST state is aware of.

Convergence UDA (cUDA) All inference algorithms need to de-
tect convergence in order to make termination decisions. Detecting
convergence requires statistics gathering followed by a termina-
tion/iteration decision. To allow such a mechanism to be specified,
GIST requires a cUDA to be provided. A cUDA is a specialization
of the UDA abstraction that is used to determine whether the GIST
is done with inference. The cUDA is executed in parallel, much like
a regular UDA. One cUDA instance is associated with one LS and
gathers local statistics during the tasks execution for the correspond-
ing LS through the use of Accumulate. At the end of a round, the
cUDA instances are merged using Merge to obtain global statistics
to allow the termination/iteration decision to be made through the
method ShouldIterate(). Specifically, the cUDA API is:

class cUDA {
void Init();
void Accumulate(...);
void Merge( cUDA& );
bool ShouldIterate();

};

GIST State The GIST state is a class that represents the shared
data over which the threads of execution use to perform the in-
ference task. It contain all information that is global to all GIST
functionalities and allows execution of the abstract execution model
(AEM). The AEM is a declarative execution model that allows the
specification of parallelism without a commitment to a specific

execution. First, the AEM of GIST specifies that the state trans-
formation proceeds in rounds. Convergence is only checked on a
round boundary, thus inference can be stopped only at the end of
a round. Second, the work to be performed in a round is split into
many Tasks, which are grouped into bundles controlled by Local
Schedulers (LSs). Tasks in a bundle are executed sequentially, but
multiple threads of execution can be used to run on independent
bundles. The LSs create/administer the Task bundles and provide
the next task in a bundle, if any. The partitioning of a round’s tasks
into bundles is performed by the GIST State abstraction via the
PrepareRound method and is, in fact, the planning phase of the
round. This method plays the role of the global scheduler. This
method should not perform any work – the user should assume that
there is no parallelism during the execution of PrepareRound.
The system provides a numParts hint that indicates a minimum
number of LSs that should be created to take full advantage of the
system’s parallelization. To perform the work specified by each LS,
the GIST State abstraction offers the method DoStep. This method
executes the task provided as the input, i.e. one transformation of
the state, and updates the statistics of the provided cUDA. At the
end of a round, i.e. when all the tasks specified by all the LSs are
executed, the system will merge the cUDA states and determine
if further iterations are needed. The execution proceeds either to
another round or result extraction.

It is important to point out that this is just an abstract execution
model. The execution engine will make the low level decisions
on how to break the work into actual parallel threads, how tasks
are actually executed by each of the processors, how the work is
split between GIST and other tasks that need to be performed, etc.
The AEM allows enough flexibility for efficient computation while
keeping the model simple.

The GIST constructor may either take constant literal arguments
or pre-built states via state passing, and prepares the initial state.
Typically, a UDA is used to build the initial state in parallel, and to
provide it in a convenient form to the GIST through the constructor.

The PrepareRound method produces the LSs and cUDAs for
that round and places them into the vector provided. The integer
parameter is a hint provided to the GIST for the number of work
units that it can use. It is fine to provide more work units than
the hint, but providing less will negatively impact the amount of
parallelization that can be achieved. The DoStep method takes a
Task and a cUDA, and performs a single state transition using the
information given by the Task. Any information related to the step’s
effect on the convergence of the GIST is fed to the cUDA.

class GIST {
GIST(...);
typedef pair<LocalScheduler*, cUDA*> WorkUnit;
vector<WorkUnit> WorkUnitVector;
void PrepareRound(WorkUnitVector&, int numParts);
void DoStep(Task& task, cUDA& agg);

};

GIST Terminate The Terminate facility allows for tuples to be
post-processed and produced in parallel as long as the results can be
broken into discrete fragments that have no effect on one another.
The Terminate must have the following interfaces:

int GetNumFragments(void);
Iterator* Finalize(int);
bool GetNextResult(Iterator*, Attribute1Type&,...);

The GetNumFragments method is called first, and returns the
number of fragments the GIST can break the output into. The
Finalize method takes an int, which is the ID of the fragment to be
produced. The ID is in the range [0, N), where N is the number
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of fragments returned by GetNumFragments. The Finalize method
returns a pointer to an iterator, which is passed to the GetNextResult
method to keep track of what tuples still need to be produced for
that fragment. The GetNextResult method takes a pointer to an
iterator as the first parameter. Attributes of the output tuples should
be stored in the locations specified by the parameters and true should
be returned if a tuple as successfully produced, and false if there are
no more tuples to produce.

4.2 GIST Execution Model

Using the above API, the GIST can be executed as detailed in
Algorithms 1 and 2. Algorithm 1 first initializes the GIST state (line
1) and organizes the work into rounds (lines 2-12). For each round,
the local schedulers are produced into the list L (line 3) and then
for each available CPU, an available local scheduler and cUDA are
used to perform one unit of work (line 10). All the work proceeds
in parallel until the unit of work terminates. In order to keep track
of global work termination for the round, the workOut variable
keeps track of the number of work units being worked on. When
all work units are done and list L is empty, all the work in this
round has finished. The variable gUDA is a global cUDA that is
used to determine whether we need more rounds. Notice that round
initialization and convergence detection are executed sequentially.

Parallelism of the GIST execution is ensured through parallel calls
to PerformWork. As we can see from Algorithm 2, GetNextTask()
is used on the local scheduler corresponding to this work unit to
generate a task (line 3) and then the work specified by the task is
actually executed (line 4). The process is repeated maxWork times or
until all the work is performed (lines 2-5). Lines 6-10 detect whether
we need more work on this work unit and whether convergence
information needs to be incorporated into gUDA (this work unit is
exhausted). The reason for the presence of maxWork is to allow
the execution engine to adaptively execute the work required. If
maxWork is selected such that the function PerformWork executes
for 10-100ms, there is no need to ensure load balancing. The system
will adapt to changes in load. This is a technique used extensively
in DataPath. In practice, if numCores argument of GIST Execution
is selected to be 50% larger than the actual number of cores and
maxWork is selected in around 1,000,000, the system will make use
of all the available CPU with little scheduling overhead.

Algorithm 1: GIST Execution
Require: S 0 GIST Initial State, numCores, maxWork
1: S← GIST State(S 0)
2: repeat
3: L← S.PrepareRound(numCores)
4: workOut← 0
5: gUDA← Empty cUDA
6: repeat
7: C← AvailableCPU
8: w← Head(L)
9: workOut← workOut+1

10: C.PerformWork(w, maxWork, L, gUDA)
11: until L.Empty() AND workOut == 0
12: until !gUDA.ShouldIterate()

4.2.1 Integration into Datapath+GLADE

We implement GIST as part of the GLADE [22] framework built
on top of DataPath [1]. GLADE has a very advanced form of
UDA called Generalized Linear Aggregate (GLA) that allows large
internal state to be constructed in parallel and to be passed around

Algorithm 2: PerformWork
Require: w WorkUnit, maxWork, L list<WorkUnit>, S

GIST state, gUDA
1: ticks← 0
2: repeat
3: t← w.first.GetNextTask()
4: S.DoStep(t, w.second)
5: until ticks>=maxWork OR t6=empty
6: if ticks=maxWork then
7: L.Insert(w);
8: else
9: gUDA.Merge(w.second)

10: end if
11: workOut← workOut-1

to constructors of other abstractions like other GLAs or, in this
case, GIST States. The above GIST execution model fits perfectly
into DataPath’s execution model. We add a waypoint (operator),
GIST, to DataPath that implements the above execution model. The
user specifies the specific GIST by providing a C++ source file
implementing objects with the GIST API. The code generation
facility in DataPath is used to generate the actual GIST Operator
code around the user provided code. The planning part of the GIST
Operator is executed by the DataPath execution engine in the same
manner as the UDA, Join, Filter and other operators are executed.
Through this integration, GIST operator makes use of the efficient
data movement, fast I/O and multi-core execution of DataPath. Since
the actual code executed is generated and compiled at runtime, the
inference code encoded by GIST is as efficient as hand-written code.

In order to support the large states, which the GIST operator
requires as input, we extended the GLA (DataPath+GLADE’s UDA
mechanism) to allow parallel construction of a single large state (to
avoid costly merges) and pass by STATE mechanism to allow the
state to be efficiently passed to the GIST operator. These modifica-
tions were relatively simple in DataPath due to the existing structure
of the execution engine.

4.3 Implementing GIST in other DBMSes

In general, adding an operator to a DBMS is a non-trivial task. Both
open source and commercial engines have significant complexity
and diverse solutions to the design of the database engine. In general,
there are two large classes of execution engines: MPP and shared-
memory multi-threaded. We indicate how GIST can be incorporated
into these two distinct types of engines.

MPP DBMSes, e.g. Greenplum, have a simple execution engine
and use communication to transfer data between the execution en-
gines. In general, the MPP engines are single-threaded and do not
share memory/disk between instances. In such a database engine,
it is hard to implement GIST since it requires the global state to be
shared between all instances. On systems with many CPU cores and
large amounts of memory in the master node, this obstacle could
be circumvented by launching a program in the Finalize function
of UDA which simulates the GIST. Such a program would have
a dedicated execution engine that is multi-threaded and will per-
form its own scheduling. The work mem parameter of the master
node should be configured to be large enough to hold the entire
state. Current implementation of UDA in PostgreSQL/Greenplum
can only return a single value and returning a set of records is not
supported. The workaround is to concatenate the result records into
a single value, then transform the single value into records using the
built-in “unnest” UDF. Several limitations can be seen in this naive

562



integration without DBMS source modification. Firstly, it can not
take advantage of other slave nodes in the MPP-GIST stage after
the state is constructed in the UDA. Secondly, there is no support
to convert the GIST state into DBMS relations in parallel. Lastly,
converting from GIST internal state to a single value requires an
extra copy of memory to store the state.

Shared memory DBMSes, e.g. Oracle and DataPath, usually
have sophisticated execution engines that manage many cores/disks.
GIST, a shared memory operator, is a natural fit to the shared mem-
ory DBMSes as evidenced by the deep integration of GIST to Data-
Path. To have a genuine integration to this type of DBMS, The UDA
should be extended to support passing the constructed state into
GIST. The GIST operator needs to make use of the low-level CPU
scheduling facilities. Specifically how this can be accomplished
depends on the specific DBMS implementation. As a practical in-
tegration, the source code of the integration of GIST to DataPath
can be found in [8]. To have a shallow integration, the approach is
similar as discussed in the integration of GIST to MPP DBMSes.

5 Application I: Cross-document Coreference
The cross-document coreference process involves two distinct stages.
The first stage builds the coreference initial state using a UDA. Then
a GIST parallel implementation of Metropolis-Hasting algorithm [5]
is employed on the initial state until the state has been converged.
Figure 4 depicts the pipeline of cross-document coreference.

5.1 GIST Building State in Parallel

As explained in Section 3, the GIST operator relies on a UDA to
construct the initial state with data in the mention relation. The UDA
builds the initial state required for coreference by accumulating the
super entity, entity and mention data structures, and the relationships
among them. This is performed via the Init, Accumulate and
Merge UDA functions:

Init Build containers for super entities, entities and mentions.

Accumulate The mention relation contains three columns: mention
id, the mention string and the surrounding context of the mention.
Each Accumulate call builds up one mention. Several steps are
needed to process a mention. First, the mention string and the
mention context are tokenized. Then all the stop words in the
mention string are removed. Last, the mention tokens and context
tokens are sorted to speed up the calculation of cosine distance at
the inference stage. Each Accumulate also builds one entity by
taking the mention as input since each entity is initialized with one
mention at the initial state.

Merge Merge simply merges the lists of super entities, entities
and mentions.

5.2 GIST Parallel MCMC Sampling

5.2.1 Technical Issues

When implementing an application such as CDC using parallel
MCMC sampling, a number of technical difficulties emerge. We
briefly discuss them and our solution below.

Parallel random number generator All Monte Carlo methods
depend fundamentally on large amounts of pseudo-random numbers
(PRN). Most implementations of PRN generators use a global state
and random state transitions. Since parallel access to the state creates
race conditions – they can result in corruption of the state and the
crash of the application – most implementations use a lock to guard
the state of the PRN generator. This immediately creates a severe
bottleneck in the parallel implementation of MCMC with a drastic
decrease in performance. To overcome this problem, we implement

a parallel version of PRN generation by instantiating a private copy
of the PRN for each executing thread. This way, there is no need for
locking and the bottleneck is removed.

Deadlock prevention The MCMC based coreference algorithm we
use needs to move mentions between entity clusters. This process
involves inserting and removing mentions from entity data structures.
Since these data structures are not atomic, race conditions can appear
that can result in system crashes. The classic solution is to use locks
to guard changes to the source and destination entities. Since two
locks are needed, deadlocks are possible. To prevent this, we acquire
the locks in a set order (based on entity ID).

5.2.2 GIST Parallel MCMC Implementation

The parallel MCMC can be expressed using the GIST with abstract
data types: Task, Scheduler, cUDA and GIST state.

Task A task in the GIST implementation is a MCMC proposal
which contains one source entity and one target entity. Furthermore,
the DoStep function acquires the locks of the source entity and
target entity in order. After obtaining the locks, it picks a random
mention from the source entity, then it proposes to move the source
mention to the target entity. The task also keeps one reference to its
LS since the task will consume some computation units, where the
outstanding computation units are maintained in its LS.

Scheduler The global scheduler assigns the same amount of com-
putation units, which is defined as one time factor computation
between two mentions to each LS. The number of computation units
is stored in variable numPairs in the LS. Each LS does Metropolis-
Hastings inference until the computation units are consumed for the
current iteration.

cUDA The cUDA is used to specify the MCMC inference stop-
ping criteria. Usually, the convergence will be determined by a
combination of the following criteria: (a) the maximum number
of iterations is reached, (b) the sample acceptance ratio is below
threshold, and (c) the difference of F1 between current iteration and
last iteration is below threshold. The criterion of maximum number
of iterations can be simply implemented by making sure the current
iteration is not greater than the maximum number of iterations in the
ShouldIterate(). To measure the sample acceptance ratio,
each cUDA will measure the number of accepted proposals and the
total number of proposals. Then all the cUDAs will be merged into
one state to calculate the overall acceptance ratio. To use the third
criterion, the cUDA needs to keep track of the last iteration F1 and
current iteration F1 in the cUDA.

GIST state The GIST state takes the state constructed in the UDA.
In addition to the UDA state, GIST state defines the DoStep func-
tion that transforms the state by working on one task over the state.
The DoStep function defined in the GIST state is described in
algorithm 3. Line 1 generates a random source entity from the entity
space. Line 2 picks a random mention in the source entity. Line 3
produces a random token t in the token set of the source entity. Line
4 gets a random target entity in the super entity S(t). Lines 5 and
14 acquire/release the locks of the source entity and target entity in
order. Lines 6-13 perform one sample over the state. Line 12 moves
all the similar mentions in the source entity to target entity.

6 Application II: Image Denoising
In this application, we implement LBP for image denoising. This
is one of the example application implemented in GraphLab. We
show that our GIST API can be used to implement LBP and the
UDA-GIST interface can be used to support the state construction,
inference, post-processing and results extraction.

563



Figure 4: GIST coreference pipeline. A UDA is used to construct the initial hierarchical model where each entity has one mention.
The UDA passes the state into GIST, the GIST does parallel MCMC inference over the shared state until the state converges.

Algorithm 3: Metropolis-Hastings DoStep
Require: Task& task, LocalScheduler& ls
1: es ← rand(E)
2: ms ← rand(es)
3: t = rand(T (es));
4: et ← rand(S(t))
5: lock es, et in order

6: if e
p(e′)
p(e) > rand[0, 1] then

7: accepted← True
8: end if
9: if accepted then

10: es ← es −m
11: et ← et +m
12: move the similar mentions in es to et
13: end if
14: unlock es, et in the reverse order;

The LBP process also involves two distinct stages. The first
stage is to construct the initial state using a UDA. Then a GIST
implementation of the LBP algorithm is employed on the initial
state until the state has been converged. Figure 5 depicts the pipeline
of LBP inference over the graph state.

6.1 Building GIST State in Parallel

LBP is implemented in GraphLab using a generalized graph data
structure since GraphLab uses a generalized graph as its underlying
state, where any vertex can connect to any number of vertices either
directed or undirected. In many cases, this is not the most efficient
representation of the state space.

GIST API can efficiently support different data structures to rep-
resent the large state space. We implement this application model
using two data structures: graph-based LBP and matrix-based LBP.

6.1.1 Graph-based GIST State

The GraphLab graph state representation is replicated in the GIST
graph-based state, where the representation is achieved by main-
taining a vector of all the vertices and a vector of all the edges. In
addition, two vectors are maintained for each vertex: one vector
to keep track of the edge IDs of the incoming edges and the other
vector to keep track of the edge IDs of the outgoing edges.

Two UDAs are required to build the initial state. The vertex-
UDA builds up the graph nodes using the vertex relation. The second
UDA edgeUDA takes the vertexUDA and edge relation as inputs
to produce the final graph state. For simplicity, we only shows the
implementation of the vertexUDA.

Init In Init, the vertexUDA graph state is set up by allocating
space for the vertex vector and two edge vectors for each vertex.

Accumulate Each tuple in the vertex relation is uniquely mapped
to one element in the graph state. It achieves massive parallelism
since the insertion of tuples into the graph state is done in parallel.

Merge The Merge function is left empty since the graph vertex
state has been built in the Accumulate function.

6.1.2 Matrix-based GIST State

The above graph data structure is too general to exploit the structure
in the problem: the pixel neighbours are always the up, down, left
and right pixels in the image. A matrix representation captures this
connectivity information in a very compact way – the matrix can
be thought of as a highly specialized graph. Using a matrix data
structure instead of a general graph data structure can significantly
reduce the state building time since the state can be pre-allocated
and the state initialization can be done in parallel. An edgeUDA to
construct the edges is not needed in a matrix-based state since the
edge connectivity is implicitly stored. Moreover, the performance of
the inference algorithms developed on top of the data structure can
be sped up. In one run of the vertex program for one vertex, graph-
based state requires a sequential access to the in-edge vector and
out-edge vector to find the edge IDs and #|edges| random accesses
to the global edge vector to modify the edge data. In contrast, in a
matrix state, it only requires one sequential scan to the edge data
since the edge data for the vertex is maintained locally for each
vertex. The detailed UDA implementation is described in the Init,
Accumulate and Merge paragraphs.

Init In the Init function, a two dimensional matrix state for LBP
inference is preallocated by taking the image dimensions.

Accumulate Each row in the vertex table stores a vertex id vid
and the vertex’s prior marginal probabilities. A vid uniquely maps
to one cell in the matrix state. Thus, it is naively parallel since the
initial data assignment for each element in state is independent.

Merge no code is specified in Merge since the state has been
successfully built with only using the Init and Accumulate.

6.2 GIST Parallel LBP Implementation

The implementations of GIST parallel LBP based on the graph
state and matrix state are almost identical with the help of GIST
abstraction. For simplicity, only the matrix-state based LBP imple-
mentation is described by demonstrating the implementation of the
five abstract data types.

Task One task in the GIST LBP involves polling one vertex from
the LocalScheduler (LS) queue and computing the belief based on
the messages passed by its neighbors, then computing and sending
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Figure 5: GIST LBP pipeline. A UDA is used to construct the graph state. The UDA passes the state into GIST and the GIST does
parallel loopy belief propagation over the shared state until the state converges, which is specified by the convergence UDA.

new messages to its neighbours. Thus the Task contains one vertex
id. It also keeps a reference to the LS since new task may be
dynamically created and pushed back into the current LS.

Scheduler The global scheduler partitions the workloads into local
schedulers evenly by assigning the same number of vertices into
each LS. If one vertex needs to be resampled, a new task is generated
and is pushed back to the end of the LS’s task queue. There are no
locks needed to extract tasks from LS since no two threads share a
LS. In GraphLab, the new task might be inserted into another LS’s
task queue for the purpose of load balance. Although GraphLab has
near-ideal load balance as shown in the experiment but at the cost of
significant locking, which hampers the performance tremendously.
GIST LBP implementation also relaxes sequential consistency en-
forced by GraphLab to allow higher degree of parallelism.

Convergence UDA The convergence criterion can be that the max-
imum number of iterations is reached or the residual of message
value is below the terminate bound.

GIST state The GIST state takes the state constructed in the LBP
UDA. In addition the UDA state, the GIST state defines the DoStep
function that transforms the state by working on one task over the
state. The DoStep function defined in the GIST state is described in
the Algorithm 4. Line 1 and 2 calculate the coordinates of the current
vertex and the current vertex’s neighbours. Lines 3-5 calculate the
marginal probabilities (beliefs) based on the messages passed by
its four neighbours. Lines 6-12 calculate the new messages to
its neighbors. If the residual is above threshold, new tasks are
dynamically created and added to the task queue.

Algorithm 4: LBP DoStep
Require: Task& task, LocalScheduler& ls
1: V ← {task.vid%dimen, task.vid/dimen}
2: N ← [top, bottom, left, right]
3: for all i← 0 to 4 do
4: update local belief b(V ) based on message MN [i]→V

5: end for
6: for all i← 0 to 4 do
7: compute message MV →N [i]

8: residual = ||MV →N [i] - Mold
V →N [i]||

9: if residual < Terminate Bound then
10: ls.addTask(N [i])
11: end if
12: end for

GIST Terminate After the LBP inference, the data for each vertex
needs posterior probability normalization. The fragment output
method allows for tuples to be post-processed and produced in
parallel. This is an excellent choice for image denoising since it
needs to produce large amounts of data as a result and the image
can be broken into fragments that have no effect on one another.

7 Experiments
The main goal of the experimental evaluation is to measure the
performance of the UDA-GIST framework for the two problems
exemplified in this paper: cross-document coreference (CDC) and
image denoising. As we will see, when compared to the state-of-
the-art, the GIST based solutions scale to problems 27 times larger
for CDC and are up to 43 times faster for image denoising.

7.1 Experimental Setup

In order to evaluate the C++ GIST implementation of CDC and
image denoising, we conduct experiments on various datasets in a
multi-core machine with 4 AMD Opteron 6168 running at 1.9GHz
processors, 48-core, 256GB of RAM and 76 hard drives connected
through 3 RAID controllers. The UDA-GIST framework is imple-
mented in DataPath [1], an open source column-oriented DBMS.
The implementation makes use of the GLA , the UDA facility in
GLADE [22]. For the image denoising application, we compare the
performance with GraphLab. Although we are not able to replicate
the same experiment for the CDC in [24] since its source code is
not published and the running time is not reported, which make the
direct comparison impossible, we show that we are able to tackle a
27 times larger problem than the problem solved in [24]. To the best
of our knowledge, GraphLab and Google CDC are written in C++.

7.2 Experimental Datasets

7.2.1 Cross-document Coreference Datasets

The performance and scalability of GIST implementation of cross-
document coreference (CDC) is evaluated using the Wikilinks [23]
dataset. The Wikilinks dataset contains about 40 millions mentions
over 3 millions entities. The surrounding context of mentions is
extracted and used as context features in the CDC techniques. In
this dataset, each mention has at most 25 left tokens and at most
25 right tokens. The dataset is generated and labelled from the
hyperlinks to the Wikipedia page. The anchor texts are mentions
and the corresponding Wikipedia hyperlinks are entities. Any anchor
texts which link to the same Wikipedia page refer to the same entity.
For our experiments, we extract two datasets Wikilink 1.5 (first
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1.5M mentions from the 40M dataset) and Wikilink 40 (all 40M
mentions in the dataset) from this Wikilink dataset.

The state-of-the-art [24] evaluates CDC performance using a
different Wikilink dataset containing 1.5 million mentions. The
exact dataset used and the running time in that paper is not published,
thus a direct comparison is not possible. Nevertheless, our version
of the Wikilink 1.5 has the same number of mentions and about the
same number of entities.

Noticeably, with the exception of [24], no prior work provided
experiments with datasets larger than 60,000 mentions and 4000
entities (see [23] for a discussion). The Wikilink 40 dataset is 27
times larger than the largest experiment reported in the literature.

7.2.2 Image Denoising Datasets

We evaluate the performance with synthetic data generated by a
synthetic dataset generator provided by GraphLab [14]. The gen-
erator produces a noisy image Figure 8(b) and the corresponding
original image Figure 8(a). Loopy belief propagation is applied to
reconstruct the image and it produces a predicted image. We use
the dataset generator to generate 10 image datasets varying from 4
millions pixels (2000×2000) to 625 million pixels (25000×25000).

7.3 Experimental Results

7.3.1 Cross-document Coreference with Metropolis-Hastings

Methods The performance of GIST coreference is evaluated against
the state-of-the-art [24] using a similar dataset, feature set, model
and inference method.

• Datasets: Wikilink 1.5 and Wikilink 40
• Feature set: the same feature set as in [24] are used where the

similarity of two mentions m and n is defined as :
ψ(m,n) = (cos(m,n) + wTSET EQ(m,n))
Where cos(m,n) is the cosine distance of the context between
mention m and mention n. TSET EQ(m,n) is 1 if the men-
tion m and n has the same bag of words disregarding the word
order in the mention string, otherwise it returns 0. w is the
weight of this feature. In our experiment, we set w = 0.8.

Wikilink 1.5 experimental results The performance evaluation
results over Wikilink 1.5 are depicted in Figure 6(a). The experi-
ment runs for 20 iterations. Each iteration takes approximately 1
minute. During initialization (iteration 0), each entity is assigned to
exactly one mention. The state is built using a UDA in about 10s.
The inference starts at iteration 1 after the state is constructed. At
iteration 7, the state essentially converges and has precision 0.898,
recall 0.919 and F1 0.907. The F1 continues to slightly improve up
to iteration 20. In the last iteration 20, the measures are precision
0.896, recall 0.929 and F1 0.912. [24] employs 100-500 machines
to inference over a similar dataset.

Wiklink 40 experimental results To evaluate the scalability of our
coreference implementation, we use the Wikilink 40 that is 27 times
larger than the current state-of-the-art. As the same as the above
experiment, each entity is assigned with exactly one mention during
initialization. The state building takes approximately 10 minutes.
Figure 6(b) depicts the performance of our implementation with this
dataset on the experimental machine. We run 20 iterations each with
1011 pairwise mention comparisons – each LocalScheduler is
generating random tasks until the comparisons quota is met. Each
iteration takes approximately 1 hour and we can see that the graph
converges at iteration 10 with precision 0.79, recall 0.83 and F1 0.81.
This essentially means that, using our solution, within a manageable
10 hour computation in a single system the coreference analysis can
be performed on the entire Wikilink dataset.

Discussion A direct comparison to the state-of-the-art [24] is not
possible since the dataset used is not published and the time plot in
its performance graph is relative time. We believe our results are
substantial since our final inference measure is similar as reported in
the paper and our experiment evaluation finishes in 10 minutes on a
single multi-core machine instead of 100-500 machines for a similar
dataset Wikilink 1.5. We are also able to finish the inference in 10
hours for a 27 times larger dataset Wikilink 40. The speedup can
be seen as follows: [24] uses MapReduce to distribute the entities
among machines. After sampling the subgraphs, the subgraphs need
to be shuffled and even reconstructed between machines, which
suffers I/O bottleneck. However, we use one single machine with
enough memory to store the whole graph and maintain an in-memory
super entity structure to speed up the MCMC sampling.

7.3.2 Image Denoising with Loopy Belief Propagation
We evaluate the performance of the three approaches: GraphLab
LBP, GIST matrix-based LBP and GIST graph-based LBP against
the 10 image datasets. The analytical pipeline is broken up into
three stages: state building, inference and result extraction. Figure 7
provides a detailed performance comparison of the three methods
for each of the three stages. Due to the more compact representation
(no explicit representation of edges), only the matrix-based GIST
implementation can build the state with 400 millions and 625 mil-
lions vertices image dataset. We are able to perform experiments on
images with 4-256 million pixels for all three methods.

Overall performance comparison To sum up all the performance
metrics of the three stages, Figure 7(a) describes the overall perfor-
mance speedup w.r.t. the worst. Clearly, GraphLab performs the
worst and its performance speedup against itself is always 1. As
shown in the experiment results, graph-based GIST can achieve up
to 15 times speedup compared with GraphLab. With a matrix-based
abstraction, GIST can achieve up to 43 times speedup compared
with GraphLab.

(a) (b) (c) (d)

Figure 8: Image denoising with LBP. (a) is the original image
and (b) is the corrupted image. (c) is the predicted image by
GraphLab and (d) is the predicted image by GIST.

State building In the state building phase, as we can see from
Figure 7(b), the graph-based GIST outperforms the GraphLab by
up to 16 times speedup with a UDA to construct the graph state in
parallel. It is mainly due to the parallel I/O in the DBMS where
each UDA instance loads one chunk of the vertex and edge data into
memory and the final graph is merged together in the merge function
of UDA. GraphLab sequentially constructs the graph state without
parallelism as suggested in Figure 9(a), where only one CPU core is
used. Matrix-based GIST further improves the state building using
a matrix instead of a general graph as the underlying state. The time
to build the graph state using a matrix-based GIST is three orders of
magnitude faster than the GraphLab. In the matrix-based GIST, a
matrix is pre-allocated and UDA instances can pull the data from
the disk and fill the matrix independently with massive parallelism.
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Figure 6: GIST MCMC evaluation over
Wikilink 1.5 and Wikilink 40.

Figure 7: Matrix-based, graph-based GIST LBP (best effort) and GraphLab
LBP (sync. engine) performance evaluation over the image datasets.

LBP inference With the identical algorithm implemented in Graph-
Lab, GIST LBP produces the same quality image as GraphLab as
shown in Figure 8. The number of vertices sampled in each of
the settings is in range [1.45 billion, 1.48 billion]. GraphLab with
sync. engine, with async. engine, sweep scheduler and with asyn.
engine, fifo queue scheduler take about 30m, 26m, 24m to converge
respectively. Graph-based GIST LBP only takes 4.3m with the lock-
free scheduler as discussed in section 6.2. Matrix-based GIST LBP
further improves the running time to 3.2m. The 27% performance
difference between graph-based and matrix-based GIST is due to
the better memory access pattern of the matrix. GraphLab’s CPU
utilization with sync. engine fluctuates between 6.0 and 45.5 out of
48, where GIST can almost fully utilizes the 48 cores. GraphLab
enforces load balancing using the two-choices algorithm in [18]
through locking two random task queues. The load balance is
not an issue as indicated by the steep decline curve at the end of
inference but the cost of locking is significant since the tasks are very
lightweight (involving 4 neighbours). Considering data race is rare
in a graph with hundreds of millions of nodes for 48 threads, GIST
LBP further relaxes sequential consistency to allow high degree
of parallelism. Matrix-based GIST LBP with best effort parallel
execution (relaxing sequential consistency) converges to the correct
point, shown in Figure 8, and improves the running time to 2.5m.

GIST Terminate After the inference, the posterior probability val-
ues in vertices of the graph need to be normalized, and then results
need to be extracted. GraphLab does not support post-processing
and results extraction in parallel since it only has an abstraction for
inference. After the parallel inference, GraphLab post-processes
each vertex sequentially as shown in the timeline [122, 160] minute
of Figure 9(a). The GIST Terminate facility allows for multiple
tuples to be post-processed and produced in parallel as depicted in
the timeline [3.78, 3.92] minute of Figure 9(b), thus it achieves more
than two orders of magnitude speedup over GraphLab.
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(b) GIST LBP CPU utilization

Figure 9: GraphLab LBP (sync. engine) and GIST matrix-
based LBP (best effort) CPU utilization evaluation with the im-
age with 256 millions pixels in a single machine with 48 cores.

8 Related Work
Several significant attempts have been made towards efficient com-
putation frameworks for SML in DBMSes such as MADlib [6, 11]
and in other parallel and distributed frameworks such as MapRe-
duce [7, 16], GraphLab [14, 15] and GraphX [27].

MADlib [11, 6] integrates data-parallel SML algorithms into
DBMSes. By allowing a Python driver for iterations and a UDA
to parallelize the computation within each iteration, algorithms
like logistic regression, CRF and K-means algorithms are imple-
mented efficiently [13]. However, the data-driven operator, UDA,
can not efficiently express state-parallel algorithms. Tuffy [20] at-
tempts an in-database implementation of WalkSAT algorithm over
Markov Logic Networks (MLN), but it is too slow for practical use.
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Tuffy results in a hybrid architecture where grounding is performed
in DBMS and WalkSAT is performed outside of the DBMS. The
grounding step over MLN joins the first-order model with data to
construct the model, which is the state space consisting of nodes
and edges. The sampling step over the MLN is performed outside of
a DBMS due to the inefficiency of implementing the state-parallel
algorithm using the data-driven execution model. Similar to UDAs,
MapReduce excels at expressing data-parallel algorithms but it can
not efficiently support state-parallel SML algorithms.

To address the limitations of data-parallel operators to express
graph-parallel SML algorithms, GraphLab proposes a computation
framework with a graph-based abstraction for graph-parallel algo-
rithms. GraphLab simplifies the design and implementation of SML
algorithms , but it can not express SML algorithms whose under-
lying state are complete graphs, dynamic graphs or more general
data structures. As a result, the CDC using the Metropolis-Hastings
algorithm where the underlying state is a complete graph, can not
be implemented efficiently. Secondly, GraphLab misses the oppor-
tunity to exploit the structure of specific problems. For example,
the state in the image denoising application can be represented as
matrix, a specialized graph. A matrix state brings the opportunity to
build the state in parallel with a UDA. It also speeds up the inference
due to the better access pattern of matrix. Compared to GraphLab,
the UDA-GIST framework further speeds up the performance using
lock-free schedulers and best effort parallel execution, which re-
laxes sequential consistency to allow higher degree of parallelism [4,
17]. Moreover, GraphLab is not integrated with a scalable data
processing systems for parallel state construction and parallel result
extraction. It is difficult for GraphLab to connect to a DBMS to
support a query-driven interface over the data and result due to the
impedance mismatch of non-relational world and relational engine.

Pre-processing and post-processing in a graph analytical pipeline
are time consuming, which even exceeds the inference time. Moti-
vated by that, GraphX, built on Spark [28], inherits the built-in data-
parallel operator to speed up the pre-processing and post-processing.
It produces triplets table to represent a graph by joining vertex rela-
tion and edge relation. In essence, GraphX is in the same spirit as
MapReduce since it is based on a synchronous engine and has data
duplication to represent a graph which is different from the graph
representation in GraphLab. For inference, GraphX is less efficient
than the GraphLab due to the edge-centric graph representation,
but it outperforms GraphLab from a end-to-end benchmark, which
consists of pre-processing, inference and post-processing [27].

9 Conclusion
In this paper we introduced the GIST operator to implement state-
parallel SML algorithms. We presented the UDA-GIST, an in-
database framework, to unify data-parallel and state-parallel ana-
lytics in a single system with a systematic integration of GIST into
a DBMS. It bridges the gap between the relation and state worlds
and supports applications that require both data-parallel and state-
parallel computation. Since UDA-GIST can consume and produce
relational data, complex pipelines involving traditional DBMS op-
erators and SML methods can be pipelined and stacked to support
extremely complex computation pipeline. We exemplified the use
of GIST abstraction through two high impact machine learning
algorithms and showed thorough experimental evaluation that the
DBMS UDA-GIST can outperform the state-of-the-art by orders of
magnitude.
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