
EFQ: Why-Not Answer Polynomials in Action

Nicole Bidoit
Université Paris Sud / Inria

91405 Orsay Cedex, France

nicole.bidoit@lri.fr

Melanie Herschel
Universität Stuttgart

70569 Stuttgart, Germany

melanie.herschel
@ipvs.uni-stuttgart.de

Katerina Tzompanaki
Université Paris Sud / Inria

91405 Orsay Cedex, France

katerina.tzompanaki@lri.fr

ABSTRACT
One important issue in modern database applications is support-
ing the user with efficient tools to debug and fix queries because
such tasks are both time and skill demanding. One particular prob-
lem is known as Why-Not question and focusses on the reasons for
missing tuples from query results. The EFQ platform demonstrated
here has been designed in this context to efficiently leverage Why-
Not Answers polynomials, a novel approach that provides the user
with complete explanations to Why-Not questions and allows for
automatic, relevant query refinements.

1. INTRODUCTION
In the last few years, the research community has been quite ac-

tive in the field of answering Why-Not questions. From knowledge
bases [6] to keyword search systems [1] or commercially interest-
ing reverse top-k queries [8], the different application domains of
Why-Not questions are numerous, revealing the importance of un-
derstanding why queries do not return all expected results.

This demonstration focuses on the problem of answering Why-
Not questions over relational databases and fixing the queries ac-
cordingly. To illustrate this problem, consider the database instance
and the sample query Q shown in Figure 1. For ease of reference,
we have labeled the conditions in Q as c1, c2 and c3. It is easy to
verify that the result of Q is (name:The Godfather, year:1972).
Let us now assume that the user wonders “Why is there not any
movie after 2000 in the result?”. The possible reasons for these
missing answers abound: are there no other recent movies (i.e., in-
complete source data)? Or are the conditions of Q too restrictive
(i.e., problematic query)? Or both?

To find an explanation, a developer (or, more generally, a
database or a simple internet user) would traditionally try to find
the problematic parts of the query by relaxing the restrictions one
by one. When finally she would identify a possible explanation,
she would move on to fixing the problem. This means that she
would test (possibly numerous) different modifications until reach-
ing a new refined query that satisfies her. Obviously, this process
is time consuming, it requires skills from the user and, when in a
working environment, it can lead to money loss.

This work is licensed under the Creative Commons Attribution-
NonCommercial-NoDerivs 3.0 Unported License. To view a copy of this li-
cense, visit http://creativecommons.org/licenses/by-nc-nd/3.0/. Obtain per-
mission prior to any use beyond those covered by the license. Contact
copyright holder by emailing info@vldb.org. Articles from this volume
were invited to present their results at the 41st International Conference on
Very Large Data Bases, August 31st - September 4th 2015, Kohala Coast,
Hawaii.
Proceedings of the VLDB Endowment, Vol. 8, No. 12
Copyright 2015 VLDB Endowment 2150-8097/15/08.

SELECT M.name, M.year
FROM Movies M,

Ratings R
WHERE M.name = R.movie (c1)
AND rating > 9 (c2)
AND votes > 5 (c3)

Movies
name year

m1 Australia 2008
m2 Avatar 2009
m3 The Godfather 1972

Ratings
movie rating votes

r1 Australia 7 3
r2 Avatar 8.5 4
r3 The Godfather 9.2 8

Figure 1: Example query and data

To aid the user in this task and save company resources, we have
designed the Explain and Fix Query platform (EFQ). In EFQ, the
user is able to execute queries, express a Why-Not question and
ask for (1) explanations to Why-Not questions and (2) query re-
finements that produce the desired results.

Explanations to Why-Not questions. Algorithms computing
explanations to Why-Not questions have already been proposed
(see [17, 11, 13] for data-based explanations, [7, 3] for query-based
explanations, and [9] for explanations considering both simultane-
ously). As demonstrated in [10], query-based explanations are typ-
ically more useful in practice than data-based explanations due to
better scalability to large volumes of data. Hence, we concentrate
our work here on generating and leveraging query-based explana-
tions. However, algorithms [3, 7] that compute query-based expla-
nations are based on traversing a single query tree of a query Q and
as a result produce possibly incomplete explanations. The meaning
of incomplete is twofold here: either one explanation misses some
parts or more explanations than those computed exist.

As an example, consider again the instance and the query Q
shown in Figure 1 and the Why-Not question concerning movies
more recent than 2000. One query-based explanation is that the
rating of the eligible (i.e., recent enough) movies (m1 and m2 in
the Movies table) is too low, thus failing condition c2 of Q. An-
other valid query-based explanation is the violation of condition
c3, i.e., votes>5. Any of [3, 7] may return one of these conditions
as explanation. However, the complete explanation for pruning m1

or m2 is that both conditions c2 and c3 are not satisfied (assuming
the ‘joined’ tuples m1r1 and m2r2). This information is crucial
when thinking of the subsequent fixing phase, as changing any of f
these conditions alone will not solve the problem.

To overcome the shortcoming of incomplete query-based expla-
nations, we have recently introduced Why-Not Answer polynomi-
als [2]. These capture both the conjunctive responsibility of condi-
tions (using multiplication) and all possible condition combinations
explaining the missing tuples (using addition). The coefficients of
each term in the polynomial indicate how many eligible tuple com-
binations (like the tuple m1r1) are pruned by the specific condition

1980



combination. For instance, the discussion of our example above
yields the addend 2c2c3. There are further explanations involving
the join as well and the complete Why-Not Answer polynomial is
2c1 + 2c2c3 + 2c1c2c3.

EFQ relies on the proposed Why-Not answer polynomials to rep-
resent all possible reasons for not obtaining the expected results.
More specifically in EFQ, users can easily inspect the different rea-
sons for missing tuples with the certitude that any reason (i.e., ad-
dend) is complete. They can then select among the explanations
which one(s) should be considered in the subsequent refinement
phase with the guarantee that the computed refinement will yield
missing tuples. To assist the user with this choice, the explanations
are ranked based on how many conditions must be changed in or-
der to fix the query. Besides this, we provide an upper bound of
the missing tuples that can be retrieved when changing an explana-
tion. This can be useful in cases when the user is interested in the
number of missing tuples that can be retrieved. The information
necessary to compute these heuristics is easily extracted from the
polynomial using the size of addends and coefficients.

Query refinements. When the user does not want or does not
know how to refine the query herself, she can rely on the automatic
query refinements proposed in our platform. To compute the alter-
native refinements EFQ exploits the obtained explanations. Actu-
ally the user can either select the explanation or rely on the whole
set of explanations to obtain query refinements. As query refine-
ments are usually numerous, we provide a cost model for ranking
them based on several criteria, such as their edit distance from the
original query or the irrelevant results they produce.

Demonstration contribution. The first contribution of EFQ is to
demonstrate that Why-Not answer polynomials as defined in [2]
can be effectively and efficiently used as query-based explanations
and that they form a solid basis for subsequent query refinement.
The demonstration features the latest and most efficient algorithms
we have defined for generating Why-Not answer polynomials [4]
and proposing query refinements. The demonstrated line of work
falls within the Nautilus project (http://nautilus-system.org), where
previous demonstrations [12, 10] concentrated on data-based ex-
planations or a comparison of data- and query-based explanations.
This demonstration is the first to focus on the benefits of Why-Not
answer polynomials for query-based explanations as well as on the
query refinement step that leverages these rich explanations.

2. EFQ PLATFORM ARCHITECTURE
EFQ is a platform that facilitates the query debugging and fixing

experience through a series of interactions. The architecture of the
system as well as the main actions and information flow between
the user and the platform components is shown in Figure 2.

There are three basic components in EFQ: (1) the Scenario com-
ponent, (2) the Explanation component and, (3) the Refinement
component. EFQ relies on a database management system and pro-
vides an interface for the user-platform interactions.

In the following, we will discuss the three main components in
more detail. For illustration, we will reuse the movie example al-
ready used in the introduction.

2.1 Scenario Component
Firstly, a query Q is specified over a selected database instance

I. In our setting, we allow conjunctive queries with inequalities.
Note that extending our framework to union of conjunctive queries
or count aggregate queries is trivial. However negation and other
aggregation functions need further investigation. Then, a Why-Not

DBMS	  

Submit	  query	  	  
Display	  query	  answer	  

Submit	  Why-‐Not	  ques:on	  

Seek	  explana:ons	  
Display	  explana:ons	  

Seek	  refinements	  
Display	  refinements	  

Send	  SQL	  query	  	  

Send	  SQL	  query	  	  

Query	  answer	  

Query	  answer	  

Scenario	  

Explana:on	  

Refinement	  

EFQ	  Pla(orm	  

Request	  
Response	  
Informa:on	  flow	  

User	  	  

U
s
e
r
	  
I
n
t
e
r
f
a
c
e

Figure 2: EFQ platform overview

question WN is specified for the missing tuples from the result of
Q.

For example, consider again the result of the query Q in Fig-
ure 1, which is (name:The Godfather, year:1972). The user
asks ‘Why is there not any movie after 2000?’ This can be cap-
tured as WN=(name:?, year:>2000). Looking at the database
instance in Figure 1, we easily find that WN corresponds to two
missing tuples (Australia, 2008) and (Avatar, 2009).

The main task of the Scenario component is to identify tuples
built from I and from which we can get the missing tuples. For this,
we rely both on Q and WN . We consider missing tuples as pro-
jections of tuples satisfying WN and typed by the FROM clause
schema of Q. In our example, the tuples1 m1r1, m1r2 or m1r3
defined over M.name, M.year, R.movie, R.rating and R.votes lead
to the missing tuple (Australia, 2008) by projection over M.name
and M.year. In the same spirit, the missing tuple (Avatar, 2009)
results from m2r1, m2r2 or m2r3. The tuples m1r1, . . . , m2r3
leading to the missing ones are called compatible. Next, the set of
compatible tuples is denoted by CT .

If CT is empty, there are no data in I that match the Why-Not
question and thus neither query-based explanations nor query re-
finements can be expected. Details on the definition and identifica-
tion of compatible tuples can be found in [2].

2.2 Explanations Component
To compute the query-based explanations, the Explanation com-

ponent relies on the polynomial formalisation of a Why-Not answer
(a.k.a. answer to the Why-Not question) introduced in [2]. This
formalisation builds on the set CT of compatible tuples .

Each compatible tuple in CT has been eliminated by one or more
conditions of the query Q. Intuitively, finding these conditions pro-
vides one explanation for missing a tuple.

Take for example the compatible tuple m1r1. It is easy to see that
this tuple does not satisfy the conditions votes>5 and rating>9.
In other words, it was pruned out because of these conditions, and
they together form an explanation.

Finding all the possible explanations amounts to finding the ex-
planation for each compatible tuple in CT . Then, summing up all
explanations leads to a polynomial-like representation of the Why-
Not answer. In this polynomial, the variables are conditions of the
1Next, if m and r are two tuples, mr denotes their concatenation.

1981



(a) User defines query (b) User defines Why-Not question

(c) User navigates through explanations (d) User navigates through query refinements

Figure 3: EFQ Interface

query Q and the coefficient of a term is the number of compatible
tuples pruned by this term (i.e., explanation).

In our example, there are three different explanations (recall con-
ditions have been named ci). c2c3 prunes two compatible tuples,
c1 prunes another two and c1c2c3 the last two. We thus obtain the
polynomial 2c1+2c2c3+2c1c2c3 already given in the introduction.

The naive presentation of the polynomial answer of a Why-Not
question does not directly provide an efficient way of computing
it. Instead, the platform EFQ relies on the development and imple-
mentation of an efficient algorithm described in [4]. This algorithm
uses data partitioning based both on the conditions of the Why-Not
question and of the query Q. Instead of iterating over the set of
compatible tuples, it iterates over the power set of the condition
set of Q, which is normally much smaller. Moreover, and when-
ever possible, it mathematically computes the number of compati-
ble tuples eliminated by each explanation, in order to avoid costly
database operations.

2.3 Refinement Component
The goal now is to produce alternative queries, so-called refine-

ments of the original query, whose result includes at least one of the
missing tuples as specified by WN . These query refinements can
be computed in two ways: based on a selected explanation or on
the whole set of explanations. Explanations and compatible tuples
are essential for this phase.

In the literature, we find algorithms to compute query relax-
ations [15, 16] or query reformulations [18] to retrieve missing

tuples. Our query refinement algorithm builds on ideas in [18],
appearing also in [14]. These algorithms use the notion of sky-
line [5] to prune the space of refined queries. However, neither [18]
nor [14] uses any knowledge of what is wrong with the query, they
solely rely on the set of compatible data. On the contrary, our algo-
rithm takes into account the explanations provided by the previous
step. In this way, we can (1) provide ‘targeted’ refinements, i.e., re-
finements altering specific explanations, (2) create maximum simi-
larity refinements, by making the minimum possible changes in the
query conditions, and (3) faster compute the refinements, by intro-
ducing the notion of local (w.r.t. the explanation) skyline tuples.

The algorithm computing the refinements proceeds in two steps.
In the first step, for each explanation, refinements are computed
avoiding those that are for sure less similar to Q than others. In
order to do this, we rely on the set of skyline compatible tuples for
each explanation.

For example, let us consider the explanation c2c3. The two com-
patible tuples it eliminates are m1r1 and m2r2. m1r1 has higher
constant values for the attributes rating and votes, thus is closer
to the user’s initial intention. Subsequently, the refined query based
on c2c3 is generated based on m1r1 and has the condition part
name = movie AND rating >= 8.5 AND votes >= 4.

The second step of the algorithm focuses on removing false posi-
tive tuples (tuples neither produced by the original query nor by the
Why-Not question) from the queries generated by the first step. In
addition to changing already existing conditions in the query, this
step may introduce in the refined queries also new conditions.

1982



3. USER INTERFACE
EFQ provides an interface for the user-system interaction, ex-

posed in Figure 3. In this section, we briefly walk the reader
through a sample interaction with our platform.

In the home page (Figure 3(a)) the user can choose a database
and provide a query by selecting an existing view or by writing
an SQL statement in the provided text area. After submitting the
query, the upper part of the interface displays the results and the
original query (Figure 3(b)). Then, the user specifies the Why-Not
question by inserting conditions on the attributes in the provided
table. If there exist compatible tuples for the Scenario component
to identify, the interface allows the user to continue and ask either
for explanations (debug query) or for query refinements (fix query).

Figure 3(c) displays the interface for the Explanation component.
The user can navigate in this page through the existing explana-
tions, ordered by (1) size or (2) selectivity. The selectivity metric
for a given explanation is calculated based on the number of com-
patible tuples pruned by the conditions in the explanation. As such,
it provides the user with an upper bound on the number of miss-
ing tuples that may be recovered from repairing this explanation.
As the user navigates through the existing explanations, the upper
part of the interface highlights the corresponding problematic parts
of the query. At any given point, the user is able to ask for query
refinements using the current explanation, or she can ask for query
refinements based on all explanations, by clicking the ‘Query fix-
ing’ menu tab.

Figure 3(d) demonstrates the interface of the Refinement compo-
nent. As there may be numerous proposed refinements, the user can
select the order in which they are presented, based on (1) their sim-
ilarity with the original query, depending on the number of changed
conditions, distance of the changed constant value from the origi-
nal one, number of added conditions on attributes not constrained
in the original query and type of involved conditions (joins or se-
lections) or on (2) precision, measuring how many false positive
(i.e., irrelevant) tuples appear in the result of the new query. Fur-
thermore, she can customise the underlying cost function by ad-
justing the weights of each parameter. For the user’s convenience,
the interface highlights in each refinement the changes made in the
conditions, so that the user quickly understands the alterations w.r.t.
the original query. This is coupled with highlighting, on the orig-
inal query, the explanation used to generate the given refinement2,
at the upper part of the interface.

4. DEMONSTRATION
The EFQ platform is implemented in Java and JSP, and is cur-

rently offered as an application connected to a PostgreSQL DBMS.
At the conference the attendees will learn how to use the plat-

form, through a number of predefined scenarios and at least three
use cases on different domains.

The first use case is based on the IMDB database
(http://www.imdb.com), which contains information about
movies. The second use case is about financial activities of
american congressmen stored in the Congress database (and
gathered at http://bioguide.congress.gov, http://usaspending.gov,
http://earmarks.omb.gov). The third use case relies on data
and queries about products and orders generated by the TPC-H
benchmark (http://www.tpc.org/tpch/).

The first two use cases describe real world scenarios, whereas the
third one is based on synthetic data. To demonstrate the behaviour

2Each highlighted condition in the original query is associated with
a highlighted condition in the refined one (but not vice-versa).

of our platform, we vary the input parameters in the predefined sce-
narios. More specifically, we take into account simple and complex
(1) queries and (2) Why-Not questions, by changing the number
and type of associated conditions, and (3) different database sizes.
To support the usefulness of EFQ, we show that knowing the com-
plete explanations not only provides the user with alternative de-
bugging options, but also prevents him from (possibly numerous)
pointless debugging attempts. Furthermore, we show the possibili-
ties offered to the user to obtain targeted or general refinements.

5. REFERENCES
[1] A. Baid, W. Wu, C. Sun, A. Doan, and J. F. Naughton. On

debugging Non-Answers in keyword search systems. In
EDBT, 2015.

[2] N. Bidoit, M. Herschel, and K. Tzompanaki. Immutably
answering Why-Not questions for equivalent conjunctive
queries. In TAPP, 2014.

[3] N. Bidoit, M. Herschel, and K. Tzompanaki. Query-based
Why-Not provenance with Nedexplain. In EDBT, pages
145–156, 2014.

[4] N. Bidoit, M. Herschel, and K. Tzompanaki. Efficiently and
Effectively Answering Why-Not Questions based on
Provenance Polynomials. Research Report RR-8697, 2015.

[5] S. Borzsony, D. Kossmann, and K. Stocker. The skyline
operator. In ICDE, pages 421–430. IEEE, 2001.

[6] H. Chalupsky and T. A. Russ. WhyNot: debugging failed
queries in large knowledge bases. In AAAI/IAAI, pages
870–877, 2002.

[7] A. Chapman and H. V. Jagadish. Why not? In SIGMOD,
pages 523–534, 2009.

[8] Y. Gao, Q. Liu, G. Chen, B. Zheng, and L. Zhou. Answering
why-not questions on reverse top-k queries. PVLDB, pages
738–749, 2015.

[9] M. Herschel. A hybrid approach to answering Why-Not
questions on relational query results. JDIQ, pages
10:1–10:29, 2015.

[10] M. Herschel and H. Eichelberger. The Nautilus Analyzer:
understanding and debugging data transformations. In
CIKM, pages 2731–2733, 2012.

[11] M. Herschel and M. A. Hernández. Explaining missing
answers to SPJUA queries. PVLDB, pages 185–196, 2010.

[12] M. Herschel, M. A. Hernández, and W. C. Tan. Artemis: A
system for analyzing missing answers. PVLDB, pages
1550–1553, 2009.

[13] J. Huang, T. Chen, A. Doan, and J. F. Naughton. On the
provenance of non-answers to queries over extracted data.
PVLDB, pages 736–747, 2008.

[14] M. S. Islam, C. Liu, and R. Zhou. FlexIQ: A flexible
interactive querying framework by exploiting the skyline
operator. Journal of Systems and Software, pages 97–117,
2014.

[15] C. Mishra and N. Koudas. Interactive query refinement. In
EDBT, pages 862–873, 2009.

[16] D. Mottin, A. Marascu, S. B. Roy, G. Das, T. Palpanas, and
Y. Velegrakis. A probabilistic optimization framework for the
empty-answer problem. PVLDB, pages 1762–1773, 2013.

[17] S. Riddle, S. Köhler, and B. Ludäscher. Towards constraint
provenance games. In TaPP, 2014.

[18] Q. T. Tran and C.-Y. Chan. How to ConQueR why-not
questions. In SIGMOD, pages 15–26, 2010.

1983


