
Vizdom: Interactive Analytics through Pen and Touch

Andrew Crotty Alex Galakatos Emanuel Zgraggen
Carsten Binnig Tim Kraska

Department of Computer Science, Brown University

{firstname lastname}@brown.edu

ABSTRACT
Machine learning (ML) and advanced statistics are impor-
tant tools for drawing insights from large datasets. How-
ever, these techniques often require human intervention to
steer computation towards meaningful results. In this demo,
we present Vizdom, a new system for interactive analytics
through pen and touch. Vizdom’s frontend allows users
to visually compose complex workflows of ML and statis-
tics operators on an interactive whiteboard, and the back-
end leverages recent advances in workflow compilation tech-
niques to run these computations at interactive speeds. Ad-
ditionally, we are exploring approximation techniques for
quickly visualizing partial results that incrementally refine
over time. This demo will show Vizdom’s capabilities by
allowing users to interactively build complex analytics work-
flows using real-world datasets.

1. INTRODUCTION
Visualizations are one of the most important tools for

exploring, understanding, and conveying facts about data.
However, the rapidly increasing volume of data often exceeds
our capabilities to digest and interpret it, even with sophisti-
cated visualizations. Traditional OLAP-style reporting can
offer high-level summaries about large datasets but cannot
reveal more meaningful insights. On the other hand, com-
plex analytics tasks, such as machine learning (ML) and
advanced statistics, can help to uncover hidden signals.

Unfortunately, these techniques are not magical tools that
can miraculously produce incredible insights on their own;
instead, they must be guided by the user to unfold their full
potential. For example, a recent study [5] that used Twitter
data to predict national unemployment rates demonstrates
the importance of choosing good features, since the authors
discovered that a knowledge-driven approach using carefully
selected phrases (e.g., “I need a job”) outperformed a model
trained over the complete bag of words. However, the pro-
cess of finding these features is often the result of iterative

This work is licensed under the Creative Commons Attribution-
NonCommercial-NoDerivs 3.0 Unported License. To view a copy of this li-
cense, visit http://creativecommons.org/licenses/by-nc-nd/3.0/. Obtain per-
mission prior to any use beyond those covered by the license. Contact
copyright holder by emailing info@vldb.org. Articles from this volume
were invited to present their results at the 41st International Conference on
Very Large Data Bases, August 31st - September 4th 2015, Kohala Coast,
Hawaii.
Proceedings of the VLDB Endowment, Vol. 8, No. 12
Copyright 2015 VLDB Endowment 2150-8097/15/08.

Figure 1: Vizdom on an Interactive Whiteboard

trial-and-error, where a domain expert tests different sub-
sets of features until finding those that work best.

Furthermore, users often need to carefully tune algorithm-
specific hyperparameters in order to obtain good results. K-
means clustering, for instance, requires the user to pick an
appropriate number of centroids, while supervised classifi-
cation tasks require the selection of an appropriate kernel.
Additionally, these ML algorithms rarely work in isolation,
and they are usually combined into complex workflows in-
volving preprocessing, training, and evaluation.

While human input is clearly essential for deriving use-
ful insights using ML, existing frameworks are not designed
for iteratively refining complex workflows in an interactive
way. Most existing libraries (e.g., Weka [7], Mahout [2],
MLlib [11], MADlib [8]) focus on executing a single algo-
rithm at a time with fixed parameters. These libraries repre-
sent a black-box approach where users pick an algorithm and
wait potentially hours for a result, at which point they fre-
quently need to tune parameters or try a different algorithm.
MLbase [9] tries to improve the model refinement process by
automatically selecting tuned algorithms but lacks the hu-
man element that is crucial for extracting actionable knowl-
edge. Other tools like RapidMiner [4] allow users to visually
create ML workflows but are still far from delivering results
within the interactivity threshold (around 500ms [10]).

In this demo, we present Vizdom (Figure 1), a new system
for interactive analytics through pen and touch. Our fron-
tend was designed for visual interfaces that allow users to
interactively explore data using sophisticated visualizations,
and our backend leverages a high-performance distributed
analytics framework to achieve interactive speeds. Further-
more, we are investigating new approximation techniques
for visualizing partial results. This demo will allow users to
visually compose complex analytics workflows using several
real-world datasets.

2024

2. VIZDOM ARCHITECTURE
We envision a complete paradigm shift in how data sci-

entists conduct exploratory analytics. Rather than several
back-and-forth interactions between data scientists and do-
main experts, we believe that the two can work together
using a large interactive whiteboard to visualize, transform,
and analyze data on the spot, allowing them to quickly ar-
rive at an initial solution that can be further refined offline.
This section describes the architecture of Vizdom, which has
two parts: (1) a frontend built on PanoramicData, a visual
interface for data exploration; and (2) a backend built on
Tupleware, a high-performance distributed analytics frame-
work. Additionally, we outline some approximation tech-
niques that we are investigating to improve the interactivity
of complex analytics tasks.

2.1 Frontend
Most users interact with data through traditional query

languages like SQL and pre-canned reports that do not allow
for free-form data exploration. Instead, we believe users
need a visual interface in which they can quickly test out
a wide variety of hypotheses with minimal effort as they
interactively refine these hypotheses over time.

PanoramicData [13] is a visual frontend to SQL that al-
lows users to rapidly search through datasets using visual
queries constructed by pen and touch manipulation. For
Vizdom, we extended PanoramicData’s functionality to in-
clude sophisticated ML and statistics operators.

Figure 2 shows the primary Vizdom interface, which is
a blank canvas onto which users can drag either individ-
ual attributes or predefined operators. Pre-loaded datasets
are listed along the bottom, while the attributes for the se-
lected dataset and available operators are displayed along
the left-hand side. By default, dragging an attribute onto
the canvas creates a histogram showing the distribution of
the data, as shown by the visualization of the age attribute
in the figure. Users can also modify these visualizations to
plot different attributes against each other (e.g., height vs.
weight), producing a two-dimensional histogram. On the
other hand, dragging an operator onto the canvas provides
a template for a task (e.g., logistic regression) that users can
parameterize with attributes from the dataset.

Moreover, users can link together operators to easily cre-
ate different views over the data, since visualizations also
act as data filters. For example, a user could select a sub-
set of the data in Figure 2 by performing a lasso gesture
with the pen. Modifying an individual visualization (e.g.,
selecting a subset based on age) triggers an immediate re-
execution of all linked downstream visualizations, with in-
termediate results cached for reuse in future dependent vi-
sualizations. This feature allows users to interactively refine
their hypotheses based on the latest results and steer the
computation to find interesting patterns in the data.

2.2 Backend
The requirement to provide interactive speeds for complex

analytics tasks poses entirely new challenges for the backend.
As shown by a recent study [10], even slight delays during
visual interaction substantially reduce the willingness of the
user to explore the data and test new hypotheses. We there-
fore argue that a visual data analysis framework must avoid
visualization delays at all costs. With this goal in mind,

attributes

operators

medical
data

data
set 1

data
set 2

data
set 3

data
set 4

medical
data

data
set 1

data
set 2

data
set 3

data
set 4

attributes

operators

attributes

operators

disease

demo

physical

blood

age

gender

race age

co
un

t(
ag

e)

>9 100<

Figure 2: Vizdom Interface

we built Vizdom’s backend on Tupleware [6], a new high-
performance distributed analytics system that addresses the
interactivity challenge through three key ideas.

(1) Small Clusters: Current systems for complex an-
alytics (e.g., Hadoop [1], Spark [12]) are designed for large
cloud deployments running on cheap commodity hardware.
While these frameworks are well-suited for large-scale batch
processing, they are a notoriously bad fit for interactive vi-
sualizations where low latency is paramount. For exam-
ple, anecdotal experience with Spark has shown that job
scheduling and deployment takes several hundred millisec-
onds, which already exceeds the interactivity threshold with-
out even performing any of the actual computation. Instead,
we believe that interactive analytics tasks should be run on
small clusters of high-end hardware (e.g., abundant main
memory, high-speed networks), and Tupleware was specifi-
cally designed for this type of infrastructure.

(2) Low-Level Optimizations: Users typically express
complex analytics tasks as a workflow of operators that de-
fine the different steps (e.g., cleaning, filtering, training)
of an ML pipeline. Many of these steps are heavily CPU-
bound, and the backend must optimize specifically for this
computation bottleneck to guarantee interactive speeds. Tu-
pleware addresses this problem by compiling workflows di-
rectly into self-contained distributed programs, improving
performance by eliminating common sources of overhead
(e.g., external function calls, polymorphic iterators) and ap-
plying traditional compiler techniques (e.g., inline expan-
sion, SIMD vectorization). As part of the compilation pro-
cess, Tupleware dynamically generates all of the necessary
control flow, synchronization, and communication code.

(3) Shared State: Tupleware natively incorporates the
notion of globally distributed shared state, which is a key
ingredient of many ML algorithms. Other attempts to sup-
port distributed shared state impose substantial restrictions
on how and when programs can interact with global vari-
ables. Not only do Tupleware’s efficient shared state mech-
anisms improve the performance of ML tasks, they also allow
the system to stream results to the visual frontend at safe,
well-defined, and algorithm-specific points.

2025

attributes

operators

logistic
regression

random
forest

SVM

descion
tree

logistic
regression

A

logistic
regression

attributes

operators

disease

demo

physical

blood

metabolic

infectious

heart
failure

label

feature

label

feature

metabolic

B C

logistic regression

>(39 >(64 >(49 36>

m
et

ab
ol

ic Precision

661

Recall F< Support

>(78 >(57 >(66 8GG
>
<

591 6<1

label
metabolic

logistic regression

confusion
matrix

roc
curve

label
metabolic

logistic regression

>(39 >(64 >(49 36>

F< Support

>(78 >(57 >(66 8GG

6<1

D

E

age

co
un

t5
ag

e2

>9 <>><

label
metabolic

logistic regression

label
metabolic

logistic regression

confusion matrix

<>><

feature

demo physical blood

>(4> >(67 >(5> 333

m
et

ab
ol

ic Precision

7>1

Recall F< Support

>(8G >(6> >(64 8GG
>
<

6G1 641

F G
confusion matrix

demo physical blood

feature

demo physical blood

feature

demo physical blood

feature

demo phy

confusion
matrix

confusion
matrix

Figure 3: Story Board I

2.3 Approximation Techniques
Even with the fastest backend, the time necessary to pro-

cess a sufficiently large dataset can still exceed the interac-
tivity threshold. To speed up these tasks, we are investi-
gating several techniques for quickly providing approximate
results that refine over time, indicated by the progress/error
bars accompanying each visualization.

(1) Dynamic Sample Resizing: Vizdom implements
a form of dynamic sample resizing, which begins by training
and evaluating a model using only a small subset of the
dataset to obtain quick initial results. The sample size can
then be incrementally increased to yield a more accurate
result until arriving at a final solution. This idea is similar
to a technique implemented in Columbus [14], which uses a
small sample to initialize a model in order to converge faster.
However, instead of only improving the convergence rate, we
also wish to leverage sampling to provide quick approximate
results to the visual frontend.

(2) Incremental Cross-Validation: By default, Viz-
dom uses 10-fold cross-validation as the default quality eval-
uation metric. However, instead of forcing the user to wait
until all 10 folds complete, we can incrementally stream par-
tial results to the visual frontend after each fold, with result
quality improving over time.

(3) Hyperparameter Adjustment: Many ML algo-
rithms have tunable hyperparameters that significantly im-
pact the quality of the resulting model, but there is a trade-
off between model quality and training time. For example, a
random forest classifier is an ensemble learning method that
builds several independent decision trees and combines the
results using a voting scheme. In this case, Vizdom could
start with a small number of trees to visualize an immedi-
ate preliminary result, retraining the model with increasing
numbers of trees to improve result quality over time.

3. DEMO PROPOSAL
To demonstrate the features of Vizdom, we will use the

Multiparameter Intelligent Monitoring in Intensive Care

(MIMIC II) dataset [3], which contains clinical data for ICU
patients. Figure 3 shows a simple task where a user trains
a classifier to predict whether a particular patient has a
metabolic disease (e.g., diabetes) given that patient’s fea-
tures (e.g., age, weight, blood pressure). In this example,
the user can drag a logistic regression classifier from the list
of available operators onto the screen (Step A). The user can
then drag the classification label (metabolic) and attribute
groups (all attributes) to the classifier and optionally tune
the algorithm’s hyperparameters (Step B). Once the user has
supplied the necessary information, the computation starts
in the background while the user immediately sees a clas-
sification summary, which includes the classifier’s precision,
recall, and F1-score (Step C). The user can then swipe the
visualization to the left (Step D) to reveal a confusion ma-
trix and ROC curve (Step E). All of these visualizations are
updated incrementally as the computation continues, with
the overall progress indicated by a bar at the bottom.

As shown by the summary statistics in Figure 3, the re-
sulting classifier achieves only 66% average precision. In
order to understand this relatively poor classification perfor-
mance, the user can drill down to examine some of the statis-
tics for individual attributes. The age histogram (Step F)
shows that the dataset contains some pediatric patients that
might be confusing the classifier. Therefore, the user can fil-
ter out these patients by using the pen to lasso only patients
over the age of 20. Linking the age histogram with the lo-
gistic regression operator by drawing a line using the pen
triggers a retraining of the classifier on only the selected
subset of patients (Step G). Notice that the classification
performance improves by excluding pediatric patients.

After identifying this subpopulation, the user might want
to expand the binary classification task (i.e., metabolic dis-
eases) to include multiple disease categories, as shown in
Figure 4. This multi-label classification task builds an in-
dependent binary classifier for each of the specified labels.
The example dataset includes 10 distinct disease categories
(e.g., metabolic, infectious, heart failure), and the user can
modify the existing logistic regression classifier by dragging

2026

feature

demo physical blood

label

metabolic

logistic regression

0.40 0.67 0.50 333

m
e
ta

b
o
li
c

Precision

709

Recall F1 Support

0.82 0.60 0.64 822

0

1

629 649

attributes

operators

disease

demo

physical

blood

H label

feature

disease

logistic regression

Precision

709

Recall F1 Support

669 669

0.40 0.67 0.50 333

m
e
ta

b
o
li
c

0.82 0.59 0.63 839

0

1

0.83 0.70 0.76 778

in
fe

c
ti

o
u
s

0.55 0.72 0.62 394

0

1

0.76 0.67 0.71 699

h
e
a
rt

fa
il
u
re

0.59 0.69 0.64 473

0

1

I

label

disease

logistic regression

logistic regression

attributes

operators

logistic

regression

random

forest

SVM

descion

tree

label

disease

Precision

709

Recall F1 Support

669 669

0.40 0.67 0.50 333

m
e
ta

b
o
li
c

0.82 0.59 0.63 839

0

1

label

disease

random forest

J

K label

disease

random forest

L correlation

feature

demo physical blood

feature

demo physical blood

feature

demo physical blood

feature

demo physical blood

Precision

709

Recall F1 Support

669 669

0.40 0.67 0.50 333

m
e
ta

b
o
li
c

0.82 0.59 0.63 839

0

1

0.83 0.70 0.76 778

in
fe

c
ti

o
u
s

0.55 0.72 0.62 394

0

1

0.76 0.67 0.71 699

h
e
a
rt

fa
il
u
re

0.59 0.69 0.64 473

0

1

Precision

729

Recall F1 Support

709 699

0.40 0.67 0.50 333

m
e
ta

b
o
li
c

0.82 0.59 0.63 839

0

1

0.83 0.70 0.76 778

in
fe

c
ti

o
u
s

0.55 0.72 0.62 394

0

1

0.76 0.67 0.71 699

h
e
a
rt

fa
il
u
re

0.59 0.69 0.64 473

0

1

Figure 4: Story Board II

the entire disease group to the operator’s label tab (Step H).
The resulting visualization now includes a separate classifi-
cation summary for each individual classifier (Step I).

While the logistic regression classifier is running, the user
might want to concurrently train a different type of classi-
fier in order to compare classification performance. A multi-
touch gesture (i.e., holding the operator with one finger and
tapping outside with another) creates a copy of the logistic
regression operator, and the user changes the classifier to
a random forest by dragging out the corresponding opera-
tor (Step J). As previously mentioned, all results are up-
dated incrementally so the user can quickly compare classi-
fication performance on-the-fly and cancel suboptimal clas-
sifiers early by using a scribble gesture (Step K). The user
can then swipe through the classification summaries for the
remaining random forest classifier as shown previously in
Steps D and E. Additionally, for all multi-label classifica-
tion tasks, Vizdom provides a two-dimensional histogram
depicting the correlation between the outputs of individual
classifiers (Step L). In this example, the visualization allows
the user to identify comorbid diseases (i.e., diseases that
frequently co-occur in patients).

The interactive exploration of the MIMIC II dataset repre-
sents the primary workflow of the demo, and we will also in-
clude free-form exploration over other real-world datasets.

4. ACKNOWLEDGMENTS
This research is funded in part by the Intel Science and

Technology Center for Big Data, the NSF CAREER Award
IIS-1453171, the Air Force YIP AWARD FA9550-15-1-0144,
and gifts from SAP, Mellanox, and Oracle.

5. REFERENCES
[1] Apache Hadoop. http://hadoop.apache.org.
[2] Apache Mahout. http://mahout.apache.org.

[3] MIMIC II Dataset. http://mimic.physionet.org.

[4] RapidMiner. http://rapidminer.com.

[5] D. Antenucci, M. Cafarella, M. Levenstein, C. Ré, and M. D.
Shapiro. Using Social Media to Measure Labor Market Flows.
Technical report, 2014.

[6] A. Crotty, A. Galakatos, K. Dursun, T. Kraska, U. Çetintemel,
and S. B. Zdonik. Tupleware: “Big” Data, Big Analytics, Small
Clusters. In CIDR, 2015.

[7] M. Hall, E. Frank, G. Holmes, B. Pfahringer, P. Reutemann,
and I. H. Witten. The WEKA Data Mining Software: An
Update. SIGKDD Explorations, pages 10–18, 2009.

[8] J. M. Hellerstein, C. Ré, F. Schoppmann, D. Z. Wang,
E. Fratkin, A. Gorajek, K. S. Ng, C. Welton, X. Feng, K. Li,
and A. Kumar. The MADlib Analytics Library or MAD Skills,
the SQL. In VLDB, pages 1700–1711, 2012.

[9] T. Kraska, A. Talwalkar, J. C. Duchi, R. Griffith, M. J.
Franklin, and M. I. Jordan. MLbase: A Distributed
Machine-learning System. In CIDR, 2013.

[10] Z. Liu and J. Heer. The Effects of Interactive Latency on
Exploratory Visual Analysis. IEEE Trans. Vis. Comput.
Graph., pages 2122–2131, 2014.

[11] E. R. Sparks, A. Talwalkar, V. Smith, J. Kottalam, X. Pan,
J. E. Gonzalez, M. J. Franklin, M. I. Jordan, and T. Kraska.
MLI: An API for Distributed Machine Learning. In ICDM,
pages 1187–1192, 2013.

[12] M. Zaharia, M. Chowdhury, T. Das, A. Dave, J. Ma,
M. McCauly, M. J. Franklin, S. Shenker, and I. Stoica. Resilient
Distributed Datasets: A Fault-Tolerant Abstraction for
In-Memory Cluster Computing. In NSDI, pages 15–28, 2012.

[13] E. Zgraggen, R. C. Zeleznik, and S. M. Drucker.
PanoramicData: Data Analysis through Pen & Touch. IEEE
Trans. Vis. Comput. Graph., pages 2112–2121, 2014.

[14] C. Zhang, A. Kumar, and C. Ré. Materialization Optimizations
for Feature Selection Workloads. In SIGMOD, pages 265–276,
2014.

2027

