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ABSTRACT
Inequality joins, which join relational tables on inequality
conditions, are used in various applications. While there
have been a wide range of optimization methods for joins in
database systems, from algorithms such as sort-merge join
and band join, to various indices such as B+-tree, R∗-tree
and Bitmap, inequality joins have received little attention
and queries containing such joins are usually very slow. In
this paper, we introduce fast inequality join algorithms. We
put columns to be joined in sorted arrays and we use per-
mutation arrays to encode positions of tuples in one sorted
array w.r.t. the other sorted array. In contrast to sort-merge
join, we use space efficient bit-arrays that enable optimiza-
tions, such as Bloom filter indices, for fast computation of
the join results. We have implemented a centralized version
of these algorithms on top of PostgreSQL, and a distributed
version on top of Spark SQL. We have compared against
well known optimization techniques for inequality joins and
show that our solution is more scalable and several orders
of magnitude faster.

1. ONCE UPON A TIME . . .
Bob1, a data analyst working for an international provider

of cloud services, wanted to analyze revenue and utilization
trends from different regions. In particular, he wanted to
find out all those transactions from the West-Coast that last
longer and produce smaller revenues than any transaction
in the East-Coast. In other words, he was looking for any
customer from the West-Coast who rented a virtual machine
for more hours than any customer from the East-Coast, but
who paid less. Figure 1 illustrates a data instance for both
tables. He wrote the following join query for such a task:

Qt : SELECT east.id, west.t id
FROM east,west
WHERE east.dur < west.time AND east.rev > west.cost;

∗Work partially done while doing an internship at QCRI.
1We motivate the problem with a real-life story. Names and
queries have been changed to protect confidentiality.
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east id dur rev cores
r1 100 140 12 2
r2 101 100 12 8
r3 102 90 5 4

west t id time cost cores
s1 404 100 6 4
s2 498 140 11 2
s3 676 80 10 1
s4 742 90 5 4

Figure 1: East-Coast and West-Coast transactions

Bob first ran Qt over 200K transactions on the distributed
system storing the data (System-X). Given that the input
dataset is ∼1GB, he expected to have his answer in a minute
or so. However, he waited for more than three hours without
seeing any result. He immediately thought that this problem
comes from System-X and killed the query. He then used
an open-source DBMS-X to run his query. Although join is
by far the most important and most studied operator in the
relational algebra [1], Bob had to wait for over two hours
until DBMS-X returned the results. He found that Qt is
processed by DBMS-X as a Cartesian product followed by
a selection predicate, which is problematic due to the huge
number of unnecessary intermediate results.

In the meantime, Bob heard that a big DBMS vendor
was in town to highlight the power of their recently released
distributed DBMS to process big data (DBMS-Y). So he
visited them with a small (few KBs) dataset sample of the
tables to run Qt. Surprisingly, DBMS-Y could not run Qt

for even that small sample! He spent 45 minutes waiting
while one of the DBMS-Y experts was trying to solve the
issue. Bob left the query running and the vendor never
contacted him again. In fact, DBMS-Y is using underneath
the same open-source DBMS-X that Bob tried before. He
thus understood that a simple distribution of the process
does not solve his problem. Afterwards, Bob decided to call
one of his friends working for a very famous DBMS vendor.
His friend kindly accepted to try Qt on their DBMS-Z, which
is well reputed to deal with terabytes of data. A couple of
days later, his friend came back to him with several possible
ways (physical plans) to run Qt on DBMS-Z. Nonetheless,
all these query plans still had the quadratic complexity of a
Cartesian product with its inherent inefficiency.

Despite the prevalence of this kind of queries in appli-
cations, such as temporal and spatial databases, and data
cleaning, no off-the-shelf efficient solutions exist. There
have been countless techniques to optimize the different fla-
vors of joins in various settings [13]. In the general case
of a theta join, one may assume that one of the relations
is small enough to fit in memory; a nested loop join with
the small relation stored in memory would deliver accept-
able performance. However, such assumption may not hold
when joining two big relations. Queries could also contain
selection predicates or an equi-join with a high selectivity,
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which would reduce the size of the relations to be fed to the
inequality join. However, this is not necessarily true with
low-selectivity predicates, such as gender or region, where
the obtained relations are still very large. Furthermore, sim-
ilar to Qt, there is a large spectrum of applications where
the above two assumptions do not necessarily hold. Such
applications require to join large relations using inequalities
only, such as in temporal and spatial databases, and data
cleaning applications. For example, in data analysis in a
temporal database, one may want to find all employees and
managers that overlapped while working in a certain com-
pany [12]. In data cleaning, when detecting violations based
on denial constraints, one may want to find all pairs of tu-
ples such that one individual (represented in the tuple) pays
more taxes but earns less than another individual [7].

Bob then started looking at alternatives. Common ways
of optimizing such queries include sort-merge joins [9] and
interval-based indexing [6, 11, 16]. Sort merge join reduces
the search space by sorting the data based on the joining at-
tributes and merging them. However, it still has a quadratic
complexity for queries with inequality join conditions only.
Interval-based indexing reduces the search space of such
queries even further by using bitmap interval indexing [6].
However, such indices require large memory space [22] and
long index building time. Moreover, Bob would have to cre-
ate multiple indices to cover all those attributes referenced
in his query workload. One may build such indices at query
time, but their long construction time renders such an ap-
proach impractical.

With no hope in the horizon, Bob decided to talk with his
friends who happen to do research in data analytics. They
happily started working on this interesting problem. After
several months of hard work, they came out with IEJoin,
a new algorithm that utilizes bit-arrays and positional per-
mutation arrays to achieve fast inequality joins. Given the
inherent quadratic complexity of inequality joins, IEJoin
follows the RAM locality is King principle coined by Jim
Gray. The use of memory-contiguous data structures with
small footprint results in orders of magnitude performance
improvement over the prior art. The basic idea of our pro-
posal is to create a sorted array for each inequality compari-
son and compute their intersection, which would output the
join results. The prohibitive cost of the intersection oper-
ation is alleviated through the use of a permutation array
to encode positions of tuples in one sorted array w.r.t. the
other sorted array (assuming that there are only two condi-
tions). A bit-array is then used to emit the join results.

Contributions. We claim the following contributions:

(1) We present novel, fast and space efficient inequality join
algorithms (Sections 2 and 3).

(2) We discuss two optimization techniques to significantly
speed up the computation (Section 4). Specifically, we ex-
ploit Bloom filters to reduce the search space, and reorganize
data to improve data locality.

(3) We describe how to implement the proposed algo-
rithms in distributed data processing systems, such as
Spark SQL [2] to handle very large datasets (Section 5).
In particular, we use attribute metadata (e.g., min and max
values) to greatly reduce data shuffling.

(4) We implemented our algorithms on both PostgreSQL
and Spark SQL (Section 6). We conducted an extensive

experimental study by comparing against well known opti-
mization techniques. The results show that our proposed
solution is more general, scalable, and orders of magnitude
faster than known prior art (Section 7).

We discuss the related work in Section 8 and conclude the
paper in Section 9.

2. OVERVIEW
In this section we restrict our discussions to queries with

inequality predicates only. Each predicate is of the form:
Ai op Bi. Here, Ai (resp., Bi) is an attribute in relation R
(resp., S), and op is an inequality operator in {<,>,≤,≥}.
In the following, we motivate our work and give the intuition
of how our algorithms work by using self-join queries.

Example 1: (Single predicate) Consider the west table in
Figure 1 and an inequality self-join query Qs as follows:

Qs : SELECT s1.t id, s2.t id
FROM west s1, west s2
WHERE s1.time > s2.time;

Query Qs returns a set of pairs {(si, sj)}
where si takes more time than sj ; the result is
{(s2, s1), (s2, s3), (s2, s4), (s1, s3), (s1, s4), (s4, s3)}. 2

A natural idea to handle an inequality join on one at-
tribute is to leverage a sorted array. For instance, we
sort west’s tuples on time in ascending order into an ar-
ray L1:〈s3, s4, s1, s2〉. We denote by L[i] the i-th element in
array L, and L[i, j] its sub-array from position i to position
j. Given a tuple s, any tuple at L1[k] (k ∈ [1, i − 1]) has
a time value that is less than L1[i], the position of s in L1.
Consider Example 1, tuple s1 in position L1[3] joins with
tuples in positions L1[1, 2], namely s3 and s4.

Example 2: (Two predicates) Let us now consider a more
challenging case of a self-join with two inequality conditions:

Qp : SELECT s1.t id, s2.t id
FROM west s1, west s2
WHERE s1.time > s2.time AND s1.cost < s2.cost;

Qp returns pairs (si, sj) where si takes more time but pays
less than sj ; the result is {(s1, s3), (s4, s3)}. 2

Similar to attribute time in Example 1, one can addi-
tionally sort attribute cost in ascending order into an ar-
ray L2:〈s4, s1, s3, s2〉. Thus, given a tuple s, any tuple L2[l]
(l ∈ [j + 1, n]), where n is the size of the input relation, has
higher cost than the one in s, where j is the position of s in
L2. Our observation here is as follows. For any tuple s′, to
form a join result (s, s′) with tuple s, the following two con-
ditions must be satisfied: (i) s′ is on the left of s in L1, i.e., s
has a larger value for time than s′, and (ii) s′ is on the right
of s in L2, i.e., s has a smaller value for cost than s′. Thus,
all tuples in the intersection of L1[1, i − 1] and L2[j + 1, n]
satisfy these two conditions and belong to the join result.
For example, s4’s position in L1 (resp. L2) is 2 (resp. 1).
Hence, L1[1, 2− 1] = 〈s3〉 and L2[1 + 1, 4] = 〈s1, s3, s2〉, and
their intersection is {s3}, producing (s4, s3). To get the final
result, we simply need to repeat the above process for each
tuple.

The challenge is how to perform the aforementioned in-
tersection operation in an efficient manner. There already
exist several indices, such as R-tree and B+-tree, that can
possibly help. R-tree is ideal for supporting two or higher
dimensional range queries. However, the main shortcoming
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(1) Initialization

L1 s3(80) s4(90) s1(100) s2(140) (sort ↑ on time)

HL2 s4(5) s1(6) s3(10) s2(11) (sort ↑ on cost)

H 1 2 3 4

P 2 3 1 4 (permutation array) B 0 0 0 0 (bit-array)
s3 s4 s1 s2

(2) Visit tuples respect to L2

(a)H· −−→
B 0 0 0 0 ⇒ 0 1 0 0 Output:

(b)H · −→
B 0 1 0 0 ⇒ 0 1 1 0 Output:

(c)H· −−−−→
B 0 1 1 0 ⇒ 1 1 1 0 Output: (s4, s3), (s1, s3)

(d)H ·
B 1 1 1 0 ⇒ 1 1 1 1 Output:

Figure 2: IEJoin process for query Qp

of using R-trees for inequality joins is that it is unclustered;
we cannot avoid random I/O access when retrieving join
results. B+-tree is a clustered index. The bright side is
that for each tuple, only sequential disk scan is required
to retrieve relevant tuples. However, the dark side is that
we need to repeat this n times, where n is the number of
tuples, which is prohibitively expensive. When confronted
with such problems, one common practice is to use space-
efficient and CPU-friendly indices; in this paper, we employ
a bit-array.

In a nutshell, our method, namely IEJoin, sorts relation
west on time and cost, creates a permutation array for cost
w.r.t. time, and leverages a bit-array to emit join results. We
will briefly present the algorithm below, and defer a detailed
discussion to Section 3. Figure 2 depicts the process.

(1) Initialization. Sort both time and cost values in ascend-
ing order, as depicted by L1 and L2, respectively. While
sorting, compute a permutation (reordering) array of ele-
ments of L2 in L1, as shown by P . For example, the first
element of L2 (i.e., s4) corresponds to position 2 in L1.
Hence, P [1] = 2. Initialize a bit-array B with length n and
set all bits to 0, as shown by B with array indices above the
rectangles and corresponding tuples below the rectangles.

(2) Visit tuples in the order of L2. Scan the permutation
array P and operate on the bit-array as shown below.

(a) Visit P [1]. First visit tuple s4 (1st element in L2) and
check in P what is the position of s4 in L1 (i.e., position 2).
Then go to B[2] and scan all bits in higher positions than 2.
As all B[i] = 0 for i > 2, there is no tuple that satisfies the
join condition of Qp w.r.t. s4. Finish this visit by setting
B[2] = 1, which indicates that tuple s4 has been visited.

(b) Visit P [2]. This corresponds to tuple s1. It processes s1
in a similar manner as s4, without outputting any result.

(c) Visit P [3]. This visit corresponds to tuple s3. Each
non-zero bit on the right of s3 (highlighted by grey cells)
corresponds to a join result, because each marked cell corre-
sponds to a tuple that pays less cost (i.e., being visited first)
but takes more time (i.e., on the right side of its position).
It thus outputs (s4, s3) and (s1, s3).

(d) Visit P [4]. This visit corresponds to tuple s2. The pro-
cess is similar to the above steps with an empty join result.

The final result of Qp is the union of all the intermediate
results from the above steps, i.e., {(s4, s3), (s1, s3)}.

There are few observations that make our solution ap-
pealing. First, there are many efficient techniques for sort-
ing large arrays, e.g., GPUTeraSort [14]. In addition, after
getting the permutation array, we only need to sequentially
scan it once. Hence, we can store the permutation array on
disk, instead of memory. Only the bit-array is required to
stay in memory, to avoid random disk I/Os. Thus, to exe-
cute queries Qs and Qp on 1 billion tuples, we only need 1
billion bits (i.e., 125 MB) of memory space.

3. CENTRALIZED ALGORITHMS
We now detail our novel inequality join algorithms based

on sorting, permutation arrays, and bit-arrays. We will first
discuss the case with two relations and only with operators
in {<,>,≤,≥}, and then describe its extension to support
multiple join conditions in Section 3.1. The special case of
self-joins is presented in Section 3.2.

3.1 IEJoin
Algorithm. IEJoin, is shown in Algorithm 1. It takes
a query Q with two inequality join conditions as input and
returns a set of result pairs. It first sorts the attribute values
to be joined (lines 3-6), computes the permutation array
(lines 7-8) and two offset arrays (lines 9-10). Each element
of an offset records the relative position from L1 (resp. L2)
in L′1 (resp. L′2). The algorithm also sets up the bit-array
(line 11) as well as the result set (line 12). In addition, it
sets an offset variable to distinguish between the inequality
operators with or without equality conditions (lines 13-14).
It then visits the values in L2 in the desired order, which is
to sequentially scan the permutation array from left to right
(lines 15-22). For each tuple visited in L2, it first sets all
bits for those t in T ′ whose Y ′ values are smaller than the
Y value of the current tuple in T (lines 16-18), i.e., those
tuples in T ′ that satisfy the second join condition. It then
uses the other offset array to find those tuples in T ′ that also
satisfy the first join condition (lines 19-22). It finally returns
all join results (line 23). Let us illustrate this algorithm with
the following example.

Example 3: Figure 3 shows how Algorithm 1 works for Qt

(from Section 1). It first does the initialization (step (1) in
the figure). For example, when visiting the first item in L2

(r3) in step (2)(a), it first finds its relative position in L′2 at
step (2)(a)(i). Then it visits all tuples in L′2 whose cost val-
ues are no larger than r3[rev] at step (2)(a)(ii). Afterwards,
it uses the relative position of r3[dur] at L′1 (step (2)(a)(iii))
to populate all join results (step (2)(a)(iv)). The same pro-
cess sequentially applies to r1 (step (2)(b)) and r2 (step
(2)(c)), and the only result is returned at step (2)(c)(v). 2

Correctness. It is easy to check that the algorithm will
terminate and that each result in join result satisfies the join
condition. For completeness, observe the following. For any
tuple pair (ri, sj) that should be a result, sj will be vis-
ited first and its corresponding bit is set to 1 (lines 17-18).
Afterwards, ri will be visited and the result (ri, sj) will be
identified (lines 20-22) by the algorithm.
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Algorithm 1: IEJoin

input : query Q with 2 join predicates t1.X op1 t2.X′ and
t1.Y op2 t2.Y ′, tables T, T ′ of sizes m and n resp.

output: a list of tuple pairs (ti, tj)
1 let L1 (resp. L2) be the array of X (resp. Y ) in T
2 let L′1 (resp. L′2) be the array of X′ (resp. Y ′) in T ′

3 if (op1 ∈ {>,≤}) sort L1, L′1 in descending order
4 else if (op1 ∈ {<,≥}) sort L1, L′1 in ascending order
5 if (op2 ∈ {>,≤}) sort L2, L′2 in ascending order
6 else if (op2 ∈ {<,≥}) sort L2, L′2 in descending order
7 compute the permutation array P of L2 w.r.t. L1

8 compute the permutation array P ′ of L′2 w.r.t. L′1
9 compute the offset array O1 of L1w.r.t. L′1

10 compute the offset array O2 of L2w.r.t. L′2
11 initialize bit-array B′ (|B′| = n), and set all bits to 0
12 initialize join result as an empty list for tuple pairs
13 if (op1 ∈ {≤,≥} and op2 ∈ {≤,≥}) eqOff = 0
14 else eqOff = 1
15 for (i← 1 to m) do
16 off2 ← O2[i]
17 for j ← O2[i− 1] to O2[i] do
18 B′[P ′[j]]← 1

19 off1 ← O1[P [i]]
20 for (k ← off1 + eqOff to n) do
21 if B′[j] = 1 then
22 add tuples w.r.t. (L2[i], L′2[k]) to join result

23 return join result

Complexity. Sorting arrays and computing their permu-
tation array is in O(m · log m + n · log n) time, where m
and n are the sizes of the two input relations (lines 3-8).
Computing the offset arrays will take linear time using sort-
merge (lines 9-10). The outer loop will take O(m · n) time
(lines 15-22). Hence, the total time complexity of the algo-
rithm is O(m · log m+n · log n+m ·n). It is straightforward
to see that the total space complexity is O(m + n).

Multiple join conditions. For more than two join predi-
cates on a single inequality join, we simply pick two inequal-
ity predicates and apply IEJoin. We then filter the mate-
rialized results and evaluate the remaining predicates. This
approach has very low memory footprint and it is a standard
solution in relational databases. A query optimizer will have
to decide which predicate to process first based on the selec-
tivity of different predicates. In Section 6, we explain how
we integrate IEJoin into existing query optimizers.

3.2 IESelfJoin
In this section, we present the algorithm for self-join

queries with two inequality operators. While IEJoin can
be used, IESelfJoin is more efficient for self-joins since it
uses two sorted arrays instead of four.

Algorithm. IESelfJoin (Algorithm 2) takes a self-join
inequality query Q as input, and returns a set of result pairs.

The algorithm first sorts the two lists of attributes to be
joined (lines 2-5), computes the permutation array (line 6),
and sets up the bit-array (line 7) as well as the result set
(line 8). It also sets an offset variable to distinguish in-
equality operators with or without equality (lines 9-10). It
then visits the values in L2 in the desired order, which is
to sequentially scan the permutation array from left to right
(lines 11-16). For each tuple visited in L2, it needs to find all
tuples whose X values satisfy the join condition. This is per-
formed by first locating its corresponding position in L1 via

Algorithm 2: IESelfJoin

input : query Q with 2 join predicates t1.X op1 t2.X and
t1.Y op2 t2.Y , table T of size n

output: a list of tuple pairs (ti, tj)
1 let L1 (resp. L2) be the array of column X (resp. Y )
2 if (op1 ∈ {>,≤}) sort L1 in descending order
3 else if (op1 ∈ {<,≥}) sort L1 in ascending order
4 if (op2 ∈ {>,≤}) sort L2 in ascending order
5 else if (op2 ∈ {<,≥}) sort L2 in descending order
6 compute the permutation array P of L2 w.r.t. L1

7 initialize bit-array B (|B| = n), and set all bits to 0
8 initialize join result as an empty list for tuple pairs
9 if (op1 ∈ {≤,≥} and op2 ∈ {≤,≥}) eqOff = 0

10 else eqOff = 1
11 for (i← 1 to n) do
12 pos← P [i]
13 for (j ← pos + eqOff to n) do
14 if B[j] = 1 then
15 add tuples w.r.t. (L1[j], L1[i]) to join result

16 B[pos]← 1

17 return join result

looking up the permutation array (line 12). Since the bit-
array and L1 have a one-to-one positional correspondence,
the tuples on the right of pos will satisfy the join condition
on X (lines 13-15), and these tuples will also satisfy the join
condition on Y if they have been visited before (line 14).
Such tuples will be joined with currently visited tuple as
results (line 15). Afterwards, the visited tuple will also be
marked (line 16). It finally returns all join results (line 17).

Note that the different sorting orders, i.e., ascending or
descending for attribute X and Y in lines 2-5, are chosen to
satisfy various inequality operators. One may observe that
if the database contains duplicated values, when sorting one
attribute X, its corresponding value in attribute Y should
be considered, and vice versa, in order to preserve both or-
ders for correct join result. Hence, in IESelfJoin, when
sorting X, we use an algorithm that also takes Y as the
secondary key. Specifically, when some X values are equal,
their sorting orders are decided by their Y values (lines 2-3),
similarly for the other way around (lines 4-5). Please refer
to the example in Section 2 for query Qp using IESelfJoin.

Correctness. It is easy to check that the algorithm will
terminate and that each result in join result satisfies the join
condition. For completeness, observe the following. For
any tuple pair (t1, t2) that should be in the result, t2 is
visited first and its corresponding bit is set to 1 (line 16).
Afterwards, t1 is visited and the result (t1, t2) is identified
(lines 14-15) by IESelfJoin.

Complexity. Sorting two arrays and computing their per-
mutation array is in O(n · log n) time (lines 2-8). Scanning
the permutation array and scanning the bit-array for each
visited tuple run in O(n2) time (lines 11-16). Hence, in to-
tal, the time complexity of IESelfJoin is O(n2). It is easy
to see that the space complexity of IESelfJoin is O(n).

4. OPTIMIZATION
We discuss two optimization techniques for our inequality

join algorithms. The first one is to use indices to improve
the lookup performance for the bit-array (Section 4.1). The
second one is to union arrays, so as to improve data locality
and reduce the data to be loaded into the cache (Section 4.2).
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east west

(1) Initialization

L1 r3(90) r2(100) r1(140) (sort ↑ on dur) L′1 s3(80) s4(90) s1(100) s2(140) (sort ↑ on time)H
HL2 r3(5) r1(12) r2(12) (sort ↑ on rev) L′2 s4(5) s1(6) s3(10) s2(11) (sort ↑ on cost)

HP 1 3 2 (permutation array) P ′ 2 3 1 4 (permutation array)

HO1 2 3 4 (offset of L1 w.r.t. L′1) 1 2 3 4

B′ 0 0 0 0 (bit-array)

O2 1 3 5 (offset of L2 w.r.t. L′2) s3 s4 s1 s2

(2) Visit tuples with regards to L2

(a) visit L2[1] for r3: (i) O2[1] = 1; (ii) P ′[1] = 2 (iii) O1[P [1]] = 2; (iv) · −−−→ (v) Output:

B′ 0 1 0 0 B′ : 0 1 0 0

(b) visit L2[2] for r1: (i) O2[2] = 3; (ii) P ′[2] = 3, P ′[3] = 1 (iii) O1[P [2]] = 4; (iv) · (v) Output:

B′ 1 1 1 0 B′ : 1 1 1 0

(c) visit L2[3] for r2: (i) O2[3] = 5; (ii) P ′[4] = 4 (iii) O1[P [3]] = 3; (iv) · −→ (v) Output: (r2, s2)

B′ 1 1 1 1 B′ : 1 1 1 1

Figure 3: IEJoin process for query Qt

0 0 0 0 0 1 0 1 0 0 0 0 0 0 0 0

0 1 0 0Bloom filter

C1 C2 C3 C4

(i) pos 6 (ii) pos 9

B

Figure 4: Example of using a Bloom filter

4.1 Bloom Filter to Improve Bit-array Scan
An analysis on both IEJoin and IESelfJoin shows that,

for each value being visited (i.e., lines 20-22 in Algorithm 1
and lines 13-15 in Algorithm 2), we need to scan all the bits
on the right of the current position. When the query selec-
tivity is high, this is unavoidable for producing the correct
results. However, when the query selectivity is low, itera-
tively scanning a long sequence of 0’s will be a performance
bottleneck. We thus adopt a Bloom filter to guide which
part of the bit-array should be visited.

Given a bit-array B with size n and a predefined chunk
size c, our Bloom filter is a bit-array with size dn/ce where
each bit corresponds to a chunk in B, with 1 indicating that
the chunk contains at least a 1 and 0 otherwise.

Example 4: Consider the bit-array B in Figure 4. Assume
that the chunk size c = 4. The bit-array B will be parti-
tioned into four chunks C1–C4. Its Bloom filter is shown
above B in the figure and consists of 4 bits. We consider
two cases. Case (i): visit B[6], in which case we need to find
all the 1’s in B[i] for i > 6. The Bloom filter tells that only
chunk 2 needs to be checked, and it is safe to ignore chunks
3 and 4. Case (ii): visit B[9], the Bloom filter can tell that
there is no need to scan B, since there cannot be any B[j]
where B[j] = 1 and j > 9. 2

4.2 Union Arrays on Join Attributes
In testing Algorithm 1, we found that there are many

cache loads and stores. A deeper analysis of the algorithm
shows that the extra cache loads and stores may be caused

by cache misses when sequentially visiting different arrays.
Take Figure 3 for example. In Step (2)(a), we visited arrays
L2, O2, P ′, P and O1 in sequence, with each causing at least
one cache miss. Step (2)(b) and Step (2)(c) show a similar
behavior. An intuitive solution is to merge the arrays on join
attributes and sort them together. Again, consider Figure 3.
We can merge L1 and L′1 into one array and sort them. Sim-
ilarly, we can merge L2 and L′2, and P and P ′. Also, O1 and
O2 are not needed in this case, and B′ needs to be extended
to be aligned with the merged arrays. This solution is quite
similar to IESelfJoin discussed in Section 3.2. However,
we need to prune join results for tuples that come from the
same table. This can be easily done using a Boolean flag
for each position, where 0 (resp., 1) denotes that the corre-
sponding value is from the first (resp. the second) table. Our
experiments (Section 7.2) show that the simple union oper-
ation can significantly reduce the number of cache misses,
and thus improve the total execution time.

5. DISTRIBUTED INEQUALITY JOINS
We present a distributed version of the IEJoin along the

same lines of state-of-the-art general purpose distributed
data processing systems, such as Hadoop’s MapReduce [8]
and Spark [23]. Our goal is twofold: (i) scale our algo-
rithm to very large input relations that do not fit into the
main memory of a single machine and (ii) improve efficiency
even further. We assume that work scheduling and data
block assignment are handled by any general purpose re-
source manager, such as YARN (http://hadoop.apache.org/
docs/current/hadoop-yarn/hadoop-yarn-site/YARN.html) and
Mesos (http://mesos.apache.org).

The simplest approach for running IEJoin in a distributed
setting is to: (i) construct k data blocks of each input rela-
tion; (ii) apply Cartesian product (or self-Cartesian product
for a single relation input) on the data blocks; and (iii) run
IEJoin (either on a single table or two tables input) on
the k2 data block pairs. However, this would generate large
amount of network traffic and some data block pairs may not
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Algorithm 3: Distributed IEJoin

input : Query q, Table tin1,Table tin2

output: Table tout
1 //Pre-processing
2 DistT1 ← read tin1 in distributed blocks
3 DistT2 ← read tin2 in distributed blocks
4 foreach row r ∈ DistT1 and DistT2 do
5 r ← global unique ID

6 DistT1 ← sort and equally partition DistT1 rows
7 DistT2 ← sort and equally partition DistT2 rows
8 forall the block bi ∈ DistT1 do
9 D1i ← pivot and reference values in bi

10 MT1i ← min and max values in pivot and
11 reference lists of D1i

12 forall the block bj ∈ DistT2 do
13 D2j ← pivot and reference values in bj
14 MT2j ← min and max values in pivot and
15 reference lists of D2j

16 Virt ← all block combinations of MT1 and MT2
17 forall the (MT1i,MT2j) pairs ∈ V irtij do
18 if MT1i

⋂
MT2j then

19 MDataij ← blocks from D1i and D2j

20 //IEJoin function
21 forall the block pairs (D1i, D2j) ∈ MDataij do
22 RowIDResultij ← IEJoin(q,D1i,D2j)

23 //Post-processing
24 forall the rowID pairs (i, j) ∈ RowIDResultij do
25 rowi ← row id i in DistT1
26 rowj ← row id j in DistT2
27 tout ← merge(rowi,rowj)

necessarily generate results. A naive work-around would be
to reduce the number of blocks for each relation to maximize
the usability of each data block. However, very large data
blocks introduce work imbalance and require larger memory
space for each worker.

We solve the above distribution challenges by introducing
efficient pre-processing and post-processing phases. These
two phases allow us to reduce communication overhead and
memory footprint for each node, without modifying the
data block size. The pre-processing phase generates space-
efficient data blocks for the input relation(s); predicts which
pair of data blocks may report query results; and copies
and transfers through the network only useful pairs of data
blocks. IEJoin, in the distributed version, returns the join
results as a pair of rowIDs instead of returning the actual
rows. It is the responsibility of the post-processing phase to
materialize the final results by resolving the rowIDs into ac-
tual relation rows. We use the internal rowIDs of Spark SQL
to uniquely identify different rows since the input relations
may not have a unique row identifier. We summarize in
Algorithm 3 the implementation of the distributed algo-
rithm when processing two input tables. We omit the dis-
cussion about single relation input since it is straightfor-
ward to follow. The distributed join process is composed
of three main phases (the pre-processing, IEJoin, and post-
processing phases), which are described below.

Distributed pre-processing. After assigning unique
rowIDs to each input row (lines 2-5), the pre-processing step
globally sorts each relation and partitions each sorted rela-
tion to k equally-sized partitions, where the number of par-
titions depends on the relation size and default block size

(lines 6-7). For example, if the default block size is b and
the relation input size is M , the number of partitions is dM

b
e.

Note that the global sorting maximizes data locality within
the partitions, which in turn increases the overall runtime ef-
ficiency. This is because global sorting partially answers one
of the inequality join conditions, where it physically moves
tuples closer toward their candidate pairs. In other words,
global sorting increases the efficiency of block pairs that gen-
erate results, while block pairs that do not produce results
can be filtered out before actually processing them. After
that, for each sorted partition, we generate a single data
block that stores only the attribute values referenced in the
join conditions in a list. These data blocks D1 and D2 do
not store the actual relation rows in order to reduce the
network overhead and reduce its memory footprint. This
follows the semi-join principle. We also extract metadata
that contain the block ID, and the min/max values of each
referenced attribute value from each data block (lines 8-15).
Then, we create kMT1 × kMT2 virtual block combinations
and filter out block combinations that do not generate re-
sults (lines 16-19). Notice that blocks with non-intersecting
min-max values do not produce results.

Distributed IEJoin. After pre-processing, we obtain a list
of overlapping block pairs. We simply run IEJoin (either
for a single or two relations) for each of these pair blocks
in parallel. Specifically, we merge-sort the attribute val-
ues in D1 and D2 and run IEJoin over the merged block.
The permutation and bit arrays generation are similar to
the centralized version. However, the distributed IEJoin
does not have access to the actual relation rows. Therefore,
each parallel IEJoin instance outputs a pair of rowIDs that
represents the joined rows (lines 21-22).

Distributed post-processing. In the final step, we ma-
terialize the result pairs by matching each rowID-pair, from
the output of the distributed IEJoin, with the rowIDs
of DistT1 and DistT2 (lines 24-27). We run this post-
processing phase in parallel, as a distributed hash join based
on the rowIDs, to speed up the materialization of the final
join results.

6. IMPLEMENTATION DETAILS
We now describe the integration of our algorithms into

PostgreSQL (Section 6.1) and Spark SQL (Section 6.2).

6.1 PostgreSQL
PostgreSQL processes a query in three stages: parsing,

planning, and execution. Parsing extracts relations and
predicates and creates query parse trees. Planning creates
query plans and invokes the query optimizer to select a plan
with the smallest estimated cost. Execution runs the se-
lected plan and emits the output.

Parsing and Planning. PostgreSQL uses merge and hash
join operators for equijoins and naive nested loop for in-
equality joins. PostgreSQL looks for the most suitable join
operator for each join predicate. We extend this check to
verify if it is IEJoin-able by checking if a predicate contains
a scalar inequality operator. If so, we save the operator’s
oid in the data structure associated with the predicate. For
each operator and ordered pair of relations, the list of pred-
icates that the operator can handle is created. For example,
two equality predicates over the same pair of relations are
associated to one hash join operator.
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Sort1 idx time cost pos
s1 3 80 10 1
s2 4 90 5 2
s3 1 100 6 3
s4 2 140 11 4

Sort2 idx time cost pos
s1 4 90 5 2
s2 1 100 6 3
s3 3 80 10 1
s4 2 140 11 4

Figure 5: Permutation array creation for self-join Qp

Next, the Planner estimates the execution cost for possible
join plans. Every node in the plan has a base cost, which
is the cost of executing the previous nodes, plus the cost
for the actual node. Using existing PostgreSQL methods,
we added a cost function for our operator; it is evaluated
as the sum of the cost for sorting inner and outer relations,
CPU cost for evaluating all output tuples (approximated
based on the IEJoin-predicates), and the cost of evaluating
additional predicates for each tuple (i.e., the ones that are
not involved in the actual join). Next, PostgreSQL selects
the plan with the lowest cost.

Execution. At the executor, incoming tuples from outer
and inner relations are stored into TupleTableSlot arrays.
These copies of the tuples are required as PostgreSQL may
not have the content of the tuple at the same pointer location
when the tuple is sent for the final projection. This step
is a platform-specific overhead that is required to produce
an output. The outer relation (of size N) is parsed first,
followed by the inner relation (of size M). If the inner join
data is identical to the corresponding outer join data (self-
join), we drop the inner join data and the data structure has
size N instead of 2N .

We illustrate in Figure 5 the data structure and the per-
mutation array computation with an example for the self-
join Qp. The data structure is initialized with an index (idx)
and a copy of the attributes of interest (time and cost for
Qp). Next, the data is sorted for the first predicate (time)
using the system function qsort with special comparators (as
defined in Algorithm 1) to handle cases where two values for
a predicate are equal. The result of the first sort is reported
at the left-hand side of Figure 5. The last column (pos) is
now filled with the ordering of the tuples according to this
sorting. As a result, we create a new array to store the index
values for the first predicate. We use this array to select the
tuple IDs at the time of projecting tuples. The tuples are
then ordered again according to the second predicate (cost),
as reported in the right-hand side of Figure 5. After the
second sorting, the new values in pos are the values for the
permutation array, denoted by perm.

Finally, we create and traverse a bit-array B of size
(N + M) (N in case of self-join) along with a Bloom filter
bit-array, as discussed in Section 4.1. If the traversal finds
a set bit, the corresponding tuples are sent for projection.
Additional predicates (if any) are evaluated at this stage,
and, if the conditions are satisfied, tuples are projected.

6.2 Spark SQL
Spark SQL [2] allows users to query structured data on top

of Spark [23]. It stores the input data as a set of in-memory
Resilient Distributed Datasets (RDD). Each RDD is parti-
tioned into smaller cacheable blocks, where each block fits
in the memory of a single machine. Spark SQL takes as in-
put the datasets location(s) in HDFS and an SQL query, and
outputs an RDD that contains the query result. The default
join operation in Spark SQL is inner join. When passing a
join query to Spark SQL, the optimizer searches for equality

Dataset Number of rows Size
Employees 10K – 500M 300KB – 17GB
Employees2 1B – 6B 34GB – 215GB

Events 10K – 500M 322KB – 14GB
Events2 1B – 6B 32GB – 202GB
MDC 24M 2.4GB
Cloud 470M 28.8GB

Table 1: Size of the datasets

join predicates that can be used to evaluate the inner join
operator as a hash-based physical join operator. If there
are no equality join predicates, the optimizer translates the
inner join physically to a Cartesian product followed by a
selection predicate.

We implemented the distributed version of IEJoin as a
new Spark SQL physical join operator. To make the opti-
mizer aware of the new operator, we added a new rule to
recognize inequality conditions. The rule uses the first two
inequality conditions for the IEJoin operator. In case of
additional inequality join conditions, it evaluates them as a
post selection operation on the output of the first two join
conditions. The distributed operator utilizes Spark RDD op-
erators to process the algorithm in distributed fashion. As a
result, the distributed IEJoin operator depends on Spark’s
memory management to store the user’s input relation. If
the result does not fit in the memory of a single machine,
we temporarily store the result into HDFS. After all IEJoin
instances finish writing into HDFS, the distributed operator
passes the HDFS file pointer to Spark, which constructs a
new RDD of the result and passes it to Spark SQL.

7. EXPERIMENTAL STUDY
In this section, we evaluate IEJoin with several datasets

on a set of inequality queries (Section 7.1). We study the
effect of sorting and caching (Section 7.2). We then com-
pare IEJoin with existing systems on both a centralized
(Section 7.3) and a distributed environment (Section 7.4).

7.1 Datasets, Queries, and Algorithms
Datasets. We used both synthetic and real-world data
(summarized in Table 1) to evaluate our algorithms.

(1) Employees. A dataset that contains employees’ salary
and tax information [3] with eight attributes: state, married,
dependents, salary, tax, and three others for notes. The re-
lation has been populated with real-life data: tax rates, in-
come brackets, and exemptions for each state in the USA
have been manually collected to generate synthetic tax
records. We used the following self-join query to identify
anomalies [7]:

Q1 : SELECT r.id, s.id
FROM Employees r,Employees s
WHERE r.salary < s.salary AND r.tax > s.tax;

The above query returns a set of employee pairs, where
one employee earns higher salary than the other but pays
less tax. To make sure that we generate output for Q1, we
selected 10% random rows and increased their tax values.
Employees2 is a group of larger input datasets with up to 6
Billion records, but with only 0.001% random changes to tax
values. The higher selectivity is used to test the distributed
algorithm on large input files.

(2) Events. A synthetic dataset that contains start and end
time information for a set of independent events. Each event
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contains the name of the event, event ID, number of attend-
ing people, and the sponsor ID. We used this dataset with
a self-join query that collects pairs of overlapping events:

Q2 : SELECT r.id, s.id
FROM Events r,Events s
WHERE r.start ≤ s.end AND r.end ≥ s.start
AND r.id 6= s.id;

Again, to make sure we generate output for Q2, we se-
lected 10% random events and extended their end values.
We also generate Events2 as larger datasets with up to 6
Billion records, but with 0.001% extended random events.

(3) Mobile Data Challenge (MDC). This is a 50GB real
dataset [18] that contains behavioral data of nearly 200 indi-
viduals collected by Nokia Research (https://www.idiap.
ch/dataset/mdc). The dataset contains physical locations,
social interactions, and phone logs of the participating in-
dividuals. We used two relations, Shops and Persons, from
the dataset with the following join query that, for all shops,
looks for all persons that are close to a shop up to a distance
c along the x-axis (xloc) and the y-axis (yloc):

Q3 : SELECT s.name, p.name
FROM Shops s,Persons p
WHERE s.xloc− c < p.xloc AND s.xloc + c > p.xloc
AND s.yloc− c < p.yloc AND s.yloc + c > p.yloc;

(4) Cloud [20]. A real dataset that contains cloud re-
ports from 1951 to 2009, through land and ship stations
(ftp://cdiac.ornl.gov/pub3/ndp026c/). We used a self-
join query Q4, similar to Q3, to compute for every station
all stations within a distance c = 10. Since the runtime for
Q3 and Q4 is dominated by the output size, we mostly used
them for scalability analysis in the distributed case.

Centralized Systems. We evaluated the following cen-
tralized systems in our experiments:

(1) PG-IEJoin. We implemented IEJoin inside Post-
greSQL v9.4, as discussed in Section 6.1. We compare it
against the baseline systems below.

(2) PG-Original. We use PostgreSQL v9.4 as a baseline
since it is the most widely used open source DBMS. We ran
automatic configuration tuning with pgtune [21] to maximize
the benefit from large main memory.

(3) PG-BTree & PG-GiST. For optimization purposes, we
use indices for Q1 and Q2 with two alternative approaches:
a B-tree index and GiST. For PG-BTree, we define a B-
tree index for each attribute in a query. For PG-GiST, we
use the GiST access method built inside PostgreSQL, which
considers arbitrary indexing schemes and automatically se-
lects the best technique for the input relation. Although Q1

and Q2 appear similar, they require different data represen-
tation to be able to index them using GiST. The inequality
attributes in Q1 are independent, each condition forms a
single open interval. However, the inequality attributes in
Q2 are dependent, together they form a single closed inter-
val. To use GiST in Q1, we had to convert salary and tax
attributes into a single geometric point data type SalTax, as
shown in Q1i. Similarly for Q2, we converted start and end
attributes into a single range data type StartEnd, as shown
in Q2i.

Q1i : SELECT r.id, s.id
FROM Employees r,Employees s
WHERE r.SalTax >∧ s.SalTax
AND r.SalTax� s.SalTax;

Q2i : SELECT r.id, s.id
FROM Events r,Events s
WHERE r.StartEnd && s.StartEnd AND r.id 6= s.id;

In the rewriting of the above queries in PG-GiST, opera-
tor “>∧” corresponds to “is above?”, operator “�” means
“is strictly right of?”, and operator “&&” indicates “over-
lap?”. For geometric and range type, GiST uses a Bitmap
index to optimize its data access with large datasets.

(4) MonetDB. We used MonetDB Database Server Toolkit
v1.1 (Oct2014-SP2), which is an open-source column-
oriented database, in a disk partition of size 669GB.

(5) DBMS-X. We used a leading commercial centralized
relational database.

Single node experimental setup. For the centralized
evaluation, we used a Dell Precision T7500 equipped with
two 64-bit quad-core Intel Xeon X5550 (8 physical cores and
16 CPU threads) and 58GB RAM.

Distributed systems. For these experiments, we used the
following systems:

(1) Spark SQL-IEJoin. We implemented IEJoin inside
Spark SQL v1.0.2 (https://spark.apache.org/sql/), as
detailed in Section 6.2. We evaluated the performance of
our techniques against the baseline systems below.

(2) Spark SQL & Spark SQL-SM. Spark SQL is the de-
fault implementation in Spark SQL. Spark SQL-SM is an op-
timized version based on distributed sort-merge join in [17].
It contains three phases: partitioning, sorting, and joining.
Partitioning selects a join attribute to distribute the data
based on some statistics, e.g., cardinality estimation. Sort-
ing sorts each partition into many sorted lists, each list cor-
responds to an inequality condition. Finally, we apply a
distributed sort merge join over the sorted lists to produce
results. We also improve the above method by pruning the
non-overlapping partitions to be joined.

(3) DPG-BTree & DPG-GiST. We use a commercial ver-
sion of PostgreSQL with distributed query processing. This
allows us to compare Spark SQL-IEJoin to a distributed
version of PG-BTree and PG-GiST.

Multi-node experimental setup. We use a compute
cluster of 17 Shuttle SH55J2 machines (1 master with 16
workers) equipped with Intel i5 processors with 16GB RAM,
and connected to a high-end Gigabit switch.

7.2 Parameters Setting
We show the effect of the two optimizations (Section 4),

as well as the effect of global sorting (Section 5).

Bloom filter. We run query Q2 on 10M tuples to show the
performance gain of using a Bloom filter. Results are shown
in Table 2. Note that the chunk size is an optimization pa-
rameter that is machine specific. For this experiment, L1
cache was 256KB. Intuitively, the larger the chunk size the
better. However, a very large chunk size defeats the pur-
pose of using Bloom filters to reduce the bit-array scanning
overhead. The experiment shows that the performance gain
is 3X between 256 bits and 1,024 bits and 1.5X between
1,024 bits and 4,096 bits. Larger chunk sizes show worse
performance, as shown with chunk size of 16,384 bits.

Union arrays. To show the performance gain due to the
union optimization, we run IEJoin, with and without the
union array, using 10M tuples from the Events dataset. We
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Chunk (bit) 1 64 256 1024 4096 16384
Time (sec) >1 day 1623 896 296 158 232

Table 2: Bloom filters on 10m rows (Events data)

Parameter (M/sec) IEJoin (union) IEJoin
cache-references 6.5 8.4
cache-references-misses 3.9 4.8
L1-dcache-loads 459.9 1,240.6
L1-dcache-load-misses 8.7 10.9
L1-dcache-stores 186.8 567.5
L1-dcache-store-misses 1.9 1.9
L1-dcache-prefetches 4.9 7.0
L1-dcache-prefetches-misses 2.2 2.7
LLC-loads 5.1 6.6
LLC-load-misses 2.9 3.7
LLC-stores 3.8 3.7
LLC-store-misses 1.1 1.2
LLC-prefetches 3.1 4.1
LLC-prefetch-misses 2.2 2.9
dTLB-loads 544.4 1,527.2
dTLB-load-misses 0.9 1.6
dTLB-stores 212.7 592.6
dTLB-store-misses 0.1 0.1
Total time (sec) 125 325

Table 3: Cache statistics on 10m rows (Events data)

collect the following statistics, shown in Table 3: (i) L1 data
caches (dcache), (ii) last level cache (LLC), and (iii) data
translation lookaside buffer (dTLB). Note that the opti-
mized algorithm with union arrays is 2.6 times faster than
the original one. The performance gain in the optimized
version is due to the lower number of cache loads and stores
(L1-dcache-loads, L1-dcache-stores, dTLB-loads and TLB-
stores), which is 2.7 to 3 times lower than the original algo-
rithm. This behavior is expected since the optimized IEJoin
has fewer arrays compared with the original version.

Global sorting on distributed IEJoin. As presented in
Algorithm 3, the distributed version of our algorithm applies
global sorting at the pre-processing phase (lines 6-7). In this
experiment, we compare the performance of Q1 and Q2 with
and without global sorting. Figure 6 shows the results of
this experiment. At a first glance, one may think that the
global sorting affects the performance of distributed IEJoin
as it requires shuffling data through the network. However,
global sorting improves the performance of the distributed
algorithm by 2.4 to 2.9 times. This is because global sorting
allows us to filter out block-pair combinations that do not
generate results. We also observe that the time required by
the IEJoin process itself is one order of magnitude faster
when using global sorting.

We further breakdown the runtime of Q1 and Q2 in Ta-
ble 4 to measure the impact of global sorting. Here, the
pre-processing time includes the data loading from HDFS,
global sorting, partitioning, and block-pairs materialization.
Even though global sorting increases the overhead of the pre-
processing phase, we observe that the runtime for this phase
is at least 30% less compared with the case without global
sorting due to the reduced network overhead from eliminat-
ing unnecessary block pairs. The results confirm the above
observation: IEJoin is one order of magnitude faster when
pre-processing includes global sorting. This greatly reduces
the network overhead and increases the memory locality in
the block combinations that are passed to our algorithm.

0

500

1000

1500

2000

2500

3000

3500

Q1 Q2 Q1 Q2

R
u
n
ti

m
e
 (

S
e
co

n
d
s)

Pre-processing

IEJoin

Post-processing

Without global sortWith global sort

Figure 6: IEJoin using 100m rows on 6 workers

Query Pre-process IEJoin Post-process Total
With global sorting

Q1 632 162 519 1,313
Q2 901 84 391 1,376

Without global sorting
Q1 1,025 1,714 426 3,165
Q2 1,182 1,864 349 3,395

Table 4: Time breakdown (secs) of Figure 6

Based on the above experiments, in the following tests we
used 1,024 bits as the default chunk size, union arrays, and
global sorting for distributed IEJoin.

7.3 Single-node Experiments
In this set of experiments, we study the efficiency of

IEJoin on datasets that fit the main memory of a single
compute node and compare its performance with alterna-
tive centralized systems.

IEJoin vs. baseline systems. Figure 7 shows the results
for queries Q1 and Q2 in a centralized environment, where
the x-axis represents the input size in terms of the number of
tuples, and the y-axis represents the corresponding running
time in seconds. The figure reports that PG-IEJoin outper-
forms all baseline systems by more than one order of mag-
nitude for both queries and for every reported dataset input
size. In particular, PG-IEJoin is up to more than three
(resp., two) orders of magnitude faster than PG-Original
and MonetDB (resp., DBMS-X). We can clearly see that
the baseline systems cannot compete with PG-IEJoin since
they all use the classic Cartesian product followed by a selec-
tion predicate to perform queries with only inequality join
conditions. In fact, this is the main reason why they cannot
run for bigger datasets.

IEJoin vs. indexing. We now consider two different vari-
ants of PostgreSQL, each using a different indexing tech-
nique (GiST and BTree), to better evaluate the efficiency of
our algorithm with bigger datasets in a centralized environ-
ment. We run Q1 and Q2 on datasets with 10M and 50M
records. Figure 8 presents the results. In both experiments,
IEJoin is more than one order of magnitude faster than
PG-GiST. In fact, IEJoin is more than three times faster
than the GiST indexing time alone. We stopped PG-BTree
after 24 hours of runtime. Our algorithm performs better
than these two baseline indices because it better utilizes the
memory locality.

We observe that the memory consumption for MonetDB
increases exponentially with the input size. For example,
MonetDB uses 419GB for an input dataset with only 200K
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Figure 7: IEJoin (centralized)
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Figure 9: Q1 runtime for data that fits caches

records. In contrast to MonetDB, IEJoin makes better
use of the memory. Table 5 shows that IEJoin uses around
150MB for Q1 (or less for Q2) for an input dataset of 200K
records (MonetDB requires two orders of magnitude more
memory). Note that in Table 5, we report the overall mem-
ory used by sorted attribute arrays, permutation arrays,
and the bit-array. Moreover, although IEJoin requires only
9.3GB of memory for an input dataset of 10M records, it
runs to completion in less than one hour (3,128 seconds) for
a dataset producing more than 7 billion output records.

We further analyze the breakdown time of IEJoin on the
50M rows datasets, as shown in Table 6. The table shows
that, by excluding the time required to load the dataset
into memory, scanning the bit-array takes only 40% of the
overall execution time where the rest is mainly for sorting.
This shows the high efficiency of our algorithm.

IEJoin vs. cache-efficient Cartesian product. We now
push further our evaluation to better highlight the memory
locality efficiency of IEJoin. We compare its performance
with both naive and cache-efficient Cartesian product joins
for Q1 on datasets that fit the L1 cache (256 KB), L2 cache
(1 MB), and L3 cache (8 MB) of the Intel Xeon processor.
We used 10K rows for L1 cache, 40K rows for L2 cache, and
350K rows for L3 cache. Figure 9 reports the results of this
experiment. When the dataset fits in the L1 cache, IEJoin
is 1.8 times faster than the cache-efficient Cartesian product
and 2.4 times faster than the naive Cartesian product. Fur-
thermore, as we increase the dataset size of Q1 to be stored
at the L2 and L3 caches, we see that IEJoin becomes one
and two orders of magnitude faster than the Cartesian prod-
uct, respectively. This is because of the delays of L2 and L3
caches and the complexity of the Cartesian product.

Query Input Output Time(secs) Mem(GB)
Q1 100K 9K 0.30 0.1
Q1 200K 23K 0.28 0.2
Q1 350K 68K 1.12 0.3
Q1 10M 3M 67.5 7.6
Q2 100K 0.2K 0.14 0.4
Q2 200K 0.8K 0.28 0.8
Q2 1M 42K 11.51 1.3
Q2 10M 2M 92.53 9.3
Q3 500k 154M 63.37 0.4
Q3 1.5M 1B 453.79 1.1
Q3 2M 2B 822.63 1.3
Q3 4M 7B 3,128.03 3.0

Table 5: Runtime and memory usage (PG-IEJoin)

Query Data Data Bitarray Total
reading sorting scanning time (secs)

Q1 158 240 165 563
Q2 319 332 215 866

Table 6: Time breakdown on 50M rows

Single-node summary. IEJoin outperforms existing
baselines by at least an order of magnitude for two main
reasons: it avoids the use of the expensive Cartesian prod-
uct and it nicely exploits memory locality by using memory-
contiguous data structures with a small footprint. In other
words, our algorithm avoids as much as possible going to
memory to fully exploit the CPU speed.

7.4 Multi-node Experiments
We now evaluate our proposal in a distributed environ-

ment and using larger datasets.

Distributed IEJoin vs. baseline systems. It is worth
noting that we had to run these experiments on a cluster
of 6 compute nodes only due to the limit imposed by the
free version of the distributed PostgreSQL system. Addi-
tionally, in these experiments, we stopped the execution of
any system that exceeds 24 hours. Figure 10 shows the re-
sults of all distributed systems we consider for queries Q1

and Q2. This figure again shows that our algorithm signif-
icantly outperforms all baseline systems. It is at least one
order of magnitude faster that all other systems. In particu-
lar, we observe that only DPG-GiST could terminate before
24 hours for Q2. In such a case, IEJoin is twice faster than
the time required to run GiST indexing alone. These results
show the high superiority of our algorithm over all baseline
systems also in a distributed environment.

Scaling input size. We further push the evaluation of
the efficiency in a distributed environment with bigger in-
put datasets: from 100M to 500M records with large re-
sults size (Employees & Events), and from 1B to 6B records
with smaller results size (Employees2 & Events2). As we
now consider IEJoin only, we run this experiment on our
entire 16 compute nodes cluster. Figure 11 shows the run-
time results as well as the output sizes. We observe that
IEJoin gracefully scales along with input dataset size in
both scenarios. We also observe in Figure 11(a) that, when
the output size is large, the runtime increases accordingly
as it is dominated by the materialization of the results. In
Figure 11(a), Q1 is slower than Q2 as its output is three
orders of magnitude larger. When the output size is rela-
tively small, both Q1 and Q2 scale well with increasing input
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Figure 10: Distributed IEJoin (100M rows, 6 nodes)
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Figure 11: Distributed IEJoin, 6B rows, 16 nodes

size (see Figure 11(b)). Below, we study in more details the
impact of the output size on performance.

Scaling dataset output size. We test our system’s scal-
ability in terms of the output size using two real datasets
(MDC and Cloud) as shown in Figure 12. To have a full
control on this experiment, we explicitly limit the output
size from 4.3M to 430M for MDC, and 20.8M to 2050M for
Cloud. The figures clearly show that the output size affects
the runtime; the larger the output size, the longer it will take
to produce them. They also show that materializing a large
number of results is costly. Take Figure 12(a) for exam-
ple, when the output size is small (i.e., 4.3M), materializing
them or not will have similar performance. However, when
the output size is big (i.e., 430M), materializing the results
takes almost 2/3 of the entire running time, as expected.

In order to run another set of experiments with much big-
ger output size, we created two variants of Q3 for MDC data
by keeping only two predicates over four (less selectivity).
Figure 13 shows the scalability results of these experiments
with no materialization of results. For Q3a, IEJoin pro-
duced more than 1, 000B records in less than 3, 000 seconds.
For Q3b, we stopped the execution after 2 hours with more
than 5, 000B tuples in the temporary result. This demon-
strates the good scalability of our solution.

Multi-node summary. Similarly to the centralized envi-
ronment, IEJoin outperforms existing baselines by at least
one order of magnitude. In particular, we observe that it
gracefully scales in terms of input (up to 6B input tuples).
This is because our algorithm first performs a join at the
metadata level, which is orders of magnitude smaller than
the actual data. As a result, it shuffles only those data par-
titions that can potentially produce join results. Typically,
IEJoin processes a small number of data partitions.

8. RELATED WORK
Several cases of inequality joins have been studied; these

include band joins, interval joins and, more generally, spatial
joins. IEJoin is specially optimized for joins with at least
two predicates in {“<”, “>”, “≤”, “≥”}.
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Figure 12: Runtime of IEJoin (c = 10)
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Figure 13: Without result materialization (c = 5, 10)

A band join [9] of two relations R and S has a join predi-
cate that requires the join attribute of S to be within some
range of the join attribute of R. The join condition is ex-
pressed as R.A − c1 ≤ S.B & S.B ≤ R.A + c2, where c1
and c2 are constants. The band-join algorithm [9] partitions
the data from relations R and S into partitions Ri and Si

respectively, such that for every tuple r ∈ R, all tuples of
S that join with r appear in Si. It assumes that Ri fits
into memory. Contrary to IEJoin, the band join is limited
to a single inequality condition type, involving one single
attribute from each column. IEJoin works for any inequal-
ity conditions and attributes from the two relations. While
band join queries can be processed using our algorithm, not
all IEJoin queries can run with a band join algorithm.

Interval joins are frequently used in temporal and spa-
tial data. The work in [11] proposes the use of the rela-
tional Interval Tree to optimize joining interval data. Each
interval intersection is represented by two inequality condi-
tions, where the lower and upper times of any two tuples are
compared to check for overlaps. This work optimizes non-
equijoins on interval intersections, where they represent each
interval as a multi-value attribute. Compared to our work,
they only focus on improving interval intersection queries
and cannot process general purpose inequality joins.

Spatial indexing is widely used in several applications with
multidimensional datasets, such as Bitmap indices [5,19], R-
trees [15] and space filling curves [4]. In PostgreSQL, sup-
port for spatial indexing algorithms is provided through a
single interface known as Generalized index Search Tree [16]
(GiST). From this collection of indices, Bitmap index is
the most suitable technique to optimize multiple attribute
queries that can be represented as 2-dimensional data. Ex-
amples of 2-dimensional datasets are intervals (e.g., start
and end time in Q2), GPS coordinates (e.g., Q3), and any
two numerical attributes that represent a point in an XY
plot (e.g., salary and tax in Q1). The main disadvantage of
the Bitmap index is that it requires large memory footprint
to store all unique values of the composite attributes [6,22].
Bitmap index is a natural baseline for our algorithm, but,
unlike IEJoin, it does not perform well with high cardinal-
ity attributes, as demonstrated in Figure 6. R-trees, on the
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other hand, are not suitable because an inequality join cor-
responds to window queries that are unbounded from two
sides, and consequently intersect with a large number of
internal nodes of the R-tree, generating unnecessary disk
accesses.

Several proposals have been made to speed-up join exe-
cutions in MapReduce (e.g., [10]). However, they focus on
joins with equalities and hence are forced to perform mas-
sive data shuffling to be able to compare each tuple with
each other. There have been few attempts to devise efficient
implementation of theta-join in MapReduce [20, 24]. [20]
focuses on pair-wise theta-join queries. It partitions the
Cartesian product output space with rectangular regions of
bounded sizes. Each partition is mapped to one reducer.
The proposed partitioning guarantees correctness and work-
load balance among the reducers while minimizing the over-
all response time. [24] further extends [20] to solve multi-
way theta-joins. It proposes an I/O and network cost-aware
model for MapReduce jobs to estimate the minimum time
execution costs for all possible decomposition plans for a
given query, and selects the best plan given a limited num-
ber of computing units and a pool of possible jobs. We pro-
pose a new algorithm to do the actual inequality join based
on sorting, permutation arrays, and bit arrays. The focus
in these previous proposals is on efficiently partitioning the
output space and on providing a cost model for selecting the
best combination of MapReduce jobs to minimize response
time. In both proposals, the join is performed with exist-
ing algorithms, which in the case of inequality conditions
corresponds to Cartesian product followed by a selection.

9. ...THE END
To help Bob with his inequality join, we proposed two

algorithms for the efficient evaluation of joins defined with
inequality conditions. Our approach relies on auxiliary data
structures that enable efficient computations and require
small memory footprint. We presented a novel algorithm
that exploits data locality in the data structures to achieve
orders of magnitude speedup in the computation, and an
optimized version of the same for self-joins. For both algo-
rithms, we discussed extensions and optimizations. Finally,
we presented both centralized and distributed versions of the
algorithms, which are implemented on top of PostgreSQL
and Spark SQL, respectively. Through extensive experi-
ments over both synthetic and real data, we demonstrated
that our solution is superior to baseline systems: it is 1.5 to 3
orders of magnitude faster than commercial and open-source
centralized databases; and is at least 2 orders of magnitude
faster than the original Spark SQL. More interestingly, we
experimentally showed that, although theoretically the al-
gorithm does not break the quadratic time bound, its per-
formance is proportional to the size of the output. Future
directions include the selectivity estimation for inequality
join conditions to achieve better query optimization.
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