
Finding Pareto Optimal Groups: Groupbased Skyline

Jinfei Liu
Emory University

jinfei.liu@emory.edu

Li Xiong
Emory University

lxiong@emory.edu

Jian Pei
Simon Fraser University

jpei@cs.sfu.ca
Jun Luo

Lenovo; CAS
jun.luo@siat.ac.cn

Haoyu Zhang
Emory University

haoyu.zhang@emory.edu

ABSTRACT
Skyline computation, aiming at identifying a set of skyline
points that are not dominated by any other point, is par-
ticularly useful for multi-criteria data analysis and decision
making. Traditional skyline computation, however, is in-
adequate to answer queries that need to analyze not only
individual points but also groups of points. To address this
gap, we generalize the original skyline definition to the nov-
el group-based skyline (G-Skyline), which represents Pareto
optimal groups that are not dominated by other groups. In
order to compute G-Skyline groups consisting of k points
efficiently, we present a novel structure that represents the
points in a directed skyline graph and captures the domi-
nance relationships among the points based on the first k
skyline layers. We propose efficient algorithms to compute
the first k skyline layers. We then present two heuristic al-
gorithms to efficiently compute the G-Skyline groups: the
point-wise algorithm and the unit group-wise algorithm, us-
ing various pruning strategies. The experimental results on
the real NBA dataset and the synthetic datasets show that
G-Skyline is interesting and useful, and our algorithms are
efficient and scalable.

1. INTRODUCTION
Skyline, also known as Maxima in computational geom-

etry or Pareto in business management field, is important
for many applications involving multi-criteria decision mak-
ing. The skyline of a set of multi-dimensional data points
consists of the points for which no other point exists that
is better in at least one dimension and at least as good in
every other dimension.
Assume that we have a dataset of n points, referred to

as P . Each point p of d real-valued attributes can be rep-
resented as a d-dimensional point (p[1], p[2], ..., p[d]) ∈ Rd

where p[i] is the i-th attribute of p. Given two points p =
(p[1], p[2], ..., p[d]) and p′ = (p′[1], p′[2], ..., p′[d]) in Rd, p
dominates p′ if for every i, p[i] ≤ p′[i] and for at least one

This work is licensed under the Creative Commons Attribution
NonCommercialNoDerivs 3.0 Unported License. To view a copy of this li
cense, visit http://creativecommons.org/licenses/byncnd/3.0/. Obtain per
mission prior to any use beyond those covered by the license. Contact
copyright holder by emailing info@vldb.org. Articles from this volume
were invited to present their results at the 42nd International Conference on
Very Large Data Bases, September 5th September 9th 2016, New Delhi,
India.
Proceedings of the VLDB Endowment, Vol. 8, No. 13
Copyright 2015 VLDB Endowment 21508097/15/09.

i, p[i] < p′[i] (1 ≤ i ≤ d). Given the set of points P , the
skyline is defined as the set of points that are not dominated
by any other point in P . In other words, the skyline rep-
resents the best points or Pareto optimal solutions from the
dataset since the points within the skyline cannot dominate
each other.

price

p1
p2

p3

p4

p7
p8

hotel distance price

p1
p2

p3

p4

p5

p6
p7

p8

(a) (b)
distance to the destination

10 20 30 40

100

200

300

400

p9
p10

p11

p6
p5

4 400
380

340

p9

p10

p11

36 300

24

26 280

260
200

180

140

120

60

8

20

28

34

40

14

16

Figure 1: A skyline example of hotels.

Figure 1(a) illustrates a dataset P = {p1, p2, ..., p11}, each
representing a hotel with two attributes: the distance to
the destination and the price. Figure 1(b) shows the corre-
sponding points in the two dimensional space where the x
and y coordinates correspond to the attributes of distance
to the destination and price, respectively. We can see that
p3(14, 340) dominates p2(24, 380) as an example of domi-
nance. The skyline of the dataset contains p1, p6, and p11.
Suppose the organizers of a conference need to reserve one
hotel considering both distance to the conference destination
and the price for participants, the skyline offers a set of best
options or Pareto optimal solutions with various tradeoffs
between distance and price: p1 is the nearest to the destina-
tion, p11 is the cheapest, and p6 provides a good compromise
of the two factors. p8 will not be considered as p11 is better
than p8 in both factors.

Motivation. While the skyline definition has been extend-
ed with different variants and the skyline computation prob-
lem for finding the skyline of a given dataset has been stud-
ied extensively in recent years, most existing works focus on
skyline consisting of individual points. One important prob-
lem that has been surprisingly neglected to the large extent
is the need to find groups of points that are not dominated
by others as many real-world applications may require the
selection of a group of points.

Hotels Example. Consider our hotel example again, sup-
pose the organizers need to reserve a group of hotels (instead

2086

of one) considering both distance to the conference destina-
tion and the price for participants. In contrast to the tradi-
tional skyline problem which finds Pareto optimal solutions
where each solution is a single point, we are interested in
finding Pareto optimal solutions where each solution is a
group of points. One may use the traditional skyline def-
inition, and return all subsets from the skyline points p1,
p6, and p11. If the desired group size is 2, group {p1, p6},
{p1, p11}, and {p6, p11} can be returned. However, we show
that this definition does not capture all the best groups. For
example, {p11, p10} should clearly be considered a Pareto
optimal group to users who use price as the main criterion,
e.g. PhD students with low travel budget, since p11 provides
the best price and p10 the second best price. Note that p10
is only second best to p11 which is also part of the group,
hence no other groups are better than this group in terms of
price. As another example, {p6, p3} also presents a Pareto
optimal group, as both p6 and p3 provide a good tradeoff
and no other groups are better than this group considering
both price and distance. On the other hand, group {p3, p8}
is not a best group because p11(p6) is better than p8(p3),
i.e., group {p3, p8} is dominated by group {p6, p11}.

Table 1: Top five players on Attribute PTS.

Player PTS REB AST STL BLK
Michael Jordan 33.4 6.4 5.7 2.1 0.9
Anthony Davis 30.5 8.5 2 1.5 3
Kyrie Irving 30 3 2 1 1
Allen Iverson 29.7 3.8 6 2.1 0.2
Jerry West 29.1 5.6 6.3 0 0

...

NBA Example. Consider another real example with NBA
players. Table 1 shows the top five players on attribute PTS
(Points). For other attributes, please see the experimental
section for detailed explanations. Suppose the coaches of
NBA teams need to choose five players to compose a team.
While the traditional skyline will compute best players that
are not dominated by other players, we need to compute best
teams that are not dominated by other teams. For exam-
ple, a coach may prefer PTS as the main selection criteria
when building a team in order to maximize the overall points
that can be earned by the team. In this case, the top five
players on PTS, {Michael Jordan, Anthony Davis, Kyrie
Irving, Allen Iverson, Jerry West}, should be considered a
best team. However, if we only build groups from skyline
players, this team will not be captured because Kyrie Irving
is not a skyline player being dominated by Anthony Davis.
In essence, taking only skyline players will not capture those
teams which may include non-skyline players who are only
dominated by another player in the team but are not dom-
inated by any other players outside the team. In summary,
we argue that there is a need to define a group skyline no-
tion for group-based decision making such that we can find
Pareto optimal groups.

Contributions. In this paper, we formally define a novel
group-based skyline, G-Skyline, for finding Pareto optimal
groups. In order to find the best groups, i.e., groups not
dominated by other groups, we will first define the domi-
nance relationship between groups, group dominance. Giv-
en two different groups G and G′ with k points, we say G
g-dominates G′, if for any point p′i in G′, we can find a dis-
tinct point pi in G, such that pi dominates p′i or pi = p′i,
and for at least one i, pi dominates p′i. The G-Skyline are

those groups that are not g-dominated by any other group
with same size. Intuitively, if we consider the points in each
group as a set of dimensions orthogonal to the attributes
of each point, the definition of G-Skyline groups with the
group dominance is in spirit similar to skyline definition, in
that a group is a skyline group if no permutation of any
other group exists that is better for at least one point and
at least as good for every other point.

G-Skyline not only captures groups of points from tradi-
tional skyline points but also groups that may contain non-
skyline points. Back to our hotel example, {p11, p10} is a
G-Skyline group as we discussed earlier even though p10 is
not a skyline point. Group {p6, p3} is also a G-Skyline. On
the other hand, group {p1, p3} is not as it is dominated by
{p1, p6}. Group {p3, p8} is also not as it is dominated by
{p6, p11}. In summary, the G-Skyline in this example consist
of all groups composed of skyline points, {p1, p6}, {p1, p11},
{p6, p11}, as well as groups that contain non-skyline points,
{p6, p3}, {p11, p8}, and {p11, p10}.

It’s non-trivial to solve G-Skyline problem efficiently. To
find k-point G-Skyline groups from n points, there can be(
n
k

)
different possible groups. Unfortunately, the G-Skyline

problem is significantly different from the traditional skyline
problem, to the extent that algorithms for the latter are i-
napplicable. A brute force solution is to enumerate all

(
n
k

)
possible groups, then for each group, to compare it with all
other groups to determine whether it cannot be dominated.

So there are
(
n
k

)2
comparisons. For each comparison, there

are k! possible permutations of the points, and for each per-
mutation, it requires k comparisons. Therefore, the time

complexity is in the order of O(
(
n
k

)2 × k!× k).
In this paper, we present a novel structure that represents

the points in a directed skyline graph and captures all the
dominance relationship among the points based on the no-
tion of skyline layers. Using the directed skyline graph, the
G-Skyline problem can be formulated as the classic search
problem in a set enumeration tree. We exploit the proper-
ties of G-Skyline groups and propose two algorithms with
efficient pruning strategies to compute G-Skyline groups.

We briefly summarize our contributions as follows.

• For the first time, we generalize the original skyline
definition (for individual points) to permutation group-
based skyline (for groups) which is useful for finding
Pareto optimal groups in practical applications.

• We present a novel structure for finding k-point G-
Skyline groups by representing the points as a directed
skyline graph based on the first k skyline layers. This
directed skyline graph is significant as we show that we
only need the points in the first k skyline layers (k is
far less than n in the usual case) rather than the entire
n points to compute k-point G-Skyline. We design
efficient algorithms for computing the first k skyline
layers with time complexity O(n logn) for two- and
O(n logn+ nSk) for higher-dimensional spaces, where
Sk is the number of points in the first k skyline layers.
This can be also of independent value and used as a
preprocessing step for other skyline algorithms.

• Given the directed skyline graph, we present two effi-
cient algorithms: the point-wise and the unit group-
wise algorithms, to efficiently compute G-Skyline group-
s. We introduce a novel notion of unit-group for each
point which represents the minimum number of points

2087

that have to be included with the point in a G-Skyline.
Both algorithms employ efficient pruning strategies ex-
ploiting G-Skyline properties.

• We conduct comprehensive experiments on real and
synthetic datasets. The experimental results show that
G-Skyline is interesting and useful, and our proposed
algorithms are efficient and scalable.

• We also briefly discuss two variants of G-Skyline defi-
nition: One is AG-Skyline based on a more restrictive
all-permutation group dominance. The other one is
PG-Skyline based on a less restrictive partial group
dominance, which can address the potential problem
of large number of output groups of G-Skyline.

Organization. The rest of the paper is organized as fol-
lows. Section 2 presents the related work. Section 3 intro-
duces our G-skyline definitions as well as their properties.
The algorithms of constructing directed skyline graph are
shown in Section 4. Two algorithms for finding G-Skyline
groups based on the directed skyline graph are discussed in
Section 5. We report the experimental results and findings
for performance evaluation in Section 6. Section 7 discusses
two extensions to our work. Section 8 concludes the paper.

2. RELATED WORK
The problem of computing skyline (Maxima) is a funda-

mental problem in computational geometry field because the
skyline is an interesting characterization of the boundary of
a set of points. The skyline computation problem was first-
ly studied in computational geometry [17] which focused
on worst-case time complexity. [15, 21] proposed output-
sensitive algorithms achieving O(n log v) in the worst-case
where v is the number of skyline points which is far less
than n in general. Several works [2, 3, 5, 8] in both com-
putational geometry and database fields focused on how to
achieve the best average-case time complexity. For a de-
tailed survey both for worst-case and average-case, please
see [12].
Since the introduction of the skyline operator by Börzsönyi

et al. [5], skyline has been extensively studied in the database
field. Many algorithms are proposed in the context of rela-
tional query engine and external memory model, for exam-
ple, [12, 30]. Based on the traditional skyline definition, [1,
16] studied the parallel algorithms for skyline.
Many works also studied extensions or variants of the clas-

sical skyline definitions. Papadias et al. [25] studied group-
by skyline which groups the objects based on their values
in one dimension and then computes the skyline for each
group, and k-skyband which computes objects dominated by
at most k objects (the case k = 0 corresponds to the con-
ventional skyline) based on individual dominance relation-
ship. Skyline in subspace, i.e., a subset of the dimensions
or points, was studied in [6, 27, 28, 32]. [10, 33] discussed
the reverse skyline problem which is similar to the reverse
k-nearest neighbor problem. [9] presented skyline-based sta-
tistical descriptors for capturing the distributions over pairs
of dimensions. Some works defined and studied the skyline
on different data types/domains. For example, [29] and [7] s-
tudied the spatial skyline and a more general metric skyline,
respectively. [13] proposed the skyline for moving objects.
[26, 35, 19, 11, 22] studied the skyline problem for uncertain
data.

The most related works to our group-based skyline are
[18, 14, 24, 34]. [18, 14, 34] formulated and investigated
the problem of computing skyline groups. However, the
notion of dominance between groups in these works is de-
fined by the dominance relationship between an “aggregate”
or “representative” point of each group. More specifically,
they calculate for each group a single aggregate point, whose
attribute values are aggregated over the corresponding at-
tribute values of all points in the group. The groups are then
compared by their aggregate points using traditional point
dominance. While many aggregate functions can be consid-
ered in calculating aggregate points, they focus on several
functions commonly used in database applications, such as,
SUM, MIN, and MAX. In addition to the fact that it is
difficult to choose a good or meaningful function, more im-
portantly, it will not capture all the Pareto optimal groups.
This is essentially similar to the multi-objective optimiza-
tion or multi-attribute skyline problem where an aggregate
function, such as weighted average, can be used to combine
the multiple criteria to find a single optimal solution, but it
also fails to capture all the Pareto optimal solutions.

In fact, the result of skyline groups under SUM domi-
nance [18, 14, 34] is a subset of our G-Skyline groups. If
group G is dominated by G′ in G-Skyline definition, then G
must be dominated by G′ under SUM function, but not vice
versa. Consider our hotel example, group {p1, p11} domi-
nates {p3, p6} based on SUM function. However, we cannot
conclude group {p1, p11} is better than {p3, p6} because the
assumption of skyline is that we do not know users’ attribute
weights in advance. For users who consider both distance
and price in their selection criteria, they may prefer group
{p3, p6}, because {p3, p6} provides a good compromise of
distance and price, and neither p1 or p11 can dominate p3 or
p6. Hence, some Pareto optimal solutions are not captured
by SUM dominance.

The work in [24] also defines a group dominance notion.
However, their definition is based on the uncertain skyline
definition by Pei et al. [26]. In our work, we define a de-
terministic dominance relationship between two groups in
order to find “optimal” groups of objects.

3. GSKYLINE DEFINITIONS
In this section, we introduce our G-Skyline definition and

related concepts as well as their properties which will be
used in our algorithm design. For reference, a summary of
notations is given in Table 2.

Table 2: The summary of notations.
Notation Definition
P\layeri points in P but not in layeri
p ≼ p′ p dominates or equals to p′

G-Skyline(i) G-Skyline group with i points
pi.layer the skyline layer of pi
|S|p(u) the point(unit group) size of set S

Definition 1. (Skyline). Given a dataset P of n points in
d-dimensional space. Let p and p′ be two different points in
P , p dominates p′, denoted by p ≺ p′, if for all i, p[i] ≤ p′[i],
and for at least one i, p[i] < p′[i], where p[i] is the ith

dimension of p and 1 ≤ i ≤ d. The skyline points are those
points that are not dominated by any other point in P .

G-Skyline. The key of skyline is that it consists of all the
“best” points that are not dominated by other points. While
a linear weighted sum function can be used to combine all

2088

the attribute values of each point as a scoring function to
find the best points, the relative preferences (weights) for
different attributes are not known in advance. The skyline
essentially covers all the best points on all linear functions.
Following this notion, in order to find all the “best” groups of
points that are not dominated by other groups, we introduce
group dominance definition as follows.

Definition 2. (Group Dominance). Given a dataset P
of n points in a d-dimensional space. Let G = {p1, p2, ..., pk}
and G′ = {p′1, p′2, ..., p′k} be two different groups with k
points of P , we say group G g-dominates group G′, de-
noted by G ≺g G′, if we can find two permutations of the
k points for G and G′, G = {pu1 , pu2 , ..., puk} and G′ =
{p′v1 , p

′
v2 , ..., p

′
vk}, such that pui ≼ p′vi for all i (1 ≤ i ≤ k)

and pui ≺ p′vi for at least one i.

Given the group dominance definition, we define group-based
skyline, G-Skyline, as follows.

Definition 3. (G-Skyline). The k-point G-Skyline con-
sists of those groups with k points that are not g-dominated
by any other group with same size.

Example 1. Consider the dataset in Figure 1 and k = 3.
For group G = {p8, p10, p11} and group G′ = {p4, p5, p7},
G g-dominates G′ because we can find two permutations,
G = {p8, p10, p11} and G′ = {p5, p4, p7} such that p8 ≺ p5,
p10 ≺ p4, and p11 ≺ p7. Therefore, G′ = {p4, p5, p7} is not
a G-Skyline group. G is one of the G-Skyline groups as no
other group with 3 points can g-dominate G.

Next, we present a few properties of G-Skyline groups and
related concepts that will be used in our algorithm design
for computing G-Skyline groups.

Property 1. (Asymmetry). Give two groups G and G′

with same size. If G ≺g G′, then G′ ⊀g G.

Property 2. (Transitivity). Given three groups G1,
G2, and G3 with same size. If G1 ≺g G2 and G2 ≺g G3,
then G1 ≺g G3.

Lemma 1. A point in a G-Skyline group cannot be dom-
inated by a point outside the group.

Proof. By contradiction, assume a point pi in a G-Skyline
group G is dominated by a point pj outside the group. If we
use pj to replace pi in G, the new group will g-dominate G
since pj dominates pi and all the other points are the same,
which contradicts the G-Skyline definition.

Skyline Layers. Motivated by Lemma 1, we present a
structure representing the points and their dominance rela-
tionships based on the notion of skyline layers. A formal
definition is presented as follows.

Definition 4. (Skyline Layers). Given a dataset P of
n points in a d-dimensional space. The set of skyline lay-
er layer1 contains the skyline points of P , i.e., layer1 =
skyline(P). The set of layer2 contains the skyline points of
P\layer1, i.e., layer2 = skyline(P\layer1). Generally, the

set of layerj contains the skyline points of P\
∪j−1

i=1 layeri,

i.e., layerj = skyline(P\
∪j−1

i=1 layeri). The above process

is repeated iteratively until P\
∪j−1

i=1 layeri = ∅.
An example of skyline layers of Figure 1 is shown in Figure

2. It is easy to see from Definition 4 that for a point p, if
there is no point in layeri−1 that can dominate p, p should
be in layeri−1 or a lower layer.

p1
p2

p3

p4

p7
p8

10 20 30 40

100

200

300

400

p9
p10

p11

p6
p5

layer1

layer2

layer3

layer4

Figure 2: Skyline layers.

p1 layer1

layer2

layer3

layer4

p3

p2

p4

p6 p11

p8 p10

p5 p9

p7

Figure 3: Directed skyline graph.

Property 3. For a point p in layeri, where 2 ≤ i ≤ l
and l is the maximum layer number, there must be at least
one point in layerj (1 ≤ j ≤ i− 1) that dominates p.

We then make an observation that in order to compute k-
point G-Skyline groups, we only need to examine the points
from the first k skyline layers. We formally present the
theorem below.

Theorem 1. If a group G = {p1, p2, ..., pk} is a k-point
G-Skyline group, then all points in G belong to the first k
skyline layers.

Proof. We prove by contradiction. Assume a point of
G is from the jth skyline layer where j ≥ (k + 1). Without
loss of generality, we assume this point is pk. Since there
are k points in G, there is at least one layer layeri, 1 ≤
i ≤ k, that has no point in G. According to Property 3,
pk should be dominated by at least one point in layeri,
denoted by t. Then it is easy to see that group G′ =
{p1, p2, .., pk−1, t} by replacing pk in G with t can domi-
nate group G = {p1, p2, ..., pk−1, pk}. Then group G is not
a G-Skyline group which is a contradiction.

We note that the skyline layers are closely related to the
k-skyband [25] we discussed in the related work. In fact,
(k − 1)-skyband is the subset of the points in the first k
skyline layers. We can alternatively compute k-point G-
Skyline groups from the (k−1)-skyband, as versus the entire
set of n points. The reason we use skyline layers instead of
skyband in our preprocessing is that we can design efficient
algorithms to compute the skyline layers as we will show in
Section 4 and we can leverage the layers to compute skyline
groups efficiently as we show in Section 5.

Directed Skyline Graph. We now present a definition of
directed skyline graph, a data structure we use to represent
the points from the first k skyline layers as well as their
dominance relationships, in order to compute k-point G-
Skyline groups.

Definition 5. (Directed Skyline Graph (DSG)). A di-
rected skyline graph is a graph where a node represents
a point and an edge represents a dominance relationship.
Each node has a structure as follows.

[layer index, point index, parents, children]

where layer index ranging from 1 to k indicates the skyline
layer that the point lies on, point index ranging from 0 to
Sk − 1 uniquely identifies the point and Sk is the number of
points in the first k skyline layers, parents include all the
points that dominate this point, and children include all the
points that are dominated by the point.

2089

Example 2. Figure 3 shows the DSG corresponding to
the skyline layers in Figure 2. Note that p6 ≺ p5 and p5 ≺ p4
imply p6 ≺ p4. For visualization clarity, we omit all indirect
dominance edges such as p6 ≺ p4.

Lemma 2. Given a point p, if p is in a G-Skyline group,
p’s parents must be included in this G-Skyline group.

Proof. By Lemma 1, a point p in a G-Skyline group can-
not be dominated by a point outside the group, i.e., all the
points that dominate p must be included in this G-Skyline
group.

Verification of G-Skyline. Motivated by Lemma 2, we
define a concept of Unit Group and then formally state a
theorem for verifying whether a group is a G-Skyline group
based on unit group.

Definition 6. (Unit Group). Given a point p in DSG, p
and its parents form the unit group for p.

Example 3. The unit group of p5 in Figure 3, denoted
by u5, contains p5 and its parents p6, p11, p8. Thus, u5 =
{p6, p11, p8, p5}.
Based on Lemma 2, we have the verification of G-Skyline
theorem as follows.

Theorem 2. (Verification of G-Skyline). Given a group
G = {p1, p2, ..., pk}, it is a G-Skyline group, if its corre-
sponding unit group set S = u1 ∪ u2 ∪ ... ∪ uk contains k
points, i.e., |S|p = k.

This theorem is significant because given a group G, in order
to check whether it is a G-Skyline group, we do not need
to compare G with all other candidate groups any more.
Instead, we only need to check whether its corresponding
unit group set S has k points.

4. CONSTRUCTING DIRECTED SKYLINE
GRAPH

In this section, we first present our algorithms for comput-
ing the first k skyline layers in two- and higher-dimensional
space, and then briefly discuss how to construct the DSG
based on skyline layers. In next section, we will present our
algorithms for finding G-Skyline groups using DSG.
A straightforward way of computing skyline layers is to

iteratively compute (and remove) the skyline points of each
layer using anyO(n logn) time complexity skyline algorithm-
s [17]. Since a dataset may exhibit a linear number of layers,
this leads to an O(n2 logn) worst-case running time. Exist-
ing work proposed space-efficient algorithms for computing
all skyline layers simultaneously with O(n logn) time com-
plexity for two dimensions [4] and O(n2) for higher dimen-
sions [23]. In this paper, we present an efficient O(n logn) al-
gorithm for two dimensional space based on the ideas briefly
mentioned in [4] (they did not provide any algorithm details
as their focus is on designing in-place algorithms). In addi-
tion, since we only need the first k skyline layers for com-
puting k-point G-Skyline groups, as we have shown in Theo-
rem 1, we present more efficient output-sensitive algorithms
with O(n + Sk log k) time complexity for two- and O(nSk)
for higher-dimensional space after the points are sorted.

Computing Skyline Layers for Two Dimensions. For
two dimensional space, the main intuition of the algorithm
is motivated by the monotonic property of skyline points in

two dimensional space, that is, if we sort the skyline points
with increasing x-coordinate, their y-coordinates decrease
monotonically, since they cannot dominate each other. This
applies to each skyline layer as shown in Figure 2. We refer
to the point with minimum y-coordinate in layeri as the tail
point of layeri. We derive the following two properties for
skyline layers in a two dimensional space which will motivate
our algorithm design.

Property 4. Given a skyline layer layeri with its tail
point denoted as playeri , and a point p, if p[x] ≥ playeri [x]
and p is not dominated by playeri , then p cannot be domi-
nated by any other point in layeri.

Proof. For a point p with p[x] ≥ playeri [x], if it is not
dominated by playeri , then we have p[y] < playeri [y]. Be-
cause playeri has the smallest value on y-coordinate in layeri,
then all other points in layeri cannot dominate p.

Property 5. Given l layers for the n points in P with
their tail points denoted as player1 , player2 , ..., playerl , the
y-coordinates of those points are in ascending order, i.e.,
player1 [y] ≤ player2 [y] ≤ ... ≤ playeri [y].

Proof. We prove by contradiction. Suppose playeri [y] <
playeri−1 [y]. Since playeri−1 is the tail point in layeri−1, we
know that the y-coordinates of all the points in layeri−1

are larger than playeri−1 [y], hence no points of layeri−1 can
dominate the tail point of layeri. This is contradictory to
the skyline layer definition.

As an example for Property 4 in Figure 2, we can see that
layer1 has tail point p11, given a point p with x-coordinate
greater than p11, if p is not dominated by p11, then p cannot
be dominated by p1 and p6. For Property 5, we can see that
the tail points p11, p10, p9, and p7 are in ascending order on
their y-coordinates.

Algorithm 1: Skyline layers algorithm in two-Ds.

input : a set of n points in two dimensional space.
output: l skyline layers.

1 If the points are not sorted already, sort the n points on the first
dimension in ascending order P = {pu1 , pu2 , ..., pun};

2 pu1 .layer = 1;

3 maxlayer = 1;
4 tail point of layer1 = pu1 ;

5 for i = 2 to n do
6 if the tail point of layer1 cannot dominate pui

then
7 pui

.layer = 1;

8 tail point of layer1 = pui
;

9 else if the tail point of layermaxlayer dominate pui
then

10 pui
.layer = + + maxlayer;

11 tail point of layermaxlayer = pui
;

12 else
13 use binary search to find layerj (1 < j ≤ maxlayer)

such that the tail point of layerj cannot dominate pui

and the tail point of layerj−1 dominates pui
;

14 pui
.layer = j;

15 tail point of layerj = pui
;

Based on the above properties, our key idea of the algo-
rithm, shown in Algorithm 1, is to sort all the points in
ascending x-coordinates if they are not sorted already and
process them in that sequence by either adding them into an
existing layer it belongs to or starting a new layer. Line 2-4
adds the first point (with minimum x value) into the first
skyline layer. For each new point pui , its x-coordinate is

2090

larger than all the points in existing layers. Based on Prop-
erty 4, we only need to compare point pui with the (current)
tail point of each layer to determine if it cannot be domi-
nated by any of the points in that layer. Based on Property
5, the tail points are sorted by y-coordinates in ascending
order so we can perform a binary search to quickly find the
layer that the point belongs to. If the tail point of the first
layer cannot dominate pui (line 6), we insert the point to
the first layer. If the tail point of the last layer dominates
pui (line 9), we add a new layer for the point. Line 13 per-
forms such a binary search and finds layerj to insert the
point, i.e., the tail point of layerj cannot dominate pui but
the tail point of layerj−1 dominates pui . Once the point is
inserted, it becomes the new tail point of that layer.
Since we just need the points in the first k skyline lay-

ers (Theorem 1), we can slightly modify the algorithm as
follows. Once the kth layer is established, for each of the
remaining points p, we can compare p with the tail point of
the kth layer. If p is dominated by it, it means p lies outside
the first k layers, and we can drop p directly. If not, we can
then use binary search on the first k layers.

Running time. For each point in the first k skyline lay-
ers, we need at most O(log k) time to determine its layer
because we only need to maintain k layers. This part costs
O(Sk log k). For those points not in the first k layers, we
only need to compare it with the tail point of the kth lay-
er. Therefore, the algorithm requires O(n+Sk log k) time in
total for computing the first k skyline layers in two dimen-
sional space after the points are sorted in one dimension.

Higher dimensional space. For a higher dimensional s-
pace, we can use an algorithm similar to Algorithm 1. It
processes each point in order and finds an existing skyline
layer to insert it or starts a new layer. However, the differ-
ence is that Properties 4 and 5 do not hold for the higher
dimensional case anymore. So in order to find an existing
skyline layer the point belongs to, we need to compare the
point with all existing points, as versus only the tail points
in each layer in two-dimensional case. For each point, we
need at most O(Sk) time to determine its position because
there are at most Sk points in the first k layers. There-
fore, the algorithm for computing the first k skyline layers
in higher dimensional space requires O(nSk) time after the
data are sorted in one dimension.

Constructing Directed Skyline Graph. Once we build
the skyline layers, we can build a DSG to capture all the
dominance relationships between the layers which will then
be used to compute G-Skyline groups. Building DSG using
the skyline layers is straightforward: the points are pro-
cessed in the order of their skyline layers. For each point
pi, we scan all points in the previous layers and find those
points that dominate pi, add pi to their children list, and
add those points that dominate pi as pi’s parents. It is easy
to see such an algorithm takes O(Sk

2) time.

5. FINDING GSKYLINE GROUPS
In this section, we present our algorithms for efficiently

finding G-Skyline groups given the DSG built from the first
k skyline layers. We first present a point-wise algorithm
which builds G-Skyline groups from points (adding one point
at a time), then present a unit group-wise algorithm which
builds G-Skyline groups from unit groups (adding one unit

group at a time). Before beginning the discussion of the
two algorithms, we first show a preprocessing step similar
to that in [18, 14, 34] to further prune points from the first
k skyline layers.

Preprocessing. Theorem 2 shows that a k-point group is a
G-Skyline group, if for each point pi in the group, its parents
are also in the group, i.e., the unit group ui is a subset of
the group. Therefore, for a point pi, if the point size of its
unit group is greater than k, i.e., |ui|p > k, it will not be in
any k-point G-Skyline group, and we can remove pi directly
from the DSG without having to consider it. If |ui|p = k,
we can output ui as one of the G-Skyline groups, and pi
will not be considered either as it will not contribute to any
other G-Skyline groups.

Example 4. If we set k = 4 (we will use k = 4 in all
the remaining examples of the paper), the node p2, p4, p7 in
Figure 3 can be removed directly because |u2|p = 5, |u4|p =
7, |u7|p = 5. Unit group u5 = {p6, p11, p8, p5} can be output
as a G-Skyline group. As a result, p2, p5, p4, p7 will not be
considered in our algorithms.

5.1 The PointWise Algorithm
The problem of finding G-Skyline groups can be tackled by

the classic set enumeration tree search framework. The idea
is to expand possible groups over an ordered list of points
as illustrated in Figure 4. Each node in the set enumeration
tree is a candidate group. The first level contains the root
node which is the empty set, while the ith level contains all i-
point groups. Naively, we can enumerate all

(Sk
k

)
candidates

and employ Theorem 2 to check each candidate. However,
this baseline method is too time-consuming which will be
verified in our experiments.

The main idea of our algorithm is to dynamically generate
the set enumeration tree of candidate groups one level at a
time while pruning the non-G-Skyline candidates as much
as possible without having to check them. For each node,
we store a tail set that consists of the points with point
index larger than the points in current node. Each node
can be expanded to create a set of new nodes at the next
level, each by adding a new point from its tail set. The
root node contains an empty set with a tail set composed of
all remaining points from the first k skyline layers after the
preprocessing. We present our tree expansion and pruning
strategies in detail below.

Subtree Pruning. We observe a property of superset
monotonicity which allows us to do subtree pruning when a
node is not a G-Skyline group.

Theorem 3. (Superset Monotonicity). If a group Gi

with i points is not a G-Skyline group, by adding a new point
from its tail set, the new group Gi+1 with i+1 points is not
a G-Skyline group either.

Proof. If Gi is not a G-Skyline group, there is a group
G′

i with i points that dominates Gi. For any superset of Gi

with a new point pj added from Gi’s tail set, we denote it by
Gi∪pj . Since the points are ordered by skyline layers in our
DSG, and any point in Gi’s tail set has a larger point index
than the points in Gi, hence pj will not dominate any points
in Gi, and will not be in G′

i. It is then easy to see that the
group G′

i ∪ pj dominates Gi ∪ pj , i.e., G
′
i ∪ pj ≺ Gi ∪ pj .

2091

This theorem implies that if a candidate group G is not
a G-Skyline group, we do not need to expand it further or
check its subtree.

Tail Set Pruning. Each node in our tree can be expanded
to a set of new nodes by adding a point from its tail set.
However, not all tail points need to be considered. Recall
Lemma 1, a point in a G-Skyline group cannot be dominated
by a point outside the group. In other words, if a point p is
to be added to a group G to form a new group that is a G-
Skyline group, its parents must be in the group already. This
means that pmust be either a skyline point (with no parent),
or a child of some points in G. Note this is a necessary
condition but not sufficient. Once the candidate group is
built, we still need to check whether p’s parents are all in G
(Theorem 2). However, this necessary condition allows us
to quickly prune those points from the tail set of G that are
not skyline points or not a child of points in G. In addition,
given a candidate group G, if all its points are in the first
i skyline layers, p must come from the first i + 1 skyline
layers. Otherwise, we can find a point outside G that lies
on the (i + 1)th layer to dominate p. Hence we can also
prune the points beyond the (i + 1)th layer. Once a point
is pruned from the tail set, it will not be used to expand
the current node. This is because based on the superset
monotonicity, any node in the subtree of the new node will
not be a G-Skyline group either.

Algorithm 2: The point-wise algorithm for computing
G-Skyline groups.

input : a DSG and group size k.
output: G-Skyline(k) groups.

1 initialize the G-Skyline(0) group at root node as an empty set
and its tail set as all points from DSG after preprocessing;

2 for i=1 to k do
3 for each G-Skyline(i-1) group G do
4 for each point pl in G do
5 add pl’s children to Children Set CS;

6 for each point pj in Tail Set(TS) of G do
7 if pj is not in CS && pj is not a skyline point

then
8 delete pj ;

9 if pj .layer − maxl{pl.layer} ≥ 2 then
10 delete pj ;

11 for each remaining point p in tail set of G do
12 add p to G to form a new candidate G-Skyline(i)

group;
13 if the new candidate group is not a G-Skyline

group then
14 delete;

Algorithm. Given the above two pruning strategies, we
show our complete point-wise algorithm in Algorithm 2.
Line 1 initializes the root node and its tail set. Tail set
pruning is implemented in Line 4 to Line 10. For each node
Gj at level i, it is expanded with a new point p from its tail
set to form a new candidate group only if p is a child of some
points in the current node or a skyline point and p is in the
first i + 1 layers. The for loop in Line 4 and Line 6 can be
finished in linear time O(|CS|) and O(|CS|+ |TS|), respec-
tively, by employing the idea of merge sort, where |CS| and
|TS| are the size of children set and tail set. The candidate
group is verified in Line 13. If it is not a G-Skyline group,
it will be pruned from the tree (subtree pruning).

Example 5. We show a running example of Algorithm
2 in Figure 4 based on Figure 3. The root node at level
|S|p = 0 has an initial tail set {p1, p6, p11, p3, p8, p10, p9}.
Points p3, p8, p10, p9 can be pruned immediately because they
are not skyline points, i.e., their parents are not in the root
node. The remaining points p1, p6, p11 are used to create the
new nodes at level |S|p = 1. Similarly, for node {p1, p11} at
level |S|p = 2, its tail set is {p3, p8, p10, p9}. Point p3 can be
pruned because p3 is not a child of either p1 or p11. Point p9
also can be pruned as p9.layer−max{p1.layer, p11.layer} =
2. Hence, the remaining points p8, p10 are used to create the
new candidate groups at level |S|p = 3, namely {p1, p11, p8}
and {p1, p11, p10}. As a result, level |S|p = 4 shows all candi-
date 4-point groups that need to be checked. After checking,
the ones with blue slash are not G-Skyline groups while the
remaining ones are G-Skyline groups. Based on our prun-
ing strategies, only 31 candidate groups are generated and
checked while the baseline approach needs to enumerate and
check

(
8
4

)
= 70 candidate groups.

{p1} {p6} {p11}

{p1, p6} {p1, p11} {p6, p11} {p6, p3} {p11, p10}{p11, p8}

{p1, p6, p11}

{p1, p6, p3}

{p1, p11, p8}

{p1, p11, p10}

{p6, p11, p3}

{p6, p11, p8}{p6, p11, p10}

{p11, p8, p10}{p11, p10, p9}

{p1, p6, p11, p3}
{p1, p6, p11, p8}
{p1, p6, p11, p10} {p1, p11, p10, p9}

{p6, p11, p3, p8}
{p6, p11, p3, p10}

{p6, p11, p10, p9} {p11, p8, p10, p9}{p1, p11, p8, p10}

{∅}

{p6, p11, p8, p10}

|S|p = 0

|S|p = 1

|S|p = 2

|S|p = 3

|S|p = 4

{p1, p11, p8, p9}
{p6, p11, p3, p9}

{p6, p11, p8, p9}

Figure 4: The point-wise algorithm for finding G-Skyline
groups when k = 4.

5.2 The Unit GroupWise Algorithm
The point-wise algorithm expands candidate groups one

point at a time. We already showed (in Lemma 1) that
a point in a G-Skyline group cannot be dominated by a
point outside the group. In other words, for a point in a
G-Skyline group, its unit group must be in the group. This
motivates our unit group-wise algorithm which expands can-
didate groups by unit groups, adding one unit group at a
time. Similar to the point-wise algorithm, we can represent
the entire search space of candidate groups as a set enumer-
ation tree, where each node is a set of unit groups. We can
dynamically generate the tree while pruning as much non-
G-Skyline groups as possible. We can use similar pruning
strategies as in the point-wise algorithm.

Superset Pruning. Given a candidate group G with at
least k points, the candidate groups in G’s subtree will have
more than k points. Hence, we can prune G’s subtree di-
rectly.

Example 6. Figure 5 shows the dynamically generated
set enumeration tree for the unit group-wise algorithm. At
level |S|u = 2, |u3 ∪u8|p = 4, hence we do not need to check
the candidate groups in its subtree, e.g., u3 ∪u8 ∪u10. This
is because |u3 ∪u8 ∪u10|p= |{p6, p11, p3, p8, p10}|p = 5.

Tail Set Pruning. For a candidate groupG at Level |S|u =
i, we do not need to add the children of the unit groups

2092

in G to form a new candidate group at Level |S|u = i + 1.
Therefore, the children of the unit groups inG can be pruned
from the tail set.

Example 7. We show a running example for the unit
group-wise algorithm with the two pruning strategies in Fig-
ure 5. The number on each candidate group represents the
number of points in this candidate group. All candidate
groups with one unit group are checked at Level |S|u = 1.
For candidate group u6 at Level |S|u = 1, its tail set is
{u11, u3, u8, u10, u9}. However, u3 can be pruned by Tail Set
Pruning because u3 is the child of u6. From Level |S|u = 2
to Level |S|u = 3, candidate group u3 ∪u8’s subtree does
not need to be checked since |u3 ∪u8|p = 4, thanks to Su-
perset Pruning. Based on the two pruning strategies, only
35 candidate groups need to be checked as shown. The re-
sulting G-Skyline(4) groups are shown in red (solid) boxes
and we can see that they come from different levels while
the point-wise algorithm outputs all G-Skyline(4) groups at
Level |S|p = 4.

{∅}

1 1 1 2 2 2 3

2 2

3 3

3 4

2 3

3 4

3 4

4

5

3

4

3 4

4 5

4
5

5

6

4

5

4

5

|S|u = 0

|S|u = 1

|S|u = 2

|S|u = 3

u1 u6 u11 u3 u8 u10 u9

u1 ∪u3

u1 ∪u6

u1 ∪u10

u1 ∪u11

u1 ∪u8

u1 ∪u9

u6 ∪u11

u6 ∪u10

u6 ∪u8

u6 ∪u9

u11 ∪u3 u3 ∪u8

u3 ∪u10

u3 ∪u9

u8 ∪u10

u8 ∪u9

u1 ∪u6 ∪u11

u1 ∪u6 ∪u10

u1 ∪u11 ∪u3

u1 ∪u6 ∪u8

u1 ∪u6 ∪u9

u1 ∪u3 ∪u8

u1 ∪u3 ∪u10

u1 ∪u3 ∪u9

u1 ∪u8 ∪u10

u1 ∪u8 ∪u9

u6 ∪u8 ∪u10

u6 ∪u8 ∪u9

Figure 5: The basic unit group-wise algorithm for finding
G-Skyline groups when k = 4.

In addition to the above strategies, we show a few additional
refinements that further improve the algorithm.

Unit Group Reordering. We observe that Superset Prun-
ing is important to reduce the candidate groups. This mo-
tivates us to reorder the unit groups in order to increase
the effectiveness of Superset Pruning. Recall that Super-
set Pruning can be applied when a candidate group G has
|G|p ≥ k. Therefore it would be beneficial if we build large
candidate groups first which allows us to prune more non-G-
Skyline candidate groups at an early stage. A good heuristic
for accomplishing this is to reorder the unit groups for each
point in the reverse order of their point index. This is be-
cause a point with a larger index, i.e., at a higher skyline
layer, tends to have more parents, and hence a larger unit
group size. By ordering the unit groups this way, they are
likely in the (although not monotonically) decreasing order
in their unit group size. We simply need to modify the Tail
Set Pruning strategy such that for each node G, the parents
(instead of the children) of the unit groups of G are pruned
from its tail set.

Subset Pruning. Given a candidate group Gi, if |Gi|p ≤ k,
then any candidate groups that are Gi’s subset have at most
k points. This motivates us to employ Subset Pruning. For

Algorithm 3: The unit group-wise algorithm for com-
puting G-Skyline groups.

input : a DSG and group size k.
output: G-Skyline(k) groups.

1 build 1-unit group as candidate groups following reverse order of
point index;

2 for each candidate group G in 1-unit groups do

3 if |Glast|p = k then

4 output Glast;
5 break;

6 else if |Glast|p < k then
7 break;

8 i=2;

9 while the set of candidate group G′, such that

|G′|u = i − 1, is not empty do
10 for each G′ do
11 for each unit group ui in G′ do
12 add ui’s parents to Parents Set PS;

13 for each unit group uj in tail set of G′ do
14 delete uj if uj is in PS;

15 for each remaining unit group u in tail set of G′

do
16 add u to G′ to form a new candidate group G′′

that |G′′|u = i;

17 delete G′;

18 output G′′ if |G′′|p = k;

19 delete G′′ if |G′′|p ≥k;
20 i++;

each candidate group Gi with |Gi|p < k at Level |S|u = 1,
we can check a new candidate group by adding the entire tail
set of Gi to Gi, i.e., the last or deepest leaf candidate group
Glast

i in Gi’s subtree. If |Glast
i |p ≤ k, the entire subtree

of Gi can be pruned directly and Glast
i can be output if

|Glast
i |p = k. Furthermore, we do not need to check those

candidate groups in the subtree of Gi’s right siblings Gsib

because the last candidate group in Gsib’s subtree, Glast
sib ,

is a subset of Glast
i , hence, |Glast

sib |p < k too. While both
depth-first and breadth-first expansion of the tree will work
equally well for Superset Pruning, Subset Pruning benefits
from a depth-first expansion such that more siblings can be
pruned.

Algorithm. Given the Superset Pruning, Unit Group Re-
ordering, Subset Pruning, and Tail Set Pruning strategies,
the complete unit group-wise algorithm is shown in Algorith-
m 3. Line 1 applies Unit Group Reordering. Subset Pruning
is applied to the 1-unit groups in Lines 3 and 6. We also
note that while Subset Pruning can be employed at every
node, it also adds additional cost for checking the leaf node.
So we only apply them at Level |S|u = 1 to gain the most
pruning benefit, as k is far less than n in the usual case. Tail
Set Pruning is applied in Line 11 to Line 14 to prune those
candidate groups that do not need to be checked. Line 19
applies Superset Pruning to prune those candidate groups
with more than k points.

Example 8. We show a running example of Algorithm
3 in Figure 6. The 1-unit groups are built in reverse order
of point index at Level |S|u = 1. For candidate group u9,
we first check the last candidate group (linked by red (thin)
arrow) which has |u9 ∪u10 ∪u8 ∪u3 ∪u11 ∪u6 ∪u1|p = |u9

∪u8 ∪u3 ∪u1|p = 7 > 4. So Subset Pruning cannot be ap-
plied, and we still need to check u9’s subtree. We build each
branch with a depth-first strategy. At candidate group u3, the

2093

last candidate group of its subtree has |u3 ∪u11 ∪u6 ∪u1|p =
|u3 ∪u11 ∪u1|p = 4, so it is a G-Skyline(4) group. Based on
the Subset Pruning strategy, the algorithm is terminated be-
cause there are no more candidate groups that need to be
checked. As a result, only 27 candidate groups need to be
checked as shown in Figure 6.

{∅}

1112223

4 5

4 4

3

3 3

4 4 3

3

5 4 4 4 4

4

|S|u = 0

|S|u = 1

|S|u = 2

|S|u = 3

7

6

5

u9 u10 u8 u3 u11 u6 u1

u9 ∪ u8

u9 ∪ u6

u9 ∪ u3

u9 ∪ u1

u10 ∪ u8

u10 ∪ u6

u10 ∪ u3

u10 ∪ u1

u8 ∪ u3

u8 ∪ u1

u8 ∪ u6

u10 ∪u8 ∪u3 u10 ∪u8 ∪u6 u10 ∪u8 ∪u1 u10 ∪u6 ∪u1 u8 ∪u6 ∪u1

u3 ∪u11 ∪u6 ∪u1

u8 ∪u3 ∪u11 ∪u6 ∪u1

u10 ∪u8 ∪u3 ∪u11 ∪u6 ∪u1

u9 ∪u10 ∪u8 ∪u3 ∪u11 ∪u6 ∪u1

Figure 6: The enhanced unit group-wise algorithm for find-
ing G-Skyline groups when k = 4.

6. EXPERIMENTS
In this section, we present experimental studies evaluating

our approach.

6.1 Experiment Setup
We first present a small user study using the example ho-

tel dataset (as shown in Figure 1) to verify the motivation of
G-Skyline. We then evaluate the algorithm for computing
the skyline layers, and then perform an extensive empirical
study to examine the point-wise and unit group-wise algo-
rithms using both synthetic and real datasets.
Since this is the first work for group-based skyline with the

new definition of G-Skyline, our performance evaluation was
conducted against the enumeration method as a baseline.
We implemented the following algorithms in Java and ran
experiments on a machine with Intel Core i7 running Ubuntu
with 8GB memory.

• PWise: Point-wise algorithm presented in Subsection
5.1.

• UWise: Basic unit group-wise algorithm with Super-
set Pruning and Tail Set Pruning.

• UWise+: Refined unit group-wise algorithm with U-
nit Group Reordering and Subset Pruning.

• BL: We enumerate all
(Sk

k

)
candidates, and use Theo-

rem 2 to verify each candidate.

We used both synthetic datasets and a real NBA dataset
in our experiments. To study the scalability of our methods,
we generated independent (INDE), correlated (CORR), and
anti-correlated (ANTI) datasets following the seminal work
[5]. We also built a dataset that contains 2384 NBA players
who are league leaders of playoffs. The data was extracted
from http://stats.nba.com/leaders/alltime/?ls=iref:nba:gnav
on 04/15/2015. Each player has five attributes that mea-
sure the player’s performance. Those attributes are Points
(PTS), Rebounds (REB), Assists (AST), Steals (STL), and
Blocks (BLK).

6.2 Case Study
We performed a small user study using the hotel exam-

ple dataset (Figure 1). We posted a questionnaire using the
conference scenario to ask 38 students and staff members in
our department and 30 workers from Amazon Mechanical
Turk. We asked them to answer with groups of 2 hotels
that they think are the best and provide the reasons of their
selections when possible. We received 61 responses in total.
Table 3 shows the number of answers for each hotel combi-
nations. The results indeed showed that our group skyline
definition covers all the returned groups, while taking any
k-skyline points and other existing SUM based group sky-
line definitions [18, 14, 34] will miss a number of groups
that are perceived relevant by the users, such as {p6, p3}
and {p11, p10}.

Table 3: Results of case study.
{p11, p8} {p6, p11} {p11, p10} {p6, p3} {p1, p11} {p1, p6}

10 14 12 10 8 7

6.3 Computing Skyline Layers
We first evaluate our algorithms for computing skyline lay-

ers. A baseline approach (BL) is to iteratively compute and
then remove the skyline points for each layer. We compare
our binary search algorithm (BS) that builds all skyline lay-
ers simultaneously for two dimensional space to the baseline
approach.

2 5 10 20 50 100

10
5

group size k

tim
e(

us
)

BS
BL

(a) CORR

2 5 10 20 50 100

10
5

group size k

tim
e(

us
)

BS
BL

(b) INDE

2 5 10 20 50 100

10
5

group size k

tim
e(

us
)

BS
BL

(c) ANTI

Figure 10: Computing skyline layers on synthetic datasets
of varying k.

Figure 10 shows the runtime of our binary search algorith-
m and the Baseline algorithm for varying group size k on the
three different datasets (n=10k) respectively. The runtime
for the baseline algorithm is not significantly different for the
three datasets because the number of skyline points (which
differ in the three datasets) has minimal impact on the sky-
line algorithms in two-dimensional space. For each dataset,
the time of the baseline algorithm almost linearly increases
with the increase of group size k because the algorithm iter-
atively computes the skyline points for each layer. Different
from the baseline algorithm, the running time of our bina-
ry search algorithm is affected by the different datasets and
shows little growth from CORR to INDE, and from INDE
to ANTI dataset. The reason is, in our algorithm, only the
points in the first k skyline layers will trigger the binary
search on the existing layers while the points not in the first
k skyline layers are dropped directly. Because of the distri-
bution or correlation patterns of the datasets, the average
number of points in each skyline layer (a) for the datasets
follows CORR.a < INDE.a < ANTI.a, which explains the
runtime difference among the datasets. Finally, our binary
search algorithm significantly outperforms the baseline algo-
rithm on all datasets. We also implemented and evaluated
the higher dimensional case. Even though both algorithms
are sensitive to the data distribution in higher-dimensional

2094

10
3

10
4

10
5

10
6

10
7

10
2

10
4

10
6

10
8

number of points n

tim
e(

us
)

PWise
UWise
UWise+
BL

(a) time cost of CORR

10
3

10
4

10
5

10
6

10
7

10
2

10
4

10
6

10
8

number of points n

tim
e(

us
)

PWise
UWise
UWise+
BL

(b) time cost of INDE

10
3

10
4

10
5

10
6

10
7

10
2

10
4

10
6

10
8

number of points n

tim
e(

us
)

PWise
UWise
UWise+
BL

(c) time cost of ANTI

1k 10k 100k 1m 10m
10

0

10
2

10
4

10
6

number of points n

ou
tp

ut
 s

iz
e

CORR
INDE
ANTI

(d) output size

Figure 7: Computing G-Skyline groups on synthetic datasets of varying n.

2 3 4 5 6 7 8
10

2

10
4

10
6

10
8

10
10

number of dimensions d

tim
e(

us
)

PWise
UWise
UWise+
BL

(a) time cost of CORR

2 3 4 5 6 7 8
10

2

10
4

10
6

10
8

10
10

number of dimensions d

tim
e(

us
)

PWise
UWise
UWise+
BL

(b) time cost of INDE

2 3 4 5 6 7 8
10

2

10
4

10
6

10
8

10
10

number of dimensions d

tim
e(

us
)

PWise
UWise
UWise+
BL

(c) time cost of ANTI

2 3 4 5 6 7 8
10

0

10
2

10
4

10
6

10
8

10
10

number of dimensions d

ou
tp

ut
 s

iz
e

CORR
INDE
ANTI

(d) output size

Figure 8: Computing G-Skyline groups on synthetic datasets of varying d.

2 4 6 8 10 12 14 16

10
5

10
10

group size k

tim
e(

us
)

PWise
UWise
UWise+
BL

(a) time cost of CORR

2 4 6 8 10 12 14 16

10
5

10
10

group size k

tim
e(

us
)

PWise
UWise
UWise+
BL

(b) time cost of INDE

2 4 6 8 10 12 14 16

10
5

10
10

group size k

tim
e(

us
)

PWise
UWise
UWise+
BL

(c) time cost of ANTI

2 4 6 8 10 12 14 16
10

0

10
2

10
4

10
6

10
8

10
10

group size k

ou
tp

ut
 s

iz
e

CORR
INDE
ANTI

(d) output size

Figure 9: Computing G-Skyline groups on synthetic datasets of varying k.

space, BS still significantly outperforms BL. We did not re-
port them here due to limited space.

6.4 GSkyline Groups in the Synthetic Data
In this subsection, we report the experimental results for

computing G-Skyline groups based on synthetic data.
Figures 7(a)(b)(c) present the time cost of UWise, U-

Wise+, PWise, and BL with varying number of points n
for the three datasets (d = 2, k = 4). Figure 7(d) shows the
output size with varying n on the three datasets. Because
only the points in the first k skyline layers (total number
is Sk) are used to compute G-Skyline groups and Sk ≪ n
in general, we can see that the time cost and output size
are not significantly impacted by n. Figures 7(a)(b)(c)(d)
show that the time cost and output size grow approximately
linearly with n.
Figures 8(a)(b)(c) show the time cost of UWise, UWise+,

PWise, and BL with varying number of dimensions d on
the three datasets (n = 10000, k = 3). Figure 8(d) shows
the output size with varying d on the three datasets. The
time cost and output size increase exponentially with respect
to the increasing d. This is largely due to the increasing
number of points in the first k skyline layers. We did not
report the result of the PWise algorithm in some figures due

to the high space cost of PWise since it needs to generate
much more candidates than UWise.

Figures 9(a)(b)(c) show the time cost of UWise, UWise+,
PWise, and BL with varying group size k on the three
datasets (n = 10000, d = 2). Figure 9(d) shows the out-
put size with varying k on the three datasets. We did not
report the result of the BL algorithm in some figures due
to the high cost when k is big. The time cost increases ex-
ponentially with respect to the increasing k. Furthermore,
the group size k has a significant impact on the output size
because there are

(Sk
k

)
≈ Sk

k candidate groups. Empirically,
the result shows that the output size also grows exponen-
tially with k as shown in Figure 9(d).

From the viewpoint of different datasets, the time cost and
output size are in increasing order for CORR, INDE, and
ANTI, due to the increasing number of points in the first k
skyline layers. Comparing different algorithms, UWise, U-
Wise+, and PWise significantly outperform BL, which vali-
dates the benefit of our pruning strategies. PWise is better
than UWise when k is small but worse when k is big. Fur-
thermore, PWise is highly space-consuming. Both UWise
and UWise+ outperform PWise when k is big, which shows
the benefit of the unit group notion. UWise+ outperforms

2095

UWise, thanks to the Unit Group Reordering and Subset
Pruning strategies.

Discussion. We note that the large output size is indeed a
challenging problem for our G-Skyline definition as well as
the other group skyline definitions and even the original sky-
line definition, especially for the ANTI datasets. We provide
some discussions as follows. First, the essence of skyline is
arguably not to fully help users to choose points given the
assumption that the users’ attribute weights or preferences
are unknown in advance. Rather skyline can be particularly
useful to prune those points that are certain to be inferior
or dominated by others given any attribute weights. Hence,
in a way, we can consider skyline as a preprocessing step for
multi-criteria decision making. In this regard, the (relative)
output ratio in our results is significantly small compared to
the number of all possible groups. Second, if the output size
is too large to be consumed by users, additional steps can be
performed to choose meaningful representative points. Sev-
eral existing works [6, 20, 31] investigated this challenging
problem. Finally, we also show a weaker group dominance
relationship definition, PG-Skyline, which alleviates this is-
sue in Section 7.

6.5 GSkyline Groups in the NBA Data
In this subsection, we report the experimental results on

the NBA real data.
Figure 11(a) shows the time cost with varying n when

d = 5, k = 5. For each value of n = 500, 1000, 1500, 2000,
we took the average result based on 100 experiment runs
and for each experiment, we randomly chose n out of 2384
players. UWise, UWise+, and PWise again significantly
outperform BL due to the efficient pruning strategies and
UWise+ performs the best. However, varying n does not
have a significant impact on the runtime and output size, as
shown in Figure 11(b). The reason is that only the number
of points in the first k layers is used to compute the G-
Skyline groups and Sk ≪ n in general.
Figures 12(a) and (b) show the time cost and output size

for different d when n = 2384, k = 5. We took the average
result of all possible dimension combinations. We see the
number of dimensions d has a large impact on both the
runtime and output size which increase with increasing d.
Figure 13 shows the time cost and output size for different

k when n = 2384, d = 5. k also has a large impact since the
number of points in the first k skyline layers increases signif-
icantly as k increases while our approaches are less impacted
than the Baseline.
We also report a sample of the final G-Skyline groups in

Table 3. There are
(
2384
5

)
≈ 6.4×1014 candidate groups, but

our algorithm only returns 4865073 G-Skyline groups, i.e.,
1 out of 1.3×108. We can see the sample groups are formed
by elite players with different strengths. For example, G3
is excellent in PTS, REB, AST, STL, and BLK while G1
excels in PTS, and G4 is a good balanced group.

7. EXTENSIONS
In this section, we discuss two interesting extensions of

our proposed work: 1) an AG-Skyline definition based on
a more restrictive all-permutation group dominance than
G-Skyline, and 2) a PG-Skyline definition based on a less
restrictive partial group dominance.

7.1 AGSkyline

500 1000 1500 2000
10

5

10
6

10
7

10
8

10
9

number of points n

tim
e(

us
)

PWise
UWise
UWise+
BL

(a) impact of n.

100 200 300 400
10

0

10
2

10
4

10
6

10
8

number of points n

ou
tp

ut
 s

iz
e

(b) impact of n.

Figure 11: G-Skyline on NBA dataset of varying n.

2 2.5 3 3.5 4 4.5 5
10

3

10
4

10
5

10
6

10
7

10
8

number of dimensions d

tim
e(

us
)

PWise
UWise
UWise+
BL

(a) impact of d.

2 3 4 5
10

0

10
2

10
4

10
6

10
8

number of dimensions d

ou
tp

ut
 s

iz
e

(b) impact of d.

Figure 12: G-Skyline on NBA dataset of varying d.

2 2.5 3 3.5 4 4.5 5
10

2

10
4

10
6

10
8

group size k

tim
e(

us
)

PWise
UWise
UWise+
BL

(a) impact of k.

2 3 4 5
10

0

10
2

10
4

10
6

10
8

group size k

ou
tp

ut
 s

iz
e

(b) impact of k.

Figure 13: G-Skyline on NBA dataset of varying k.

Our G-Skyline definition is based on the group dominance
defined between a pair of permutations of the points in each
group. We formulate an alternative definition AG-Skyline
as follows.

Definition 7. (AG-Skyline). Given a dataset P of n
points in a d-dimensional space. Let G = {p1, p2, ..., pk} and
G′ = {p′1, p′2, ..., p′k} be two different groups with k points,
we say group G ag-dominates group G′ if for all (i, j) pairs,
pi ≼ p′j , and for at least one pair (i, j), pi ≺ p′j . The AG-
Skyline are those groups that are not ag-dominated by any
other groups with same size.

While g-dominance only requires point-wise domination
between two groups for one permutation of the points in
each group (one-to-one point domination), ag-dominance re-
quires each point in one group dominates all points in the
other group (one-to-all point domination). In other words,
ag-dominance requires point-wise domination between two
groups for all permutations of the points. Because the ag-
dominance relationship of AG-Skyline is more strict than
G-Skyline, less candidate groups can be dominated by other
groups, that is, the output of AG-Skyline is a superset of
the output of G-Skyline with same group size on the same
input dataset.

2096

Table 4: Sample of G-Skyline groups on the NBA dataset.
G1 Michael Jordan Anthony Davis Kyrie Irving Allen Iverson Jerry West high PTS
G2 Magic Johnson John Stockton Isaiah Thomas Chris Paul Rajon Rondo high AST
G3 Michael Jordan Bill Russell Magic Johnson Lance Blanks Hakeem Olajuwon high PTS,REB,AST,STL,BLK
G4 Maurice Cheeks Rich Barry Slick Watts Baron Davis Brad Daugherty very balanced
G5 Julius Erving Elvin Hayes Michael Jordan Khris Middleton Alvin Robertson high STL,BLK

7.2 PGSkyline
A potential limitation of our proposed definition is the

large number of output groups. As the number of dimen-
sions and group size increase, the chance for one group to
g-dominate another group is low. As such, the number of
G-Skyline groups becomes significantly large, especially for
anti-correlated datasets. A potential solution to circumvent
this issue is to define an alternative, more relaxed group-
dominance relationship. We define PG-Skyline which is sim-
ilar to the notion in [6] for individual skyline points. The
key idea is to relax the dominance requirement from point-
wise dominance for all points in each group to (partial) p
points where p ≤ k.

Definition 8. (PG-Skyline). Given a dataset P of n
points in a d-dimensional space. Let G = {p1, p2, ..., pk} and
G′ = {p′1, p′2, ..., p′k} be two different groups with k points of
P , we say group G pg-dominates group G′ if for p points
(p ≤ k) in G and G′, we can find two permutations of the p
points, G = {pu1 , pu2 , ..., pup} and G′ = {p′v1 , p

′
v2 , ..., p

′
vp},

such that pui ≼ p′vi , for all i (1 ≤ i ≤ p) and pui ≺ p′vi for at
least one i. The PG-Skyline are those groups that are not
pg-dominated by any other group with same size.

Because the dominance relationship of PG-Skyline is less
strict than G-Skyline, more candidate groups can be dom-
inated by other groups, that is, the output of PG-Skyline
is a subset of the output of G-Skyline with the same group
size on the same input dataset.

8. CONCLUSIONS
In this paper, we proposed the problem of G-Skyline group-

s for finding Pareto optimal groups, instead of finding Pareto
optimal points in the classic definition of skylines. Our defi-
nition is based on a dominance relationship between groups
with same number of points. This is the first work to extend
the original skyline definition to group level which captures
the quintessence of original skyline definition. To compute
the G-Skyline groups efficiently, we presented a novel struc-
ture based on skyline layers that not only partitions the
points efficiently but also captures the dominance relation-
ship between the points. We then presented point-wise and
unit group-wise algorithms to compute the G-Skyline groups
efficiently. A comprehensive experimental study is reported
demonstrating the benefit of our algorithms. We also dis-
cussed two alternative dominance definitions, AG-Skyline
and PG-Skyline, which are the superset and subset of G-
Skyline, respectively.

Acknowledgement
The authors would like to thank the anonymous reviewers
for their helpful comments. This research is supported in
part by the Air Force Office of Scientific Research (AFOS-
R) DDDAS Program under award number FA9550-12-1-
0240, the National Natural Science Foundation of China

(Grant No. 11271351), Guangdong Science and Technology

Program Fund 2013B091300019, and an NSERC Discovery
grant. All opinions, findings, conclusions and recommen-
dations in this paper are those of the authors and do not
necessarily reflect the views of the funding agencies.

9. REFERENCES
[1] F. N. Afrati, P. Koutris, D. Suciu, and J. D. Ullman. Parallel skyline

queries. In ICDT, pages 274–284, 2012.

[2] J. L. Bentley, K. L. Clarkson, and D. B. Levine. Fast linear expected-time
algorithms for computing maxima and convex hulls. In SODA, pages
179–187, 1990.

[3] J. L. Bentley, H. T. Kung, M. Schkolnick, and C. D. Thompson. On the
average number of maxima in a set of vectors and applications. J. ACM,
25(4):536–543, 1978.

[4] H. Blunck and J. Vahrenhold. In-place algorithms for computing (layers
of) maxima. In Algorithm Theory - SWAT 2006, pages 363–374, 2006.

[5] S. Börzsönyi, D. Kossmann, and K. Stocker. The skyline operator. In
ICDE, pages 421–430, 2001.

[6] C. Y. Chan, H. V. Jagadish, K.-L. Tan, A. K. H. Tung, and Z. Zhang.
Finding k-dominant skylines in high dimensional space. In SIGMOD, pages
503–514, 2006.

[7] L. Chen and X. Lian. Dynamic skyline queries in metric spaces. In EDBT,
pages 333–343, 2008.

[8] J. Chomicki, P. Godfrey, J. Gryz, and D. Liang. Skyline with presorting.
In ICDE, pages 717–719, 2003.

[9] G. Cormode, F. Korn, S. Muthukrishnan, and D. Srivastava. Summarizing
two-dimensional data with skyline-based statistical descriptors. In SSDBM,
pages 42–60, 2008.

[10] E. Dellis and B. Seeger. Efficient computation of reverse skyline queries.
In VLDB, pages 291–302, 2007.

[11] X. Ding, X. Lian, L. Chen, and H. Jin. Continuous monitoring of skylines
over uncertain data streams. Inf. Sci., 184(1):196–214, 2012.

[12] P. Godfrey, R. Shipley, and J. Gryz. Algorithms and analyses for maximal
vector computation. VLDB J., 16(1):5–28, 2007.

[13] Z. Huang, H. Lu, B. C. Ooi, and A. K. H. Tung. Continuous skyline queries
for moving objects. IEEE Trans. Knowl. Data Eng., 18(12):1645–1658, 2006.

[14] H. Im and S. Park. Group skyline computation. Inf. Sci., 188:151–169, 2012.

[15] D. G. Kirkpatrick and R. Seidel. Output-size sensitive algorithms for
finding maximal vectors. In Symposium on Computational Geometry, pages
89–96, 1985.

[16] H. Köhler, J. Yang, and X. Zhou. Efficient parallel skyline processing
using hyperplane projections. In SIGMOD, pages 85–96, 2011.

[17] H. T. Kung, F. Luccio, and F. P. Preparata. On finding the maxima of a
set of vectors. J. ACM, 22(4):469–476, 1975.

[18] C. Li, N. Zhang, N. Hassan, S. Rajasekaran, and G. Das. On skyline
groups. In CIKM, pages 2119–2123, 2012.

[19] X. Lian and L. Chen. Reverse skyline search in uncertain databases. ACM
Trans. Database Syst., 35(1), 2010.

[20] X. Lin, Y. Yuan, Q. Zhang, and Y. Zhang. Selecting stars: The k most
representative skyline operator. In ICDE, pages 86–95, 2007.

[21] J. Liu, L. Xiong, and X. Xu. Faster output-sensitive skyline computation
algorithm. Inf. Process. Lett., 114(12):710–713, 2014.

[22] J. Liu, H. Zhang, L. Xiong, H. Li, and J. Luo. Finding probabilistic
k-skyline sets on uncertain data. In CIKM 2015.

[23] H. Lu, C. S. Jensen, and Z. Zhang. Flexible and efficient resolution of
skyline query size constraints. IEEE Trans. Knowl. Data Eng.,
23(7):991–1005, 2011.

[24] M. Magnani and I. Assent. From stars to galaxies: skyline queries on
aggregate data. In EDBT, pages 477–488, 2013.

[25] D. Papadias, Y. Tao, G. Fu, and B. Seeger. Progressive skyline
computation in database systems. ACM Trans. Database Syst., 30(1):41–82,
2005.

[26] J. Pei, B. Jiang, X. Lin, and Y. Yuan. Probabilistic skylines on uncertain
data. In VLDB, pages 15–26, 2007.

[27] J. Pei, W. Jin, M. Ester, and Y. Tao. Catching the best views of skyline:
A semantic approach based on decisive subspaces. In VLDB, pages
253–264, 2005.

[28] J. Pei, Y. Yuan, X. Lin, W. Jin, M. Ester, Q. Liu, W. Wang, Y. Tao, J. X.
Yu, and Q. Zhang. Towards multidimensional subspace skyline analysis.
ACM Trans. Database Syst., 31(4):1335–1381, 2006.

[29] M. Sharifzadeh and C. Shahabi. The spatial skyline queries. In VLDB,
pages 751–762, 2006.

[30] C. Sheng and Y. Tao. On finding skylines in external memory. In PODS,
pages 107–116, 2011.

[31] Y. Tao, L. Ding, X. Lin, and J. Pei. Distance-based representative skyline.
In ICDE, pages 892–903, 2009.

[32] Y. Tao, X. Xiao, and J. Pei. Efficient skyline and top-k retrieval in
subspaces. IEEE Trans. Knowl. Data Eng., 19(8):1072–1088, 2007.

[33] G. Wang, J. Xin, L. Chen, and Y. Liu. Energy-efficient reverse skyline
query processing over wireless sensor networks. IEEE Trans. Knowl. Data
Eng., 24(7):1259–1275, 2012.

[34] N. Zhang, C. Li, N. Hassan, S. Rajasekaran, and G. Das. On skyline
groups. IEEE Trans. Knowl. Data Eng., 26(4):942–956, 2014.

[35] W. Zhang, X. Lin, Y. Zhang, W. Wang, and J. X. Yu. Probabilistic skyline
operator over sliding windows. In ICDE, pages 1060–1071, 2009.

2097

