
Tutorial: SQL-on-Hadoop Systems

Daniel Abadi Shivnath Babu Fatma Özcan Ippokratis Pandis
Yale University Duke University IBM Research - Almaden Cloudera

daniel.abadi@yale.edu shivnath@cs.duke.edu fozcan@us.ibm.com ippokratis@cloudera.com

1. INTRODUCTION
Enterprises are increasingly using Apache Hadoop, more

specifically HDFS, as a central repository for all their data;
data coming from various sources, including operational sys-
tems, social media and the web, sensors and smart devices, as
well as their applications. At the same time many enterprise
data management tools (e.g. from SAP ERP and SAS to
Tableau) rely on SQL and many enterprise users are famil-
iar and comfortable with SQL. As a result, SQL processing
over Hadoop data has gained significant traction over the
recent years, and the number of systems that provide such
capability has increased significantly. In this tutorial we use
the term SQL-on-Hadoop to refer to systems that provide
some level of declarative SQL(-like) processing over HDFS
and noSQL data sources, using architectures that include
computational or storage engines compatible with Apache
Hadoop.

It is important to note that there are important distinct
characteristics of this emerging eco-system that are different
than traditional relational warehouses. First, in the world of
Hadoop and HDFS data, complex data types, such as arrays,
maps, structs, as well as JSON data are more prevalent.
Second, the users utilize UDFs (user-defined-functions) very
widely to express their business logic, which is sometimes
very awkward to express in SQL itself. Third, often times
there is little control over HDFS. Files can be added or
modified outside the tight control of a query engine, making
statistics maintenance a challenge. These factors complicate
the query optimization further in the Hadoop system.

There is a wide variety of solutions, system architectures,
and capabilities in this space, with varying degree of SQL
support and capabilities. The purpose of this tutorial is to
provide an overview of these options, discuss various different
approaches, and compare them to gain insights into open
research problems.

In this tutorial, we will examine the SQL-on-Hadoop sys-
tems along various dimensions. One important aspect is
their data storage. Some of these systems support all native
Hadoop formats, and do not impose any propriety data for-

This work is licensed under the Creative Commons Attribution-
NonCommercial-NoDerivs 3.0 Unported License. To view a copy of this li-
cense, visit http://creativecommons.org/licenses/by-nc-nd/3.0/. Obtain per-
mission prior to any use beyond those covered by the license. Contact
copyright holder by emailing info@vldb.org. Articles from this volume
were invited to present their results at the 41st International Conference on
Very Large Data Bases, August 31st - September 4th 2015, Kohala Coast,
Hawaii.
Proceedings of the VLDB Endowment, Vol. 8, No. 12
Copyright 2015 VLDB Endowment 2150-8097/15/08.

mats, and keep the data open to all applications running on
the same platform. While there are some database hybrid
solutions, such as HAWQ, HP Haven, and Vortex, that store
their propriety data formats in HDFS. Most often, these
systems are also able to run SQL queries over native HDFS
formats, but do not provide the same level of performance.

Some SQL-on-Hadoop systems provide their own SQL-
specific run-times, such as Impala, Big SQL, and Presto,
while others exploit a general purpose run-time such as Hive
(MapReduce and Tez) and SparkSQL (Spark).

Another important aspect is the support for schema flexi-
bility and complex data types. Almost all of these systems
support complex data types, such as arrays and structs. But,
only a few, such as Drill and Hadapt with Sinew [13], are
able to work with schemaless data.

2. TUTORIAL STRUCTURE
In this 3-hour tutorial, we will first discuss the general

system characteristics, and examine different approaches to
data storage, query processing and optimization, indexing,
and updates. In the second half of the tutorial, we will
examine a set of representative systems in detail, and discuss
several research problems they address.

At the end, we will wrap up by summarizing all archi-
tectures, their pros, and cons, and how we see this space
evolving, and where we think more research is needed. We ex-
pect this tutorial to be the engaging enough for the audience
and act as a bridge to start a lively open discussion.

3. OVERVIEW OF REPRESENTATIVE SYS-
TEMS

Hive [14], an open source project originally built at Face-
book, was the first SQL-on-Hadoop offering that provided an
SQL-like query language, called HiveQL, and used MapRe-
duce run-time to execute queries. Hive compiled HiveQL
queries into a series of map reduce jobs. As SQL-on-Hadoop
gained popularity, MapReduce based run-time did not pro-
vide the required response times, due to the high latency in
launching map reduce jobs. To address this issue, Hive moved
to a different run-time, Tez [10], which can run DAGs as a
single job, reducing the latency in launching jobs. Meanwhile,
the Facebook team developed a second SQL-on-Hadoop of-
fering, called Presto, that uses a traditional MPP DBMS
run-time instead of MapReduce.

Hadapt, which spun out of the HadoopDB research project
[1], was the first commercial SQL-on-Hadoop offering. Hadapt
and HadoopDB replaced the file-oriented HDFS storage for-
mats with DBMS-oriented storage, including column-store

2050



data layouts. Hadapt leverages two different query run-
times: a MapReduce-based run-time (like the original Hive
run-time) for long queries that require fault tolerance, and
an interactive MPP run-time for shorter queries.

Spark is a fast, general purpose cluster computing engine
that is compatible with Hadoop data and tries to address
the shortcomings of MapReduce. There are three different
systems that use Spark as their run-time for SQL processing:
Shark [16], Hive on Spark [8], and Spark SQL [2].

As it became clear that the latency of launching jobs
for each query is too expensive for interactive SQL query
processing, there was a shift to shared-nothing database
architectures for SQL processing over Hadoop data. Hadapt,
Impala, Presto, Drill, as well as Big SQL all employ such
MPP architectures, where a long-running process co-exists
with DataNodes on each node in the cluster, and continuously
answers SQL queries.

Cloudera Impala [9] is an open-source, fully-integrated
MPP SQL query engine. Unlike other systems (often forks
of Postgres), Impala is a brand-new engine. Impala reads
at almost disk bandwidth and is typically able to saturate
all available disks. A main characteristic of Impala is that
employs LLVM to generate code at runtime to speed up
frequently executed code paths [15].

IBM Big SQL [7] leverages IBM’s state-of-the-art relational
database technology, to processes standard SQL queries over
HDFS data, supporting all common Hadoop file formats,
without introducing any propriety formats. Big SQL 3.0
shares the same catalog and table definitions with Hive using
the Hive Metastore. Big SQL exploits sophisticated query
rewrite transformations [11, 17] that are targeted for complex
nested decision support queries. It uses sophisticated data
statistics and a cost-based optimizer to choose the best query
execution plan. Big SQL introduces a scheduler service that
assigns HDFS blocks to database workers for processing on
a query by query basis.

Apache Drill [3] is an open-source project which aims at
providing SQL-like declarative processing over self-describing
semi-structured data. Its focus is on analyzing data without
imposing a fixed schema or creating tables in a catalog like
Hive MetaStore. It runs queries over files and HBase tables,
and discovers data when reading input data. For every fixed
chunk of data, it discovers its schema, creates an in-memory
columnar representation, and generates specific code for
processing. As such, it can accommodate data chunks with
varying schemas.

Several SQL-on-Hadoop systems leverage existing rela-
tional database technology: HadoopDB [1] uses large amounts
of PostgreSQL code; HAWQ [6] uses large amounts of Green-
plum code; and Vortex [5] uses large amounts of Actian
Vectorwise code. In some cases, database files are stored
in HDFS, while in other cases, database files are stored on
the same physical machines as HDFS, but on a separate
file system. In some cases, data is dynamically moved from
Hadoop file formats to the native storage structures of the
DBMS. In some cases, queries are executed by the database
engine code, while in other cases, query execution is split
between database engine code and native Hadoop execution
engines such as MapReduce or Tez [4].

An important category of SQL-on-Hadoop includes sys-
tems that provide some level of SQL support over HBase
data. HBase provides auto-sharding and fail over technology
for scaling tables across multiple servers. It also enables

updates, running on top of the HDFS, which itself does not
support updates. HBase scales out to petabytes of data
easily over a cluster of commodity hardware.

Splice Machine [12] provides SQL support over HBase data
using Apache Derby, targeting both operational as well as
analytical workloads. It replaces the storage system and
run-time of Derby with HBase and Hadoop. Splice Machine
leverages the Derby compiler stack to generate execution
plans that access HBase servers. (like SQL stored procedures)
which enables pushing computations down to each region
(shard) of HBase.

Phoenix provides SQL querying over HBase via an embed-
dable JDBC driver built for high performance and read/write
operations. It converts SQL queries into execution plans com-
posed of HBase scans. Coprocessors and custom filters are
leveraged in order to improve performance. Phoenix provides
secondary indexes as well as basic support for joins, both of
which are difficult to get with HBase.

4. REFERENCES
[1] A. Abouzeid, K. Bajda-Pawlikowski, D. J. Abadi, A. Rasin,

and A. Silberschatz. HadoopDB: An Architectural Hybrid of
MapReduce and DBMS Technologies for Analytical
Workloads. PVLDB, 2009.

[2] M. Amburst, R. S. Xin, C. Lian, Y. Huai, D. Liu, J. K.
Bradley, X. Meng, T. Kaftan, M. J. Franklin, A. Ghodsi,
and M. Zaharia. Spark SQL: Relational data processing in
Spark. In ACM SIGMOD, 2015.

[3] Apache Drill. http://drill.apache.org/.
[4] K. Bajda-Pawlikowski, D. J. Abadi, A. Silberschatz, and

E. Paulson. Efficient processing of data warehousing queries
in a split execution environment. In SIGMOD, 2011.

[5] P. Boncz. Vortex: Vectorwise goes Hadoop.
http://databasearchitects.blogspot.com/2014/05/vectorwise-
goes-hadoop.html.

[6] L. Chang, Z. Wang, T. Ma, L. Jian, L. Ma, A. Goldshuv,
L. Lonergan, J. Cohen, C. Welton, G. Sherry, and
M. Bhandarkar. HAWQ: A massively parallel processing
SQL engine in hadoop. In SIGMOD, 2014.

[7] S. Gray, F. Özcan, H. Pereyra, B. van der Linden, and
A. Zubiri. IBM Big SQL 3.0: SQL-on-Hadoop without
compromise. http://public.dhe.ibm.com/common/ssi/ecm/
en/sww14019usen/SWW14019USEN.PDF, 2014.

[8] Hive on spark. https://cwiki.apache.org/confluence/
display/Hive/Hive+on+Spark.

[9] M. Kornacker and et.al. Impala: A modern, open-source
SQL engine for Hadoop. In CIDR, 2015.

[10] B. Saha, H. Shah, S. Seth, G. Vijayaraghavan, A. Murthy,
and C. Curino. Apache Tez: A unifying framework for
modeling and building data processing applications. In
SIGMOD, 2015.

[11] P. Seshadri, H. Pirahesh, and T. Y. C. Leung. Complex
query decorrelation. In ICDE, 1996.

[12] Splice machine. http://www.splicemachine.com/.
[13] D. Tahara, T. Diamond, and D. J. Abadi. Sinew: A SQL

System for Multi-structured Data. In ACM SIGMOD, 2014.
[14] A. Thusoo, J. S. Sarma, N. Jain, Z. Shao, P. Chakka,

N. Zhang, S. Anthony, H. Liu, and R. Murthy. Hive - A
Petabyte Scale Data Warehouse Using Hadoop. In ICDE,
2010.

[15] S. Wanderman-Milne and N. Li. Runtime code generation in
Cloudera Impala. IEEE Data Eng. Bull., 2014.

[16] R. S. Xin, J. Rosen, M. Zaharia, M. J. Franklin, S. Shenker,
and I. Stoica. Shark: SQL and rich analytics at scale. In
ACM SIGMOD, 2013.

[17] C. Zuzarte, H. Pirahesh, W. Ma, Q. Cheng, L. Liu, and
K. Wong. WinMagic : Subquery elimination using window
aggregation. In ACM SIGMOD, 2003.

2051


