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ABSTRACT 
Set intersection is one of the most important operations for many 
applications such as Web search engines or database management 
systems. This paper describes our new algorithm to efficiently 
find set intersections with sorted arrays on modern processors 
with SIMD instructions and high branch misprediction penalties. 
Our algorithm efficiently exploits SIMD instructions and can 
drastically reduce branch mispredictions. Our algorithm extends a 
merge-based algorithm by reading multiple elements, instead of 
just one element, from each of two input arrays and compares all 
of the pairs of elements from the two arrays to find the elements 
with the same values. The key insight for our improvement is that 
we can reduce the number of costly hard-to-predict conditional 
branches by advancing a pointer by more than one element at a 
time. Although this algorithm increases the total number of 
comparisons, we can execute these comparisons more efficiently 
using the SIMD instructions and gain the benefits of the reduced 
branch misprediction overhead. Our algorithm is suitable to 
replace existing standard library functions, such as 
std::set_intersection in C++, thus accelerating many applications, 
because the algorithm is simple and requires no preprocessing to 
generate additional data structures. We implemented our 
algorithm on Xeon and POWER7+. The experimental results 
show our algorithm outperforms the std::set_intersection 
implementation delivered with gcc by up to 5.2x using SIMD 
instructions and by up to 2.1x even without using SIMD 
instructions for 32-bit and 64-bit integer datasets. Our SIMD 
algorithm also outperformed an existing algorithm that can 
leverage SIMD instructions. 

1. INTRODUCTION 
Set intersection, which selects common elements from two input 
sets, is one of the most important operations in many applications, 
including multi-word queries in Web search engines and join 
operations in database management systems. For example, in Web 
search engines the set intersection is heavily used for multi-word 
queries to find documents containing two or more keywords by 
intersecting the sorted lists of matching document IDs from the 
individual query words [1]. In such systems, the performance of 
the sorted set intersection often dominates the overall 
performance. Due to its importance, sorted set intersection has a 

rich history of research and many algorithms have been proposed 
to accelerate the operation. Many of these existing algorithms 
focus on reducing the number of comparisons to improve the 
performance. For example, special data structures, such as hash-
based structures [2, 3] or hierarchical data structures [4], can be 
used to boost performance by skipping redundant comparisons, 
especially when the sizes of the two input sets are significantly 
different. Unfortunately, such algorithms typically require 
preprocessing of the input data to represent it in a special form or 
to create additional data structures. Also, when the sizes of the 
two inputs are similar, it is much harder to achieve performance 
improvements because there are far fewer obviously redundant 
comparisons. As a result, simple merge-based implementations of 
set intersections are still widely used in the real world, such as the 
std::set_intersection implementation of STL in C++. Our goal is 
to improve the performance of set intersection even when the two 
input sets are of comparable size without preprocessing. 

This paper describes our new algorithm to improve the 
performance of the set intersection. Unlike most of the existing 
advanced techniques, we focus on improving the execution 
efficiency of the set intersection on the microarchitectures of 
today’s processors by reducing the branch mispredictions instead 
of reducing the number of comparisons. Today’s processors are 
equipped with a branch prediction unit and speculatively execute 
one direction (taken or not-taken) of a conditional branch to 
maximize the utilization of processor resources. If the predicted 
direction of the branch does not match the actual outcome of the 
branch (branch misprediction), the hardware typically wastes 
more than ten CPU cycles because it needs to flush speculatively 
executed instructions and restart the execution from the fetch of 
the next instruction for the actual branch direction.  

In our algorithm, we extend the naive merge-based set 
intersection algorithm by reading multiple elements, instead of 
just one element, from each of the two input arrays and compare 
all of the pairs of elements from the two arrays to find any 
elements with the same value. Figure 1 compares a naive 
algorithm and our algorithm using 2 as the number of elements 
read from each array at one time (block size). Surprisingly, this 
simple improvement gave significant performance gains on both 
Xeon and POWER7+.  

Our key insight for the performance improvement is that using 
larger block size yields a smaller number of hard-to-predict 
conditional branches in the set intersection. The comparison to 
select an input array for the next block, shown in bold in Figure 1, 
will be taken in arbitrary order, and therefore it is very hard for 
branch prediction hardware to predict the branches. However, 
most of the conditional branches in the all-pairs comparisons are 
not-taken and they do not cause frequent branch mispredictions in 
the most frequent cases of many applications, since the number of 
output elements is generally much smaller than the number of 
input elements for many applications. For example, Ding and 
König [2] reported that 94% of the queries in a shopping portal 
site select less than 10% of the input elements as the output. 
Therefore using the larger block size can reduce the number of 
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hard-to-predict conditional branches in exchange for a larger 
number of total comparisons and easy-to-predict conditional 
branches. When the block size is S, one all-pairs comparison 
requires up to S2 conditional branches, but the number of hard-to-
predict conditional branches is reduced to only one per S input 
elements.  

The larger number of comparisons from these all-pairs 
comparisons is an obvious drawback of our algorithm. However 
we can effectively eliminate many of these additional comparisons 
by using SIMD instructions. By combining our algorithm with 
SIMD instructions, we can reduce the number of branch 
mispredictions without increasing the total number of executed 
instructions by executing multiple comparisons in parallel.  

Our algorithm roughly doubled the performance for set 
intersection for 32-bit and 64-bit integer datasets even without 
using SIMD instructions compared to the std::set_intersection 
implementation delivered with gcc. The use of SIMD instructions 
further doubled the performance on both processors. We use 
SIMD instructions to filter out redundant scalar comparisons by 
using only a part of each element instead of finding matching 
pairs directly with SIMD comparisons. This approach increases 
the data parallelism within each SIMD instruction and leads to 
higher performance. It also allows us to use SIMD instructions if 
the data type is not natively supported by the SIMD instruction set, 
e.g. 64-bit integers on POWER7+. 

Our new algorithm seeks to accelerate the set intersection 
operation when (1) the number of output elements is much 
smaller than the number of input elements and (2) the sizes of the 
two input sets are not significantly different. For datasets that do 
not satisfy these assumptions, other algorithms such as binary-
search-based algorithms can outperform our algorithm. This is 
why we devised a practical technique to adaptively select the best 
algorithm based on the ratio of the number of output elements 
over the number of input elements (selectivity) and the size ratio 
of two input sets.  

The rest of the paper is organized as follows. Section 2 
discusses related work. Section 3 describes our technique to 
reduce branch mispredictions. Section 4 gives a summary of our 
results. Finally, Section 5 summarizes our work. 

2. RELATED WORK 
Sorted set intersection has a rich history of research and many 
algorithms have been proposed to improve its performance. 
Previous studies, such as [5], showed that simple algorithms 
based on a linear merge (e.g. Figure 1(a)) performed best when 
the sizes of the two input sets were similar. Another advantage of 
a merge-based algorithm is that it works well with input datasets 
that are compressed with various algorithms, such as delta 
encoding, due to its simplicity. Our algorithm extends the merge-
based algorithm and improves its efficiency on today’s processors. 
This means our algorithm inherits the advantages of the merge-
based algorithms and performs well on input sets of similar size. 

When one input set is much larger than another, the merge-
based algorithm is less efficient and many techniques have been 
proposed to improve its performance. For example, algorithms 
based on binary search [5-7] reduce the numbers of comparisons 
and memory accesses by picking values from the smaller set, and 
efficiently searching for the matching value in the larger set. 
Similarly, hash-based techniques [2, 3] or techniques using 
hierarchical data representations [3] improve the performance by 
reducing the number of comparisons. However, most of these 
techniques are effective only when the sizes of the two input sets 
are significantly different (as by an order of magnitude or more). 
Our algorithm focuses on improving the performance of the input 

sets when the sets are roughly the same size. We can easily take 
advantages of both our algorithm and these existing techniques by 
selecting a suitable algorithm based on the size of the input sets 
before executing the operations as we describe in Section 4. 

Recently, Ding and König [2] proposed a hash-based 
technique that is effective even for input sets of similar size. They 
partitioned the input set into small partitions and encoded the 
values in each partition into a machine-word size bitmap in the 
preprocessing phase to efficiently calculate the intersection using 
bit-wise AND instructions at run time. Though both their 
algorithm and ours are effective for arrays of similar sizes, an 
advantage of our algorithm is that we do not need preprocessing 
for additional data structures before an intersection operation. 

(a) Schematic and pseudocode for naive merge-based algorithm 

2 5

1 3

6 8

5 9

input array A

input array B

1 1. to check the equality 
of two elements

2. to advance a pointer by 1

in each iteration

2  
1  while (Apos < Aend && Bpos < Bend) {
2  if (A[Apos] == B[Bpos]) {
3  C[Cpos++] = A[Apos];
4   Apos++; Bpos++;
5     }
6     else if (A[Apos] > B[Bpos]) {
7     Bpos++;
8    } 
9     else {
10    Apos++;
11    } 
12 }  

(b) Schematic and pseudocode for our algorithm (block size = 2) 

2 5

1 3

6 8

5 9

input array A

input array B

1

1. to find any matching pairs 
in blocks of S elements,
here S=2
(all‐pairs comparison)

2. to advance a pointer by S

in each iteration:

2  
1  while (1) {
2  Adat0 = A[Apos]; Adat1 = A[Apos + 1]; 
3  Bdat0 = B[Bpos]; Bdat1 = B[Bpos + 1];
4  if (Adat0 == Bdat0) { 
5  C[Cpos++] = Adat0;
6  }
7  else if (Adat0 == Bdat1) {
8  C[Cpos++] = Adat0;
9  goto advanceB;
10  }
11  else if (Adat1 == Bdat0) {
12  C[Cpos++] = Adat1;
13  goto advanceA;
14  }
15  if (Adat1 == Bdat1) {
16  C[Cpos++] = Adat1;
17  goto advanceAB;
18   }
19   else if (Adat1 > Bdat1) goto advanceB;
20   else goto advanceA;
21 advanceA:
22 Apos+=2;
23 if (Apos >= Aend) { break; } else { continue; }
24 advanceB:
25 Bpos+=2;
26 if (Bpos >= Bend) { break; } else { continue; }
27 advanceAB:
28 Apos+=2;  Bpos+=2;
29 if (Apos >= Aend || Bpos >= Bend) { break; }
30 }
31 //  fall back to naive algorithm for remaining elements

all‐pairs
comparison
(using S2

comparisons)

Figure 1. Overview of set intersection without and with our 
technique. Red bold (line 6 in (a) and line 19 in (b)) shows a 
hard-to-predict conditional branch used to select the pointer to 
advance.  
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Schlegel et al. [8] exploited a special instruction called STTNI 
(STring and Text processing New Instruction) included in the 
SSE 4.2 instruction set of recent Intel processors for sorted set 
intersections. They compared multiple values read from each 
input array by using the special instruction to execute an all-pairs 
comparison in one step. They showed up to 5.3x and 4.8x 
accelerations for 8-bit and 16-bit data, respectively, on a Core i7 
processor. Because the STTNI instruction does not support data 
types larger than 16 bits, for 32-bit integer data, they intersect the 
upper 16 bits and lower 16 bits separately. This technique 
achieved good speedups only when the value domain was limited, 
so that a sufficient number of elements shared the same value in 
their upper 16 bits, which limits the real-world use of this 
approach. Our algorithm does not have this limitation on the value 
domain even when we use the SIMD instructions because we use 
SIMD instructions as a filter to reduce scalar comparisons instead 
of finding matching pairs directly with SIMD comparisons. Also, 
our non-SIMD algorithm does not use any unique instructions, 
which makes it more portable among processors.  

Lemire et al. [9] accelerated decompression and set 
intersection used in index search systems by SIMD instructions. 
For the set intersection, they used three algorithms designed for 
SIMD instructions; so called V1 algorithms, V3 algorithm and 
galloping [10] with SIMD. They selected the algorithm based on 
the ratio of sizes of the two input arrays. When the sizes of the 
input sets are of similar size, the V1 algorithm performed best 
among the three algorithms. When the lengths of the two input 
arrays are significantly different, SIMD galloping was the best. 
Our algorithm focuses on the case when the sizes of the two 
inputs are similar. As showed in Section 4, our SIMD algorithm 
achieved about 2x better performance than their V1 SIMD 
algorithm. Also our SIMD algorithm can be used even if the data 
type is not natively supported by the SIMD instruction set, such 
as 64-bit integers on POWER7+, while their technique requires 
special handling for such case. When the gap between the two 
input sizes becomes large (by more than an order of magnitude), 
we switch to their SIMD galloping algorithm. 

Schlegel et al. [8] also showed that replacing the branch 
instruction in the merge-based set intersection with the predicated 
instructions of the Intel processor improved the performance over 
the branch-based implementation, though this was not the main 
focus of their work. This optimization, which replaces control 
flow by data flow, is called if-conversion [11], and is a 
conventional technique to reduce branch misprediction overhead. 
Figure 2 shows an example of set intersection implementation 
without using a conditional branch to advance a pointer. As 
shown in the performance comparisons later, our technique 
yielded much better performance than a branchless 
implementation by the if-conversion approach on both of the 
tested processors. Although both techniques reduce the branch 
misprediction overhead, our algorithm achieved better 

performance even without SIMD instructions by having a shorter 
path length. Table 1 highlights these existing and our new 
algorithms. 

We can improve the performance of the set intersection by 
reducing the branch mispredictions. Branch misprediction 
overhead is recognized as a major performance constraint in some 
workloads. For example, Zhou et al. [12] reported that the 
performance of many database operations, such as B+ tree search 
and nested loop joins for unsorted arrays, can be improved by 
reducing the branch misprediction overhead using SIMD 
instructions. Also, some sorting algorithms [13-15] improved the 
performance in sorting random input by reducing the branch 
misprediction overhead using the predicated instructions or SIMD 
instructions.  

Some set intersection algorithms exploit other characteristics 
of the modern hardware architectures beyond their branch 
performance, such as the large amount of cache memory and 
multiple cores [16-18]. For example, Tsirogiannis et al. [16] 
improve the performance of a search-based intersection algorithm 
by using a small index called a micro-index, which can fit into the 
processor’s cache memory. 

3. OUR ALGORITHM 
In this section, we first describe our block-based set intersection 
algorithm that reduces branch mispredictions with two sorted and 
unique-element arrays without using SIMD instructions. Then we 
show how we exploit SIMD instructions to execute multiple 
comparisons in parallel to further improve the performance. 
Although our algorithm is for intersecting two input sets, we can 
intersect multiple sets by using this algorithm as a building block, 
repeatedly executing our algorithm for the two smallest among all 
of the input data sets, which is a frequently used technique. 

3.1 Key Observation and Assumptions for Input Data 

As shown in Figure 1(a), a naive merge-based algorithm for set 
intersection reads one value from each of the input arrays (A and 
B in the Figure) and compares the two values. If the two values 
are equal, the value is copied into the output array (C) and the 

1  while (Apos < Aend && Bpos < Bend) {
2  Adata = A[Apos];
3  Bdata = B[Bpos];
4  if (Adata == Bdata) {  // easy-to-predict branch
5  C[Cpos++] = Adata;
6   Apos++; Bpos++;
7     }
8     else { // advance pointers without conditional branches
9     Apos += (Adata < Bdata);
10    Bpos += (Bdata < Adata);
11   } 
12 }

Figure 2. Pseudocode for set intersection without hard-to-
predict conditional branches (the branchless algorithm). 

Table 1. Summary of set intersection algorithms 
the sizes of the two 
input sets (Na, Nb)  

without SIMD instructions With SIMD instructions 

Similar size 

Merge-based algorithms (e.g. STL): is simple and widely 
used, but suffer from branch mispredictions.  
If-conversion: eliminates the branch mispredictions in trade 
for longer path length. is hard to SIMDize. 
Ding and König [2]: requires preprocessing. 
Our block-based algorithm: is an extention to the merge-
based technique, reduces the branch mispredictions 

Schlegel [8]: is mainly targetting 8-bit or 16-bit integers 
supported by STTNI instructions 
Lemire [9] (V1 algorithm): can operate on 32-bit integers 
supported by using SIMD comparisons 
Our block-based algorithm with SIMD: yields larger gain 
by increased data parallelism. can support data types, even 
not natively supported by the SIMD instruction set. 

Significantly 
different 
(more than 10x) 

Binary-search-based techniques (e.g. galloping [10]): do 
not require preprocessing  
Techniques using additional data structures (skip list, 
hash etc): require preprocessing 

Lemire [9] (SIMD galloping): is an extention to the gallop 
algorithm [10] with SIMD instructions 
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pointers for both arrays are advanced to load the next values. If 
the two values are not equal, the pointer for the array whose 
element is smaller is advanced. This approach requires up to (Na + 
Nb - 1) iterations to complete the operation. Here Na is the number 
of elements in the array A and Nb is the number of elements in the 
array B. Each iteration includes one if_equal conditional branch 
(Line 2 in Figure 1(a)) and one if_greater conditional branch 
(Line 6 in Figure 1(a)).  

Here, the if_greater conditional branches in the set 
intersection are hard to predict and incur significant branch 
misprediction overhead, while the if_equal conditional branches 
rarely cause mispredictions. Hence our algorithm focuses on 
reducing the number of costly if_greater conditional branches at 
the cost of using more if_equal conditional branches to optimize 
for the common case. The if_greater conditional branches cause 
frequent mispredictions because they will be taken in arbitrary 
order with roughly 50% probability when the sizes of the input 
sets are similar. This makes it very hard for branch prediction 
hardware to predict the branch directions correctly. Most of the 
conditional branches in the all-pairs comparisons are not-taken 
and they do not cause frequent branch mispredictions in typical 
cases for many applications, since it is known that the number of 
output elements is much smaller than the number of input 
elements in practice [2].  

To achieve its speedup, our algorithm assumes that: 

· the number of output elements is much smaller than the number 
of input elements, and 

· the sizes of input sets are not significantly different (as by an 
order of magnitude or more). 

Our algorithm performs well for datasets that satisfy these 
assumptions. Otherwise, we adaptively switch to another 
algorithm to combine the advantages of our algorithm with the 
strengths of such algorithms as the binary-search-based 
algorithms. The first assumption is important to avoid frequent 
mispredictions in the if_equal conditional branches, which we 
assume are not costly. In Section 4, we describe an adaptive 
fallback technique to validate the first assumption at runtime. The 
second assumption ensures that the if_greater conditional 
branches cause lots of mispredictions. We select the best 
algorithm and a parameter (block size) based on the sizes on the 
two input sets before executing the operations. If the sizes of the 
two input arrays are significantly different, we switch to a binary-
search-based algorithm.  

3.2 Our Basic Approach without SIMD instructions 

Our technique extends the naive merge-based algorithm shown in 
Figure 1(a) by reading multiple values from each input array and 
compares all of their pairs using if_equal conditional branches as 
shown in Figure 1(b). We call the number of elements compared 
at one time the block size (S). We repeat the following steps until 
we process all of the elements in the two input arrays (A and B): 

(1) read S elements from each of two input arrays,  
(2) compare all possible S2 pairs of elements (e.g. four pairs in 

Figure 1(b), where S = 2) by using if_equal conditional 
branches to find any matching pairs,  

(3) if there is one or more matching pairs, copy the value or 
values of the found pairs into the output array (C), 

(4) compare the last elements of the two arrays used in Step 2, 
(5) advance the pointer by S elements for the array whose last 

element is smaller in Step 4.  

Figure 3 shows a step-by-step example of our algorithm with the 
block size of 2. Because the block size is 2, the all-pairs 
comparison shown in Figure 3 uses up to 4 if_equal conditional 
branches (Lines 4-18 in Figure 1(b)). Then, in Figure 3(b), we 
compare the second value from each array (A[1] = 5 and B[1] = 
3) and advance the pointer for the array B because B[1] is smaller 
than A[1]. This step uses only one if_greater conditional branch 
(Line 19 in Figure 1(b)). Typically, this if_greater conditional 
branch is hard to predict and hence it causes frequent branch 
mispredictions. Our algorithm aims to reduce the number of the 
hard-to-predict conditional branches executed. If there is no 
matching pair found in the all-pairs comparison (the most 
frequent case), then we repeat the steps shown in Figures 3(a) and 
3(b). If a matching pair is found in an all-pairs comparison 
(Figure 3(c)), then we copy the value (5 in the figure) into the 
output array and skip the following comparisons, which are no 
longer possible matches. In the Figure, B[3] (= 9) must be larger 
than B[2] and A[1] (= 5) because each array was sorted, and 
hence we can advance the pointer for the array A without 
comparing A[1] and B[3] (Figure 3(d)). 

If the number of total elements in an input array is not a 
multiple of the block size S, we can just fall back to the naive 
approach for the remaining elements. If the number of elements in 
an array is large enough, this does not measurably affect the 
overall performance of the set intersection operation. 

Identifying the best block size: With our scalar (non-SIMD) 
algorithm, the total number of if_equal conditional branches 
increases for larger block sizes. The number of if_equal 
conditional branches, which are typically easy to predict, involved 
in one all-pairs comparison is up to S2. To complete the set 
intersection for the entire array, we need to execute the all-pairs 

1 5

2 3

6 8

5 9

11 14

10 12

input array A

input array B

1. search matching 
pairs in two values
from each input array
by comparing all pairs
( {A[0], A[1]}

with {B[0], B[1]} )

2. advance the pointer
for the array 
with smaller value

1 5

2 3

6 8

5 9

11 14

10 12

input array A

input array B

3. compare next two 
values from each 
input array
( {A[0], A[1]}

with {B[2], B[3]} )

4. find a matching pair
in third comparison 
and copy the value 
into the output array 

1 5

2 3

6 8

5 9

11 14

10 12

input array A

input array B

(a)

(b)

(c)

A[0] A[1] A[2] A[3] A[4] A[5]

B[0] B[1] B[2] B[3] B[4] B[5]

A[0] A[1] A[2] A[3] A[4] A[5]

B[0] B[1] B[2] B[3] B[4] B[5]

A[0] A[1] A[2] A[3] A[4] A[5]

B[0] B[1] B[2] B[3] B[4] B[5]

5. skip the fourth 
comparison in the 
all‐pair comparisons 
(A[1] with B[3])
and advance 
the pointer for A 
because B[3] must 
be larger than A[1] 
(A[1] = B[2] < B[3])

1 5

2 3

6 8

5 9

11 14

10 12

input array A

input array B

(d) A[0] A[1] A[2] A[3] A[4] A[5]

B[0] B[1] B[2] B[3] B[4] B[5]
 

Figure 3. An example of set intersection of two sorted arrays with 
our technique using 2 as the block size.  
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comparisons up to ((Na + Nb)/S – 1) times, so the total number of 
if_equal conditional branches is up to S2·((Na + Nb)/S – 1) = S·(Na 
+ Nb) - S2. This is almost S times larger than the naive approach. 

At the same time, the number of if_greater conditional 
branches, which are more costly than if_equal conditional 
branches due to their frequent branch mispredictions, decreases as 
the block size increases. We advance the pointer by S elements at 
a time instead of by just one element as in the naive approach. 
Hence, the number of if_greater conditional branches is ((Na + 
Nb)/S – 1). This is almost S times smaller compared to the naive 
approach. We summarize the total numbers of comparisons in 
Table 2. Because our algorithm is a generalization of the naive 
algorithm, which is equivalent to our algorithm with a block size 
of 1, the number of comparisons in Table 1 is the same for both 
algorithms when S = 1.  

The key parameter to find the best block size is the penalty of a 
branch misprediction compared to the number of CPU cycles to 
execute a conditional branch without a misprediction. To find the 
best block size, we calculate the cost of total branch instructions 
including the misprediction overhead. We assume that only the 
hard-to-predict conditional branches cause mispredictions for 
typical input. The best block size with this assumption is the S 
that minimizes this cost function f (S): 

f (S) = branch_cycles ×  (S2+1) / S +  
  mpred_penalty ×  mpred_ratio / S,    (1) 

Here, branch_cycles is the number of cycles to execute a 
conditional branch and mpred_penalty is the penalty of a branch 
misprediction (in terms of cycles). The mpred_ratio is the branch 
misprediction ratio for the hard-to-predict conditional branches. 
We assume the mpred_ratio is 50% when the sizes of the two 
input set are comparable because the hard-to-predict conditional 
branches are taken in arbitrary order and hence no branch 
predictor can predict them correctly. When the misprediction 
penalty is more than twice the cost of a successfully-predicted 
conditional branch, our technique improves the performance over 
the naive algorithm by using a block size of 2. When the relative 
cost of the misprediction is between 10 and 22, as is true for many 
of today’s processors, the best block size is 3. The branch 
misprediction penalties for POWER7+ and Xeon were both about 
16 cycles as measured with a micro-benchmark and the cost of a 
branch instruction is expected to be 1 cycle. We predict that the 
block size of 3 yields the best performance and the block size of 4 
is a close second best. We empirically confirmed this estimate in 
Section 4. Because the best block size also depends on the input 
data and not just the processor, we used an adaptive control 
technique with a runtime check to detect pathological 
performance cases for our algorithm. 

Using different block sizes for each input array: Up to now, we 
have been assuming that we use the same block size S for both 
input arrays. However, using different block size for each input 

array may give additional performance gains, especially when the 
sizes of the two input arrays are very different. When we use 
different block sizes Sa and Sb for each input array, the number of 
if_greater conditional branches is up to Na/Sa + Nb/Sb, and the 
number of if_equal conditional branches is (Na/Sa + Nb/Sb) ×  
(Sa·Sb). Hence the cost function becomes 

f (Sa, Sb) = branch_cycles ×  (Sa·Sb+1) ×  (q/Sa+(1-q)/Sb) +  
mpred_penalty ×  mpred_ratio ×  (q/Sa+(1-q)/Sb).  (2) 

Here, q shows how the sizes of two input arrays different, q = 
Na/(Na+Nb). When Sa = Sb, equation (2) becomes equivalent with 
equation (1) regardless of q. When the sizes of two input arrays 
are significantly different, the misprediction rate at the hard-to-
predict conditional branch is much difficult to estimate and 
depends on the branch predictor implementation. When we 
assume a simple predictor, which just predicts the more frequent 
side of the two branch directions, taken or not-taken, the 
misprediction rate is min(q, 1-q). With this assumption and the 
misprediction penalty of 16 cycles, for example, the best block 
sizes for two arrays with sizes of Na and 2Na, i.e. q = 1/(1+2) = 
1/3, are Sa = 2 and Sb = 4, while Sa = Sb = 3 is the best if the two 
input arrays have the same size, i.e. q = 1/2, as already discussed.  

Our scalar algorithm selects the block sizes before starting the 
operation based on the ratio of the sizes of the two input arrays. 
We use Sa = 2 and Sb = 4 if the size of the larger array Nb is more 
than twice the size of the smaller array Na. Otherwise, we use Sa = 
Sb = 3. We show how the block size affects the performance in 
Section 4. 

3.3 Exploiting SIMD Instructions 

Our algorithm reduces the branch misprediction overhead but 
with an increased number of easy-to-predict conditional branches, 
as discussed in Section 3.2. To further improve the performance, 
we employ SIMD instructions to reduce the number of 
instructions by executing the all-pairs comparisons within each 
block in parallel. Unlike the previous SIMD-based set intersection 
algorithms, we use SIMD instructions to filter out unnecessary 
scalar comparisons by comparing only a part of each element. 
This approach allows us to use SIMD instructions if the data type 
is not natively supported by the SIMD instruction set. For 
example, we can use processors without 64-bit integer 
comparisons in their SIMD instructions to intersect 64-bit integer 
arrays, e.g. 64-bit integers on POWER7+. Also it increases the 
data parallelism within one SIMD instruction by using only a part 
of the elements.  

For our SIMD algorithm, we used a multiple of four as the 
block size S (or Sa and Sb when using different block sizes for two 
arrays) so we could fully exploit the SIMD instructions of the 
processors, which can compare up to 16 or more data pairs of 1-
byte elements in parallel with one instruction. Our SIMD 
algorithm selects Sa = Sb = 4, if the size of the larger array Nb is 
less than twice the size of the smaller array Na. Otherwise, we use 

Table 2. Summary of the number of conditional branches without SIMD instructions using the same block size S for both input arrays 

Approach 

Number of hard-to-
predict if_greater  

conditional branches  
(may cause frequent 

mispredictions) 

Number of if_equal  
conditional branches 

(mispredictions  
infrequent) 

Total number of  
conditional branches 

Performance  
characteristics 

Naive algorithm 
Figure 1(a) up to Na+Nb - 1 up to Na+Nb - 1 up to 2 (Na+Nb - 1) - shorter path length 

- larger misprediction overhead 
Our algorithm 
Figure 1(b) 

up to (Na+Nb)/S - 1 
about S times less 

up to S·(Na+Nb) - S2 
about S times more 

up to (S2+1)·((Na+Nb)/S - 1) 
about (S2+1)/S times more

- longer path length 
- smaller misprediction overhead 

Na, Nb: the number of elements in the two input arrays A and B. S: the block size. 
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Sa = 4 and Sb = 8. As discussed in Section 3.2, the block size of 3 
is best for our scalar (non-SIMD) algorithm. However we can 
reduce the number of comparisons by using SIMD instructions, 
which justifies using a larger block size than used in the scalar 
algorithm. 

The vector sizes of the SIMD instruction sets of today’s 
processors, such as SSE/AVX of Xeon or VSX of POWER7+, are 
limited to 128 bits or 256 bits. This means we can execute only 
two or four comparisons of 64-bit elements in parallel. This 
parallelism is insufficient for an all-pairs comparison of large 
blocks in one step. To execute the all-pairs comparisons for larger 
blocks efficiently by increasing the parallelism available in one 
SIMD instruction, we use a parallel SIMD comparison, which 
compares only a part of each element, to filter out all of the values 
with no outputs before executing the all-pairs comparison using 
scalar comparisons. Unlike the previous SIMD approaches [8, 9], 
we did not fully replace the scalar comparisons with parallel 
SIMD comparisons. Because the number of matching pairs are 
typically much smaller than the number of input elements in 
practice, our filtering technique is effective to avoid most of the 
scalar comparisons and hence achieves higher overall 
performance. Zhou et al. [12] also used a similar idea of 
comparing only a part of each element to increase the data 
parallelism with one SIMD instruction for the nested loop join for 
unsorted arrays. 

We use two different types of checks to find a matching pair in 
the all-pairs comparison hierarchically. Figure 4 shows an 
overview of our byte-wise check and word-wise check using 
SIMD parallel compare instructions. In this example, we assume 
64-bit integers as the data type and an SIMD instruction set with 
128-bit registers. These checks execute only a partial comparison 
of each element. It means that if the check does not find any 
matching byte or word pair, there cannot be any matching element 
pairs (no false negatives). However, if the check finds a matching 
byte or word pair, the matching pair may still be a false positive. 
To reduce the number of false-positive matches, we hierarchically 
do two different types of checks. If the data type of each element 
is a 64-bit integer and the block size S is 4, our hierarchical 
filtering uses these steps: 

(1) Do a byte-wise check for A[i .. i+3] and B[j .. j+3] using the 
least significant byte, 

(2) Do a byte-wise check for A[i .. i+3] and B[j .. j+3] using the 
second-least significant byte, 

(3) Do a bit-wise AND operation for the results of Steps 1 and 2, 
(4) If every bit is zero in Step 3, then skip further checks because 

there is no matching pair (most frequent case), 
(5) Do a word-wise check for A[i .. i+1] and B[j .. j+1] using the 

third to sixth bytes,  
(6) Do a scalar check for Step-5 matches, and 
(7) Repeat Steps 5 and 6 for {A[i .. i+1] and B[j+2 .. j+3]}, 

{A[i+2 .. i+3] and B[j .. j+1]}, and {A[i+2 .. i+3] and B[j+2 .. 
j+3]}. 

Alternatively, we can replace Steps 5 to 7 with a count-
leading-zero instruction to identify the location of the matching 
pairs found in Step 3. When we use a 32-bit integer data type, we 
use the first to fourth bytes in Step 5. Figure 5 shows the 
pseudocode for the set intersection algorithm with our hierarchical 
filtering with SIMD.  

On Xeon, we can use the STTNI (pcmpestrm) instruction, 
which is unique to the Xeon processor, to execute the all-pair 
comparison efficiently. This instruction can execute the all-pair 
comparisons of eight 2-byte characters in one vector register 
against eight characters in another vector register with only one 
instruction. Thus we can implement Steps 1 to 3 with a block size 
of 8 by using the STTNI instruction very efficiently. Unlike 
Schlegel’s algorithm [8], our algorithm uses the STTNI 
instruction to filter out redundant comparisons and thus we do not 
need to limit the data types to the 8- or 16-bit integer supported 
by this instruction. When we use the STTNI in our SIMD 
algorithm, we use the popcnt instruction to identify the position of 
matching pair efficiently because the processor does not support 
the count-leading-zero instruction. We can get the position of the 
least significant non-zero bit in the result of STTNI, x, by 
popcnt((~x) & (x-1)). 

When the SIMD instruction set supports a wider vector, such 
as a 256-bit vector in AVX, one way to exploit the wider vector is 
doing multiple byte-wise checks at in once step. For example, we 
could do Steps 1 and 2 with just one parallel comparison using 
256-bit vector registers, with 16 pairs of 2-byte elements.  

By using our hierarchical filtering with SIMD instructions, we 
can avoid increasing the number of instructions and still gain the 
benefits of the reduced branch mispredictions. 

1 
2 
3 
4 
5 
6 
7 
8 
9 
10
11
12
13
14
15
16
17
18
19
20
21

while (1) {
// do byte-wise check: step (1)-(3) of the hierarchical check
compare_result = bytewise_check1(&A[Apos], &B[Bpos]) &

bytewise_check2(&A[Apos], &B[Bpos]);
if (!is_all_bit_zero(compare_result)) { // step (4)

// found a potential matching value
// do word-wise check and scalar check: step (5) - (7)
...

}
else if (A[Apos+3] > B[Bpos+3]) goto advanceB;
else goto advanceA;

advanceA:
Apos+=4;
if (Apos >= Aend) { break; } else { continue; }

advanceB:
Bpos+=4;
if (Bpos >= Bend) { break; } else { continue; }

advanceAB:
Apos+=4;  Bpos+=4;
if (Apos >= Aend || Bpos >= Bend) { break; }

}

Figure 5. Pseudocode of our SIMD algorithm for block size of 4x4.

input array A

input array B

A[i] A[i+1] A[i+2] A[i+3]

B[j] B[j+1] B[j+2] B[j+3]

compare each 
byte pair

vector register A
(128 bit)

vector register B
(128 bit)

Byte‐wise check
‐ check four elements
in parallel
‐ gather one byte from 
each element as 
illustrated and compare
each byte pair
‐ store result in 
a vector register as 
bitmask

input array A

input array B

A[i] A[i+1]

B[j] B[j+1]

compare each 
word pair

vector register A
(128 bit)

vector register B
(128 bit)

Word‐wise check
‐ check two elements
in parallel
‐ gather one word from 
each element as 
illustrated and compare
each word pair
‐ store result in 
a vector register as 
bitmask

Figure 4. Overview of byte-wise check and word-wise check. 
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4. EXPERIMENTAL RESULTS  
We implemented and evaluated our algorithm on Intel Xeon and 
IBM POWER7+ processors with and without using SIMD 
instructions. On Xeon, we also evaluated our SIMD algorithm 
implemented using the Xeon-only STTNI instruction. We 
implemented the program in C++ using SSE intrinsics on Xeon 
and Altivec intrinsics on POWER7+, but the algorithm is the 
same for both platforms. The POWER7+ system used for our 
evaluation was equipped with a 4.1-GHz POWER7+ processor. 
Redhat Enterprise Linux 6.4 was running on the system. We 
compiled all of the programs using gcc-4.8.3 included in the IBM 
Advance Toolkit with the –O3 option. We also evaluated the 
performance of our algorithm on a system equipped with two 2.9-
GHz Xeon E5-2690 (SandyBridge-EP), also with Redhat 
Enterprise Linux 6.4 as the OS, but the compiler on this system 
was gcc-4.8.2 (still with the –O3 option) on this Xeon system. We 
disabled the dynamic frequency scaling on both systems for more 
reproducible results. 

In the evaluation, we used both artificial and more realistic 
datasets. With the artificial datasets generated using a random 
number generator, we assessed the characteristics of our algorithm 
for three key parameters, (1) the ratio of the number of output 
elements over the input elements (selectivity), (2) the difference in 
the sizes of the two input arrays and (3) the total sizes of the input 
arrays. We define the selectivity as the number of output elements 
over the number of elements in the smaller input array. To create 
input datasets with a specified selectivity, we first generate a long 
enough array of (unsorted) random numbers without duplicates. 
We then trim two input arrays from this long array with the 
specified number of elements included in both arrays. Each array 
is then sorted and the pair is used as an input for experiments. We 
executed the measurements 16 times using different seeds for the 
random number generator and averaged the results. For the 
realistic datasets, we used arrays generated from Wikipedia data. 
We generated a list of document IDs for the articles that include a 
specified word. Then we executed the set intersection operations 
for up to eight arrays to emulate the set intersection operation for 
the multi-word queries in a query serving system. We also 
averaged the results from 16 measurements for the real-world data. 

We show the performance of our block-based algorithm with 
and without SIMD instructions and with various block sizes. The 

results shown as naive in the figures are the performance of the 
code shown in Figure 1(a). As already discussed, our algorithm is 
equivalent to the naive algorithm when the block size is 1. We 
also evaluated and compared the performances of the existing 
algorithms including the widely used std::set_intersection library 
method in the STL delivered with gcc, the branchless algorithm 
shown in Figure 2, a galloping algorithm [10] (as a popular 
binary-search-based algorithm), the two SIMD algorithms by 
Lemire et al. [9] (which are the V1 SIMD algorithm and an SIMD 
galloping algorithm), and Schlegel’s algorithm that uses the 
STTNI instruction of Xeon [8]. We picked these algorithms for 
the comparisons because, like our algorithm, they need no 
preprocessing. Among these evaluated algorithms, the two 
galloping algorithms based on binary searches are tailored for 
paired arrays of very different sizes. The other algorithms, 
including ours, are merge-based algorithms, which are known to 
work better when the sizes of the two inputs are similar.  

4.1 Performance Improvements from Our Algorithm 

Figure 6 compares the performance of the set intersection 
algorithms for two datasets of 256k integers based on a random 
number generator. The selectivity was set to zero. We used 32-bit 
integer as the data type for both Xeon and POWER7+ and also 
tested 64-bit integers for POWER7+.  

The results show that our block-based algorithm improved the 
performance over the naive merge-based algorithms (STL and 
naive) on both platforms even without using the SIMD 
instructions. When comparing how the block size affected the 
performance of our scalar algorithm on these two platforms, the 
best performance was when the block size was set to 3. On both 
platforms, the block sizes of 3 and 4 gave almost comparable 
performance. Our prediction based on the simple model discussed 
in Section 3.2, which predicts the block size of 3 is the best and 4 
is a close second best, seems reasonably accurate for both 
processors, although they have totally different instruction sets 
and implementations. The performance gains over the widely used 
STL were 2.1x on Xeon and 1.8x on POWER7+ with the block 
size of 3. Compared to our algorithm, the branchless algorithm 
did not yield large performance gains over STL, although it 
caused a smaller number of branch mispredictions than our 
algorithm (as shown later). 
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Figure 6. Performance for set intersection of 32-bit and 64-bit random integer arrays of 256k elements on Xeon and POWER7+. The 
selectivity was set to 0 (as the best case). The error bars show 95% confidence intervals. 
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When we used the SIMD instructions, there were additional 
performance improvements of about 2.5x over our scalar 
algorithm on both platforms, where the total improvement was 
4.8x to 5.2x better than STL for 32-bit integers and 4.2x better for 
64-bit integers. Although the V1 SIMD algorithm [9] also 
achieved performance improvements over the STL using SIMD 
instructions, the performance of our SIMD algorithm was 2.9x 
and 3.0x better than V1 algorithm on Xeon and POWER7+ 
respectively. Also, the V1 algorithm cannot support 64-bit integer 
on POWER7+ because POWER7+ does not have SIMD 
comparisons for 64-bit integers, while our SIMD algorithm 
achieved good performance improvements even for 64-bit integers 
on POWER7+. This is because the V1 algorithm uses the SIMD 
comparison for the entire elements to find the matching pairs, but 
our algorithm uses the SIMD comparisons to filter out 
unnecessary scalar comparisons by comparing only a part of each 
element. Schlegel's algorithm [8] did not achieve good 
performance for the artificial datasets generated by the random 
number generator. As the authors noted, Schlegel's algorithm is 
efficient only when the value domain is limited, so that a 
sufficient number of elements share matching values in their 
upper 16 bits, and this is not true for our artificial datasets.  

4.2 Microarchitectural Statistics  

For more insight into the improvements from our algorithm with 
and without SIMD instructions, Figure 7 displays some 
microarchitectural statistics of each algorithm for the artificial 
datasets in the 32-bit integer arrays as measured by the hardware 
performance monitors of the processors. We studied the branch 
misprediction rate (the number of branch mispredictions per input 
element), the CPI (cycles per instruction), and the path length (the 
number of instructions executed per input element).  

We begin with the microarchitectural statistics of our 
algorithm when not using the SIMD instructions. When 
comparing the statistics for our scalar algorithm and the naive 
algorithm, which is equivalent to our algorithm with a block size 
of 1, the branch mispredictions are reduced as intended by using 
the larger block sizes. The reduction in the branch mispredictions 
directly affected the overall CPI, which was improved when we 
used the larger block sizes. The improvements in CPI were 
especially significant when we enlarged the block size from 1 to 2 
and from 2 to 3. By using our scalar algorithm with the block size 
of 3, the branch mispredictions were reduced by more than 75% 
compared to the naive algorithm on both platforms, which was 
higher than the predicted reduction of 66%. 

In contrast, the path lengths increased steadily with the 
increasing block sizes. As a result of the reduced CPI and the 
increased path length, our best performance without SIMD 
instructions was with the block sizes of 3 and 4. When the block 
size increased beyond 4, the benefits of reduced branch 
mispredictions were not significant enough to compensate for the 
increased path length. This supports our belief that the best block 
size might be larger on processors with larger branch 
misprediction overhead. Since most of today’s high performance 
processors use pipelined execution units and typically have large 
branch misprediction overhead, we expect that our algorithm 
would be generally effective for most of the modern processors, 
not just the two tested processors. 

The branchless algorithm showed the smallest number of the 
branch mispredictions by totally replacing the hard-to-predict 
conditional branches with arithmetic operations. However, as 
shown in Figure 7, the path length of the branchless algorithm 
was larger than our algorithm. Due to this long path length, the 
branchless algorithm did not outperform our scalar algorithm in 

spite of its small number of branch mispredictions. Our algorithm 
achieved comparable or even better CPI than the branchless 
algorithm even with the larger numbers of branch mispredictions. 
This is due to our algorithm’s higher instruction-level parallelism, 
since all of the comparisons in the all-pair comparisons can be 
done in parallel on the hyperscalar processors. 

For our algorithm with the SIMD instructions, we observed 
significant improvements in the path lengths. Because the parallel 
comparisons of the SIMD instructions make the all-pairs 
comparisons of the costly scalar comparisons unnecessary in most 
cases, this greatly reduced the number of instructions executed, 
even with the large block size of 4. When we use STTNI on Xeon, 
our algorithm achieved further reductions in the path lengths. Due 
to the shorter path lengths, the SIMD instructions showed huge 
boosts in the overall performance.  
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Figure 7. Branch misprediction rate, CPI, and path length. 
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4.3 Performance For Two Arrays of Various Sizes 

In this section, we show how the differences in the sizes of the 
two input arrays and the total sizes of the input arrays affect the 
performance of each algorithm. 

Figure 8 compares the performances of scalar and SIMD 
algorithms for 32-bit integer arrays with changing ratios between 
the sizes of the two input arrays. When comparing our scalar 
algorithm with different block sizes, it worked best with the block 
size of Sa = Sb = 3 (we denote this block size as 3x3) when the 
sizes of two input arrays are the same (the leftmost point in the 
figure), while Sa = 2 and Sb = 4 (block size 2x4) worked better 
than the block size of 3x3 when the larger of the two input arrays 
was at least twice as large as the smaller array, as predicted in 
Section 3.2. For two input arrays with very different sizes, the 
numbers of branch mispredictions with merge-based algorithms, 
STL and ours, became much smaller than for the two arrays of the 
same size. When the sizes of the two input arrays are different, the 
hard-to-predict conditional branches to select which array’s 
pointer to advance, e.g. the branches shown in bold in Figure 1, 
become relatively easier to predict because the frequency of one 
branch direction (taken or not-taken) becomes much higher than 
the other direction on average. This means there were fewer 
opportunities to improve the performance with our scalar 
algorithm. As a result, the absolute performances became higher 
for these algorithms and also the benefits of the reduced branch 
mispredictions with our algorithm became smaller with the larger 
gaps between the sizes of the two arrays. However, even for the 
largest differences between the sizes of the two arrays, our scalar 
algorithm with the block size of 2x4 achieved higher performance 

than STL. The branchless algorithm does not incur the branch 
misprediction overhead and hence its performance was not 
affected by the size ratio of the two arrays. As shown in many 
previous studies, when the ratio of the input sizes exceeds an 
order of magnitude, binary-search-based algorithms, such as the 
galloping algorithm in the figure, outperform the merge-based 
algorithms, including our algorithm.  

For our SIMD algorithms, the block size of 4x8 yielded better 
performance than the block size of 4x4 (or the block size of 8x8 
with STTNI on Xeon) when the sizes of the two arrays are 
significantly different, while the block size of 4x4 gave the best 
performance when the two arrays are of the same size (the 
leftmost point in the figure). When the ratio of the input array 
sizes is very large, the V1 SIMD algorithm and the SIMD 
galloping algorithm [9] had better performances than our SIMD 
algorithm with the block size of 4x4 or 4x8. The V1 algorithm is a 
merge-based algorithm and is very similar to our algorithm with a 
block size of 1x8 implemented with SIMD instructions. Although 
this block size gave better performance for two arrays with very 
different sizes than 4x4 or 4x8, the binary-search-based galloping 
algorithm implemented with SIMD outperformed any merge-
based algorithms we tested with such inputs. 

Based on these observations, we combined our block-based 
algorithm with the galloping algorithm, so as to improve the 
performance for datasets with very different sizes. We select the 
best algorithm based on the ratio of the sizes of the two input 
arrays. When using SIMD, we use the SIMD galloping algorithm 
when the ratio of input sizes is larger than 32. Otherwise we use 
our new SIMD algorithm. We use a block size setting of 4x8 
when the ratio of input sizes is larger than 2.0, and a block size 
setting of 4x4 when the difference is smaller than this threshold. 
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Figure 8. Performance of scalar and SIMD algorithms for intersecting 32-bit integer arrays on Xeon and POWER7+ when the sizes of the 
two input arrays are different. The selectivity was set to 0. 
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For the scalar algorithm, we used the (non-SIMD) galloping 
algorithm if the ratio is larger than 32. Otherwise, we use our 
block-based algorithm. The block size setting is 2x4 if the ratio is 
larger than 2.0 or otherwise the block size setting is 3x3. 

Figure 9 shows how the total size of the two input arrays 
affects the performance. We used 32-bit integer arrays and the 
selectivity was zero. On both platforms, we observed small 
performance degradations when the total size exceeded the last-
level (L3) cache of the processor because of the stall cycles to 
wait for data to be loaded from the main memory. The effects of 
the stall cycles due to the cache misses were not significant, 
because the memory accesses in the set intersection are almost 

sequential and this means the hardware prefetcher of the 
processors worked well to hide that latency by automatically 
reading the next data into the cache. The performance advantages 
of our scalar and SIMD algorithms over the other algorithms, the 
STL and V1 SIMD algorithms, were unchanged, even with the 
largest datasets we tested. On Xeon, the performance of four out 
of five tested algorithms was significantly improved when the 
input size was very small (left side of the figure). This was caused 
by very low branch misprediction overhead rather than the 
reduced cache miss stall cycles. The Xeon seems to employ a 
branch prediction mechanism that is very effective only when the 
input size is very small. POWER7+ did not exhibit this behavior. 
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Figure 9. Performance for intersecting 32-bit integer arrays of various sizes. The selectivity was set to 0. 
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4.4 Adaptive Fall Back Based on Selectivity to Avoid 
Performance Degradations 

Figure 10 shows how the selectivity affected the performance of 
our algorithm using 32-bit integers based on a random number 
generator with various selectivity values. Our algorithm worked 
best when the selectivity was small, which is true for many real-
world applications. For example, Ding and König [2] reported 
that the selectivity was less than 10% for 94% of the queries and 
less than 1% for 76% of the queries in the 10,000 most frequent 
queries in a shopping portal site. For this frequent situation, our 
algorithm worked well, especially with the SIMD instructions. 

However, the performance of our algorithm was worse than 
STL when the selectivity was high. To avoid these performance 
degradations, we added an adaptive fallback mechanism to our 
algorithm. We start execution with our SIMD algorithm, but with 
a periodic runtime check of the selectivity that may trigger the 
fallback mechanism. We calculate the selectivity after each 1,024 
output elements by checking the numbers of input elements 
processed to generate these output elements. When the numbers 
of input elements is larger than the threshold in at least one array, 
we fall back to another algorithm. This insures the overhead 
caused by the runtime check is not significant when there are few 
output elements. An adaptive fallback using a runtime check is a 
standard heuristic technique to avoid worst case performance in 
many algorithms. For example, introsort [19] used in the STL’s 
std::sort library method uses quicksort with adaptive fallback to 
heapsort to avoid the O(N2) worst-case performance of quicksort. 

From the results shown in Figure 10, for two input arrays with 
comparable sizes, we start execution with our SIMD algorithm 
using the block size setting of 4x4 (or 8x8 if we use STTNI on 
Xeon). We switch to the STL when the selectivity is higher than 
65%. When the selectivity is higher than 15% but lower than 65%, 
we use our scalar algorithm with the block size setting of 3x3. We 
also execute a periodic check in our scalar algorithm that may fall 
back to the STL algorithm. If one of the input arrays is more than 
twice as large as the other, we start execution with our SIMD 
algorithm using the block size setting of 4x8 and fall back to our 
scalar algorithm with the block size setting of 2x4 if the selectivity 
becomes higher than 35%. We do not switch to STL because out 
scalar algorithm consistently outperformed STL in Figure 10. We 
summarize how we select the algorithm and the block size based 
on the size of two input arrays and the selectivity with and 
without using SIMD instructions in Figure 11. We call these 
overall algorithms the adaptive SIMD algorithm and the adaptive 
scalar algorithm. Figure 10 shows that our fallback mechanisms 
selected the appropriate algorithm for each selectivity.  

4.5 Performance of our algorithm with realistic datasets 

Finally, we evaluated the performance of our algorithms for 
realistic datasets generated from a Wikipedia database dump to 
emulate the set intersection operation in a query serving system. 
We compare the performance of set intersections of multiple 
arrays to emulate multi-word queries. Here we compare our SIMD 
and scalar algorithm against a combination of existing SIMD 
algorithms, the V1 SIMD algorithm with SIMD galloping [9]. We 
switched between these two algorithms based on the difference in 
the two input arrays and we used 1:50 as the selection threshold 
based on their results. We also compared the performance of our 
SIMD algorithm with the STTNI instruction against Schlegel’s 
algorithm [8], which also exploits the STTNI, combined with 
SIMD galloping on Xeon. As a baseline, we also measured a 
combination of STL (as a representative merge-based algorithm) 
and a scalar galloping algorithm (as a binary-search-based 
algorithm). We prepared a list of document IDs for 16 search 

words and generated 2-word, 3-word, 6-word, and 8-word queries 
by randomly selecting the keywords from the 16 prepared words. 
The size of the list for each keyword ranged from 10,733 elements 
to 528,974 elements. For each class, we generated 100 queries 
and measured the total execution time of these queries. For 
intersecting multiple words, we repeatedly picked the two smallest 
sets and did set intersection for the two arrays, a technique that is 
frequently described in the literature. 

Figure 12 shows the relative performance of each algorithm 
over the baseline (STL + galloping). On both platforms, our 
SIMD algorithm more than doubled the baseline performance. 
The V1 SIMD + SIMD galloping algorithm also accelerated the 
operation by exploiting SIMD instructions, but its gain was about 
60% on both platforms and hence our SIMD algorithm 
outperformed V1 SIMD + SIMD galloping by from 24% (3-word 
queries on Xeon) to 44% (8-word queries on Xeon). Although V1 
SIMD + SIMD galloping and our SIMD algorithm use the same 
SIMD galloping algorithm when intersecting two arrays with very 
different sizes, our algorithm achieved higher performance for 
arrays with similar sizes and this mattered for the overall 
performance. On Xeon, our SIMD algorithm can achieve even 
higher performance with STTNI. Schelegel’s algorithm also 
accelerated the set intersection using the STTNI instruction, while 
the algorithm performed much worse than STL for the artificial 
dataset generated by the random number generator, as shown in 
Figure 6. This is because the value domain for the Wikipedia 
dataset was smaller than the artificial datasets and hence more 
elements shared the same values in their upper 16 bits. This is 
important for Schelegel’s algorithm because they use STTNI to 
find matching pairs in the lower 16 bits within the elements that 
share the same value in the upper 16 bits. However, the 
performances of Schelegel’s algorithm were not as good as our 
SIMD algorithm or the V1 SIMD algorithm. 

Our scalar algorithm improved the performance by about 50% 
over the baseline in spite of not using the SIMD instructions. The 
performance of STL alone was significantly lower than the other 
algorithms because STL, or merge-based-algorithms in general, 
performed poorly when the sizes of two arrays are quite different 
and this configuration is known to be important for intersecting 
multiple sets.  
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Figure 11. Overall scheme of our adaptive algorithm. 
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5. SUMMARY 
This paper described our new highly efficient algorithm for set 
intersections on sorted arrays on modern processors. Our 
approach drastically reduces the number of branch mispredictions 
and efficiently exploits the SIMD instructions. Our algorithm is 
not only efficient but also portable, easy to implement, and 
requires no preprocessing. Our results show that our simple and 
portable scalar algorithm improved the performance of the 
important set intersection operation by reducing the branch 
overhead. The use of the SIMD instructions in our algorithm gave 
additional performance improvements by reducing the path length 
significantly for many datasets. We believe our algorithm will be 
quite effective to improve the performance of the set intersection 
operations for many workloads. 
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Figure 12. Performance of set intersection algorithms using the datasets generated from Wikipedia database. 
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