
Large-Scale Distributed Graph Computing Systems:
An Experimental Evaluation

Yi Lu, James Cheng, Da Yan, Huanhuan Wu
Department of Computer Science and Engineering, The Chinese University of Hong Kong

{ylu, jcheng, yanda, hhwu}@cse.cuhk.edu.hk

ABSTRACT
With the prevalence of graph data in real-world applications (e.g.,
social networks, mobile phone networks, web graphs, etc.) and
their ever-increasing size, many distributed graph computing sys-
tems have been developed in recent years to process and analyze
massive graphs. Most of these systems adopt Pregel’s vertex-centric
computing model, while various techniques have been proposed to
address the limitations in the Pregel framework. However, there is a
lack of comprehensive comparative analysis to evaluate the perfor-
mance of various systems and their techniques, making it difficult
for users to choose the best system for their applications. We con-
duct extensive experiments to evaluate the performance of existing
systems on graphs with different characteristics and on algorithms
with different design logic. We also study the effectiveness of var-
ious techniques adopted in existing systems, and the scalability of
the systems. The results of our study reveal the strengths and limi-
tations of existing systems, and provide valuable insights for users,
researchers and system developers.

1. INTRODUCTION
Many distributed graph computing systems have been proposed

to conduct all kinds of data processing and data analytics in massive
graphs, including Pregel [15], Giraph [2], GraphLab [13], Power-
Graph [7], GraphX [24], Mizan [11], GPS [19], Giraph++ [23],
Pregelix [4], Pregel+ [26], and Blogel [25]. These systems are all
built on top of a shared-nothing architecture, which makes big data
analytics flexible even on a cluster of low-cost commodity PCs.

The majority of the systems adopt a “think like a vertex” vertex-
centric computing model [15], where each vertex in a graph re-
ceives messages from its incoming neighbors, executes the user-
specified computation and updates its value, and then sends mes-
sages to its outgoing neighbors. The vertex-centric computing model
makes the design and implementation of scalable distributed algo-
rithms simple for ordinary users, while the system handles all the
low-level details. There are also a few extensions to the vertex-
centric model, e.g., the edge-centric model in PowerGraph [7] and
the block-centric models in [23, 25], to address various limitations

This work is licensed under the Creative Commons Attribution-
NonCommercial-NoDerivs 3.0 Unported License. To view a copy of this li-
cense, visit http://creativecommons.org/licenses/by-nc-nd/3.0/. Obtain per-
mission prior to any use beyond those covered by the license. Contact
copyright holder by emailing info@vldb.org. Articles from this volume
were invited to present their results at the 41st International Conference on
Very Large Data Bases, August 31st - September 4th 2015, Kohala Coast,
Hawaii.
Proceedings of the VLDB Endowment, Vol. 8, No. 3
Copyright 2014 VLDB Endowment 2150-8097/14/11.

in the vertex-centric systems. However, these models also suffer
from other problems such as longer graph partitioning time.

While many distributed graph computing systems have emerged
recently, it is unclear to most users and researchers what the strengths
and limitations of each system are and there is a lack of overview
on how these systems compare with each other. Thus, it is difficult
for users to decide which system is better for their applications, or
for researchers and system developers to further improve the per-
formance of existing systems or design new systems.

In this paper, we first give a survey on existing distributed graph
computing systems in Section 3. Among these systems, we conduct
comprehensive experimental evaluation on Giraph [2], GraphLab/
PowerGraph [13, 7], GPS [19], Pregel+ [26], and GraphChi [12].
We do not conduct experiments on other existing systems for var-
ious reasons given in Section 3.7. In Section 4, we discuss a set
of graph algorithms that are popularly used to evaluate the perfor-
mance of various systems in existing works, and we classify them
into five categories where each category represents a different logic
of distributed algorithm design. Then, in Section 5, we conduct
a comprehensive analysis on the performance of various systems
focusing on the following key objectives:

• To evaluate the performance of various systems in processing
large graphs with different characteristics, including skewed
(e.g., power-law) degree distribution, small diameter (e.g.,
small-world), large diameter, (relatively) high average de-
gree, and random graphs.

• To evaluate the performance of various systems with respect
to different categories of algorithms presented in Section 4.

• To study the effects of individual techniques used in various
systems on their performance, hence analyzing the strengths
and limitations of each system. The techniques to be exam-
ined include message combiner, mirroring, dynamic reparti-
tioning, request-respond API, asynchronous and synchronous
computation, and support for graph mutation. We also study
the effects of a few algorithmic optimizations [20] and com-
pare with GraphChi [12] as a single machine baseline.

• To test the scalability of various systems by varying the num-
ber of machines and CPU cores, the number of vertices and
edges in graphs with different degree distributions.

Related work. Guo et al. [8] proposed a benchmarking suite to
compare the performance of various systems for distributed graph
computation. Their benchmark defines a comprehensive evalua-
tion process to select representative metrics, datasets and algorithm
categories. While this is a pioneering work in benchmarking dis-
tributed graph computing systems, the authors also admit that their

281

M2

vj

…

…

M1

u1

u2

ui

…

…

…

(a) Without Req-Resp API (b) With Req-Resp API

…

…

M2

vj

…

…

M1

u1

u2

ui

…

…

…

…

…

vj

Figure 1: Illustration of Req-Resp API

Computing
mode

Message
passing

Data
pushing/pulling Skewed workload balancing Multi-

threading
Combiner
support

Graph
mutation

Giraph Sync Yes Pushing
 Yes Yes Yes

GPS Sync Yes Pushing Large adjacency list partitioning
+ Dynamic repartitioning No No Only edges

GraphLab Sync/Async Only
neighbors Pushing/Pulling Vertex cut Yes No No deletion

Pregel+ Sync Yes Pushing+Pulling Mirroring
+ Request-respond API No Yes Yes

−

Figure 2: Systems overview

method has limitations in terms of selection of metrics and algo-
rithmic coverage. Satish et al. [21] evaluated the performance of a
number of systems, both distributed and single-machine, and iden-
tified the potential performance gap between these systems and the
hand-optimized baseline code (whose performance is close to hard-
ware limits). The results were then used to provide insights on
how the systems may be improved to better utilize hardware ca-
pacity (e.g., memory/network bandwidth). Very recently (after the
submission of our paper), we noticed the work by Han et al. [9],
which evaluated four systems for their performance and useabil-
ity, and identified potential areas of improvement in each system.
Although both [9] and our work evaluated Giraph, GraphLab and
GPS, due to different focus some findings are different. For ex-
ample, the performance results of GPS we obtained are very dif-
ferent as we found that GPS’s large fixed overhead can be easily
eliminated by setting its polling time appropriately. We also eval-
uated a new system, Pregel+, which records better performance in
many aspects, while [9] present results (e.g., memory usage, net-
work I/O) that we do not report. Compared with [8] and [21], we
focus on the performance evaluation of vertex-centric distributed
graph computing systems, among which, only GraphLab and Gi-
raph were evaluated in [8] and [21]. We also used more algorithms
and among them, only three were used in [8], [9] and [21]. Besides
large real graphs, we also used larger synthetic random and power-
law graphs to analyze the scalability of the systems. We studied
the effects of different system optimization techniques, as well as
algorithmic optimizations [20], on the performance of the systems,
which were not studied in [8], [9] and [21]. We analyzed in greater
details the differences between GraphLab’s asynchronous and syn-
chronous modes. We also compared with GraphChi [12] as a single
machine baseline. Thus, though [8], [9] and [21] made significant
contributions in the evaluation of graph-computing systems, we be-
lieve that our work has also made substantial new contributions.

2. PRELIMINARY
We first define some basic graph notations. Let G = (V,E) be

a graph, where V and E are the sets of vertices and edges of G. If
G is undirected, we denote the set of neighbors of a vertex v ∈ V
by Γ(v). If G is directed, we denote the set of in-neighbors (out-
neighbors) of a vertex v by Γin(v) (Γout(v)). Each vertex v ∈ V
has a unique integer ID, denoted by id(v). The diameter of G is
denoted by δ(G), or simply δ when G is clear from the context.

The distributed graph computing systems evaluated in this pa-
per are all based on a shared-nothing architecture, where data are
stored in a distributed file system (DFS), e.g., Hadoop’s DFS. The
input graph is stored as a distributed file in a DFS, where each line
records a vertex and its adjacency list. A distributed graph comput-
ing system consists of a cluster of k workers, where each workerwi

keeps and processes a batch of vertices in its main memory. Here,
“worker” is a general term for a computing unit, and a machine can
have multiple workers in the form of threads/processes.

A job is processed by a graph computing system in three phases
as follows. (1)Loading: each worker loads a portion of vertices

from the DFS into its main-memory; then workers exchange ver-
tices through the network (e.g., by hashing on vertex ID as in Pregel)
so that each worker wi finally keeps all and only those vertices that
are assigned (i.e., hashed) to wi. (2)Iterative computing: in each
iteration, each worker processes its own portion of vertices sequen-
tially, while different workers run in parallel and exchange mes-
sages. (3)Dumping: each worker writes the output of all its pro-
cessed vertices to the DFS. Most existing graph-parallel systems
follow the above three-phase procedure.

3. A SURVEY ON EXISTING SYSTEMS
We briefly discuss existing distributed graph computing systems,

and highlight their distinguished features.

3.1 Pregel
Pregel [15] is implemented in C/C++ and designed based on

the bulk synchronous parallel (BSP) model. It distributes vertices
to different machines in a cluster, where each vertex v is associ-
ated with the set of v’s neighbors. A program in Pregel imple-
ments a user-defined compute() function and proceeds in iterations
(called supersteps). In each superstep, the program calls compute()
for each active vertex. The compute() function performs the user-
specified task for a vertex v, such as processing v’s incoming mes-
sages (sent in the previous superstep), sending messages to other
vertices (to be received in the next superstep), and making v vote
to halt. A halted vertex is reactivated if it receives a message in
a subsequent superstep. The program terminates when all vertices
vote to halt and there is no pending message for the next superstep.
Message Combiner. If x messages are to be sent from a machine
Mi to a vertex v in a machineMj , and some commutative and asso-
ciative operation is to be applied to the x messages in v.compute()
when they are received by v, then these x messages can be first
combined into a single message which is then sent from Mi to v in
Mj . To achieve this goal, Pregel allows users to implement a com-
bine() function to specify how to combine messages that are sent
from machine Mi to the same vertex v in machine Mj .

3.2 Giraph
Giraph [2] is implemented in Java by Yahoo! as an open source

of Google’s Pregel. Later, Facebook built its Graph Search services
upon Giraph, and further improved the performance of Giraph by
introducing the following optimizations:
Multi-threading. Facebook adds multithreading to graph load-
ing, dumping, and computation. In CPU bound applications, a
speedup near-linear with the number of processors can be observed
by multi-threading.
Memory optimization. The initial release of Giraph by Yahoo!
requires high memory consumption, since all data types are stored
as separate Java objects. A large number of Java objects greatly
degrades the performance of Java Virtual Machine (JVM). Since
object deletion is handled by Java’s Garbage Collector (GC), if a
machine maintains a large number of vertex/edge objects in main

282

memory, GC needs to track a lot of objects and the overhead can
severely degrade the system performance. To decrease the num-
ber of objects being maintained, Java-based systems maintain ver-
tices in main memory in their binary representation. Thus, the later
Giraph system organizes vertices and messages as main memory
pages, where each page is simply a byte array object that holds the
binary representation of many vertices.

3.3 GPS
GPS [19] is another open source Java implementation of Google’s

Pregel, with additional features. GPS extends the Pregel API to in-
clude an additional function, master.compute(), which provides the
ability to access to all of the global aggregated values, and store
global values which are transparent to the vertices. The global ag-
gregated values can be updated before they are broadcast to the
workers. Furthermore, GPS also introduces the following two tech-
niques to boost system performance:
Large adjacency-list partitioning (LALP). When LALP is ap-
plied, adjacency lists of high-degree vertices are not stored in a
single worker, but they are rather partitioned across workers. For
each partition of the adjacency list of a high-degree vertex, a mir-
ror of the vertex is created in the worker that keeps the partition.
When a high-degree vertex broadcasts a message to its neighbors,
at most one message is sent to its mirror at each machine. Then,
the message is forwarded to all its neighbors in the partition of the
adjacency list of the high-degree vertex.
Dynamic repartitioning (DP). DP repartitions the graph dynam-
ically according to the workload during the execution process, in
order to balance the workload among all workers and reduce the
number of messages sent over the network. However, DP also in-
troduces extra network workload to reassign vertices among work-
ers, and the overhead can exceed the benefits gained.

3.4 Pregel+
Pregel+ [26] is implemented in C/C++ and each worker is simply

an MPI process. In addition to the basic techniques provided in ex-
isting Pregel-like systems, Pregel+ introduces two new techniques
to further reduce the number of messages.
Mirroring. Mirroring is similar to LALP in GPS; but Pregel+ in-
tegrates both mirroring and message combiner, and the Pregel+
system selects vertices for mirroring based on a cost model that
analyzes the tradeoff between mirroring and message combining.
Thus, the integration of mirroring and message combiner in Pregel+
leads to significantly more effective message reduction than apply-
ing combiner alone. Pregel+ also supports an additional API that
allows mirroring to be used in applications where message values
depend on the edge fields (e.g., single-source shortest path compu-
tation), which is not supported by LALP in GPS.
Request-Respond API. This API allows a vertex u to request an-
other vertex v for a value, a(v), and the requested value will be
available to u in the next iteration. The technique can effectively
reduce the number of messages passed, since all requests from a
machine to the same target vertex v are merged into one request
(e.g., as Figure 1 shows, requests from all ui in machine M1 are
merged into one request sent to vj in machine M2).

3.5 GraphLab and PowerGraph
GraphLab 2.2. (which includes PowerGraph) is implemented in

C/C++. Unlike Pregel’s synchronous data-pushing model and mes-
sage passing paradigm, GraphLab [13] adopts an Gather, Apply,
Scatter (GAS) data-pulling model and shared memory abstraction.
A program in GraphLab implements a user-defined GAS function

for each vertex. To avoid the imbalanced workload caused by high-
degree vertices in power-law graphs, a recent version of GraphLab,
called PowerGraph [7], introduces a new graph partition scheme to
handle the challenges of power-law graphs as follows.

In the Gather phase, each active vertex collects information from
adjacent vertices and edges, and performs a generalized sum oper-
ation over them. This generalized sum operation must be commu-
tative and associative, ranging from a numerical sum to the union
of the collected information. In the Apply phase, each active vertex
can update its value based on the result of the generalized sum and
its old value. Finally, in the Scatter phase, each active vertex can
activate the adjacent vertices. However, unlike Pregel’s message
passing paradigm, GraphLab can only gather information from ad-
jacent edges and scatter information to them, which limits the func-
tionality of the GAS model. For example, the S-V algorithm to be
described in Section 4.1 is hard to be implemented in GraphLab.

GraphLab maintains a global scheduler, and workers fetch ver-
tices from the scheduler for processing, possibly adding the neigh-
bors of these vertices into the scheduler. The GraphLab engine
executes the user-defined GAS function on each active vertex until
no vertex remains in the scheduler. The GraphLab scheduler de-
termines the order to activate vertices, which enables GraphLab to
provide with both synchronous and asynchronous scheduling.
Asynchronous execution. Unlike the behaviors in a synchronous
model, changes made to each vertex and edge during the Apply
phase are committed immediately and visible to subsequent com-
putation. Asynchronous execution can accelerate the convergence
of some algorithms. For example, the PageRank algorithm can con-
verge much faster with asynchronous execution. However, asyn-
chronous execution may incur extra cost due to locking/unlocking
and intertwined computation/communication.
Synchronous execution. GraphLab also provides a synchronous
scheduler, which executes the GAS phases in order as an iteration.
The GAS function of each active vertex runs synchronously with
a barrier at the end of each iteration. Changes made to the vertex
value is committed at the end of each iteration. Vertices activated
in each iteration are executed in the subsequent iteration.
Vertex-cut partitioning. PowerGraph partitions an input graph by
cutting the vertex set, so that the edges of a high-degree vertex are
handled by multiple workers. As a tradeoff, vertices are replicated
across workers, and communication among workers are required to
guarantee that the vertex value on each replica remains consistent.

3.6 GraphChi
GraphChi [12] is implemented in C/C++, which is a single-machine

system that can process massive graphs from secondary storage. In
addition to the vertex-centric model, GraphChi introduces two new
techniques to process large graphs in a single PC.
Out-of-core computation. An innovative out-of-core data struc-
ture is used to reduce the amount of random access to secondary
storage. The parallel sliding windows algorithm partitions the in-
put graph into subgraphs, called shards. In each shard, edges are
sorted by the source IDs and loaded into memory sequentially.
Selective scheduling. GraphChi supports selective scheduling in
order to converge faster on some parts of the graph, particularly
when the change on values is significant. Each vertex in the up-
date() function (similar to apply() in GraphLab) can add its neigh-
bors to the scheduler and conduct selective computation.

3.7 Other Systems
In this paper, we conduct experimental evaluation on Giraph [2],

GraphLab/PowerGraph [13, 7], GPS [19], and Pregel+ [26], which

283

we have discussed in Sections 3.2-3.5 and we also give an overview
of various features supported by these systems in Figure 2. There
are also a number of other systems that we do not evaluate experi-
mentally, which we explain in this subsection.

Mizan [11] is a C++ optimized Pregel system that supports dy-
namic load balancing and vertex migration, based on runtime mon-
itoring of vertices to optimize the end-to-end computation. How-
ever, Mizan performs pre-partitioning separately which takes much
longer compared with Giraph and GPS, and the overhead of pre-
partitioning can exceed the benefits. For this reason, we could not
run Mizan on some large graphs used in this paper and hence we
do not include it in our experimental evaluation.

GraphX [24] is a graph parallel system, and it supports GraphLab
and Pregel abstractions. Since GraphX is built upon the more gen-
eral data parallel Spark system [28], the end-to-end performance
of pipelined jobs can be superior when they are all implemented
in Spark. Consider the task of first extracting the link graph from
Wikipedia, and then computing PageRank on the link graph. Com-
pared with implementing and running both jobs in Spark (with the
second job done by GraphX), the traditional method of running the
first (second) job by Hadoop (by a vertex-centric system) is more
costly since it requires that the output of the first job be dumped
to HDFS and reloaded by the second job. However, if only graph
computation time is considered, GraphX is generally slower than
GraphLab as reported in [24].

4. ALGORITHMS
We use seven graph algorithms, which are classified into five cat-

egories based on the behaviors of the compute function in Pregel-
like systems and the GAS function in Graphlab and PowerGraph.
Always-active. An algorithm is always-active if every vertex in
every superstep sends messages to all its neighbors. Thus, the dis-
tribution of messages sent/received by all active vertices is the same
across supersteps, i.e., the communication workload of every ma-
chine remains the same. Typical examples include PageRank [15]
in synchronous computation and Diameter Estimation [10].
GraphLab’s async algorithms. This category is specifically for
algorithms that are designed to run on GraphLab’s (also Power-
Graph’s) asynchronous computation model. Such algorithms add
vertices to the scheduler, and then workers fetch vertices from the
scheduler and pull data from neighboring edges and vertices for
processing. The asynchronous execution can accelerate the conver-
gence of algorithms such as the asynchronous PageRank and Graph
Coloring [20] algorithms for GraphLab and PowerGraph.
Graph traversal. Graph traversal is a category of graph algorithms
for which there is a set of starting vertices, and other vertices are in-
volved in the computation based on whether they receive messages
from their in-neighbors. Attribute values of vertices are updated
and messages are propagated along the edges as the algorithm tra-
verses the graph. Algorithms such as HashMin [18] and Single-
Source Shortest Paths [15] are in this category.
Multi-phase. For this category of algorithms, the entire computa-
tion can be divided into a number of phases, and each phase con-
sists of some supersteps. For example, in Bipartite Maximal Match-
ing [1], there are four supersteps to simulate a three-way handshake
in each phase. The SV [22] algorithm also falls into this category,
since it simulates tree hooking and star hooking in each phase.
Graph mutation. Algorithms in this category need to change the
topological structure of the input graph through edges and/or ver-
tices addition and/or deletion. For example, the greedy graph col-
oring algorithm that removes a maximal independent set from the

current graph iteratively falls into this category. Systems that do not
support edge deletion, such as GraphLab and PowerGraph, cannot
straightforwardly support these algorithms.

4.1 Algorithm Description
We now describe the seven graph algorithms.

4.1.1 PageRank
Given a directed web graph G = (V,E), where each vertex

(page) v links to a list of pages Γout(v), the problem is to compute
the PageRank value, pr(v), of each v ∈ V .

The typical PageRank algorithm [15] for Pregel-like systems works
as follows. Each vertex v keeps two fields: pr(v) and Γout(v). In
superstep 0, each vertex v initializes pr(v) = 1 and sends each out-
neighbor of v a message with a value of pr(v)/|Γout(v)|. In super-
step i (i > 0), each vertex v sums up the received PageRank values,
denoted by sum, and computes pr(v) = 0.15 + 0.85 × sum. It
then distributes pr(v)/|Γout(v)| to each of its out-neighbors. This
process terminates after a fixed number of supersteps or the PageR-
ank distribution converges.

The asynchronous version of PageRank for GraphLab and Pow-
erGraph, named as Async-PageRank, works as follows. Each ver-
tex v keeps three fields: pr(v), Γin(v) and Γout(v), where pr(v) is
initialized as 1. We define the generalized sum in the GAS function
as a numerical sum. Then for each active vertex v fetched from the
scheduler, in the Gather phase, the values pr(u)/|Γout(u)| for all
neighbors u ∈ Γin(v) are gathered and summed up as sum. In the
Apply phase, we update pr(v) = 0.15+0.85×sum. In the Scatter
phase, if the change in value of pr(v) is greater than ε (typically, ε
is set to 0.01), we add each vertex u ∈ Γout(v) to the scheduler.
This process terminates after a fixed number of supersteps.

4.1.2 Diameter Estimation
Given a graph G = (V,E), we denote the distance between u

and v in G by d(u, v). We define the neighborhood function N(h)
for h = 0, 1, . . . ,∞ as the number of pairs of vertices that can
reach each other in h hops or less.

Each vertex v keeps two fields: N [h; v] and Γout(v), where
N [h; v] indicates the set of vertices v can reach in h hops. In super-
step 0, each vertex v sets N [0; v] to {v}, and broadcasts N [0; v] to
each u ∈ Γ(v). In superstep i (i > 0), each vertex v receives mes-
sages from its neighbors and set the value ofN [i; v] as the union of
N [i− 1; v] and N [i− 1;u] for all u ∈ Γ(v). A global aggregator
is used to compute the total pairs of vertices, denoted by N(i), that
can be reached from each other after superstep i. The algorithm
terminates if the following stop condition is true: in superstep i,
N(i) is less than or equal to (1 + ε) ∗N(i− 1).

To handle the large volume of each vertex’s neighborhood in-
formation, i.e., N [h; v], the algorithm applies the idea of Flajolet-
Martin [5], which was also used in the ANF algorithm [17].

4.1.3 Single-Source Shortest Paths (SSSP)
Let G=(V,E) be a weighted graph, where each edge (u, v)∈E

has length `(u, v). The length of a path P is equal to the sum of the
length of all the edges on P . Given a source s ∈ V , the SSSP algo-
rithm computes a shortest path from s to every other vertex v ∈ V ,
denoted by SP (s, v), as follows. Each vertex v keeps two fields:
〈prev(v), dist(v)〉 and Γout(v), where prev(v) is the vertex pre-
ceding v on SP (s, v) and dist(v) is the length of SP (s, v). Each
out-neighbor u ∈ Γout(v) is also associated with `(v, u).

Initially, only s is active with dist(s) = 0, and dist(v) =∞ for
any other vertex v. In superstep 0, s sends a message 〈s, dist(s) +
`(s, u)〉 to each u ∈ Γout(s), and votes to halt. In superstep i

284

(i > 0), if a vertex v receives messages 〈w, d(w)〉 from any of
v’s in-neighbor w, then v finds the in-neighbor w∗ such that d(w∗)
is the smallest among all d(w) received. If d(w∗) < dist(v), v
updates 〈prev(v), dist(v)〉 = 〈w∗, d(w∗)〉, and sends a message
〈v, dist(v) + `(v, u)〉 to each out-neighbor u ∈ Γout(v). Finally,
v votes to halt.

4.1.4 HashMin
Assume each CC C in an undirected graph G has a unique ID,

and for each vertex v in C, let cc(v) be the ID of C. Given G,
HashMin [18] computes cc(v) for each v in G, and hence all CCs
for G, as all vertices with the same cc(v) form a CC.

Each vertex v keeps two fields: min(v) and Γ(v), wheremin(v)
is initialized as the ID of the vertex itself. HashMin broadcasts the
smallest vertex ID seen so far by each vertex v as follows. In super-
step 0, each vertex v setsmin(v) to be the smallest ID among id(v)
and id(u) of all u ∈ Γ(v), broadcasts min(v) to all its neighbors,
and votes to halt. In superstep i (i > 0), each vertex v receives
messages from its neighbors; let min∗ be the smallest ID received,
if min∗ < min(v), v sets min(v) = min∗ and broadcasts min∗

to its neighbors. All vertices vote to halt at the end of a superstep.
When the process converges, min(v) = cc(v) for all v.

4.1.5 Shiloach-Vishkin’s Algorithm (SV)
The HashMin algorithm requiresO(δ) supersteps for computing

CCs, which is too slow for graphs with a large diameter, such as
spatial networks where δ ≈ O(

√
n). The SV algorithm [22] can

be translated into a Pregel algorithm which requires O(logn) su-
persteps [27], which can be much more efficient than HashMin for
computing CCs in general graphs.

The SV algorithm groups vertices into a forest of trees, so that
all vertices in each tree belong to the same CC. The tree here is
relaxed to allow the root to have a self-loop. Each vertex v keeps
two fields: D[u] and Γout(u), where D[u] points to the parent of u
in the tree and is initialized as u (i.e., forming a self loop at u).

The SV algorithm proceeds in phases, and in each phase, the
pointers are updated in the following three steps: (1)for each edge
(u, v), if u’s parent w is the root, set w as a child of D[v], which
merges the tree rooted at w into v’s tree; (2)for each edge (u, v), if
u is in a star, set u’s parent as a child of D[v]; (3)for each vertex
v, set D[v] = D[D[v]]. We perform Steps (1) and (2) only if
D[v] < D[u], so that if u’s tree is merged into v’s tree due to edge
(u, v), then edge (v, u) will not cause v’s tree to be merged into
u’s tree again. The algorithm ends when every vertex is in a star.

4.1.6 Bipartite Maximal Matching (BMM)
Given a bipartite graph G = (V,E), this algorithm computes a

BMM, i.e., a matching to which no additional edge can be added
without sharing an end vertex. The algorithm [15] proceeds in
phases, and in each phase, a three-way handshake is simulated.

Each vertex v keeps three fields: S[v],M [v] and Γout(v), where
S[v] indicates which set the vertex is in (L or R) and M [v] is the
name of its matched vertex (initialized as −1 to indicate that v is
not yet matched).

The algorithm computes a three-way handshake in four super-
steps: (1)each vertex v, where S[v] = L and M [v] = −1, sends a
message to each of its neighbors u ∈ Γout(v) to request a match;
(2)each vertex v, where S[v] = R and M [v] = −1, randomly
chooses one of the messages w it receives, sends a message to w
granting its request for match, and sends messages to other re-
questors w′ 6= w denying its request; (3)each vertex v, where
S[v] = L and M [v] = −1, chooses one of the grantors w it re-
ceives and sends an acceptance message to w; (4)each vertex v,

where S[v] = R and M [v] = −1, receives at most one accep-
tance message, and then changesM [v] to the acceptance message’s
value. All vertices vote to halt at the end of a superstep.

4.1.7 Graph Coloring (GC)
Given an undirected graph G = (V,E) , GC computes a color

for every vertex v ∈ V , denoted by color(v), such that if (u, v) ∈
E, color(u) 6= color(v).

The GC algorithm for Pregel-like systems normally adopts the
greedy GC algorithm from [6]. The algorithm iteratively finds a
maximal independent set (MIS) from the set of active vertices, as-
signs the vertices in the MIS a new color, and then removes them
from the graph, until no vertices are left in the graph. Each iterative
phase is processed as follows, where all vertices in the same MIS
are assigned the same color c: (1)each vertex v ∈ V is selected as
a tentative vertex in the MIS with a probability 1/(2 ∗ |Γ(v)|); if
a vertex has no neighbor (i.e. an isolated vertex or becoming iso-
lated after graph mutation), it is a trivial MIS; each tentative vertex
v then broadcasts id(v) to all its neighbors; (2)each tentative ver-
tex v receives messages from its tentative neighbors; let min∗ be
the smallest ID received, if min∗ > id(v), then v is included in
the MIS and color(v) = c, and id(v) is broadcast to its neigh-
bors; (3)if a vertex u receives messages from its neighbors (that
have been included in the MIS in superstep (2)), then for each such
neighbor v, delete v from Γ(u).

4.2 Algorithmic Optimizations
Apart from algorithm categorization, we also describe three al-

gorithmic optimizations [20] here that can improve the performance
of distributed graph computing systems on certain algorithms.
Finishing Computations Serially (FCS). Some algorithms may
run for a large number of supersteps, even though the later super-
steps are merely executing on a small fraction of the graph, called
the active-subgraph. FCS monitors the size of the active-subgraph
and sends it to the master for serial computation as soon as the size
is below a threshold (5M edges by default [20]), so as to terminate
the computation earlier without running a prolonged number of su-
persteps. The results computed in the master are then sent back to
the workers. FCS can be applied to algorithms in which an inac-
tive vertex will not be activated again in later process. Among the
algorithms we discussed, BMM and GC have this property.
Edge Cleaning On Demand (ECOD). Edge cleaning in an algo-
rithm removes edges from the graph. ECOD delays the operation
of edge cleaning and regards the edges as stale edges until they
are involved in later computation where they are demanded to be
removed.
Single Pivot (SP). SP is a heuristic for speeding up the compu-
tation of connected components (CC). SP first samples a vertex v
called the pivot, and runs the cheaper BFS algorithm instead of the
CC algorithm from v. Then, a standard CC algorithm is run on
the graph excluding the CC that contains v. Theoretically, v has a
higher probability to be in the giant CC of the graph, and the graph
excluding the giant CC can be much smaller.

5. EXPERIMENTAL EVALUATION
We now evaluate the performance of Giraph, GPS, Pregel+,

GraphLab (we use GraphLab 2.2 which includes all the features
of PowerGraph), and use GraphChi as a single machine baseline.
We release all the source codes of the algorithms used in our evalu-
ation in www.cse.cuhk.edu.hk/pregelplus/exp, while
the source codes of the different systems can be found in their own
websites.

285

1K

10K

100K

T
im

e
 (

s
e

c
o

n
d

s
)

Giraph

GPS

GraphLab

Pregel+

(a) PageRank on WebUK

100

1K

10K

T
im

e
 (

s
e

c
o

n
d

s
)

Giraph

GPS

GraphLab

Pregel+

(b) PageRank on Twitter

100

1K

10K

T
im

e
 (

s
e

c
o

n
d

s
)

Giraph

GPS

GraphLab

Pregel+

(c) PageRank on BTC

1K

10K

100K

T
im

e
 (

s
e

c
o

n
d

s
)

GraphLab

Pregel+

(d) Diameter Est on WebUK

0

600

1.2K

T
im

e
 (

s
e

c
o

n
d

s
)

Giraph

GPS

GraphLab

Pregel+

(e) Diameter Est on BTC

0

20K

40K

60K

T
im

e
 (

s
e

c
o

n
d

s
)

Giraph

GPS

GraphLab

Pregel+

(f) Diameter Est on USA

10

100

1K

T
im

e
(s

ec
on

ds
)

Giraph

GPS

GraphLab

Pregel+

(g) HashMin on BTC

100

1K

10K

T
im

e
 (

s
e

c
o

n
d

s
)

Giraph

GPS

GraphLab

Pregel+

(h) SSSP on WebUK

10

100

1K

T
im

e
 (

s
e

c
o

n
d

s
)

Giraph

GPS

GraphLab

Pregel+

(i) SSSP on Friendster

10

100

1K

T
im

e
 (

s
e

c
o

n
d

s
)

Giraph

GPS

GraphLab

Pregel+

(j) SSSP on Twitter

1K

10K

100K

T
im

e
 (

s
e

c
o

n
d

s
)

Giraph

GPS

GraphLab

Pregel+

(k) SSSP on USA

100

1K

10K

T
im

e
 (

s
e

c
o

n
d

s
)

Giraph

GPS

Pregel+

(l) SV on Friendster

0

250

500

750

1K

T
im

e
 (

s
e

c
o

n
d

s
)

Giraph

GPS

Pregel+

(m) SV on USA

0

100

200

300

T
im

e
 (

s
e

c
o

n
d

s
)

Giraph

GPS

GraphLab

Pregel+

(n) BMM on LJ

100

1K

10K

100K

T
im

e
 (

s
e

c
o

n
d

s
)

Giraph

GPS

Pregel+

(o) Coloring on Friendster

100

1K

10K

100K

T
im

e
 (

s
e

c
o

n
d

s
)

Giraph

GPS

Pregel+

(p) Coloring on BTC

Figure 4: Performance overview on Giraph, GPS, GraphLab, and Pregel+

Data Type |V| |E| AVG Deg Max Deg
Web

graphs WebUK directed 133,633,040 5,507,679,822 41.21 22,429

Social
networks

Friendster undirected 65,608,366 3,612,134,270 55.06 5,214
Twitter directed 52,579,682 1,963,263,821 37.33 779958

LiveJournal undirected 10,690,276 224,614,770 21.01 1,053,676
RDF BTC undirected 164,732,473 772,822,094 4.69 1,637,619

Spatial
networks USA Road undirected 23,947,347 58,333,344 2.44 9

Figure 3: Datasets

Datasets. We used six large real-world datasets, which are from
four different domains as shown in Figure 3: (1)web graph: We-
bUK1; (2)social networks: Friendster2, LiveJournal (LJ)3 and Twit-
ter4; (3)RDF graph: BTC5; (4)road networks: USA6. Among them,
WebUK, LJ, Twitter and BTC have skewed degree distribution;
WebUK, Friendster and Twitter have average degree relatively higher

1
http://law.di.unimi.it/webdata/uk-union-2006-06-2007-05

2
http://snap.stanford.edu/data/com-Friendster.html

3
http://konect.uni-koblenz.de/networks/

livejournal-groupmemberships
4
http://konect.uni-koblenz.de/networks/twitter_mpi

5
http://km.aifb.kit.edu/projects/btc-2009/

6
http://www.dis.uniroma1.it/challenge9/download.shtml

than other large real-world graphs; USA and WebUK have a large
diameter, while Friendster, Twitter and BTC have a small diameter.

We also used synthetic datasets for scalability tests, where we
generate power law graphs using Recursive Matrix (R-MAT) model [3]
and random graphs using PreZER algorithm [16].
Experimental settings. We ran our experiments on a cluster of
15 machines, each with 48 GB DDR3-1,333 RAM, two 2.0GHz
Intel(R) Xeon(R) E5-2620 CPU, a SATA disk(6Gb/s, 10k rpm,
64MB cache) and a Broadcom Gigabit Ethernet BCM5720 network
adapter, running 64-bit CentOS 6.5 with Linux kernel 2.6.32. Gi-
raph 1.0.0 and GPS (rev. 112) are built on JDK 1.7.0 Update 45, the
hadoop DFS is built on Apache Hadoop 1.2.1. Pregel+, GraphChi
(2014.4.30) and GraphLab 2.2 are compiled using GCC 4.4.7 with
-O2 option enabled, and MPICH 3.0.4 is used.

Unless otherwise stated, we use all 15 machines for all distributed
systems for all experiments; and we use 8 cores in each machine
for GraphChi, Giraph and GraphLab which run with multithread-
ing, and 8 processes (also using 8 cores) in each machine for GPS
and Pregel+. There is no limit set on the amount of memory each
system can use, i.e., all the systems have access to all the avail-
able memory (48GB) in each machine. GPS’s polling time is set
to 10 ms in order to reduce the fixed overhead in each superstep

286

100

1K

10K

100K

T
im

e
(s

ec
on

ds
)

Giraph

GPS

GraphLab

(Async)

Pregel+

(a) HashMin on USA

1K

10K

100K

T
im

e
(s

ec
on

ds
)

Giraph

GPS

GraphLab

(Async)

Pregel+

(b) SSSP on USA

10

100

1K

T
im

e
(s

ec
on

ds
)

Giraph

GPS

GraphLab

(Async)

Pregel+

(c) HashMin on BTC

10

100

1K

10K

T
im

e
(s

ec
on

ds
)

Giraph

GPS

GraphLab

(Async)

Pregel+

(d) HashMin on Friendster

Figure 5: Performance of asynchronous computing (in GraphLab) and synchronous computing

(more details can be found in our technical report [14]), while the
threshold for LALP is set to 100. The fault tolerance mechanisms
of all the systems are off by default. All other settings, if any, of the
systems are as their default. All running time reported is the wall-
clock time elapsed during loading and computing, but not including
dumping since this is identical for all the distributed systems.
Objectives. We evaluate the systems following the key objectives
listed in Section 1, and provide detailed comparative analysis on
each of the evaluation criteria.

5.1 System Performance Overview
We first evaluate (1)the performance of the various systems w.r.t.

different algorithm categories (discussed in Section 4), (2)the per-
formance of the various systems on graphs with different charac-
teristics, and (3)the performance of a distributed system compared
with that of a baseline single-machine system. The results to be
presented in Subsections 5.1.1–5.1.3 give readers an overview on
the performance of the various systems.

In the experiments in Sections 5.1.2–5.1.3, we enable the tech-
niques of the various systems that give the best performance, while
in Sections 5.2–5.5 we analyze the effects of each individual tech-
nique. We run the systems on every algorithm-graph combination
that makes sense (except for HashMin, SV, and Coloring which
are applicable on undirected graphs only, and Bipartite Maximal
Matching which runs on bipartite graphs only). We also do not re-
port all system-algorithm combinations, since it is not clear how
pointer jumping in SV and edge deletion in graph coloring can be
implemented in GraphLab.

With limited space, we only report 16 figures (in Figures 4(a)–
4(p)) that are sufficient to reflect the overall performance over all
the figures (reported in Figures 3–9 in our technical report [14]).

5.1.1 Performance on Different Algorithms
We first analyze the performance of the various systems w.r.t.

different algorithm categories.
Performance on always-active algorithms. Figures 4(a)–4(f) re-
port the performance of the systems on two representative always-
active algorithms, i.e., synchronous PageRank and Diameter Es-
timation. It is difficult to draw a clear conclusion on which sys-
tem has the best performance. Overall, GPS and Pregel+ have bet-
ter performance in most cases. Between Giraph and GraphLab,
GraphLab has the best performance in some cases while Giraph ran
out of memory for diameter estimation on WebUK. Moreover, tak-
ing into account all the results in Figures 3 and 4 in [14], GraphLab
is faster than Giraph in more cases.
Performance on graph-traversal algorithms. Figures 4(g)–4(k)
report the performance of the systems on two representative graph-
traversal algorithms, i.e., HashMin and SSSP. The results show that
Pregel+ clearly outperforms all the other systems (Figures 5 and 6
in [14] show the same trend). GPS has better performance than
Giraph and GraphLab in most cases.

100

1K

10K

T
im

e
(s

ec
on

ds
)

Giraph

GPS

GraphLab

(Async)

Pregel+

(a) PageRank on Twitter

100

1K

10K

100K

T
im

e
(s

ec
on

ds
)

Giraph

GPS

GraphLab

(Async)

Pregel+

(b) PageRank on WebUK

Figure 6: Asynchronous PageRank in GraphLab

Performance on multi-phase algorithms. Figures 4(l)–4(n) re-
port the performance of the systems on two representative multi-
phase algorithms, i.e., BMM and SV. Pregel+ always has the best
performance for this category of algorithms, while GPS is faster
than Giraph and GraphLab.
Performance on graph mutation. To test the performance on
graph mutation, we use the graph coloring algorithm. We do not re-
port GraphLab since it does not support edge deletion. Figures 4(o)
and 4(p) (also Figure 9 in [14]) show that Pregel+ is much faster
than both GPS and Giraph for graph coloring.
Performance on GraphLab’s async mode. GraphLab supports
both synchronous and asynchronous execution and we evaluate the
performance as follows. First, for a graph with a large diameter,
e.g., USA road network, Figures 5(a)–5(b) show that asynchronous
execution is significantly faster than synchronous execution. This
is because changes made to each vertex and edge during the apply
phase in asynchronous mode are committed immediately and vis-
ible to subsequent computation; while in synchronous mode, the
change commits are delayed till the end of each superstep, lead-
ing to slower convergence. However, for processing graphs with
a small diameter as shown in Figures 5(c)–5(d), the overhead of
locking/unlocking is not paid off by the faster convergence of asyn-
chronous execution.

However, for some algorithms, asynchronous execution can lead
to faster convergence even for small-diameter graphs. For exam-
ple, for asynchronous PageRank, most vertices can converge after
only a small number of updates. On the contrary, in synchronous
execution, all vertices need to update their PageRank values and
distribute their new values to neighbors. In each superstep, there
are O(n) updates made and O(m) messages transmitted. In asyn-
chronous execution, the global scheduler only maintains the ver-
tices that need to be updated. If there is a significant change in some
vertex’s PageRank value, then it activates its neighbors and puts
them into the global scheduler. Figures 6(a)–6(b) show that PageR-
ank takes only 554.4 seconds on the small-diameter Twitter graph
using 508,251,513 updates, and takes 1,037.9 seconds on the large-
diameter WebUK graph using 847,312,369 updates. However, the
synchronous PageRank uses 4,679,591,698 and 11,893,340,560 up-
dates, respectively, and are also much slower.

287

Overall performance ranking (1: best)

1 2 3

Always active Pregel+/GPS GraphLab Giraph

Graph traversal Pregel+ GPS GraphLab/Giraph

Multi-phase
SV Pregel+ GPS Giraph

BMM Pregel+ GPS/Giraph GraphLab

Graph mutation Pregel+ GPS Giraph

Figure 7: Overall performance on different algorithms

Overall performance. Figure 7 gives a ranking on the overall per-
formance of the systems for different algorithm categories. Pregel+
and GPS have superior performance for always-active algorithms,
because those algorithms generate a lot of messages, which is ef-
fectively addressed by Pregel+ and GPS’s message reduction tech-
niques (see Section 5.3). Graph-traversal algorithms also generate
a large number of messages from active vertices (especially high-
degree ones), usually in the preceding supersteps. Pregel+ has bet-
ter performance than GPS because of its integration of mirroring
and combiner, which is more effective than LALP alone in GPS.
Although vertex replica in GraphLab is similar to mirroring, such
replica is constructed for every vertex instead of just high-degree
vertices and so the extra overhead is not paid off. For SV, Pregel+’s
request-response technique is effective (see Section 5.4). But in
general, no system has any specific technique to improve its perfor-
mance on multi-phase algorithms, though the message reduction
techniques still help improve the performance. For graph coloring,
GPS and Giraph require users to subclass a separate Edge Class
during the graph loading phase and edge deletion requests must be
made in the compute() function; while in Pregel+, the edge infor-
mation of a graph is stored with vertices, which simplifies the API
and enables faster edge addition/deletion.
C++ v.s. Java. Among the systems, Giraph and GPS are im-
plemented in Java, and GraphLab and Pregel+ are implemented in
C++. While it is difficult to tell from our results which language,
C++ or Java, leads to better performance, Figure 4(d) shows that
the Java-based systems ran out of memory on the large WebUK
graph for diameter estimation (GPS also ran out of memory on
Friendster as shown in Figure 4(b) in [14]). This is mainly be-
cause a Java object takes more space than a C++ object; moreover,
Java uses Garbage Collector to automatically handle object dele-
tion, which cannot keep the pool of objects small in an optimal
manner and hence often leads to larger memory usage. As for run-
ning time, none of the distributed systems has an implementation
in both Java and C++, and hence we cannot make a comparison
that gives a clear conclusion. But Java-based systems incur extra
(de)serialization cost for processing objects in binary representa-
tion in memory. Moreover, the single-machine system GraphChi
was implemented in both Java and C++, and [12] remarks that the
Java implementation ran 2-3 times slower than the C++ implemen-
tation. Thus, we believe Pregel+’s C++ implementation also con-
tributes to its superior overall performance.

5.1.2 Performance on Different Graphs
Next we analyze the performance of the various systems on graphs

with different characteristics.
Performance on graphs with skewed degree distribution. Fig-
ures 4(a), 4(b), 4(c), 4(d), 4(e), 4(g), 4(h), 4(j), 4(n) and 4(p) re-
port the performance of the systems on graphs with skewed de-
gree distribution (i.e., WebUK, LJ, BTC, and Twitter). The re-
sults show that Pregel+ (thanks to its mirroring and request-respond
techniques) has the best performance in most cases, while GPS

Overall performance ranking (1: best)

1 2 3 4

Skewed degree Pregel+ GPS GraphLab / Giraph -

Large diameter Pregel+ GPS / GraphLab Giraph -

Small diameter Pregel+ GPS Giraph GraphLab

High average degree Pregel+ GPS GraphLab Giraph

Figure 8: Overall performance on different graphs

(with the help of LALP) also has good performance in most of
the cases. GraphLab is faster than Giraph in about half of the cases
but is slower in the rest. Overall, no system is always better than
the others in processing graphs with skewed degree distribution,
but Pregel+ and GPS are the better choices as they exhibit good
performance in most of the cases tested.
Performance on graphs with a large diameter. Figures 4(a),
4(d), 4(f), 4(h), 4(k) and 4(m) report the performance of the systems
on graphs with a large diameter (e.g., WebUK and USA Road).
Again, each system has better performance in some cases, but over-
all Pregel+ has the best performance in more cases. GPS and GraphLab
beat each other in roughly equal number of cases, while Giraph has
the worst performance in most cases.
Performance on graphs with a small diameter. Figures 4(b),
4(c), 4(e), 4(g), 4(i), 4(j), 4(l), 4(o) and 4(p) report the performance
of the systems on graphs with a small diameter, e.g., Friendster,
Twitter and BTC. Pregel+ has the best performance in most cases,
while GPS also has good performance in most cases. Giraph has
poorer performance than GPS, but is better than GraphLab overall.
Performance on graphs with high average degree. Figures 4(a),
4(b), 4(d), 4(h), 4(i), 4(j), 4(l) and 4(o) report the performance of
the systems on graphs with a relatively high average degree (e.g.,
WebUK, Friendster and Twitter). Pregel+ has the best performance
in most cases. GPS is generally faster than GraphLab, while both
of them are faster than Giraph in most cases.
Overall performance. Figure 8 gives a ranking on the overall per-
formance of the systems for different types of graphs. Pregel+ has
the best performance in most cases mainly because of its integra-
tion of mirroring and combiner, which effectively addresses load
balancing in skewed-degree graphs and reduces messages in graphs
with high average degree. Similarly, GPS’s LALP is also effective
in addressing load balancing and in message reduction. GraphLab’s
vertex-cut partitioning effectively addresses load balancing, but it
has an overhead of locking/unlocking (which is required even in
synchronous mode, e.g., to prevent more than one vertices from
scattering values to the same vertex), and hence its overall perfor-
mance is not much better than Giraph. For handling large-diameter
graphs which usually require a large number of supersteps, our re-
sults reveal that systems like Giraph, which have a large constant
overhead (hundreds of ms) per superstep, can be very slow. On the
contrary, Pregel+ has a very small constant overhead per superstep,
while GPS and GraphLab have a slightly larger constant overhead
per superstep than that of Pregel+. Finally, small diameter usually
leads to faster convergence and hence for systems like GraphLab,
which has a larger start-up overhead in vertex-cut partitioning, can
be slower than other systems.

5.1.3 Comparison with GraphChi
We also compare with a single-machine baseline, GraphChi [12].

Due to space limitation, we only report the performance of Pregel+
and GraphChi in Figures 9(a)–9(e). Performance of other sys-
tems can be compared by referring to the performance of Pregel+

288

10

100

1K

10K

100K

WebUK Friend Twitter LJ BTC USA

T
im

e
(s

ec
on

ds
)

GraphChi Pregel+

(a) PageRank

10

100

1K

10K

100K

WebUK Friend Twitter LJ BTC USA

T
im

e
(s

ec
on

ds
)

GraphChi Pregel+

(b) Diameter Est.

1

10

100

1K

10K

Friend LJ BTC USA

T
im

e
(s

ec
on

ds
)

GraphChi Pregel+

(c) HashMin

10

100

1K

10K

100K

Friend Twitter LJ BTC USA

T
im

e
(s

ec
on

ds
)

GraphChi Pregel+

(d) SSSP

0

100

200

LJ

T
im

e
(s

ec
on

ds
)

GraphChi Pregel+

(e) BMM

Figure 9: Performance of GraphChi v.s. Pregel+ on PageRank, Diameter Est., HashMin, SSSP and BMM

103

104

105

106

 48 72 96 120

T
im

e
(s

ec
on

ds
)

Number of Workers

Giraph
Giraph-

Pregel+
Pregel+-

(a) PageRank on WebUK

1010

1011

1012

 48 72 96 120

M
es

sa
ge

s
#

Number of Workers

No Combiner
Combiner

(b) PageRank on WebUK

102

103

104

 48 72 96 120

T
im

e
(s

ec
on

ds
)

Number of Workers

Giraph
Giraph-

Pregel+
Pregel+-

(c) SSSP on Friendster

109

1010

 48 72 96 120

M
es

sa
ge

s
#

Number of Workers

No Combiner
Combiner

(d) SSSP on Friendster

Figure 10: Effects of combiner in Giraph and Pregel+ with different number of workers

and other systems in Figures 4(a)–4(p) (and Figures 3–9 in [14]).
GraphChi needs to pre-sort the graph, the cost of which is reported
in Figure 16 in [14].

We do not run SV and GC since it is not clear to us how pointer
jumping in SV and edge deletion in GC can be implemented in
GraphChi. We also note that GraphChi took much longer to run
SSSP on WebUK and we killed the job after its running time is
three orders of magnitude longer than Pregel+’s.

The results show that Pregel+ is about 10 times faster than GraphChi
when processing the large graphs, WebUK, Friendster, Twitter and
BTC. But for the two smaller graphs, LJ and USA, which can fit
in the memory of a single machine, GraphChi uses fully main-
memory mode and its running time is closer to that of Pregel+ (and
even faster in two cases on USA). Thus, GraphChi is a reasonable
choice for moderate-sized graphs. But when the graph is large and
sufficient computing resources are available, a distributed system
can achieve much better performance than a single-machine sys-
tem. To be more specific, Pregel+ requires 4, 3, 2 and 2 machines
to process WebUK, Friendster, Twitter and BTC in memory, re-
spectively; and given such number of machines, Pregel+ is already
much faster than GraphChi (see details in Section 5.1.3 in [14]). We
note that Java-based systems such as Giraph and GPS may require
more machines as they use more memory.

5.2 Effects of Message Combiner
We now study the effects of message combiner. GPS does not

perform sender-side message combining, as the authors claim that
very small performance difference can be observed whether com-
biner is used or not [19]. To verify whether this claim is valid, we
first analyze how many messages can be combined by applying a
message combiner as follows (the proof is detailed in [14]).

THEOREM 1. Given a graph G = (V,E) with n = |V | ver-
tices and m = |E| edges, we assume that the vertex set is evenly
partitioned among M machines (i.e., each machine holds n/M
vertices). We further assume that the neighbors of a vertex in G
are randomly chosen among V , and the average degree degavg =
m/n is a constant. Then, at least (1−exp{−degavg/M}) fraction
of messages can be combined using a combiner in expectation.

According to Theorem 1, if a large number of machines are avail-
able and the average degree is small, then indeed applying com-

biner may not improve the performance much as claimed in [19].
For example, if M = 1000 and degavg = 10, then only 1% of
the messages can be combined. However, in many applications and
for many datasets (e.g., for all the algorithms we discuss in this pa-
per and graphs with more than 5 billions of edges we used here),
one may not require or use thousands of machines. When M is
smaller, combiners can effectively reduce the number of messages
to be sent over the network and hence improve the performance of
the systems, which we verify as follows.

We assess the effect of combiner by testing the two systems, Gi-
raph and Pregel+, that support combiner. We use two versions for
each system, Giraph vs Giraph− and Pregel+ vs Pregel+−, where
the superscript ‘−’ indicates that combiner is not applied. As shown
in Figures 10(b) and 10(d), there is an obvious reduction on the
total number of messages sent over the network when combiner
is applied. As the number of machines increases, less messages
are combined but the number is still considerably smaller than that
without combiner.

Figures 10(a) and 10(c) further show that the running time of
both systems with combiner is shorter than that without combiner.
In conclusion, applying combiner can always reduce the total num-
ber of messages and shorten the running time. Although the im-
provement is not so obvious in some cases, there also exist cases
where the improvement is quite significant, e.g., running PageRank
in Pregel+− on WebUK. This conclusion has also been verified on
many other algorithms on the datasets we used, and we have not
found a case where applying combiner leads to worse performance
than without combiner.

5.3 Effects of LALP and Mirroring
We now study the effects of LALP in GPS and mirroring in

Pregel+. We report the performance of GPS and Pregel+, with and
without LALP/mirroring, for running Diameter Estimation on LJ in
Figure 11 and for running HashMin on BTC in Figure 12. The re-
sults show that applying LALP/mirroring reduces the running time
in both cases. For running Diameter Estimation on LJ, using LALP
in GPS is 1.3 times faster and using mirroring in Pregel+ is 2.2
times faster than without using the techniques. For running Hash-
Min on BTC, the reduction in running time is not as significant,
because the number of supersteps that involve a large number of
redundant messages is only 4, and so message reduction is signifi-

289

0

100

200

300
T

im
e

(s
ec

on
ds

)
GPS

(LALP)
Pregel+

(Mirroring)

(a) Time

0

1B

2B

3B

M
es

sa
ge

s
#

GPS
(LALP)

Pregel+
(Mirroring)

(b) # of Messages

Figure 11: Diameter Est on LJ (LALP and mirroring)

0

100

200

T
im

e
(s

ec
on

ds
)

GPS
(LALP)

Pregel+
(Mirroring)

(a) Time

0

1B

2B

3B

M
es

sa
ge

s
#

GPS
(LALP)

Pregel+
(Mirroring)

(b) # of Messages

Figure 12: HashMin on BTC (LALP and mirroring)

0

200

400

USA BTC

T
im

e
(s

ec
on

ds
)

Pregel+ (Req-Resp)

(a) Time

0

10B

20B

30B

USA BTC

M
es

sa
ge

s
#

Pregel+ (Req-Resp)

(b) # of Messages

Figure 13: Effects of request-respond API in Pregel+

cantly smaller than in Diameter Estimation where many supersteps
involves a large number of redundant messages. Figures 22 and 23
in [14] further show the skewed distribution in the number of mes-
sages sent by the workers of GPS/Pregel+ is evened by applying
LALP/mirroring. In addition, there is also a significant reduction
in the number of messages sent by each worker.

5.4 Effects of Request-Respond API
We next study the effects of the request-respond technique in

Pregel+, which can address the imbalanced workload created by
algorithm logic such as in the SV algorithm. We test SV on the
USA road network and the BTC graph. Figure 13(a) shows that the
running time of Pregel+ is almost reduced by half after applying the
request-respond technique, which can be explained by the signifi-
cant reduction in the number of messages as shown in Figure 13(b).
Figure 24 in [14] further shows that the imbalanced communication
workload caused by the logic of SV is effectively eliminated by the
request-respond technique.

5.5 Effects of Dynamic Repartitioning
GPS also adopts a dynamic repartitioning (DP) technique to re-

distribute vertices across workers. The DP technique can be ap-
plied in all algorithms and on all graph types. We report the per-
formances of PageRank on Twitter, Diameter Estimation on BTC,
HashMin on BTC, and BMM on LiveJournal in Figures 14(a)–
14(d). In all cases, DP does not obtain a good graph partition in
the entire process, and therefore, the performances degrades due to

the computational overhead incurred by the technique. As pointed
out in [19], the benefit of DP can only be observed in very limited
settings, e.g., very large number of supersteps of running PageRank
computation. Therefore, it is difficult for DP to gain performance
benefit in general, and we have tested many cases and have not
found a case where DP can improve the performance.

5.6 Effects of Algorithmic Optimizations
We next study the effects of the algorithmic optimizations de-

scribed in Section 4.2. Figures 15(a)–15(c) report the effects of ap-
plying FCS and ECOD in Giraph, GPS and Pregel+ (more results
can be found in Section 5.6 in [14]). Note that FCS and ECOD
cannot be applied in GraphLab since it does not support edge dele-
tion and Pregel-like aggregator. The results show that FCS con-
siderably improves the performance of Graph Coloring (GC) in all
the systems, since GC takes a large number of supersteps to con-
verge on Friendster and BTC, and hence FCS can significantly re-
duce the number of supersteps. Figure 15(c) shows that FCS also
improves the performance of the systems on BMM. On the other
hand, the results show that ECOD degrades the performance. This
is mainly because GC removes every stale edge in later computa-
tion and hence ECOD does not reduce the total workload. More-
over, ECOD incurs additional overhead. Thus, ECOD is only ef-
fective in algorithms in which many stale edges will not be touched
again after they are decided to be removed [20].

Figures 15(d)–15(e) (more results can be found in Section 5.6
in [14]) report the effects of applying SP in different systems for
computing connected components (CC), where we use HashMin to
compute CCs in the remaining graph after BFS from the pivot. The
performance of the systems on Friendster is significantly improved,
but degrades on BTC. The reason is that, all vertices in Friendster
constitutes a single giant CC, and so no matter which vertex is cho-
sen as the pivot, the computation will terminate after running BFS
from the pivot. In other words, less costly BFS is ran on the whole
graph instead of HashMin. However, the largest component of BTC
consists of only around 3% of all the vertices. Thus, SP can only
label a small fraction of the graph and the overhead exceeds the
gain obtained by SP.

5.7 Scalability of Various Systems
We evaluate the scalability of the systems on both real-world

graphs and synthetic graphs.

5.7.1 Effects of Number of Machines/CPU-Cores
We first report the performance of the systems by varying the

number of machines or CPU cores.
Effects of machine number. We vary the number of machines
from 6 to 15 in this experiment, and fix the number of CPU cores
in each machine to 8. GPS and Pregel+ run 8 processes on each
machine, while Giraph and GraphLab can take advantages of all
the computing resource from the 8 cores by multithreading.

We first consider PageRank on WebUK, Figure 16(a) shows that
only Giraph scales linearly with the number of machines, though it
is significantly slower than the other systems. Pregel+ scales almost
linearly (note that Figures 16(a)–16(d) are in logarithmic scale) and
it is the fastest system in all settings. For GraphLab, we can only
obtain the results when there are at least 12 machines in the clus-
ter, as the total aggregate memory of the cluster is not sufficient for
running GraphLab on this large web graph when there are less than
12 machines. The situation is similar for GPS, but for the smaller
BTC graph, we obtain their results for all cases as reported in Fig-
ure 16(b). For processing the BTC graph, Giraph, GraphLab, and
Pregel+ all scale linearly with the number of machines, but GPS’s

290

100

1K

10K

T
im

e
(s

ec
on

ds
)

GPS
(DP)

(a) PageRank on Twitter
101

102

103

104

T
im

e
(s

ec
on

ds
)

GPS
(DP)

(b) Diameter Est. on BTC
10

100

1K

T
im

e
(s

ec
on

ds
)

GPS
(DP)

(c) HashMin on BTC
0

50

100

150

T
im

e
(s

ec
on

ds
)

GPS
(DP)

(d) BMM on LJ

Figure 14: Effects of dynamic repartitioning

100

1K

10K

100K

Giraph GPS Pregel+

T
im

e
(s

ec
on

ds
)

ECOD Normal FCS

(a) GC on Friendster

100

1K

10K

100K

Giraph GPS Pregel+

T
im

e
(s

ec
on

ds
)

ECOD Normal FCS

(b) GC on BTC

0

40

80

120

Giraph GPS Pregel+

T
im

e
(s

ec
on

ds
)

Normal FCS

(c) BMM on LJ

0

100

200

300

Giraph GPS GraphLab Pregel+

T
im

e
(s

ec
on

ds
)

Normal SP

(d) CC on Friendster

0

100

200

300

Giraph GPS GraphLab Pregel+

T
im

e
(s

ec
on

ds
)

Normal SP

(e) CC on BTC

Figure 15: Effects of ECOD, FCS and SP

103

104

105

106

 6 9 12 15

T
im

e
(s

ec
on

ds
)

Number of Machines

Giraph
GPS

GraphLab
Pregel+

(a) PR: Effect of Machine#

101

102

103

104

105

 6 9 12 15

T
im

e
(s

ec
on

ds
)

Number of Machines

Giraph
GPS

GraphLab
Pregel+

(b) CC: Effect of Machine#

103

104

105

106

 4 8 12 16

T
im

e
(s

ec
on

ds
)

Number of Cores

Giraph
GPS

GraphLab
Pregel+

(c) PR: Effect of Core #

101

102

103

104

105

 4 8 12 16

T
im

e
(s

ec
on

ds
)

Number of Cores

Giraph
GPS

GraphLab
Pregel+

(d) CC: Effect of Core #

Figure 16: Performance of Giraph, GPS, GraphLab, and Pregel+ with different number of machines or CPU cores

0

10K

20K

50M 100M 200M 400M

T
im

e
(s

ec
on

ds
)

Number of Vertices

Giraph
GPS

GraphLab
Pregel+

(a) PR: Random Graphs

0

1K

2K

50M 100M 200M 400M

T
im

e
(s

ec
on

ds
)

Number of Vertices

Giraph
GPS

GraphLab
Pregel+

(b) CC: Random Graphs

0

10K

20K

50M 100M 200M 400M

T
im

e
(s

ec
on

ds
)

Number of Vertices

Giraph
GPS

GraphLab
Pregel+

(c) PR: Power-law Graphs

0

500

1K

50M 100M 200M 400M

T
im

e
(s

ec
on

ds
)

Number of Vertices

Giraph
GPS

GraphLab
Pregel+

(d) CC: Power-law Graphs

Figure 17: Performance of Giraph, GPS, GraphLab, and Pregel+ with different number of vertices

0

10K

20K

1B 2B 4B 8B

T
im

e
(s

ec
on

ds
)

Number of Edges

Giraph
GPS

GraphLab
Pregel+

(a) PR: Random Graphs

0

1K

2K

1B 2B 4B 8B

T
im

e
(s

ec
on

ds
)

Number of Edges

Giraph
GPS

GraphLab
Pregel+

(b) CC: Random Graphs

0

10K

20K

1B 2B 4B 8B

T
im

e
(s

ec
on

ds
)

Number of Edges

Giraph
GPS

GraphLab
Pregel+

(c) PR: Power-law Graphs

0

1K

2K

1B 2B 4B 8B

T
im

e
(s

ec
on

ds
)

Number of Edges

Giraph
GPS

GraphLab
Pregel+

(d) CC: Power-law Graphs

Figure 18: Performance of Giraph, GPS, GraphLab, and Pregel+ with different number of edges

running time does not change much as the number of machines in-
creases.
Effects of CPU core number. We vary the number of CPU cores
in each machine from 4 to 16 in this experiment, and fix the number
of machines in the cluster to 15. The number of processes in GPS
and Pregel+ is the same as the number of CPU cores.

For running PageRank on WebUK, Figure 16(c) shows that only

GraphLab scales sub-linearly with the number of CPU cores. This
is because GraphLab can take advantage of multithreading. Giraph
also uses multithreading but the effect is not obvious. The running
time of GPS and Pregel+ decreases considerably (about 1.5 times)
when the number of processes in each machine increases from 4 to
8, but further increasing the number of processes does not improve
the performance since the overhead of network communication also

291

increases with the number of processes.
For processing BTC, Figure 16(d) shows that multithreading in

Giraph and GraphLab becomes even less effective since the dataset
is much smaller. Pregel+ scales only linearly when the number of
processes in each machine doubles from 4 to 8, while the perfor-
mance of GPS even degrades when the number of processes in each
machine increases.

5.7.2 Effects of Graph Size
We now report the performance of the systems by varying the

number of vertices and edges using synthetically generated ran-
dom graphs [16] and power-law graphs [3]. We set the number of
machines in the cluster to be 15 and the number of CPU cores or
processes in each machine to be 8.
Effects of vertex number. We vary the number of vertices in
the synthetic graphs from 50M to 400M, while we fix the average
vertex degree of each graph to 20. As Figures 17(a)–17(d) show,
the running time of all the systems increases approximately linearly
with the number of vertices. However, GPS ran out of memory
when running PageRank on the two largest graphs, while GraphLab
ran out of memory when running both PageRank and HashMin on
the two largest graphs. Giraph and Pregel+ can run on all graphs,
but Giraph has poorer scalability than Pregel+ when the graph size
becomes larger.
Effects of edge number. We fix the number of vertices in each
graph to 100M, and vary the average vertex degree in the synthetic
graphs from 10 to 80 (i.e., the number of edges changes from 1 bil-
lion to 8 billion). For this set of experiments, Figures 18(a)–18(d)
show that the running time of Giraph, GPS, and Pregel+ increases
sub-linearly with the number of edges, which indicates that the sys-
tems have good scalability (except for GPS which ran out of mem-
ory for running PageRank on the two largest graphs). GraphLab
has the best scalability among all systems for running PageRank,
but it exhibits the worse scalability for running HashMin.

6. CONCLUSIONS
We evaluated the performance of Giraph [2], GraphLab [13, 7],

GPS [19], and Pregel+ [26], w.r.t. various graph characteristics,
algorithm categories, optimization techniques, and system scala-
bility. Our results show that, while there is no single system that
has superior performance in all cases, Pregel+ and GPS have bet-
ter overall performance than Giraph and GraphLab. Pregel+ has
better performance mainly thanks to its combination of mirroring,
message combining, and request-respond techniques, while GPS
also benefits significantly from its LALP technique. GraphLab uses
vertex-cut partitioning for load balancing, but it incurs extra over-
head in locking/unlocking, which may degrade its performance.
Giraph generally has the poorer performance because it does not
employ any specific technique for handling skewed workload and
mainly relies on combiner for message reduction. Finally, we be-
lieve that the efficiency of Pregel+ also comes from its C++ imple-
mentation, which at least uses less memory, and according to [12]
can be 2-3 times faster, than a Java implementation.
Acknowledgments. We thank the reviewers for giving us many
constructive comments, with which we have significantly improved
our paper. We thank our teammates, Xiaotong Sun and Jishi Zhou,
for their help with some of the experiments. This research is sup-
ported by SHIAE Grant No. 8115048.

7. REFERENCES
[1] T. E. Anderson, S. S. Owicki, J. B. Saxe, and C. P. Thacker. High

speed switch scheduling for local area networks. ACM Trans.
Comput. Syst., 11(4):319–352, 1993.

[2] Apache Giraph. http://giraph.apache.org/.
[3] D. A. Bader and K. Madduri. GTgraph: A synthetic graph generator

suite. Atlanta, GA, February, 2006.
[4] Y. Bu. Pregelix: dataflow-based big graph analytics. In SoCC,

page 54, 2013.
[5] P. Flajolet and G. N. Martin. Probabilistic counting algorithms for

data base applications. J. Comput. Syst. Sci., 31(2):182–209, 1985.
[6] A. H. Gebremedhin and F. Manne. Scalable parallel graph coloring

algorithms. Concurrency - Practice and Experience,
12(12):1131–1146, 2000.

[7] J. E. Gonzalez, Y. Low, H. Gu, D. Bickson, and C. Guestrin.
PowerGraph: Distributed graph-parallel computation on natural
graphs. In OSDI, pages 17–30, 2012.

[8] Y. Guo, M. Biczak, A. L. Varbanescu, A. Iosup, C. Martella, and
T. L. Willke. How well do graph-processing platforms perform? an
empirical performance evaluation and analysis. In IPDPS, 2014.

[9] M. Han, K. Daudjee, K. Ammar, M. T. Özsu, X. Wang, and T. Jin.
An experimental comparison of pregel-like graph processing
systems. PVLDB, 7(12):1047–1058, 2014.

[10] U. Kang, C. E. Tsourakakis, A. P. Appel, C. Faloutsos, and
J. Leskovec. Hadi: mining radii of large graphs. TKDD, 5(2):8, 2011.

[11] Z. Khayyat, K. Awara, A. Alonazi, H. Jamjoom, D. Williams, and
P. Kalnis. Mizan: a system for dynamic load balancing in large-scale
graph processing. In EuroSys, pages 169–182, 2013.

[12] A. Kyrola, G. E. Blelloch, and C. Guestrin. GraphChi: Large-scale
graph computation on just a PC. In OSDI, pages 31–46, 2012.

[13] Y. Low, J. Gonzalez, A. Kyrola, D. Bickson, C. Guestrin, and J. M.
Hellerstein. Distributed GraphLab: A framework for machine
learning in the Cloud. PVLDB, 5(8):716–727, 2012.

[14] Y. Lu, J. Cheng, D. Yan, and H. Wu. Large-scale distributed graph
computing systems: An experimental evaluation. CUHK Technical
Report (http://www.cse.cuhk.edu.hk/pregelplus/exp/TR.pdf), 2014.

[15] G. Malewicz, M. H. Austern, A. J. C. Bik, J. C. Dehnert, I. Horn,
N. Leiser, and G. Czajkowski. Pregel: a system for large-scale graph
processing. In SIGMOD Conference, pages 135–146, 2010.

[16] S. Nobari, X. Lu, P. Karras, and S. Bressan. Fast random graph
generation. In EDBT, pages 331–342, 2011.

[17] C. R. Palmer, P. B. Gibbons, and C. Faloutsos. ANF: a fast and
scalable tool for data mining in massive graphs. In KDD, pages
81–90, 2002.

[18] V. Rastogi, A. Machanavajjhala, L. Chitnis, and A. D. Sarma.
Finding connected components in MapReduce in logarithmic rounds.
In ICDE, pages 50–61, 2013.

[19] S. Salihoglu and J. Widom. GPS: a graph processing system. In
SSDBM, pages 22:1–22:12, 2013.

[20] S. Salihoglu and J. Widom. Optimizing graph algorithms on
Pregel-like systems. PVLDB, 7(7):577–588, 2014.

[21] N. Satish, N. Sundaram, M. M. A. Patwary, J. Seo, J. Park, M. A.
Hassaan, S. Sengupta, Z. Yin, and P. Dubey. Navigating the maze of
graph analytics frameworks using massive graph datasets. In
SIGMOD Conference, pages 979–990, 2014.

[22] Y. Shiloach and U. Vishkin. An O(log n) parallel connectivity
algorithm. J. Algorithms, 3(1):57–67, 1982.

[23] Y. Tian, A. Balmin, S. A. Corsten, S. Tatikonda, and J. McPherson.
From “think like a vertex” to “think like a graph”. PVLDB,
7(3):193–204, 2013.

[24] R. S. Xin, J. E. Gonzalez, M. J. Franklin, and I. Stoica. GraphX: a
resilient distributed graph system on Spark. In GRADES, page 2,
2013.

[25] D. Yan, J. Cheng, Y. Lu, and W. Ng. Blogel: A block-centric
framework for distributed computation on real-world graphs.
PVLDB, 7(14), 2014.

[26] D. Yan, J. Cheng, Y. Lu, and W. Ng. Pregel+: Technical report.
(http://www.cse.cuhk.edu.hk/pregelplus/pregelplus.pdf), 2014.

[27] D. Yan, J. Cheng, K. Xing, Y. Lu, W. Ng, and Y. Bu. Pregel
algorithms for graph connectivity problems with performance
guarantees. PVLDB, 7(14), 2014.

[28] M. Zaharia, M. Chowdhury, T. Das, A. Dave, J. Ma, M. McCauly,
M. J. Franklin, S. Shenker, and I. Stoica. Resilient distributed
datasets: A fault-tolerant abstraction for in-memory cluster
computing. In NSDI, pages 15–28, 2012.

292

