
In-Memory Performance for Big Data

Goetz Graefe
HP Labs Palo Alto

goetz.graefe@hp.com

Haris Volos
HP Labs Palo Alto

haris.volos@hp.com

Hideaki Kimura
HP Labs Palo Alto

hideaki.kimura@hp.com
Harumi Kuno

HP Labs Palo Alto
harumi.kuno@hp.com

Joseph Tucek
HP Labs Palo Alto

joseph.tucek@hp.com

Mark Lillibridge
HP Labs Palo Alto

mark.lillibridge@hp.com

Alistair Veitch
∗

Google

alistair.veitch@gmail.com

ABSTRACT
When a working set fits into memory, the overhead im-
posed by the buffer pool renders traditional databases non-
competitive with in-memory designs that sacrifice the ben-
efits of a buffer pool. However, despite the large memory
available with modern hardware, data skew, shifting work-
loads, and complex mixed workloads make it difficult to
guarantee that a working set will fit in memory. Hence, some
recent work has focused on enabling in-memory databases
to protect performance when the working data set almost
fits in memory. Contrary to those prior efforts, we en-
able buffer pool designs to match in-memory performance
while supporting the “big data” workloads that continue
to require secondary storage, thus providing the best of
both worlds. We introduce here a novel buffer pool de-
sign that adapts pointer swizzling for references between
system objects (as opposed to application objects), and uses
it to practically eliminate buffer pool overheads for memory-
resident data. Our implementation and experimental eval-
uation demonstrate that we achieve graceful performance
degradation when the working set grows to exceed the buffer
pool size, and graceful improvement when the working set
shrinks towards and below the memory and buffer pool sizes.

1. INTRODUCTION
Database systems that use a buffer pool to hold in-memory

copies of the working data enjoy a number of benefits. They
can very efficiently manage working sets that far exceed
available memory. They offer natural support for write-
ahead logging. They are somewhat insulated from cache

∗Work done while at HP Labs.

This work is licensed under the Creative Commons Attribution-
NonCommercial-NoDerivs 3.0 Unported License. To view a copy of this li-
cense, visit http://creativecommons.org/licenses/by-nc-nd/3.0/. Obtain per-
mission prior to any use beyond those covered by the license. Contact
copyright holder by emailing info@vldb.org. Articles from this volume
were invited to present their results at the 41st International Conference on
Very Large Data Bases, August 31st - September 4th 2015, Kohala Coast,
Hawaii.
Proceedings of the VLDB Endowment, Vol. 8, No. 1
Copyright 2014 VLDB Endowment 2150-8097/14/09.

coherence issues. However, a buffer pool imposes a layer
of indirection that incurs a significant performance cost. In
particular, page identifiers are required to locate the page
regardless of whether it is in memory or on disk. This in
turn calls for a mapping between in-memory addresses of
pages and their identifiers.

100

1000

10000

100000

1000000

10000000

0 5 10 15 20

Th
ro

u
gh

p
u

t
(q

p
s)

Working Set Size (GB)

OS Virtual Memory

Traditional Buffer Pool

Figure 1: Index lookup performance with in-
memory vs. traditional database.

Figure 1 illustrates the impact of the buffer pool’s over-
heads, comparing the performance of an in-memory database
using direct pointers between B-tree nodes (marked “Main
Memory”) and a database system using a traditional buffer
pool with disk pages (marked “Traditional Buffer Pool”).
The available memory is 10 GB; further details of this ex-
periment are provided in Section 5. In the left half, the
entire working set fits into the available physical memory
and buffer pool. In the right half, the working set exceeds
the available memory and spills to the disk. The in-memory
database relies on the OS virtual memory mechanism to sup-
port working sets larger than the available physical memory.
The in-memory database permits substantially faster index
look-ups than the traditional buffer pool when the working
set fits in physical memory. In fact, our experiments show

37

that an in-memory database improves throughput by be-
tween 41% to 68% compared to one that uses a traditional
buffer pool. This correlates well with earlier results that
the buffer pool takes about 30% of the execution cycles in
traditional transaction processing databases [14].

We borrow the technique of pointer swizzling and adapt
it to the context of page-oriented data stores, selectively
replacing identifiers of pages persisted in storage with direct
references to the memory locations of the page images. Our
techniques enable a data store that uses a buffer pool to
achieve practically the same performance as an in-memory
database. The research contributions here thus include:

1. Introduction of pointer swizzling in database buffer
pool management.

2. Specification and analysis of swizzling and un-swizzling
techniques for the specific case of B-tree indexes.

3. Victim selection (replacement policy) guiding eviction
and un-swizzling of B-tree pages from the buffer pool.

4. Experimental proof that these simple techniques en-
able a database with a buffer pool to achieve in-memory
database performance when the working set fits in
memory, and furthermore achieve a continuum with
graceful degradation as the working set size exceeds
the memory size.

In the remainder of this paper, we first discuss prior efforts
to improve the performance of in-memory database systems
with regard to memory limitations as well as prior work in
pointer swizzling (Section 2). We next describe the problem
being solved (Section 3), and then present details of our
techniques for swizzling and un-swizzling within a database
buffer pool (Section 4). We evaluate the performance of
our solution using an implementation (Section 5) and finally
present our conclusions from the work to-date (Section 6).

2. RELATED WORK
This paper describes our efforts to adapt the known tech-

nique of pointer swizzling to the new context of making
disk-based systems competitive with in-memory database
systems. This section begins by discussing prior work that
addresses the problem of how to preserve the performance
of in-memory database systems when the working set does
not quite fit in the available amount of memory. These prior
systems do not consider how to match the performance of a
traditional database when disk I/O is the bottleneck. Our
design, on the other hand, enables a traditional database
system that has been optimized for disk I/O to compete
with in-memory systems when the working data set fits in-
memory. Thus, the second half of this section discusses prior
work on pointer swizzling, which is the technique we lever-
age to eliminate buffer pool overheads.

2.1 In-Memory Database Systems
A number of in-memory database systems, including Or-

acle’s TimesTen, Microsoft’s SQL Server Hekaton, CWI’s
MonetDB, SAP HANA, MIT’s Silo, and VoltDB, avoid the
overheads of disk-based systems by focusing on providing
the best possible performance for in-memory workloads [5,
13, 28, 31, 38, 39]. However, both Oracle’s and Microsoft’s
in-memory database systems force a database administra-
tor to make explicit tuning decisions and requests, whereas

our approach is entirely automatic and it adapts to cases
of growing and shrinking working sets. As the raison d’etre
of such systems is to provide superior performance for in-
memory workloads, most of these do not support data sets
that do not fit in memory.

For instance, Microsoft’s SQL Server Hekaton stores raw
memory addresses as pointers, eliminating the need for data
pages and indirection by page IDs. However, once the work-
ing set size exceeds the available amount of memory, Heka-
ton simply stops inserting rows [1].

One possible solution is to rely on the VM layer to deal
with any spills out of memory. For instance, some databases
(such as Tokyo Cabinet) simply mmap their backing store [6].
This leads to several problems. The first is that the OS
VM layer is particularly poor at making eviction decisions
for transactional workloads (as we show later in our exper-
iments). The second is that the operating system consid-
ers itself free to flush dirty pages opportunistically, with-
out notifying the application. This can cause data integrity
problems when a page dirtied by an in-flight transaction is
written back without the matching log records.

Failure atomic msync [35] provides a mechanism by which
1) the kernel is prevented from lazily flushing pages, and 2)
a modification to the msync call allows users to select a sub-
set of pages to be written out atomically. Although this
certainly helps, it is insufficient for a transaction process-
ing system. First, failure atomic msync does not provide
parallelism. From contact with the authors, failure atomic
msync “only gives A and D . . . we provide no support for iso-
lation. If you want safe, concurrent, database-style transac-
tions, you need more” [34]. Second, as implemented, failure
atomic msync hijacks the file system journaling mechanism,
duplicating each page write. Unlike a traditional buffer pool
based system where changing a single row causes a few bytes
of log writes and a page-sized in-place update, a system
based on failure atomic msync incurs a minimum of two
page-sized writes, a significant performance penalty.

There are a small number of recent efforts that make VM-
based in-memory databases performant when the working
data set almost fits in memory. These systems address the
problem of swapping by either explicitly moving some data
records to virtual memory pages that the OS can then swap
to disk more intelligently or else by explicitly compressing
less-frequently accessed data records so as to reduce the
space consumed, but also reducing access speed.

Stoica and Ailamaki profiled the performance of the state-
of-the-art in-memory VoltDB database, and found that per-
formance dropped precipitously when the working data set
exceeded available memory [37]. Their work demonstrated
that by intelligently controlling which tuples are swapped
out by the operating system and which are kept in memory,
it is possible to make much more effective use of available
memory. To achieve this, two regions of memory are created
– one hot and one cold. Pages in the hot region are pinned in
memory so that the virtual memory manager will not evict
them; pages in the cold region are not pinned. Offline log
analysis identifies individual data records that are likely no
longer needed, after which a special process explicitly moves
those records from the hot area to the cold data area. For
this offline analysis, they leveraged the work of Levandoski
et al., who investigated how to efficiently identify hot and
cold data in the context of a database system optimized for
main memory [25]. After finding that maintaining access

38

statistics incurred a 25% overhead, Levandoski et al. devel-
oped efficient algorithms by which they could analyze 1M
log records in under a second.

DeBrabant et al. also consider how to evict individual cold
tuples from memory to disk [4]. Evicted tuples are stored
in an on-disk hash table (called a Block table) and tracked
by a separate in-memory hash table. Because they assume
that main-memory is the primary storage device (data is
initially created directly in memory), they call their tech-
nique anti-caching. Like Stoica and Ailamaki, DeBrabant
et al. implemented their technique using VoltDB. However,
considering offline analysis to be a prohibitive expense yet
wanting to make eviction decisions on a tuple-by-tuple basis,
DeBrabrant et al. use a doubly-linked LRU chain of tuples
to identify “hot” vs. “cold” tuples. In order to reduce the
overhead of this tracking, they select only a fraction of their
transactions to monitor at runtime.

Funke et al. [Funke+2012] compact memory-resident data,
identifying and compressing immutable “frozen” data so as
to dedicate as much memory as possible to the hot mutable
working data set [7]. This distinction between mutable and
immutable data enables a single main memory database sys-
tem, HyPer, to support both online transactional processing
(OLTP) and online analytical processing (OLAP).

In summary, all of these prior systems focus on how to
enable in-memory databases to handle the case where the
working data set does not quite fit in-memory; they do
not consider how to match the performance of a traditional
database when disk I/O is the bottleneck. We, on the other
hand, enable a traditional database system that has been
optimized for disk I/O to compete with in-memory systems
when the working data set fits, or almost fits, in-memory.

2.2 Pointer Swizzling
Pointer swizzling refers to replacing a reference to a persis-

tent unique object identifier with a direct reference to the in-
memory image of that object. Following a swizzled pointer
avoids the need to access a mapping between the identifiers
and memory addresses of memory-resident objects [29]. Our
approach, detailed in Section 4, eliminates the buffer pool
overhead by swizzling a parent page’s reference to a child
page, replacing the persistent identifier with the in-memory
address of the child page.

Some relational databases, notably in-memory databases,
use in-memory pointers. Most relational databases sepa-
rate their persistent storage and their volatile buffer pool.
Those systems have pages point to one another by means of
addresses in persistent storage, typically page identifiers on
disk storage or other page-access devices. What is used here
for the first time, as far as we know, is a dynamic transla-
tion between addresses for database containers, i.e., pages,
by using a memory-optimized address system (virtual mem-
ory addresses) while navigating in memory and using a disk-
address system (page identifiers) on persistent storage.

Pointer swizzling is well known in the context of applica-
tion objects in specialized databases but we are not aware
of any relational database management system employing
it. E.g., Garcia-Molina et al. [8] anticipate the opportu-
nity for pointer swizzling when they observe that “index
structures are composed of blocks that usually have point-
ers within them. Thus, we need to study the management of
pointers as blocks are moved between main and secondary
memory.” However, the book’s discussion focuses on point-

ers between application objects, not storage containers such
as pages. Similarly, White and DeWitt’s [40] “QuickStore
provides fast access to in-memory objects by allowing appli-
cation programs to access objects via normal virtual memory
pointers.” But again, pointers between system objects such
as frames in the buffer pool are not considered.

The general technique of pointer swizzling first emerged
about 30 years ago [2, 19]. We are informed by the thought-
ful and in-depth discussion and evaluation of pointer swiz-
zling techniques by Kemper and Kossman [20, 21, 22]. They
characterize pointer swizzling techniques according to two
key design decisions: (1) when to swizzle references, bal-
ancing the cost of swizzling references that might never be
actually used versus the performance benefits of having ref-
erences swizzled in advance of being read, and (2) how to
handle references to objects that are not resident in main
memory, balancing the cost and complexity of maintaining
reference relationship dependencies (e.g., in a reverse refer-
ence table) versus the cost of managing swizzled references
to non-memory resident objects.

A significant, yet subtle, difference between our work and
prior work in swizzling is that although prior work has con-
sidered swizzling at the granularity of B-tree pages and seg-
ments, the swizzling was only performed on object IDs (ref-
erences between application objects). In contrast, we re-
strict swizzling to references between system objects — the
in-memory images of pages in the buffer pool.

For example, Kemper and Kossman briefly mention swiz-
zling pointers to pages [22]: “In some systems, address trans-
lation is carried out on a per-page basis. . . . a page ta-
ble records the in-memory address of every resident page.”
However, they consider this only in the context of object-
oriented databases, as opposed to relational database man-
agement systems or key-value stores, i.e., for any storage
layer. Moreover, their purpose is application performance
(application logic running on top of some in-memory store
or buffer pool) whereas our purpose is indexing performance.
Finally, our system still employs indirection (via the descrip-
tor data structures in the buffer pool) such that dirty bit
and other temporary metadata can be supported, but this
is indirection using in-memory addresses (pointers) rather
than the persistent page identifiers that require lookup in
the buffer pool’s table of contents. Their notion of “indirect
swizzling” is very different – the purpose is to permit evict-
ing an object from memory without un-swizzling all pointers
to this object. In other words, the design requires that some
object remains in memory (and consumes memory) long af-
ter an object has been evicted due to memory contention.
They suggest reference counting to control the lifetime of
the indirection object as maintenance of a “reverse refer-
ence list” is too expensive.

3. PROBLEM DESCRIPTION
The context of our work is a transactional storage man-

ager that adapts traditional tools to provide ACID guaran-
tees on modern hardware. Data resides in B-tree structures
that store all data items in their leaves, with separator keys
in the upper B-tree levels serving only to guide searches [10].
A buffer pool holds in-memory copies of pages used by the
working data set. Latching and locking respectively ensure
mutual isolation of concurrent operations to physical data
structures and logical database contents [9]. Write-ahead

39

logging provides “all or nothing” failure atomicity, database
consistency, and transactional durability [11, 27].

Latching accounts for about 13% of the instructions, and is pri-
marily important in the create record and B-tree lookup portions
of the transaction. This is because the buffer pool (used in create)
and B-trees are the primary shared data structures that must be
protected with latches.

Finally, our buffer manager modifications account for about 30%
of the total instruction count. Recall that with this set of modifi-
cations, new records are allocated directly with malloc, and page
lookups no longer have to go through the buffer pool in most
cases. This makes record allocation essentially free, and substan-
tially improves the performance of other components that perform
frequent lookups, like B-tree lookup and update.

At this point, the remaining kernel requires about 5% (for a 20x
performance gain!) of the total initial instruction count, and is
about 6 times the total instructions of our “optimal” system. This
analysis leads to two observations: first, all six of the major com-
ponents are significant, each accounting for 18 thousand or more
instructions of the initial 180 thousand. Second, until all of our
optimizations are applied, the reduction in instruction count is not
dramatic: before our last step of removing the buffer manager, the
remaining components used about a factor of three fewer instruc-
tions than the baseline system (versus a factor of 20 when the
buffer manager is removed).

4.3.3 New Order
A similar breakdown of the instruction count in the New Order
transaction is shown in Figure 6; Figure 7 shows a detailed
accounting of all 11 modifications and optimizations we per-
formed. This transaction uses about 10 times as many instructions
as the Payment transaction, requiring 13 B-tree inserts, 12 record
creation operations, 11 updates, 23 pin/unpin operations, and 23
B-tree lookups. The main differences in the allocation of instruc-
tions to major optimizations between New Order and Payment are

in B-tree key code, logging, and locking. Since New Order adds
B-tree insertions in the mix of operations, there is more relative
benefit to be had by optimizing the key evaluation code (about
16%). Logging and locking now only account for about 12% and
16% of the total instructions; this is largely because the total frac-
tion of time spent in operations where logging and locking per-
form a lot of work is much smaller in this case.

The buffer manager optimizations still represent the most signifi-
cant win here, again because we are able to bypass the high over-
head of record creation. Looking at the detailed breakdown in
Figure 7 for the buffer manager optimization reveals something
surprising: changing from 8K to 32K pages (labelled “small
page”) provides almost a 14% reduction in the total instruction
count. This simple optimization — which serves to reduce the
frequency of page allocations and decrease B-tree depth — offers
a sizeable gain.

4.3.4 Instructions vs. Cycles
Having looked at the detailed breakdown of instruction counts in
the Payment and New Order transactions, we now compare the
fraction of time (cycles) spent in each phase of the New Order
transaction to the fraction of instructions used in each phase. The
results are shown in Figure 8. As we noted earlier, we do not
expect these two fractions to be identical for a given phase,
because cache misses and pipeline stalls (typically due to
branches) can cause some instructions to take more cycles than
others. For example, B-tree optimizations reduce cycles less than
they reduce instructions, because the Shore B-tree code overhead
we remove is mainly offset calculations with few cache misses.
Conversely, our residual “kernel” uses a larger fraction of cycles
than it does instructions, because it is branch-heavy, consisting
mostly of function calls. Similarly, logging uses significantly
more cycles because it touches a lot of memory creating and writ-
ing log records (disk I/O time is not included in either graph).
Finally, locking and the buffer manager consume about the same
percentage of cycles as they do instructions.

.0M

.2M

.4M

.6M

.8M

1.0M

1.2M

1.4M

1.6M

1.8M

In
st

ru
ct

io
ns

main log
LSN

Btree

logging

locking

latching

buffer
manager

small page

page
access

remaining overhead

disk log

dir lookup

Xactions

keys

Figure 7. Expanding breakdown for New Order (see Section
3.2 for the labels on the left column).

.0M

.2M

.4M

.6M

.8M

1.0M

1.2M

1.4M

1.6M

.0M

.5M

1.0M

1.5M

2.0M

2.5M

3.0M

3.5M

In
st

ru
ct

io
ns

C
yc

le
s

Btree

logging

locking

latching

buffer
manager

keys

Btree

logging

locking

latching

buffer
manager

keys

Figure 8. Instructions (left) vs. Cycles (right) for New Order.

6.8%

34.6%

14.2%

16.3%

11.9%

16.2%

12.3%

29.6%

10.2%

18.7%

21%

8.1%

989

Figure 2: Module costs in transaction processing,
copied from Harizopoulos et al. [14].

The challenge is that when the working data set fits in
memory, these traditional tools themselves become the new
bottlenecks, accounting for about 80% of the CPU cycles
used by a single transaction [14]. Figure 2 (copied from [14])
summarizes the execution costs of a TPC-C “new order”
transaction in a traditional database system with the entire
database in memory, expressed as a fraction of the total exe-
cution effort and calculated both in terms of instructions and
cycles (time). A number of observations suggest themselves.
For example, the relatively large number of instructions ex-
ecuted in the B-tree code compared to the relatively small
time spent there indicates well-written and well-executed
code with spatial and temporal locality, with the opposite
effects in the logging code. However, it is readily apparent
that the buffer manager is the most significant of the five
bottlenecks shown, consuming about 30% of cycles and 35%
of instructions. A näıve calculation indicates that total (or
near-total) elimination of the buffer pool from the execution
path should improve transaction throughput (performance,
scalability) by a factor of about 1.5. Figure 1 suggests per-
formance opportunities of the same magnitude. This is the
principal motivation of our present work.

Note that Harizopoulos et al. advocates a complete re-
design of the transactional storage manager, as opposed to
improvements in any one of the big overheads, with the rea-
soning that eliminating any one of the overheads would im-
prove performance only a little bit because the others would
remain. We, on the other hand, are working to eliminate all
of these overheads. In particular, this paper describes our
effort to eliminate buffer pool overheads without limiting
the resulting system to small databases that fit in memory.

3.1 Buffer pool and page identifiers
The buffer pool caches images of pages in memory while

they are being read or modified. Each formatted database
page has a unique persistent identifier which the storage
manager can use to locate that page and bring it into the
buffer pool if it is not already there. For example, when

a B-tree parent page associates a given separator key with
a child page, that reference is stored in persistent storage
using the persistent page identifier.

Regardless of whether or not the working data set fits in
available memory, the buffer pool is a useful tool for ensur-
ing correctness and managing page consistency. For exam-
ple, write-ahead logging requires that a modified database
page must not be written (in place) until the modifications
are logged on stable storage. The buffer pool allows page
modifications to be made in memory as opposed to directly
on storage. The buffer pool also enables check-pointing all
dirty (modified but not persisted) pages to a backing store.

However, managing and protecting the mappings between
the persistent page identifiers and in-memory page images
can cause a significant amount of latch contention as the
number of pages that can be stored in memory and the num-
ber of processes that will access those mappings increase.
For example, consider a typical buffer manager that uses a
hash table to implement the mapping. Simply traversing
a parent page’s pointer to a child page requires calculating
the child page’s hash key, protecting the mapping hash ta-
ble, performing the hash table look-up, searching the hash
bucket’s linked list, etc. Furthermore, this operation is likely
to incur CPU cache misses.

3.2 Virtual memory
Virtual memory might seem like a natural alternative ap-

proach, i.e., mapping the entire database into virtual mem-
ory and using each page’s virtual memory address as a page
identifier. Unmapping and closing the file would persist the
database to the backing store. This would bypass the in-
direction of purely logical page identifiers and furthermore
delegate the problem of controlling which pages to swap out
of memory to hardware and the operating system in the
case that the working data set grows larger than would fit
in memory. Unfortunately, such an approach is unaccept-
able in terms of correctness and performance.

With respect to correctness, the problem is durability and
control over writes to the backing store. Write-ahead log-
ging requires that a modified database page must not be
written until the modifications (relevant log records) have
been logged on stable storage, and virtual memory might
write a database page too early. Similarly, virtual memory
may write a database page too late – e.g., in many imple-
mentations of database check-pointing, a checkpoint is not
complete until all dirty pages have been written to the back-
ing store. Finally, if the latency-optimized logging space is
limited and requires periodic recycling, log records must not
be recycled until all database changes have been persisted.

Some operating systems provide mechanisms to control
physical I/O to memory-mapped files, e.g., POSIX msync,
mlock, and elated system calls. Unfortunately, there are
no mechanisms for asynchronous read-ahead and for writ-
ing multiple pages concurrently, i.e., multiple msync calls
execute serially. As observed by [37], without extensive ex-
plicit control, the virtual memory manager may swap out
hot data along with the cold. Our experiments in Section 5
demonstrate this performance penalty.

4. NEW TECHNIQUES
With the goal of eliminating the overhead of the buffer

pool, we look to pointer swizzling, a technique used by ob-
ject stores to avoid the cost of repeatedly translating be-

40

tween distinct address spaces when referencing in-memory
objects [29, 41]. That is, we can remove the layer of indirec-
tion by translating page identifiers into memory addresses
when a page is brought into the buffer pool.

For example, consider a conventional B-tree index that
completely fits in memory, and a parent page that contains
a pointer to a child page. The images of both pages are
cached in memory as frames in the buffer pool. A search
operation reads the contents of the parent page and finds
the identifier of the child page. Locating the in-memory im-
age of the child page requires a look up in a data structure
that maps between page identifiers and in-memory page ad-
dresses. Furthermore, since pages will potentially move into
and out of memory if the working set exceeds the buffer pool
size, this data structure must be protected against concur-
rent accesses (e.g., using one or more latches).

Swizzling in the context of an object storage system swiz-
zles references between application-level container objects,
while our design applies swizzling to internal data struc-
tures (system objects) independent of any choices made for
application-level objects and data structures. Swizzling page
references, as opposed to arbitrary application object refer-
ences, greatly limits the number of swizzled references that
must be tracked and maintained, for example confining tar-
gets for swizzling to the interior nodes of a B-tree as opposed
to potentially impacting every object in an object base.

Although confining swizzling to system objects simplifies
problems such as how to keep track of which references have
been swizzled so that they can be un-swizzled, it also raises
new issues. In order to adapt the concept of swizzling for use
within a database buffer pool, the database storage manager
must coordinate swizzling, un-swizzling, and page eviction
from the buffer pool.

4.1 Swizzling child pointers
Since most B-tree operations rely on root-to-leaf passes,

parent-to-child pointers between B-tree pages are the most
important pointers to swizzle (as those are the most fre-
quently used). Ideally, the pointer to the root node, e.g., in
the database catalogs, can also be swizzled, in particular if
an in-memory cache holds the catalogs while the database
is open and the index root page is in the buffer pool.

In a traditional database buffer pool, multiple cursors may
read from the same page at the same time. A pin count,
similar to a reference count, tracks the number of concurrent
users of a buffer pool frame as well as swizzled parent-to-
child pointers. A page in the buffer pool can be evicted and
replaced only when its pin count is zero.

3
0

1
4

0

1
4

0

1
2

0

1
6

0

… … −
∞

3
0

1
4

0

2
0

0

Page ID: 90

−
∞

+
∞

2
0

0

Page ID: 42

Page ID: 88 Page ID: 75

Figure 3: Parent-to-child pointers in a B-tree.

Figure 3 shows a simple B-tree with four nodes that we
will use as a running example in the remainder of this sec-
tion; we focus on the two nodes labeled in red – one repre-
senting the root node (page id 42) and the other representing
a child node (page id 90). Page 90 is associated with the
key range from −∞ to 200.

Buffer pool frames

(Page images in the buffer pool) Hash table in

the buffer pool

Frame descriptors

Frame ID: 2
Page ID: 42
Latch info:
Dirty bit hash(42)

hash(90)

Frame ID: 1
Page ID: 90
Latch info:
Dirty bit

xxxxxxxxxxxxxxxxxx

xxxxxxxxxxxxxxxxxx

xxxxxxxxxxxxxxxxxx

xxxxxxxxxxxxxxxxxx

xxxxxxxxxxxxxxxxxx

xxxxxxxxxxxxxxxxxx

xxxxxxxxxxxxxxxxxx

xxxxxxxxxxxxxxxxxx

Frame ID: 1 (Page 90)

xxxxxxxxxxxxxxxxxx

xxxxxxxxxxxxxxxxxx

Key 200: Page ID 90
xxxxxxxxxxxxxxxxxx

xxxxxxxxxxxxxxxxxx

xxxxxxxxxxxxxxxxxx

xxxxxxxxxxxxxxxxxx

xxxxxxxxxxxxxxxxxx

Frame ID: 2 (Page 42)

Figure 4: Parent-child relationship in a traditional
buffer pool.

Figure 4 shows in-memory page images corresponding to
the pages with ID’s 42 and 90, realized using a traditional
buffer pool. The buffer pool has a limited number of frames
in which to store in-memory images of pages. Each frame
has a descriptor that contains metadata about the page
frame. A hash table maps from page identifiers to frame
identifiers (e.g., offsets into arrays of frames and frame de-
scriptors). In a traditional implementation, a page-to-page
pointer is realized using the target page’s identifier.

Figure 5 is a flow chart that sketches the process of search-
ing a given in-memory page image (the contents of the buffer
pool frame ID 1 from our example) for a search key, finding
a parent-to-child pointer (pointing to page 90), and then us-
ing the child page’s identifier to retrieve its in-memory page
image. Following the process shown in Figure 5, the traver-
sal from the root node (page ID 42) to the node with page
ID 90 requires a hash calculation and traversal of a linked
list representing a hash bucket to reach a descriptor for a
buffer frame, which has a direct pointer to the buffer frame
(and its contents).

In contrast, Figure 6 sketches the process of searching a
page in an in-memory database that does not have a buffer
pool. Because all pages are in-memory, traversing parent-
child relationship can be done without indirection.

When a pointer from a B-tree parent page to a child page
is swizzled, we modify the in-memory page image of the
parent page, replacing the Page ID of the child page with
a pointer to the buffer pool frame holding the in-memory
image of the child page. This direct pointer can be realized
using a virtual memory address, but in our reference imple-
mentation (and the illustration) we simply use the identifier
of the buffer pool frame. For example, Figure 7 shows the

41

Search

key

Look for entry

in page image

that corresponds

to search key

Buffer pool

page image

Get page id of

the next page to

search from the

page image

Look in buffer pool hash

table for hashed page id

(protect hash table)

Found entry?

Calculate hash

id of the page id

Found

hashed page

id?

search key not

found

Bring page into buffer

pool (possibly need to

evict another page

image)

Return buffer pool

page image of the

next page to search

yes

no

no

yes

Figure 5: Following a page pointer in a traditional
buffer pool.

contents of the page image in the buffer frame with id 2 after
the reference to page 90 has been swizzled.

Figure 8, in contrast to Figure 5 and Figure 6, sketches
the process of traversing a swizzled pointer. In our design,
pointer swizzling in the buffer pool is a side effect of normal
B-tree operations and as such is transparent to applications.
For example, when a root-to-leaf pass encounters a fault in
the buffer pool, it loads the missing page and swizzles the
pointer to the page. When a root-to-leaf pass encounters
a hit in the buffer pool with an un-swizzled pointer, i.e., a
traditional child reference using a page identifier, the pointer
is swizzled to speed up future root-to-leaf passes within the
pertinent key range.

In our current design, pointers are swizzled one at a time.
Within a single parent page, some pointers may be swizzled
while some are not; it is possible that some child pointers
are swizzled while other child pages are not even present
in the buffer pool. An earlier design that swizzled either

In-memory

page image

Look for entry

in page image

that corresponds

to search key

Search

key

Get location of

the next page to

search from the

page image

Found

entry?

search key not

found

no

yes
Return in-memory

page image of the

next page to search

Figure 6: Following a page pointer in an in-memory
database.

all or none of the child pointers in a parent page simplified
some bookkeeping and encouraged larger I/O operations (as-
suming good clustering of child pages) but either prevented
speeding up search in specific key ranges or incurred exces-
sive space requirements in the buffer pool.

By swizzling during root-to-leaf traversals, swizzling pro-
ceeds from the root towards the (active) leaves. Un-swizzling
proceeds in the opposite direction. Since a node’s parent is
at least as active as the node itself, swizzled pointers occur
only in parent nodes that are themselves swizzled, i.e., the
pointer from grandparent to parent node is swizzled.

4.2 Buffer pool eviction
Pagewise-eager swizzling in object-oriented databases scans

through a page and swizzles all the references to objects
contained in the page at page-fault time [15, 22]. How-
ever, handling replacement in the buffer pool posed a major
challenge, requiring expensive tracking of swizzled object
references using data structures such as reverse reference
lists [22], persisted reverse pointers [21], swizzle tables [26],
and indirect swizzling descriptors, etc. [22].

Our design simplifies the challenge of how to handle swiz-
zled references when objects are evicted from memory. When
the buffer pool needs to evict a page, our implementation
uses a fairly standard implementation of generalized clock
counter [30, 36].

Swizzling pins the affected pages and thus protects them
from replacement by the clock mechanism. Thus, another
mechanism is needed that un-swizzles pages when the clock
mechanism cannot find possible replacement victims. Our
current design sweeps B-tree structures in the buffer pool
using depth-first search. Each sweep resumes where the last
one ended, retained using a key value, and frees some pages.
This design requires detailed knowledge of the B-tree data
structure within the buffer pool manager or appropriate call-
backs into the B-tree module. Pages with no recent usage as
indicated by the g-clock counter are un-swizzled unless the
page itself is a branch page containing swizzled parent-to-

42

Buffer pool frames

(Page images in the buffer pool) Hash table in

the buffer pool

Frame descriptors

Frame ID: 2
Page ID: 42
Latch info:
Dirty bit hash(42)

hash(90)

Frame ID: 1
Page ID: 90
Latch info:
Dirty bit

xxxxxxxxxxxxxxxxxx

xxxxxxxxxxxxxxxxxx

xxxxxxxxxxxxxxxxxx

xxxxxxxxxxxxxxxxxx

xxxxxxxxxxxxxxxxxx

xxxxxxxxxxxxxxxxxx

xxxxxxxxxxxxxxxxxx

xxxxxxxxxxxxxxxxxx

Frame ID: 1 (Page 90)

xxxxxxxxxxxxxxxxxx

xxxxxxxxxxxxxxxxxx

Key 200: Frame ID 1
xxxxxxxxxxxxxxxxxx

xxxxxxxxxxxxxxxxxx

xxxxxxxxxxxxxxxxxx

xxxxxxxxxxxxxxxxxx

xxxxxxxxxxxxxxxxxx

Frame ID: 2 (Page 42)

Figure 7: Swizzled parent-child relationship in a
buffer pool.

Buffer pool

page image

Look for entry

in page image

that corresponds

to search key

Search key

Get

identifier of

the next

page to

search from

the page

image

Found

entry?

search key

not found

no

yes

Return buffer

pool page

image of the

next page to

search

Identifier

swizzled?
yes

Bring page into buffer pool (possibly

need to evict another page image)

no

Figure 8: Swizzled pointer traversal.

child pointers. Thus, just as swizzling proceeds root-to-leaf,
un-swizzling proceeds leaf-to-root.

Current work strives for a cleaner separation of buffer pool
and B-tree modules; future work may produce a tighter in-
tegration of the two mechanisms, i.e., g-clock for eviction
and hierarchical sweep for un-swizzling.

4.3 Child-to-parent pointers
Child-to-parent pointers are generally considered a bad

idea due to the complexity and effort required when split-
ting non-leaf nodes. Thus, to the best of our knowledge, no
database system has used persistent parent pointers since
one cited by Küspert [23] in 1985.

While this is true for disk-based databases, in-memory
databases require reconsideration, as does a database with
swizzled pointers in the buffer pool. Specifically, the child-
to-parent pointers can reside in and link descriptors in the
buffer pool rather than page images. Moreover, if child-
to-parent pointers exist only where the matching parent-
to-child pointer is swizzled, maintenance while splitting a
non-leaf node is quite efficient.

Buffer pool frames

(Page images in the buffer pool)
Hash table in

the buffer pool

Frame descriptors

Frame ID: 2
Page ID: 42
Parent Frame :
Latch info:
Dirty bit

hash(42)

hash(90)

Frame ID: 1
Page ID: 90
Parent Frame : 2
Latch info:
Dirty bit

xxxxxxxxxxxxxxxxxx

xxxxxxxxxxxxxxxxxx

xxxxxxxxxxxxxxxxxx

xxxxxxxxxxxxxxxxxx

xxxxxxxxxxxxxxxxxx

xxxxxxxxxxxxxxxxxx

xxxxxxxxxxxxxxxxxx

xxxxxxxxxxxxxxxxxx

Frame ID: 1 (Page 90)

xxxxxxxxxxxxxxxxxx

xxxxxxxxxxxxxxxxxx

Key 200: Frame ID 1
xxxxxxxxxxxxxxxxxx

xxxxxxxxxxxxxxxxxx

xxxxxxxxxxxxxxxxxx

xxxxxxxxxxxxxxxxxx

xxxxxxxxxxxxxxxxxx

Frame ID: 2 (Page 42)

Figure 9: Child-to-parent pointers in the frame de-
scriptors.

Figure 9 sketches a child-to-parent pointer added to the
frame descriptors from Figure 7. The child-to-parent pointer
speeds un-swizzling when a page is chosen for replacement
(eviction) in the buffer pool. In that case, it is necessary
to determine efficiently whether that page is a B-tree node
and whether the parent node holds a swizzled pointer to the
evicted page. For that reason alone, it seems that a parent
pointer may be a good idea.

Note that the code used for the performance evaluation in
Section 5 does not include child-to-parent pointers. Nonethe-
less, as seen in Figure 10, it performs similarly to both the
traditional B-tree as well as the one in which all pointers are
virtual memory addresses, even when the workload spills
from memory and the swizzling solution needs to pay the
overhead of unswizzling.

5. EVALUATION
We have implemented a prototype of the swizzling and un-

swizzling of page identifiers in the context of the Shore-MT
experimental database system [3, 16, 32, 33]. Our hypoth-
esis is that swizzling B-tree page identifiers alleviates the
performance overhead imposed by the buffer pool and al-
lows a traditional database to match the performance of an
in-memory system that has no buffer pool. In this section
we present experiments that compare the performance of
three system configurations: a baseline configuration with
a traditional buffer pool, an in-memory database (without
a buffer pool), and a buffer pool that swizzles page identi-
fiers. Our experiments consider (1) whether swizzling elim-
inates the performance overhead imposed by a buffer pool,
compared to an in-memory database; (2) whether perfor-
mance degrades gracefully as the working data set exceeds
the size of memory, and (3) whether the swizzling approach
can adapt to a drifting workload without requiring offload
log analysis or explicit tracking of record-accesses.

5.1 Prototype Implementation
Aside from the swizzling techniques in the buffer pool

module, we also applied several modern optimizations for

43

many-cores to make our prototype a more appropriate test
bed to evaluate the effect of swizzling. Overall, we observed
that the following optimizations were highly effective.

• Foster B-tree [12] to make B-tree operations and the
latching module more efficient and to ensure that ev-
ery node in the B-tree has at most a single incoming
pointer at all times (which simplified book-keeping for
unswizzling).

• Consolidation Array [17] to speed-up the logging mod-
ule.

• Read-After-Write style lock manager [18] to improve
the scalability of the locking module.

For the second and third optimizations, we thank the au-
thors of the original papers for their generous guidance in
applying the techniques in our code base. We also emphasize
that our experiments confirm their observations in the afore-
mentioned papers, reproducing significant speed-ups in a dif-
ferent code base. The throughput of our prototype in the
standard TPC-C benchmark has more than doubled with
these techniques.

5.2 Experimental set-up
The experiments were performed on a 4-socket Intel Xeon

X7542 NUMA machine running at 2.7 GHz with 24 cores,
and equipped with 256 GB of RAM. We used two RAID-
10 10K rpm disk drives for storing the data files. We ran
CentOS 5.5 with a 2.6.18-194 64-bit Linux kernel. All config-
urations were compiled using GCC 4.1.2, and used the same
compile options, experimental codes, and parameters. Un-
less otherwise noted, we use a 10 GB buffer pool configured
to use direct I/O (O DIRECT) when reading from and writing
to the disk to prevent the OS file system cache from caching
disk pages. This is the standard method to prevent OS
caching and buffering used even by commercial databases
such as Oracle and DB2. Our database has a size of 100 GB
(i.e., 10 times the buffer pool size). It consists of 1.73x109

records, with each record having a key size of 20 bytes and
value size of 20 bytes. For the main memory configuration
we restrict the database size to the buffer pool size (10 GB).
In order to isolate the effects of the buffer pool implemen-
tation (or lack of a buffer pool for the in-memory case), we
use the same base implementation of the database; that is,
the lock manager, logger, query engine, etc. are all identical
across configurations. We do not evaluate the benefits of
various data layouts (e.g. we do not consider T-trees [24]),
and so all configurations use Foster B-trees with an 8 kilo-
byte page size.

5.3 Buffer pool performance
We first evaluate the impact of swizzling on the overhead

imposed by the buffer pool through a set of experiments
based on micro-benchmarks. We compare pointer swizzling
in the buffer pool against two baselines, i.e., an in-memory
database using direct pointers between B-tree nodes and a
traditional buffer pool. As our microbenchmark study fo-
cuses solely on buffer pool performance, we disable other
modules, including logging and transactional locking, in or-
der to isolate the effects of swizzling on buffer pool per-
formance. We discuss overall database system performance
later in Section 5.4.

5.3.1 Query performance
Our first set of experiments evaluate the impact of swiz-

zling in the context of a read-only workload. To this end,
we compare the performance of an in-memory database that
uses direct pointers between B-tree nodes to a database sys-
tem that uses a traditional buffer pool.

 0

 200

 400

 600

 800

 1000

 1200

 0 10 20 30 40 50 60 70 80 90 100

Q
ue

ry
 T

hr
ou

gh
pu

t [
10
3

Q
P

S
]

Working Set Size [GB]

Main-Memory
Swizzling

Traditional

 1120

 1140

 1160

 1180

 1200

 1220

 1240

 0 2 4 6 8 10

Figure 10: Read-only query throughput: Main-
Memory (no bufferpool) vs Swizzling Bufferpool vs
Traditional Bufferpool. Magnified sub-figure (inset)
focuses on Main-memory vs Swizzling perfomance
for an in-memory working set.

Figure 10 shows the performance of read-only queries,
with pointer swizzling in the buffer pool compared against
two baselines, i.e., an in-memory database and a traditional
buffer pool. Error bars are one standard error. The inset
sub-figure of Figure 10 magnifies the upper left-hand portion
of the main graph so as to make it easier to compare the per-
formance of the Main-Memory and Swizzling systems when
the working set fits in memory. This figure is based upon
the same data as Figure 1 with the addition of a buffer pool
with pointer swizzling. Each data point represents at least
five runs of a complete experiment with fixed buffer pool
size (10 GB) and fixed working set size. 24 threads search
the index for randomly chosen key values. The performance
metric shows the number of look-ups completed per second.

These results confirm the principal goal and expectation of
our design: when the working set is smaller than the buffer
pool, query performance of a database with a buffer pool
that supports pointer swizzling is comparable (practically
equal) to that of an in-memory database that enjoys the per-
formance advantage of in-memory pointers but is restricted
to data sets smaller than memory. As a secondary effect,
the performance of the database with the traditional buffer
pool can be seen to improve significantly as the working set
size increases to fill available memory (at the left-most edge
of Figure 10) because threads work on a larger set of pages
and hence suffer less latch contention. The traditional buffer

44

pool is more sensitive to contention due to additional use of
atomic instructions to pin and unpin pages.

The inset sub-figure in Figure 10 zooms into the range
where the working set size is less than 10 GB — that is,
where in-memory perfomance is feasible. The inset of Fig-
ure 10 provides a close-up view of the purple shaded square
in the upper left of the main figure, where the Swizzling
and Main-Memory curves overlap. As the inset figure il-
lustrates, the performance difference between an in-memory
database that uses only in-memory pointers and one that
employs swizzling in an otherwise traditional buffer pool is
very small. The differences are around 1-3% and quite com-
parable to the experimental standard error, indicated with
vertical bars. At the left edge of the diagram, the working
sets even fit into the CPU caches. Due to multiple proces-
sors and CPU caches, however, the additional performance
gain is minimal.

0

2000

4000

6000

8000

10000

12000

10 20 30 40 50

Th
ro

u
gh

p
u

t
(q

p
s)

Working Set Size (GB)

Main Memory

Traditional Buffer Pool

Swizzling

Figure 11: Graceful degradation

Figure 11 also zooms into the data of Figure 10, specifi-
cally the range of working set sizes just larger than the avail-
able buffer pool. In all three systems, even a small fraction
of buffer faults and the required disk I/O cause performance
to degrade significantly compared to in-memory operation.
More interesting here is that the performance of the sys-
tem with a traditional buffer pool and the one that employs
swizzling deteriorate quite similarly as they use similar page
replacement policies. The buffer pool with swizzling per-
forms slightly worse than the traditional buffer pool as it
has to un-swizzle the pointer to a victim page before evict-
ing the page. In other words, the buffer pool with pointer
swizzling does not introduce any disadvantages in operat-
ing regions outside its strengths. In contrast to the buffer
pool designs that degrade gracefully, the main-memory de-
sign suffers a sudden performance drop when the OS virtual
memory mechanism starts swapping pages to disk. This
happens because the OS is agnostic with regard to the rela-
tive importance of inner-node pages versus leaf-node pages.

5.3.2 Insertion performance
Figure 12 evaluates insertion performance for a B-tree in-

dex. The entire index fits into memory throughout the entire

experiment. In the experiment, 24 threads add 50 million
records to an initial 10 million records, with key values cho-
sen at random and in random order.

0

200000

400000

600000

800000

1000000

1200000

Th
ro

u
gh

p
u

t
(q

p
s)

Main Memory

Swizzling

No Swizzling

Figure 12: Insertion performance.

The performance differences follow the same pattern as in
prior experiments using read-only index queries. The num-
ber of operations per second is smaller compared to the read-
only experiments because of extra time spent in index main-
tenance, including leaf insertions and tree re-balancing. As
shown in the figure, the performance of swizzling is equiva-
lent to that of an in-memory database, and both out-perform
a traditional buffer pool with page identifiers serving as child
pointers.

5.3.3 Drifting working set
An additional experiment focuses on changes in the work-

ing set, i.e., the set of hot database pages changes over time.
In the following, the working set is defined by a key range
within a B-tree index chosen for a working set size of 0.1
GB throughout. Every 60 seconds, 25% of the key range
(and thus of the current working set) is dropped and an
equal key range (and working set size) is added. Thus, for
a short transition period, performance is expected to drop.
Ideally, the buffer pool loads the new 25% of the working set
and then again exhibits performance comparable to an in-
memory database. This experiment models scenarios where
people want to read the latest data such as user status up-
dates. As the interesting behavior happens when evicting
pages from the buffer pool, we perform this experiment us-
ing a smaller buffer pool size of 1 GB to reduce the buffer-
pool warm up time and to artificially create high pressure
on the buffer pool.

Figure 13(a) shows the effects in a traditional buffer pool.
Performance is steady except for the brief transition periods.
After 1,920 seconds, the experiment has touched 1 GB of
data and the buffer pool must start evicting pages; that is
why the transition period at that time is slightly longer than
other transition periods.

Figure 13(b) shows the corresponding performance, but
for a buffer pool that employs pointer swizzling. As expected
from the experiments reported above, when the working
data set is in memory, throughput with swizzling is approx-
imately twice as high as with the traditional system shown

45

0

200000

400000

600000

800000

1000000

1800 1850 1900 1950 2000 2050 2100 2150 2200

Th
ro

u
gh

p
u

t
(q

p
s)

Time elapsed (s)

(a) Traditional buffer pool

0

200000

400000

600000

800000

1000000

1800 1850 1900 1950 2000 2050 2100 2150 2200

Th
ro

u
gh

p
u

t
(q

p
s)

Time elapsed (s)

(b) Buffer pool with swizzling

Figure 13: Drifting working set

 0

 10

 20

 30

 40

 50

 60

 70

Both ON LOCK OFF LOG OFF Both OFF

T
P

C
-C

 T
hr

ou
gh

pu
t [

10
3

T
P

S
]

No-Swizzling Swizzling MainMemory

Figure 14: TPC-C Benchmark Result. 100 Warehouses, 12 Clients, warmed-up buffer pool larger than data
set. Logging and Locking Modules are turned ON/OFF to analyze the contribution of Swizzling improvement
in the entire database engine.

in Figure 13(a), and the length of the transition periods are
equivalent between the traditional and swizzling systems.

5.4 TPC-C Benchmark
The last experiment runs the standard TPC-C bench-

mark 1. Figure 14 compares the throughput of our database
engine 1) with a traditional buffer pool (No-Swizzling), 2)
with a swizzling buffer pool (Swizzling), and 3) without a
buffer pool (MainMemory). As TPC-C is a write-intensive
workload, we also turn on and off the locking module and
the logging module in order to isolate the performance im-
pact of swizzling in buffer pool compared to the logging and
locking bottlenecks.

When both locking and logging modules are on, swiz-
zling improves throughput over the traditional buffer pool
about 10%. When both modules are off, on the other hand,
swizzling improves throughput as much as 50%. The re-
sult is consistent with earlier observations (Figure 2) that
the buffer pool is one of the bottlenecks in databases. A
significant improvement in one module does not necessar-
ily result in an equally significant improvement in overall
performance; the removal of one bottleneck can expose new
bottlenecks.

Nonetheless, this result demonstrates both that the sig-
nificance of the buffer pool bottleneck as well as that swiz-

1http://www.tpc.org/tpcc/

zling techniques virtually eliminate the buffer pool bottle-
neck. The first is evidenced by the fact that the throughput
of No-Swizzling did not significantly improve by turning off
both locking and logging modules. Even supposing perfectly
scalable locking and logging modules, a database using a
buffer pool without swizzling would not achieve many-core
performance competitive with a database without a buffer
pool. The second is evidenced by the fact that in all cases,
performance of a database with a swizzling buffer pool is
statistically equivalent to that of an in-memory database.

Finally, Figure 14 motivates our eventual goal to overhaul
all modules for the many-core era. Our current, ongoing,
work is to significantly reduce the locking and logging bottle-
necks with drastically different architectures optimized for
many cores, such as [38]. We anticipate that as we make the
locking and the logging modules as scalable and efficient as
swizzling makes the buffer pool, overall throughput will dra-
matically increase; the potential improvement can be seen
in the rightmost bars of Figure 14.

6. SUMMARY AND CONCLUSIONS
In summary, the buffer pool in a traditional database

management system enables efficient data access and data
manipulation for databases larger than memory as well as
transactional updates with write-ahead logging. However,

46

when the working set fits in memory, the performance over-
head of a traditional buffer pool is so large that it motivates
in-memory databases, whose principal value is that they do
not use a buffer pool.

Some recent work has addressed in-memory database sys-
tems with working sets slightly larger than memory. These
approaches have relied on virtual memory, compression, and
offline analysis of hot and cold data items in order to im-
prove the ability of the working data set to fit in memory. In
contrast, our pointer swizzling approach simply eliminates
most buffer pool overheads.

Unlike prior work on pointer swizzling between applica-
tion objects, with difficulties arising from shared objects
(multiple pointers to the same object) and from shared con-
tainers (multiple objects per database page), the proposed
approach swizzles pointers between page frames in the buffer
pool, i.e., between a finite number of system objects.

Our prototype implementation adds metadata to buffer
pool frame descriptors without impacting actual data page
contents, which simplifies the task of un-swizzling. An in-
dex structure with only a single (incoming) pointer per node
simplifies both swizzling a pointer to an in-memory (vir-
tual memory) address and un-swizzling a pointer, and also
greatly simplifies the mechanisms involved in selecting a
page for replacement in the buffer pool.

An experimental evaluation of this prototype demonstrates
that swizzling parent-to-child pointers between the buffer
pool’s page frames practically eliminates the buffer pool
bottleneck. Experiments with shifting working sets also
show that un-swizzling overheads (tracking page usage, etc.)
are minimal. Further experiments illustrate graceful perfor-
mance degradation when the working set size grows and ex-
ceeds memory as well as quick performance improvements
when the working set shrinks below memory size.

Judicious swizzling and un-swizzling of pointers within the
buffer pool enables the performance of in-memory databases
for memory-resident data, even when the total data set
is much larger than the available buffer pool. In those
cases where modern hardware with a large enough mem-
ory encompasses the application’s entire active working set,
database performance matches that of special-purpose in-
memory databases. In other cases, graceful degradation and
graceful improvement enable fluid transitions between in-
memory mode and traditional buffer pool operation. For
big data and working sets far exceeding memory capacity
(which may well become the common case rather than an
exception), the design enables scalability with the storage
costs of traditional disk drives. Graceful degradation and
fluid transitions between those cases ensure optimal perfor-
mance throughout.

In conclusion, the proposed design turns the contradic-
tion between in-memory computing and big data into a
continuum with competitive performance across the entire
spectrum, eliminating the need to divide memory between
an in-memory database and a buffer pool for a persistent
database. While our research context is in databases, the
design applies directly to key-value stores and it should ap-
ply with little change to file systems and their allocation
trees (indirection pages) and directory trees. Thus, we hope
that turning a contradiction into a continuum, with com-
petitive performance throughout, will prove useful for many
future storage systems.

Acknowledgments
We thank with deepest appreciation all the developers and
researchers of the Shore-MT team at EPFL, CMU and UW-
Madison for making the Shore-MT code-base2 available. Our
development was greatly aided by their clean and efficient
code as well as its extensive and insightful comments. We
particularly thank Ryan Johnson and Ippokratis Pandis for
their advice and suggestions regarding our implementation
of the Consolidation Array they described in [17] and which
was used in order to improve our logging module, as well as
Hyungsoo Jung and the other authors of [18] for their clari-
fication and advice with regard to our implementation of the
Read-After-Write style lock manager that they proposed in
their paper.

7. REFERENCES
[1] T. Anderson. Microsoft SQL Server 14 man: ‘Nothing

stops a Hekaton transaction’.
http://www.theregister.co.uk/2013/06/03/

microsoft_sql_server_14_teched/, 2013.

[2] M. P. Atkinson, K. Chisholm, W. P. Cockshott, and
R. Marshall. Algorithms for a Persistent Heap. Softw.,
Pract. Exper., 13(3):259–271, 1983.

[3] M. J. Carey, D. J. DeWitt, M. J. Franklin, N. E. Hall,
M. L. McAuliffe, J. F. Naughton, D. T. Schuh, M. H.
Solomon, C. K. Tan, O. G. Tsatalos, S. J. White, and
M. J. Zwilling. Shoring up persistent applications. In
SIGMOD, pages 383–394, 1994.

[4] J. DeBrabant, A. Pavlo, S. Tu, M. Stonebraker, and
S. B. Zdonik. Anti-Caching: A New Approach to
Database Management System Architecture. PVLDB,
6(14):1942–1953, 2013.

[5] C. Diaconu, C. Freedman, E. Ismert, P.-A. Larson,
P. Mittal, R. Stonecipher, N. Verma, and M. Zwilling.
Hekaton: SQL Server‘s memory-optimized OLTP
engine. SIGMOD, 2013.

[6] FAL Labs. Tokyo Cabinet: a modern implementation
of DBM. http://fallabs.com/tokyocabinet/.

[7] F. Funke, A. Kemper, and T. Neumann. Compacting
Transactional Data in Hybrid OLTP & OLAP
Databases. PVLDB, 5(11):1424–1435, 2012.

[8] H. Garcia-Molina, J. D. Ullman, and J. Widom.
Database system implementation, volume 654.
Prentice Hall Upper Saddle River, NJ, 2000.

[9] G. Graefe. A Survey of B-tree Locking Techniques.
ACM TODS, 35(2):16:1–16:26, 2010.

[10] G. Graefe. Modern B-tree techniques. Foundations
and Trends in Databases, 3(4):203–402, 2011.

[11] G. Graefe. A Survey of B-tree Logging and Recovery
Techniques. ACM TODS, 37(1):1:1–1:35, 2012.

[12] G. Graefe, H. Kimura, and H. Kuno. Foster B-Trees.
ACM Transactions on Database Systems (TODS),
2012.

[13] SAP HANA. http://www.saphana.com/.

[14] S. Harizopoulos, D. Abadi, S. Madden, and
M. Stonebraker. OLTP Through the Looking Glass,
and What We Found There. In SIGMOD, 2008.

2http://diaswww.epfl.ch/shore-mt/

47

[15] A. L. Hosking and J. E. B. Moss. Object Fault
Handling for Persistent Programming Languages: A
Performance Evaluation. In OOPSLA, pages 288–303,
1993.

[16] R. Johnson, I. Pandis, N. Hardavellas, A. Ailamaki,
and B. Falsafi. Shore-MT: a scalable storage manager
for the multicore era. In EDBT, pages 24–35, 2009.

[17] R. Johnson, I. Pandis, R. Stoica, M. Athanassoulis,
and A. Ailamaki. Aether: a scalable approach to
logging. Proceedings of the VLDB Endowment,
3(1-2):681–692, 2010.

[18] H. Jung, H. Han, A. D. Fekete, G. Heiser, and H. Y.
Yeom. A scalable lock manager for multicores. In
SIGMOD, pages 73–84. ACM, 2013.

[19] T. Kaehler and G. Krasner. LOOM: Large
Object-Oriented Memory for Smalltalk-80 Systems. In
S. B. Zdonik and D. Maier, editors, Readings in
Object-Oriented Database Systems, pages 298–307.
Kaufmann, San Mateo, CA, 1990.

[20] A. Kemper and D. Kossmann. Adaptable Pointer
Swizzling Strategies in Object Bases. In ICDE, pages
155–162, 1993.

[21] A. Kemper and D. Kossmann. Dual-Buffering
Strategies in Object Bases. In VLDB, pages 427–438,
1994.

[22] A. Kemper and D. Kossmann. Adaptable Pointer
Swizzling Strategies in Object Bases: Design,
Realization, and Quantitative Analysis. VLDB J.,
4(3):519–566, 1995.

[23] K. Küspert. Fehlererkennung und Fehlerbehandlung in
Speicherungsstrukturen von Datenbanksystemen.
Informatik-Fachberichte. Springer-Verlag, 1985.

[24] T. J. Lehman and M. J. Carey. A study of index
structures for main memory database management
systems. In VLDB, VLDB ’86, pages 294–303, San
Francisco, CA, USA, 1986. Morgan Kaufmann
Publishers Inc.

[25] J. J. Levandoski, P.-A. Larson, and R. Stoica.
Identifying hot and cold data in main-memory
databases. In ICDE, pages 26–37, 2013.

[26] M. L. McAuliffe and M. H. Solomon. A trace-based
simulation of pointer swizzling techniques. In ICDE,
pages 52–61, 1995.

[27] C. Mohan. Disk read-write optimizations and data
integrity in transaction systems using write-ahead
logging. In ICDE, pages 324–331, 1995.

[28] MonetDB. http://www.monetdb.org/.

[29] J. E. B. Moss. Working with persistent objects: To
swizzle or not to swizzle. IEEE Trans. Software Eng.,
18(8):657–673, 1992.

[30] V. F. Nicola, A. Dan, and D. M. Dias. Analysis of the
generalized clock buffer replacement scheme for
database transaction processing. SIGMETRICS
Perform. Eval. Rev., 20(1):35–46, June 1992.

[31] Oracle TimesTen In-Memory Database.
http://www.oracle.com/technetwork/products/

timesten/overview/index.html.

[32] I. Pandis, R. Johnson, N. Hardavellas, and
A. Ailamaki. Data-oriented transaction execution.
PVLDB, 3(1):928–939, 2010.

[33] I. Pandis, P. Tozun, R. Johnson, and A. Ailamaki.
PLP: Page latch-free shared-everything OLTP.
PVLDB, 2011.

[34] S. Park. Personal Communication, 2013.

[35] S. Park, T. Kelly, and K. Shen. Failure-atomic
msync(): A simple and efficient mechanism for
preserving the integrity of durable data. In EuroSys
’13, 2013.

[36] A. J. Smith. Sequentiality and Prefetching in Database
Systems. ACM TODS, 3(3):223–247, Sept. 1978.

[37] R. Stoica and A. Ailamaki. Enabling efficient OS
paging for main-memory OLTP databases. In DaMoN,
page 7, 2013.

[38] S. Tu, W. Zheng, E. Kohler, B. Liskov, and
S. Madden. Speedy transactions in multicore
in-memory databases. In Proceedings of the
Twenty-Fourth ACM Symposium on Operating
Systems Principles, pages 18–32. ACM, 2013.

[39] VoltDB. http://www.voltdb.com.

[40] S. J. White and D. J. DeWitt. QuickStore: A high
performance mapped object store, volume 23. ACM,
1994.

[41] P. Wilson and S. V. Kakkad. Pointer swizzling at page
fault time: Efficiently and compatibly supporting huge
address spaces on standard hardware. In Computer
Architecture News, pages 364–377, 1992.

48

