
QuickFOIL: Scalable Inductive Logic Programming

Qiang Zeng

University of

Wisconsin–Madison

qzeng@cs.wisc.edu

Jignesh M. Patel

University of

Wisconsin–Madison

jignesh@cs.wisc.edu

David Page

University of

Wisconsin–Madison

page@biostat.wisc.edu

ABSTRACT
Inductive Logic Programming (ILP) is a classic machine
learning technique that learns first-order rules from relational-
structured data. However, to-date most ILP systems can
only be applied to small datasets (tens of thousands of ex-
amples). A long-standing challenge in the field is to scale
ILP methods to larger data sets. This paper presents a
method called QuickFOIL that addresses this limitation.
QuickFOIL employs a new scoring function and a novel
pruning strategy that enables the algorithm to find high-
quality rules. QuickFOIL can also be implemented as an
in-RDBMS algorithm. Such an implementation presents a
host of query processing and optimization challenges that
we address in this paper. Our empirical evaluation shows
that QuickFOIL can scale to large datasets consisting of
hundreds of millions tuples, and is often more than order of
magnitude more efficient than other existing approaches.

1 Introduction
A key promise of the on-going big data revolution is to ex-
tract deep knowledge from large datasets. Naturally, there
has been substantial interest in integrating machine learn-
ing (ML) inside database management systems (DBMSs)
for ease-of-use, scalability, and manageability. In the past
few years, a number of ML methods such as classification,
clustering, stochastic gradient descent, and information ex-
traction have been integrated into the DBMS (e.g. [12, 14,
17, 20]).

Most ML algorithms studied so far for DBMS integra-
tion assume a propositional representation of data. In other
words, each data instance is represented by a single feature
vector, where each feature characterizes a property of the
instance. However, feature representation-based approaches
cannot directly capture the relationships between different
features, and the relationships between different data in-
stances. Feature-based learning methods either assume that
both features and instances are independent, or use correla-
tion in terms of probability to represent latent relationships.
Explicit semantic relationships, such as structural, spatial
This work is licensed under the Creative Commons Attribution-
NonCommercial-NoDerivs 3.0 Unported License. To view a copy of this li-
cense, visit http://creativecommons.org/licenses/by-nc-nd/3.0/. Obtain per-
mission prior to any use beyond those covered by the license. Contact
copyright holder by emailing info@vldb.org. Articles from this volume
were invited to present their results at the 41st International Conference on
Very Large Data Bases, August 31st - September 4th 2015, Kohala Coast,
Hawaii.
Proceedings of the VLDB Endowment, Vol. 8, No. 3
Copyright 2014 VLDB Endowment 2150-8097/14/11.

(b) Background knowledge(a) Training examples

U(Daniel, Jacob)
U(Jason, Andrew)
U(Noah, Andrew)
U(Daniel, William)

U(John, Jason)
U(Noah, John)
U(Jason, Justin)
U(Noah, Justin)

B(Andrew, Jacob)
B(Jason, Noah)
B(Jacob, Andrew)
B(Noah, Jacob)
B(Owen, William)

P(Daniel, Andrew)
P(Jason, Jacob)
P(Noah, Jacob)
P(Noah, Justin)
P(Jimmy, Jason)

S(Daniel, June)
S(Daniel, Jennifer)
S(Daniel, Rachel)
S(Daniel, Jason)
S(John, William)
S(Noah, Gwen)
S(Jason, Sara)

Figure 1: The first-order logic form of the Uncle relationship
concept learning problem. The negative examples are un-
derlined. For simplicity, we denote a predicate by its initial
(e.g. B for Brother and P for Parent). A fact L(X,Y) can
be read as “Y is a L of X”.

and temporal relationships, are not modeled. These inade-
quacies not only limit how the datasets are described, but
also limit the ability to learn over the relationships.

Inductive Logic Programming (ILP), a subfield of machine
learning, can mine data with complex relational structures.
Instead of using features, it represents both the data and
the learning problem in first-order logic. Furthermore, the
output of ILP is a set of Horn clauses, which makes it easier
for humans to interpret and use the ILP prediction.
Definition 1 (ILP) Given the background knowledge B,
positive examples E+, and negative examples E�, all being
a set of Horn clauses, the ILP task is to find a hypothesis
H, composed of a set of Horn clauses, such that

• 8p 2 E+, H ^B |= p (completeness)
• 8n 2 E�, H ^B 6|= p (consistency)

In Definition 1, |= denotes the classical logical consequence.
The positive examples and the negative examples are usually
only ground literals (i.e. clauses without free variable and
with an empty body). The background knowledge is com-
posed of a finite set of facts, and a finite set of rules that can
be transformed to its extensional representation. Complete-
ness requires that the learnt hypothesis with the background
knowledge can prove all positive examples, while consistency
requires that it cannot derive any negative examples. These
two criteria can be relaxed to tolerate noisy data.
Example 1 Consider a simple task of learning a concept
Uncle(X,Y), defined on pairs of people X,Y . The value of
Uncle(X,Y) is true if Y is an uncle of X. Figure 1 shows an
instance to illustrate this task, where the data is represented
in first-order logic form. The training examples consist of
four positive examples and four negative examples. Each
positive example is a fact of the predicate Uncle that is
known to be true, while each negative example indicates a
pair of people are not connected by the uncle relationship.
The background knowledge includes the brother, the parent

197

and the sister relationships, which are represented by three
predicates: Brother, Parent and Sister, respectively. The
output of an ILP algorithm could be the following “learnt”
hypothesis/rule expressed as a Horn clause:

Uncle(X,Y) :- Brother(Z, Y), Parent(X,Z)

The declarative rule simply states that if a person Y is a
brother of a parent of X, then Y is an uncle of X.⇤

There are a number of applications of ILP [31], including
concept-learning (as illustrated above). Interestingly, ILP
can also be used as a method to augment existing tradi-
tional machine learning methods, for example for feature
selection [28].

Unfortunately, most ILP systems cannot handle datasets
beyond thousands of training examples [34]. In fact, the
available testbeds for ILP usually contain only dozens of pos-
itive and negative examples. However, many enterprise and
scientific datasets increasingly have larger and more com-
plex datasets. Applying ILP to such data is very promising,
as ILP is able to handle data with rich relationships. Thus,
it is crucial to find ILP methods that scale with increasing
data volumes. This paper proposes a new ILP method called
QuickFOIL that addresses this need.

QuickFOIL is a top-down approach that constructs one
(Horn) clause at a time. In constructing a clause, it starts
with the most general one with an empty body, and then
adds new literals, one at a time, using a greedy heuristic.

In each iteration, ILP algorithms have to make crucial de-
cisions about a) the scoring function that it uses to drive the
heuristic search process, and b) how to prune portions of the
“search” space. QuickFOIL innovates on both these aspects
and uses a novel scoring function, and a new technique to
prune redundant literals. Another aspect of QuickFOIL is its
mapping to relational operations. With this mapping, the
task of computing the score of a literal translates into four
aggregate binary join operations. The space of candidate
literals for a predicate is O(nk

), where n is the number of
variables in the clause and k is the arity of the predicate. In
other words, a naïve mapping hinders efficiency and scalabil-
ity. We develop a novel query processing method to reduce
the number of join operations from O(nk

) to O(nk) single-
predicate joins that also share accesses to the inner relation.
We then develop multi-query optimization and caching tech-
niques to further speed up the processing of these queries.
The collective sum of these contributions produces an ILP
method that is efficient and scalable to much larger datasets
than previous methods.

The remainder of this paper is organized as follows: Sec-
tion 2 describes the underlying algorithm that is used in
QuickFOIL. Section 3 describes QuickFOIL’s scoring func-
tion and pruning approach, where as Section 4 describes the
mapping to database operations. Empirical results are pre-
sented in Section 5, and Section 6 discusses related work.
Finally, Section 7 contains our concluding remarks.

2 Preliminaries
In this section, we first describe some basic terminology, and
then describe a generic top-down greedy ILP algorithm that
we use as the skeleton for QuickFOIL.

2.1 Definitions
An atom is of the form L(X1, . . . , Xk), where L is a predi-
cate symbol and Xi is a variable, a constant, or a function.

A literal is either an atom or its negation. A clause is a
disjunction of literals: 8X18X2 . . . 8Xn(L1 _L2 _ . . . _Ln).
A Horn clause is a clause that has at most one positive (i.e.
unnegated) literal. In this paper, a clause with n + 1 lit-
erals is written in the form: Lh :- L1, . . . , Ln, where Lh is
the positive literal called the head of the clause, and the
right side is the body. A clause with an empty body and no
variables is a ground fact of the head predicate.

The hypothesis language for an ILP system is composed of
clauses that the ILP system is able to build for the specified
ILP problem. The hypothesis language that we study in this
paper is function-free Horn clauses.

For an ILP learning problem, the predicate correspond-
ing to the training examples is called the target predicate,
the predicates that appear in the background knowledge are
background predicates. In Example 1, the target predicate
is Uncle, and the background predicates include Brother,
Parent and Sister. There should be only a single target
predicate for an ILP learning task. The target predicate
can also be a background predicate if recursion is allowed.
Unless otherwise specified, whenever we refer to a clause,
the head predicate is the target predicate.

A background relation is the set of ground facts (a.k.a.
extensions) for a background predicate, and the target re-
lation is the set of ground facts (extensions) for the target
predicate. For a predicate/literal L, we use the bold-faced
symbol L to denote the corresponding relation.

2.2 Generic top-down, greedy ILP algorithm
The ILP learning problem can be viewed as a search problem
for clauses that deduce the training examples. The search
can be performed bottom-up or top-down. A bottom-up
approach builds most-specific clauses from the training ex-
amples, and searches the hypothesis space by using general-
ization. It is best suited for incremental learning from a few
examples. In contrast, a top-down approach starts with the
most general clauses and then specializes them. It is better
suited for large-scale datasets with noise, since the search
can be easily guided by heuristics.

Algorithm 1 sketches a generic top-down ILP algorithm
using a hill-climbing heuristic. It contains two loops: i) a
clause construction loop that builds a clause at a time, and
ii) a nested literal search loop that specializes the current
clause that is being constructed. The literal search proce-
dure begins with the most general clause (with an empty
body) and incrementally adds literals that maximize a spec-
ified scoring function until the necessary stopping criterion
is met (Line 4–12). After building one clause, the algo-
rithm updates the training examples by removing the cov-
ered positive examples before constructing a new rule (Line
14). A sufficient stopping criterion is used to decide when to
stop adding clauses to the hypothesis. For noise-free data,
the sufficient stopping criterion requires that the hypothesis
covers all the positive examples and none of the negative
examples; the necessary stopping criterion requires that the
building clause has no negative tuple (i.e. T� = ;).

Next we describe three key steps in more detail.
Creating the binding set. The binding set1 of a clause
is the set of bindings for every variable in the clause. We
call a tuple in the binding set a binding tuple. A binding
tuple has an arity equal to the number of variables in the
1The binding set is called the training set in prior work [30]. We
use the training set to refer specifically to the training examples.

198

Algorithm 1: Generic top-down, greedy ILP algorithm
Input: Background knowledge B, target predicate R,

positive examples E+, negative examples E�
Output: a set of Horn clauses H

1 H ;; U E+
2 while sufficient stopping criterion is not satisfied do
3 T+ U ; T� E�
4 C R :- true
5 while necessary stopping criterion is not satisfied do
6 generate new candidate literals
7 for each candidate literal do
8 compute the score using a scoring function
9 select a literal L with the maximum score

10 add l to the body of C
11 Create the new positive binding set T+ for C
12 Create the new negative binding set T� for C

13 H H [C
14 U U � {c 2 U |H ^B |= c}

corresponding clause. The binding set of a clause is the
basis on which we compute a score to evaluate the quality
of the clause. Given a set of training examples, it can be
computed recursively as follows. (We provide an example of
the binding set below in Example 2.)

• The binding set for the most general clause is the set
of training examples. A binding tuple is positive (nega-
tive) if it corresponds to a positive (negative) example.

• For a clause C and its binding set T , the binding set
T 0 for the clause C0 created by expanding C with L is
the result of the join T ./ L, where there is an equality-
based join predicate between two columns if they cor-
respond to the same variable in L and C. A tuple in T 0

is positive (negative) if it is an extension of a positive
(negative) tuple in T . For a tuple t in T , t is covered
by the expanded clause C0 if t has an extension in T 0;
in this case, we simply say that the literal L covers a
binding tuple t without referring to C0 and T . A train-
ing example is covered by a clause if it appears as (part
of) a binding tuple of the clause.

Generating candidate literals. The hypothesis space of
a logic program is potentially infinite. To restrict the search
space, a valid literal that can be added to a clause can be any
background predicate that is constrained to having at least
one existing variable in the current clause. If the current
clause has n variables, then we can approximate the total
number of candidate literals for a k-ary predicate as the
number of assignments from (n+k�1) variables (n variables
and k�1 new variables) to the k inputs2, which is (n+k�1)

k.
There are two ways to further reduce the size of the set

of candidate literals. First, we can utilize constraints to
remove those literals that are not allowed in a valid clause.
The most popular constraint that is used in practice is type
restriction on input arguments in the predicates. Second,
we can prune the search space by eliminating redundant
literals. As an example, a literal identical to an existing
one in the current constructed clause can be excluded from
consideration. We study such pruning strategies in more
detail in Section 3.2.

2The exact number is nk
+

Pk�1
i=1

Pk�1
j=i

�k
j

��j
i

nk�j , where

�j
i

is a Stirling number of the second kind.

Symbols Description

L,L L denotes a candidate literal. L represents the
relation corresponding to the predicate L, which
is composed of ground facts for this predicate.

X,Y, Z These represent argument variables for literals.

C, C0
(L), C0 C denotes the current clause that we have built

so far, and want to specialize further. C0
(L) is a

specialization of C that is generated by adding a
new candidate literal L. When it is clear what L
is from the context, or when the specific candidate
literal is irrelevant, we use C0 for short.

T The binding set for the current clause C.

T 0 The binding set for C0.

T+, T� T+ and T� are the set of positive binding tuples
and the set of negative tuples in T , respectively.

T 0
+, T 0

� Similarly, T 0
+ and T 0

� represents the positive and
negative binding tuples in T 0, respectively.

d, d+, d� d is the number of tuples in T that have an exten-
sion in T 0. Similarly, d+ is the number of positive
tuples in T that have an extension in T 0, and d�
is the number of negative tuples in T that have an
extension in T 0.

p, p0 p is the fraction of positive tuples (i.e. precision)
in T . We use p0 to denote the precision in T 0.

|S| |S| is the cardinality of a set S.

Table 1: A summary of symbols used in this paper.

Choosing the best literal. Next, using the symbols sum-
marized in Table 1, we introduce heuristics to choose a literal
to specialize a clause.

Generally speaking, we want to find a clause that maxi-
mizes the coverage of positive training examples and mini-
mizes the negative examples. A scoring function of a literal
L measures the utility of adding L to the current clause C.
It is based on the difference in clause quality before and after
the literal L is added.

A common measure of the quality of a clause C includes
the precision function P (C) = |T+|/|T | and the information
function I(C) = � log2 P (C). The corresponding scoring
functions are the precision gain fp(L) = P (C0

)� P (C) and
the information gain fi(L) = I(C0

) � I(C). Since a clause
that has a high precision does not necessarily cover a large
number of positive binding tuples, the well-known ILP al-
gorithm FOIL [30] proposes the following gain function that
takes into account the number of covered positive tuples:

fg(L) = d+ · fi(L) (1)
We can interpret the FOIL gain as the total amount of

information that is reduced to encode the classification of
all positive tuples in T due to L. An alternative weighted
gain function [23] replaces d+ with the relative frequency of
positive tuples |T 0

+|
|T+| :

fr(L) =
|T 0

+|
|T+|

· fi(L) (2)

Example 2 We show how the top-down, greedy algorithm
can be applied to construct rules to model the uncle relation-
ship. In this example, we assume that the scoring function
is the FOIL gain function described above in Equation 1.

We start to learn the first rule with the most general clause
U(X,Y) :-. The binding set for this clause consists of all

199

(a) Binding set for U(X, Y):-B(Z, Y)

�!

�

X Y Z

(b) Binding set for U(X, Y):-B(Z, Y), P(X, Z)

X Y Z

�!
Daniel!
Jason!
Noah!
Daniel!
John

Jacob!
Andrew!
Andrew!
William!
Jason

Andrew!
Jacob!
Jacob!
Owen!
Noah

Daniel!
Jason!
Noah

Jacob!
Andrew!
Andrew

Andrew!
Jacob!
Jacob

Figure 2: Learning Uncle using ILP.

the training examples. We first generate candidate literals
for every background predicate. For example, for the predi-
cate B, we enumerate every assignment from three variables
(two existing variables X and Y and a new variable Z) to
the inputs. This step results in the following eight candi-
date literals: B(X,Y), B(Y,X), B(X,Z), B(Z,X), B(Y,
Z), B(Z, Y), B(X,X), B(Y, Y). Similarly, we have eight lit-
erals for the predicate P , and eight for the predicate S.

Next, we compute the gain for each candidate literal and
choose the one with the largest gain. Consider the candidate
literal B(Z, Y). The binding set for the expanded clause
U(X,Y) :- B(Z, Y) is shown in Figure 2(a). This binding
set is the result of a join between the current binding rela-
tion (i.e. the training examples) and the relation B of the
new literal on an equality predicate between their second
columns. The set contains four positive tuples and one neg-
ative tuple, of which each positive one is extended from an
original positive binding tuple in T+ and the negative one
is from T�. Therefore, we get |T 0

+| = 4, |T 0| = 5, d+ = 4.
Thus the gain is: 4⇥

�
log2(

4
5)� log2(

4
8)
�
= 2.7.

Suppose B(Z, Y) is selected as the addition literal, result-
ing in a more specific rule U(X,Y):-B(Z, Y). Since the bind-
ing set has one negative tuple, we continue to find a more
specialized clause. The current binding set is then replaced
by the set shown in Figure 2(a). Note that the arity of the
binding tuples increases as a new variable is introduced.

A new search process is started to further specialize the
new extended clause. With three variables in the current
clause, we next generate 15 candidate literals for the pred-
icate P , 15 for the predicate S, and 14 for the predicate B
(with the identical one removed). As another example of
the gain calculation, adding P (X,Z) produces a binding set
consisting of three positive tuples (Figure 2(b)). The gain
of the literal P (X,Z) is thus 3⇥ (�log2(4/5)) = 0.97.

Suppose P (X,Z) has the largest gain. Then, the new spe-
cialized rule is U(X,Y) :- B(Z, Y), P (X,Z). Since the new
binding set has no negative tuples, we can terminate the
search for further specialization, and add this clause into the
hypothesis. Next, we remove the covered positive training
examples, leaving the last positive example as “uncovered.”
Finally, we begin a new search for an additional rule with
the initial binding set consisting of the uncovered positive
training example and the entire set of negative examples. ⇤

3 QuickFOIL
The basic algorithm employed by QuickFOIL is the top-
down, greedy ILP search shown in Algorithm 1. In this
section, we describe the QuickFOIL scoring function and
QuickFOIL’s literal pruning strategy.

3.1 Scoring function
The score of a literal is computed based on the cardinality
differences between the binding sets before and after the lit-
eral is added. The two weighted functions fg and fr (cf.

Equations 1 and 2) are sensitive to the join skew in com-
puting a binding set: The number of matching tuples for a
positive binding tuple differs significantly from the number
for a negative tuple. More precisely, we define the join se-
lectivity as the ratio of the join output cardinality to the
cardinality of the input binding set. The skew for a candi-
date literal is the ratio of the join selectivity for the positive
binding set to the join selectivity for the negative binding
set: (|T 0

+| · d�)/(|T 0
�| · d+). The skew can be caused by the

non-uniform data distribution in the background relation,
which is not uncommon in real datasets. The information
gain fi(L) becomes misleading in the presence of high skew,
because a candidate literal can receive a high precision value
|T 0

+|/|T 0| but exclude few negative tuples (i.e. having a large
value of d�), or vice versa. In the two functions fg and fr,
neither d+ nor the relative frequency |T 0

+|/|T+| measures the
changes in the negative coverage d�, and hence these func-
tions fail to balance the (biased) weight attributed to the
term fi. As an example, assume that the predicate Sister in
Example 2 is skewed as shown in Figure 1(b), where Daniel
has many more sisters than other people. Consider the first
literal search iteration to specialize the clause U(X,Y):-.
The candidate literal S(X,Z) does not eliminate any neg-
ative binding tuples, but still has the greatest FOIL gain:
fg = 4⇥

�
log2(

10
12)� log2(

4
8)
�
= 2.9. In addition to reducing

the quality of the rule, choosing a “bad” literal (i.e. a skewed
predicate) can considerably slow down performance, as (a)
it prolongs the time that it takes to reach the stopping crite-
rion; and (b) the corresponding join skew generally increases
the size of the result binding set (join output), making the
subsequent literal search computationally expensive.

To overcome this skew problem, we develop a new scor-
ing function. We view the process of choosing literals for
a clause as performing a sequence of binary classification
tasks. A clause expanded with a candidate literal can be
considered as a binary classifier that classifies the tuples
in the current binding set into two groups on the basis of
whether they are positive or negative. Specifically, the data
in the classification problem is the binding set. A tuple in
the set is predicted to be positive if it has an extension in the
new binding set; otherwise, it is considered to be negative.
Accordingly, we can derive the following confusion matrix:

True labels
P N

Clause
coverage

P TP = d+ FP = d�
N FN = |T+|� d+ TN = |T�|� d�

Our greedy search chooses the literal that gives rise to the
“best” classifier, using as measure the quality of a binary
classifier to evaluate each candidate literal. The measure
that we use is the Matthews Correlation Coefficient (MCC)
[26]. The MCC is calculated as:

MCC =

TP ⇥ TN � FP ⇥ FN
p

(TP + FP)(TP + FN)(TN + FP)(TN + FN)

(3)

This measure takes into account all the four terms TP , TN ,
FP and TF in the confusion matrix, and is able to fairly
assess the quality of classification even when the ratio of
positive tuples to the negative tuples is not close to 1. The
MCC values range from �1 to +1. A coefficient of +1 repre-
sents a perfect classification, 0 represents one no better than
a random classifier, and �1 indicates total disagreement be-
tween the predicted and the actual labels. Note that the
MCC measure considers both d+ and d�.

200

There is one subtle yet important distinction between
scoring for classification and scoring for ILP. The ILP prob-
lem is to build clauses that cover as many positive train-
ing examples as possible while preferably excluding nega-
tive ones, rather than maximally discriminating the positive
examples from the negative examples. We use a new mea-
sure AUE (Area Under the Entropy) to evaluate the effect
of positive coverage. Given 0  p  1, the area under the
entropy curve between 0 and p without scaling is:Z p

0
�p log2(p)� (1� p) log2(1� p)dp

=

1

2

⇣
(p� 1)

2
log2(1� p)� p2 log2(p) +

p

ln 2

⌘ (4)

AUE(p) is Equation (4) divided by 1/(2 ln 2), the total area
under a entropy curve, to scale the value. As the derivative
of Equation (4) is the entropy function, AUE(p) has a small
slope when p is close to 0 or 1, and a relatively larger slope
of up to 1 when p is around the middle point.

Our new scoring function is a F�-measure of the MCC
score and the AUE gain. This scoring function is:

f(L) =
1 + �2

�2 · 1
MCC+1 +

1
AUE(p0)�AUE(p)+1

(5)

where p0 = |T 0
+|/|T 0|, p = |T+|/|T | and � is a weight param-

eter that defines the relative importance of MCC and AUE.
Incrementing both MCC and the difference of the AUE val-
ues by 1 guarantees that both the denominator terms are
non-negative. As MCC is a more balanced measure than
AUE, we empirically find � = 2 works well for datasets with
skew, and use it as the default value.

3.2 Pruning candidate literals
The method that is used to generate candidate literals is cru-
cial to the overall performance of ILP algorithms. On one
hand, since the coverage tests for candidate literals domi-
nate the running time, we do not want to explore the entire
space of candidate literals, but instead employ some prun-
ing strategy. On the other hand, excluding “good” literals
may exclude certain crucial rules (lowering the quality of
the ILP output), and/or take a lot longer to find a rule that
eliminates enough negative examples.

A common pruning method is to remove those literals
that are considered duplicates when building a clause. In
this work, we only consider syntactic duplicates, as they are
the most common type of duplicates and can be applied to
any learning task. Exploiting background knowledge is an
interesting direction for future work.

Besides the trivial identical duplicates, prior work [10,15]
has used another type of syntactic duplicates, which we call
renaming duplicates. Formally, a literal Li is a renaming
duplicate if there is another literal Lj in the clause such
that (i) there is a renaming of the free variables in Li such
that Li and Lj are identical after renaming, and (ii) all re-
named variables only occur in Li or Lj . For example, assume
the current partially constructed clause Lh(X) :- L1(X,Y).
The literal L1(X,Z) is duplicate to the literal L1(X,Y) un-
der the renaming ⇢Z!Y , where Z and Y do not occur in
other literals. However, consider another clause Lh(X):-
L1(X,Y), L2(Y), L1(X,Z). Since Y appears in L1, L2(Z)

is not a renaming duplicate to L2(Y), but it is reasonable to
leave it out of consideration to avoid increasing the cardinal-
ity of the training set until we have included other predicates
on either Y or Z.

To overcome the problem with the renaming duplicates,
we use the the notion of equivalence of two clauses: Two
clauses C1 and C2 are equivalent if and only if C1 |= C2 and
C2 |= C1. QuickFOIL prunes redundant literals using a new
type of duplicate, called the replaceable duplicates.
Definition 2 (Replaceable duplicate) A literal L is a
replaceable duplicate with respect to a clause C if there is a
literal L0 in the body of the clause such that the new clause
that replaces L0 in C with L is equivalent to C.

A renaming duplicate is clearly also a replaceable dupli-
cate. Intuitively, a replaceable duplicate can be replaced
by an existing literal in a clause. For example, the literal
L1(X,Z) is a replaceable duplicate w.r.t. the clause Lh(X):-
L1(X,Y), because replacing L1(X,Y) with L1(X,Z) pro-
duces an equivalent clause Lh(X) :- L1(X,Z). Similarly,
one can verify that L2(Z) is a replaceable duplicate w.r.t. the
clause Lh(X):- L1(X,Y), L2(Y), L1(X,Z), and L1(X,Z) is
not w.r.t. the clause Lh(X) :- L1(X,Y), L2(Y).

By Definition 2, determining the replaceable redundancy
of a literal is to test the equivalence of two clauses, which
can be reduced to the equivalence problem of conjunctive
database queries under set semantics. Specifically, for a
clause C, we can construct a Datalog program Q that con-
tains C as the single Datalog rule. Two clauses C1 and
C2 are equivalent if and only if their corresponding Data-
log queries Q1 and Q2 are equivalent. QuickFOIL tests the
query equivalence by checking their mutual containment,
which is done by evaluating one query on the canonical
database of the other query (using the algorithm proposed
in [32] for the conjunctive query containment problem).

Besides reducing the search space, pruning candidate lit-
erals has two additional advantages. First, most of the re-
dundant literals do not eliminate any negative binding tu-
ples, but they can still be amongst the literals with high
scores due to the high coverage of positive literals. It is im-
portant to exclude them from the body of the clause being
constructed since they can increase the cardinality of the
positive binding set significantly. Second, the pruning helps
keep the rule concise, thereby improving the ability of an
end-user to interpret the output of the ILP method.

4 QuickFOIL implementation
In this section, we describe our methods to run and optimize
QuickFOIL as an in-RDBMS algorithm.

4.1 Relational operations
From the logic programming point of view, a database rela-
tion can be seen as a specification of a predicate. The back-
ground knowledge and the training examples represented in
logic programs in ILP can be naturally stored in a database.
Specifically, we create a relation per predicate, where 1) the
relation name is the predicate symbol, 2) there is an at-
tribute per predicate argument that has the same type as
the predicate’s argument, and 3) each tuple in the relation
corresponds to a (predicate) fact. For example, the SQL
schema of the relation for the predicate Brother in our run-
ning example (cf. Figure 1 and Example 2) is:

CREATE TABLE Brother (person VARCHAR(50),
parent VARCHAR(50))

With the relational representation of data, the QuickFOIL
algorithm can be expressed in (extended) relational algebra
using the mapping shown in Table 2. The line numbers in

201

this table refer to Algorithm 1. Note, n is the left semi-join
operation, ./ is the natural join operation, ⇤ represents the
antijoin operation.

In a literal search iteration, to compute the score of a
candidate literal L (Equation 5), the following aggregate
values are needed: d+, d�, |T+|, |T�|, |T 0

+| and |T 0
�|, of which

|T+| and |T�| are common across different literals, and can
be found in the previous iteration. Recall that the binding
set T 0 of the clause resulting from adding L can be computed
by T ./ L, where there is an equality-based join predicate
between two columns if they correspond to the same variable
in C and L. This expansion leads to four queries q+1 , q�1 , q+2
and q�2 for every candidate literal to compute d+, d�, |T 0

+|
and |T 0

�|, respectively. After finding a complete rule, the
positive training examples can be updated by performing
an antijoin operation, U ⇤ T , to remove the examples that
are covered by the new rule, where U represents a relation
composed of the uncovered positive training examples as
shown in Algorithm 1.

Compute the scoring compo-
nents (Line 8)

For every candidate literal L,
q+1 : d+ = COUNT(T+ n L),
q�1 : d� = COUNT(T� n L),
q+2 : |T 0

+| = COUNT(T+ ./ L),
q�2 : |T 0

�| = COUNT(T� ./ L)

Create a new binding set
(Line 11, 12)

For the best literal L,
q+3 : T+ = T+ ./ L,
q�3 : T� = T� ./ L

Update the uncovered positive
training examples (Line 14) q4 : U = U ⇤ T

Table 2: Relational operations in QuickFOIL

4.2 In-database implementation
This section describes our in-database implementation of
QuickFOIL, which leverages database query processing tech-
niques to achieve high performance and scalability.

As discussed in Section 2.2, the total number of candi-
date literals to be explored (in each round of constructing
a clause) can quickly increase to a significant number, thus
leading to a large number of join queries when computing
the scores for every candidate literal. In addition, we observe
that in real-life problems, the binding relation cardinality
can increase considerably. A key challenge that is associ-
ated with building a scalable in-RDBMS version of Quick-
FOIL is to optimize the performance of a large number of
join queries on potentially large relations when searching for
the best literals. Our approach to this problem is to maxi-
mize the sharing amongst the queries while minimizing the
materialization cost that is incurred by sharing.

Our implementation is built in the main-memory RDBMS,
Quickstep [9]. We assume partitioned hash join algorithms
in developing the performance optimization techniques. Quick-
FOIL uses the radix hash join algorithm [25].

4.2.1 Combining positive and negative tuples
Since the binding tuples are labeled as positive or negative,
there are two natural relational models for the binding set:
an integrated model and an independent model. The inte-
grated model represents the entire set of binding tuples as
a single relation, whereas the independent model separates
them into two relations, one for the positive tuples and the
other for the negative ones.

The conventional choice is to use the independent model.
It might appear that compared to the independent model,
using the integrated model has no benefits, but it introduces
the overhead of performing extra selection operations to pick
the positive/negative tuples. However, we find that the in-
tegrated model can be exploited to improve the join perfor-
mance. By putting the positive and the negative tuples in a
single relation, we observe that for each literal, the four join
queries q+1 , q+2 , q�1 , and q�2 (see Table 2) have a common join
operation between the two relations T and L. This common
join operation can be “shared” if we push the join operation
below the selection operation. In Section 4.2.4, we introduce
a continuous query execution model that enables “operator
sharing”, and allows a single query operator to produce mul-
tiple query outputs. In contrast to the independent model
where we need to perform two joins T+ ./ L and T� ./ L
separately, using the integrated model only requires one join
T ./ L, followed by selection operations.

QuickFOIL implements a join operation using a join op-
erator on a single join predicate, where the binding relation
is picked as the inner relation. A selection operator is used
to evaluate any remaining join predicates (more details re-
garding this issue are described below in Section 4.2.2).

For our implementation we choose the integrated model
that reduces the join operations for each literal from two to
one, as it has two key advantages. First, eliminating a join
operation reduces one pass/scan over the common relation
L. Second, merging the positive and the negative binding
tuples yields good cache locality for the subsequent selec-
tion operation. Consider a tuple t in L that has multiple
matching binding tuples in the single-predicate join. After
an attribute value of t is read from memory for a match-
ing binding tuple, it likely resides in the CPU cache when
it is accessed again for other matching tuples, since these
matching tuples are processed in succession. Hence, we can
improve the sharing for tuples with both positive and nega-
tive matchings.

4.2.2 Caching partitions and hash tables
We have the following two observations about the join work-
load generated by QuickFOIL.
Observation 1 For every literal search iteration, all joins

in the four queries q1 to q4 have one common relation,
namely the binding relation.

Observation 2 For the entire execution, the background
relations do not change, and are repeatedly used a large
number of times.
Thus, there is an opportunity to share intermediate results

on common relations across the queries. Now, recall that a
partitioned hash join algorithm has three phases: partition,
build and probe. The partition phase divides both rela-
tions into partitions. The build phase builds a hash table
on each partition of the inner relation, which is then probed
in the probe phase. The partition and the build phases of-
ten consumes a combined of 50%–90% of the (radix hash)
join execution time, when ignoring the cost to materialize
the join results [3]. Since the partition phase and the build
phase are performed on individual relations, we can reduce
the partition and build costs by keeping a cache of the parti-
tioned results and the hash tables for each relation once they
are built. In particular, the partitions for a background re-
lation are shared throughout the entire execution, as that
relation never changes. In order to maximize the benefit

202

Group by the join
column of the inner
(binding) relation

Group by the outer
(background)
relation

Group by the join
column of the outer
(background)
relation

probe

Candidate literals
B(X, Y), B(Y, X), B(X, Z), B(Z, X), B(Y, Z), B(Z, Y), B(X, X), B(Y, Y)!
P(X, Y), P(Y, X), P(X, Z), P(Z, X), P(Y, Z), P(Z, Y), P(X, X), P(Y, Y)

B(X, Y), B(X, Z), B(Z, X), B(X, X)!
P(X, Y), P(X, Z), P(Z, X), P(X, X)

B(X, Y), B(X, Z), B(Z, X), B(X, X) P(X, Y), P(X, Z), P(Z, X), P(X, X)

B(Y, X), B(Y, Z), B(Z, Y), B(Y, Y)!
P(Y, X), P(Y, Z), P(Z, Y), P(Y, Y)

B(Y, X), B(Y, Z), B(Z, Y), B(Y, Y) P(Y, X), P(Y, Z), P(Z, Y), P(Y, Y)

B(X, Y), B(X, Z), B(X, X) B(Z, X) P(X, Y), P(X, Z), P(X, X) P(Z, X) B(Y, X), B(Y, Z), B(Y, Y) B(Z, Y) P(Y, X), P(Y, Z), P(Y, Y) P(Z, Y)

B.c1

one compound join operator

B.c2 P.c1 P.c2

T.c1

B.c1 B.c2 P.c1 P.c2

T.c2

one compound join operator

partitions

grouping

join !
execution

Figure 3: Illustration of the grouping process when finding a literal to specialize the clause U(X,Y):-. The i-th column of
relation R is indicated by R.ci. The join columns are underlined and in boldface. For the purpose of illustration, we simply
choose c1 as the join column when there are join predicates on both c1 and c2.

of caching, next, we study two issues: 1) implementing the
multi-predicate join algorithm, and 2) determining the inner
relation (i.e. the build relation).

The join operator in QuickFOIL only evaluates a single
join predicate. For a multi-predicate join (i.e. the join is on
more than one column in the two join relations), we evaluate
one join predicate in the join operator, and the remaining
predicates are evaluated in a subsequent selection operator.

For example, consider the candidate literal B(X,Y) in the
first iteration of the literal search process, where the current
clause is U(X,Y):-. We need to perform a join between B
and T with a conjunction of two join predicates, i.e. B.c1 =

T.c1 and B.c2 = T.c2, where we denote the i-th column as
ci. The join operator evaluates one of these conjuncts, and
the other conjunct is evaluated in the selection operator.

For a k-ary predicate and a binding relation with n-columns,
the O(nk

) join queries share O(nk) single-predicate joins in
a literal search, suggesting potential for work sharing. The
simple multi-predicate join implementation avoids building
hash tables for every combination of columns for the bind-
ing relation. It also reduces the number of partitions that
are built for a relation from being potentially exponential to
being linear with the number of columns.

Finally we note that QuickFOIL currently uses a simple
heuristic to choose the join predicate that is evaluated in the
join operator. It picks the join predicate on the column of
the background relation that has the maximum estimated
number of distinct values. This strategy aims to pick the
join column that helps differentiate the tuples the most, and
thus minimizes the number of calls that are made to the
subsequent selection operators. As part of future work, we
plan on exploring other alternatives for this design choice.

A canonical query optimizer selects the inner relation ac-
cording to a cost function, and generally picks the smaller
relation as the inner/build relation. While adaptively select-
ing the inner relation is reasonable for individual queries, it
is not necessarily a good design for multiple query optimiza-
tion when caching is enabled.

QuickFOIL restricts the inner relation to be the binding
relation. The benefits of this approach are two-fold. First, it
can considerably reduce the memory footprint, as only the
hash tables for the binding relation is cached. The maximum
number of hash tables that need to be built and cached is
equal to the number of columns of the binding relation. In
contrast, using an adaptive approach can require building

a hash table for every column for every background rela-
tion, because the approach can choose either of the two join
relations to build the hash table, and the join predicates
can be on any pair of columns. Second, it also maximizes
the potential opportunities for sharing amongst the queries.
As long as the join key is identical across the queries, the
queries access the same hash table. By carefully grouping
these join queries in a way such that the hash table is probed
sequentially, we can increase the data locality, and hence re-
duce the cost of memory accesses. This grouping strategy is
described further in Section 4.2.3.

Because partitioning breaks the tuple ordering, a perfor-
mance issue is that the selection operation followed by the
single-predicate join could incur a large number of random
accesses spanning the entire table. To improve the cache
performance, we can perform the partitioning on a back-
ground relation holistically. That is, not only is the join col-
umn partitioned, but the columns on which there are predi-
cates for the selection are also further divided into partitions
based on the join key. After holistic partitioning, the selec-
tion operators that follow the join operators then access the
background relation on the partitions, rather than on the
original columns.

4.2.3 Grouping join operations

For a candidate literal L, the four queries q+1 , q�1 , q+2 and
q�2 share the same join kernel T ./ L. For candidate literals
L1, . . . , Ln, the join workload is W = {T ./ L1, . . . , T ./
Ln}; i.e. it consists of binary join operations having a com-
mon inner relation but with different join conditions. This
section studies how to optimize the performance of this “work-
load.” Our basic idea is to divide the join operations (each
corresponding to a literal) into groups, and organize the
sequence of single-predicate join executions in a way that
increases the shared working set (the common relation).

Next, we use the first search iteration of Example 2 to il-
lustrate the grouping technique. Recall that the task in that
example is to learn the Uncle predicate (abbreviated as U).
Here we have 24 candidate literals to specialize the clause
U(X,Y):-. We have the following eight candidate literals:
B(X,Y), B(Y,X), B(X,Z), B(Z,X), B(Y, Z), B(Z, Y),
B(X,X), and B(Y, Y), where B denotes the Brother pred-
icate. Similarly, we have eight literals for the predicate
Parent, and eight for the predicate Sister. For simplicity
in illustration, we ignore the Sister predicate below. The
grouping for this iteration is shown in Figure 3. We use

203

literals to represent the associated joins for ease of presen-
tation. The join columns are underlined and in boldface.
For example, a literal B(X, Z) represents the join operation
B ./B.c1=T.c1 T , where ci refers to the i-th column.

The grouping technique first partitions the join operations
by the join column on the inner binding relation T . Con-
sequently, every outer relation Li in a group is joined with
the inner relation on the same column. As shown in Fig-
ure 3, the 16 candidate literals are divided into two groups
according to the common variables that they have with the
current clause, which correspond to the join columns on the
binding relation. Next, the join operations in each group
are further distributed into smaller groups based on the
outer relation, and then on its join column. As a result,
the join operations in each final group have the same join
predicate. For example, the literals B(X,Y), B(X,Z) and
B(X,X) are in the same group, because they involve a com-
mon single-predicate join B ./B.c1=T.c1 T . During the join
execution, for each inner join column, we use a compound
join operator to perform the probe phases of all the associ-
ated single-predicate join operations collectively as follows:
1 for i=1 to n /* n is the number of partitions */
2 do
3 for each outer join column c, ordered by the

relation to which c belongs do
4 scan the i-th partition of c, probe the hash table

on the i-th partition of the inner join column
In our example, the single-predicate join B ./B.c1=T.c1 T

is shared by three join operations and is performed only once
by a compound join operator that simultaneously executes
three other joins with the same inner join column. Since the
initial binding relations have two columns, we can see that
the total number of compound join operators is two.

4.2.4 Merging queries with shared operators
A key question that stills needs to be answered is how to
connect the compound join operator with the remaining op-
erators. Queries for different literals in a group share the
same single-predicate join, but they have distinct join con-
ditions evaluated by multiple selection operators. Thus, we
need to find a way to feed the same join output to multi-
ple operators. In addition, for every literal, the four queries
(q+1 , q�1 , q+1 and q�1) return four different aggregate values,
but have the same selection operation. The last problem
that we need to tackle is how to share a common selection
operation, in addition to sharing the join operation.

In a standard database query processing model [18], each
operator reads one tuple or a batch of tuples by calling a
next() function in an iterator interface. A crucial drawback
of these standard iterators is that they are one-directional.
Once an operator consumes a tuple, the iterator cannot roll
back, and thus other operators cannot read it again.

To address this limitation, we develop a new inter-operator
communication model, which we call the continuous query
model. The basic idea behind the continuous model is that
the output tuples of an operator (producer) is pushed, in-
stead of being pulled, to its consumers (operators that takes
the tuples as input). In the continuous model, each oper-
ator is a subclass of a notifier interface that has two basic
functions: register and update. The function register allows
a consumer to be registered in the producer as an output
consumer. When output tuples are available, the producer
notifies each consumer by calling the function update, with

positive negative

of positive tuples significantly. Excluding them from the
body of a clause avoids the size explosion without informa-
tion loss. Second, the pruning helps keep the rule concise,
thereby improving the comprehensibility.

QuickFOIL has a number of other novel techniques to
restrict the search space and deal with the search myopia
problem caused by the greedy search strategy. We do not
present them in this paper for the interest of space.

4 QuickFOIL implementation
In this section, we describe our methods to run and optimize
QuickFoil as an in-RDBMS algorithm.

4.1 SQL implementation
The QuickFOIL algorithm can be expressed in (extended)
relational algebra using the mapping shown in Table 1. The
line number in this table refer to Algorithm 1. Note, n is
the left semi-join operation, ./ is the natural join operation,
⇤ represents the antijoin operation, and |Q| stands for the
count aggregation on the table Q. In addition, T

+

represents
the set of the positive tuples and T� represents the set of
the negative tuples from the training set T.

Compute the scoring components

(Line 8)

For each candidate literal L,
q+1 : d+ = |T+ n L|,
q�1 : d� = |T� n L|,
q+2 : |T 0

+| = |T+ ./ L|,
q�2 : |T 0

�| = |T� ./ L|

Create a new training set

(Line 11, 12)

For the best literal L,
q+3 : T+ = T+ ./ L,

q�3 : T� = T� ./ L

Update the uncovered pos-

itive training set (Line 14)

q4 : U = U ⇤ T

Table 1: Relational operations in QuickFOIL

4.2 In-database implementation
This section describes our in-database implementation of
QuickFOIL, which aims to leverage data processing tech-
niques in an in-memory DBMS for high performance and
scalability.

As discussed in Section 2.2, the total number of candi-
date literals to be explored (in each round of constructing
a clause) can quickly increase to a significant number, thus
leading to a large number of join queries when computing the
scores for every candidate literal. In addition, we observe in
real-life problems that the training relation cardinality can
increase considerably. A key challenge that is associated
with building a scalable in-RDBMS version of QuickFOIL
is to optimize the performance of a large number of join
queries on potentially large relations when searching for the
best literals. Our approach to this problem is to maximize
the sharing amongst the queries while minimizing the ma-
terialization cost that is incurred by sharing.

Our implementation is built on the main-memory RDBMS,
Quickstep [2]. We assume partitioned hash join algorithms
in developing the performance optimization techniques. The
radix-hash join algorithm [15] is used in QuickFOIL. In this
paper we only look at a single-threaded implementation of
QuickFOIL.

4.2.1 Combining positive and negative tuples
Since the training tuples are labelled as positive or negative,
there are two natural relational models for the training set:
an integrated model and an independent model. The inte-
grated model represents the entire set of training tuples as

a single relation, whereas the independent model separates
them into two relations, one for the positive tuples and the
other for the negative ones.

The conventional choice is processing the positives and
the negatives separately, corresponding to the independent
model. Indeed, compared to the independent model, using
the integrated model appears to have no benefits but intro-
duce the overhead of performing extra selection operations
to pick the positive/negative tuples. However, we find that
we can utilize the integrated model to improve the join per-
formance. After putting the positives and the negatives in a
single relation, we can see that for each literal, the four join
queries q+

1

, q+
2

, q�
1

, and q�
2

shown in Table 1 have the com-
mon join between two relations T and L. The common join
can be shared if we push the join operation below the selec-
tion operation. In Section 4.2.4, we will introduce the con-
tinuous query execution model which enables the operator
sharing and allows a single query execution to produce mul-
tiple query outputs. In contrast to the independent model
where we need to perform two joins T

+

./ L and T� ./ L
separately, using the integrated model replace them to one
T ./ L followed by selection.

Using one holistic join rather than two separate joins has
two advantages when we put the training relation(s) as the
inner in the join(s) and we implement a multi-column join
as a single-column join on one join condition and a fil-
ter on other join conditions (the two choices are justified
later in Section 4.2.2). First, eliminating a join reduces one
pass/scan over the common relation L. Second, merging the
positives and the negatives has good cache locality for the
filter. Consider a tuple t in L that has multiple matching
training tuples in the single-column join. After an attribute
value of t is read from memory for a matching training tuple,
it likely resides in the CPU cache when it is accessed again
for other matching tuples, since these matching tuples are
processed in succession. Hence, putting the positives and
the negatives can improve the sharing for tuples with both
positive and negative matchings.

The integrated model raises an important implementation
issue. Recall that the initial training set for building a new
rule consists of those positive training examples that are not
covered by previous rules and the entire set of negative ex-
amples. The two sets of training examples do not originally
belong to one relation: The negative examples are part of
the target relation, whereas the uncovered positive exam-
ples are a temporary relation generated in the end of the
last search of rules. Therefore, using the integrated model
needs to combine data from di↵erent relations into a new
relation, while we should not drop the original relations. Be-
cause physically copying data is very expensive, we design
virtual blocks so that the data of a relation can be borrowed
from other relations. A virtual block is a read-only block
that does not itself own any data but simply refers to other
blocks. The access to virtual blocks is transparent to op-
erators by a unified iterator interface. Therefore, we can
incorporate the negative tuples from the target relation into
the initial training relation by simply adding a virtual block
pointing to the storage blocks containing the negatives. We
can consider the initial training relation as a view on two
relations, which is not explicitly materialized by the use of
virtual blocks.

6

of positive tuples significantly. Excluding them from the
body of a clause avoids the size explosion without informa-
tion loss. Second, the pruning helps keep the rule concise,
thereby improving the comprehensibility.

QuickFOIL has a number of other novel techniques to
restrict the search space and deal with the search myopia
problem caused by the greedy search strategy. We do not
present them in this paper for the interest of space.

4 QuickFOIL implementation
In this section, we describe our methods to run and optimize
QuickFoil as an in-RDBMS algorithm.

4.1 SQL implementation
The QuickFOIL algorithm can be expressed in (extended)
relational algebra using the mapping shown in Table 1. The
line number in this table refer to Algorithm 1. Note, n is
the left semi-join operation, ./ is the natural join operation,
⇤ represents the antijoin operation, and |Q| stands for the
count aggregation on the table Q. In addition, T

+

represents
the set of the positive tuples and T� represents the set of
the negative tuples from the training set T.

Compute the scoring components

(Line 8)

For each candidate literal L,
q+1 : d+ = |T+ n L|,
q�1 : d� = |T� n L|,
q+2 : |T 0

+| = |T+ ./ L|,
q�2 : |T 0

�| = |T� ./ L|

Create a new training set

(Line 11, 12)

For the best literal L,
q+3 : T+ = T+ ./ L,

q�3 : T� = T� ./ L

Update the uncovered pos-

itive training set (Line 14)

q4 : U = U ⇤ T

Table 1: Relational operations in QuickFOIL

4.2 In-database implementation
This section describes our in-database implementation of
QuickFOIL, which aims to leverage data processing tech-
niques in an in-memory DBMS for high performance and
scalability.

As discussed in Section 2.2, the total number of candi-
date literals to be explored (in each round of constructing
a clause) can quickly increase to a significant number, thus
leading to a large number of join queries when computing the
scores for every candidate literal. In addition, we observe in
real-life problems that the training relation cardinality can
increase considerably. A key challenge that is associated
with building a scalable in-RDBMS version of QuickFOIL
is to optimize the performance of a large number of join
queries on potentially large relations when searching for the
best literals. Our approach to this problem is to maximize
the sharing amongst the queries while minimizing the ma-
terialization cost that is incurred by sharing.

Our implementation is built on the main-memory RDBMS,
Quickstep [2]. We assume partitioned hash join algorithms
in developing the performance optimization techniques. The
radix-hash join algorithm [15] is used in QuickFOIL. In this
paper we only look at a single-threaded implementation of
QuickFOIL.

4.2.1 Combining positive and negative tuples
Since the training tuples are labelled as positive or negative,
there are two natural relational models for the training set:
an integrated model and an independent model. The inte-
grated model represents the entire set of training tuples as

a single relation, whereas the independent model separates
them into two relations, one for the positive tuples and the
other for the negative ones.

The conventional choice is processing the positives and
the negatives separately, corresponding to the independent
model. Indeed, compared to the independent model, using
the integrated model appears to have no benefits but intro-
duce the overhead of performing extra selection operations
to pick the positive/negative tuples. However, we find that
we can utilize the integrated model to improve the join per-
formance. After putting the positives and the negatives in a
single relation, we can see that for each literal, the four join
queries q+

1

, q+
2

, q�
1

, and q�
2

shown in Table 1 have the com-
mon join between two relations T and L. The common join
can be shared if we push the join operation below the selec-
tion operation. In Section 4.2.4, we will introduce the con-
tinuous query execution model which enables the operator
sharing and allows a single query execution to produce mul-
tiple query outputs. In contrast to the independent model
where we need to perform two joins T

+

./ L and T� ./ L
separately, using the integrated model replace them to one
T ./ L followed by selection.

Using one holistic join rather than two separate joins has
two advantages when we put the training relation(s) as the
inner in the join(s) and we implement a multi-column join
as a single-column join on one join condition and a fil-
ter on other join conditions (the two choices are justified
later in Section 4.2.2). First, eliminating a join reduces one
pass/scan over the common relation L. Second, merging the
positives and the negatives has good cache locality for the
filter. Consider a tuple t in L that has multiple matching
training tuples in the single-column join. After an attribute
value of t is read from memory for a matching training tuple,
it likely resides in the CPU cache when it is accessed again
for other matching tuples, since these matching tuples are
processed in succession. Hence, putting the positives and
the negatives can improve the sharing for tuples with both
positive and negative matchings.

The integrated model raises an important implementation
issue. Recall that the initial training set for building a new
rule consists of those positive training examples that are not
covered by previous rules and the entire set of negative ex-
amples. The two sets of training examples do not originally
belong to one relation: The negative examples are part of
the target relation, whereas the uncovered positive exam-
ples are a temporary relation generated in the end of the
last search of rules. Therefore, using the integrated model
needs to combine data from di↵erent relations into a new
relation, while we should not drop the original relations. Be-
cause physically copying data is very expensive, we design
virtual blocks so that the data of a relation can be borrowed
from other relations. A virtual block is a read-only block
that does not itself own any data but simply refers to other
blocks. The access to virtual blocks is transparent to op-
erators by a unified iterator interface. Therefore, we can
incorporate the negative tuples from the target relation into
the initial training relation by simply adding a virtual block
pointing to the storage blocks containing the negatives. We
can consider the initial training relation as a view on two
relations, which is not explicitly materialized by the use of
virtual blocks.

6

of positive tuples significantly. Excluding them from the
body of a clause avoids the size explosion without informa-
tion loss. Second, the pruning helps keep the rule concise,
thereby improving the comprehensibility.

QuickFOIL has a number of other novel techniques to
restrict the search space and deal with the search myopia
problem caused by the greedy search strategy. We do not
present them in this paper for the interest of space.

4 QuickFOIL implementation
In this section, we describe our methods to run and optimize
QuickFoil as an in-RDBMS algorithm.

4.1 SQL implementation
The QuickFOIL algorithm can be expressed in (extended)
relational algebra using the mapping shown in Table 1. The
line number in this table refer to Algorithm 1. Note, n is
the left semi-join operation, ./ is the natural join operation,
⇤ represents the antijoin operation, and |Q| stands for the
count aggregation on the table Q. In addition, T

+

represents
the set of the positive tuples and T� represents the set of
the negative tuples from the training set T.

Compute the scoring components

(Line 8)

For each candidate literal L,
q+1 : d+ = |T+ n L|,
q�1 : d� = |T� n L|,
q+2 : |T 0

+| = |T+ ./ L|,
q�2 : |T 0

�| = |T� ./ L|

Create a new training set

(Line 11, 12)

For the best literal L,
q+3 : T+ = T+ ./ L,

q�3 : T� = T� ./ L

Update the uncovered pos-

itive training set (Line 14)

q4 : U = U ⇤ T

Table 1: Relational operations in QuickFOIL

4.2 In-database implementation
This section describes our in-database implementation of
QuickFOIL, which aims to leverage data processing tech-
niques in an in-memory DBMS for high performance and
scalability.

As discussed in Section 2.2, the total number of candi-
date literals to be explored (in each round of constructing
a clause) can quickly increase to a significant number, thus
leading to a large number of join queries when computing the
scores for every candidate literal. In addition, we observe in
real-life problems that the training relation cardinality can
increase considerably. A key challenge that is associated
with building a scalable in-RDBMS version of QuickFOIL
is to optimize the performance of a large number of join
queries on potentially large relations when searching for the
best literals. Our approach to this problem is to maximize
the sharing amongst the queries while minimizing the ma-
terialization cost that is incurred by sharing.

Our implementation is built on the main-memory RDBMS,
Quickstep [2]. We assume partitioned hash join algorithms
in developing the performance optimization techniques. The
radix-hash join algorithm [15] is used in QuickFOIL. In this
paper we only look at a single-threaded implementation of
QuickFOIL.

4.2.1 Combining positive and negative tuples
Since the training tuples are labelled as positive or negative,
there are two natural relational models for the training set:
an integrated model and an independent model. The inte-
grated model represents the entire set of training tuples as

a single relation, whereas the independent model separates
them into two relations, one for the positive tuples and the
other for the negative ones.

The conventional choice is processing the positives and
the negatives separately, corresponding to the independent
model. Indeed, compared to the independent model, using
the integrated model appears to have no benefits but intro-
duce the overhead of performing extra selection operations
to pick the positive/negative tuples. However, we find that
we can utilize the integrated model to improve the join per-
formance. After putting the positives and the negatives in a
single relation, we can see that for each literal, the four join
queries q+

1

, q+
2

, q�
1

, and q�
2

shown in Table 1 have the com-
mon join between two relations T and L. The common join
can be shared if we push the join operation below the selec-
tion operation. In Section 4.2.4, we will introduce the con-
tinuous query execution model which enables the operator
sharing and allows a single query execution to produce mul-
tiple query outputs. In contrast to the independent model
where we need to perform two joins T

+

./ L and T� ./ L
separately, using the integrated model replace them to one
T ./ L followed by selection.

Using one holistic join rather than two separate joins has
two advantages when we put the training relation(s) as the
inner in the join(s) and we implement a multi-column join
as a single-column join on one join condition and a fil-
ter on other join conditions (the two choices are justified
later in Section 4.2.2). First, eliminating a join reduces one
pass/scan over the common relation L. Second, merging the
positives and the negatives has good cache locality for the
filter. Consider a tuple t in L that has multiple matching
training tuples in the single-column join. After an attribute
value of t is read from memory for a matching training tuple,
it likely resides in the CPU cache when it is accessed again
for other matching tuples, since these matching tuples are
processed in succession. Hence, putting the positives and
the negatives can improve the sharing for tuples with both
positive and negative matchings.

The integrated model raises an important implementation
issue. Recall that the initial training set for building a new
rule consists of those positive training examples that are not
covered by previous rules and the entire set of negative ex-
amples. The two sets of training examples do not originally
belong to one relation: The negative examples are part of
the target relation, whereas the uncovered positive exam-
ples are a temporary relation generated in the end of the
last search of rules. Therefore, using the integrated model
needs to combine data from di↵erent relations into a new
relation, while we should not drop the original relations. Be-
cause physically copying data is very expensive, we design
virtual blocks so that the data of a relation can be borrowed
from other relations. A virtual block is a read-only block
that does not itself own any data but simply refers to other
blocks. The access to virtual blocks is transparent to op-
erators by a unified iterator interface. Therefore, we can
incorporate the negative tuples from the target relation into
the initial training relation by simply adding a virtual block
pointing to the storage blocks containing the negatives. We
can consider the initial training relation as a view on two
relations, which is not explicitly materialized by the use of
virtual blocks.

6

of positive tuples significantly. Excluding them from the
body of a clause avoids the size explosion without informa-
tion loss. Second, the pruning helps keep the rule concise,
thereby improving the comprehensibility.

QuickFOIL has a number of other novel techniques to
restrict the search space and deal with the search myopia
problem caused by the greedy search strategy. We do not
present them in this paper for the interest of space.

4 QuickFOIL implementation
In this section, we describe our methods to run and optimize
QuickFoil as an in-RDBMS algorithm.

4.1 SQL implementation
The QuickFOIL algorithm can be expressed in (extended)
relational algebra using the mapping shown in Table 1. The
line number in this table refer to Algorithm 1. Note, n is
the left semi-join operation, ./ is the natural join operation,
⇤ represents the antijoin operation, and |Q| stands for the
count aggregation on the table Q. In addition, T

+

represents
the set of the positive tuples and T� represents the set of
the negative tuples from the training set T.

Compute the scoring components

(Line 8)

For each candidate literal L,
q+1 : d+ = |T+ n L|,
q�1 : d� = |T� n L|,
q+2 : |T 0

+| = |T+ ./ L|,
q�2 : |T 0

�| = |T� ./ L|

Create a new training set

(Line 11, 12)

For the best literal L,
q+3 : T+ = T+ ./ L,

q�3 : T� = T� ./ L

Update the uncovered pos-

itive training set (Line 14)

q4 : U = U ⇤ T

Table 1: Relational operations in QuickFOIL

4.2 In-database implementation
This section describes our in-database implementation of
QuickFOIL, which aims to leverage data processing tech-
niques in an in-memory DBMS for high performance and
scalability.

As discussed in Section 2.2, the total number of candi-
date literals to be explored (in each round of constructing
a clause) can quickly increase to a significant number, thus
leading to a large number of join queries when computing the
scores for every candidate literal. In addition, we observe in
real-life problems that the training relation cardinality can
increase considerably. A key challenge that is associated
with building a scalable in-RDBMS version of QuickFOIL
is to optimize the performance of a large number of join
queries on potentially large relations when searching for the
best literals. Our approach to this problem is to maximize
the sharing amongst the queries while minimizing the ma-
terialization cost that is incurred by sharing.

Our implementation is built on the main-memory RDBMS,
Quickstep [2]. We assume partitioned hash join algorithms
in developing the performance optimization techniques. The
radix-hash join algorithm [15] is used in QuickFOIL. In this
paper we only look at a single-threaded implementation of
QuickFOIL.

4.2.1 Combining positive and negative tuples
Since the training tuples are labelled as positive or negative,
there are two natural relational models for the training set:
an integrated model and an independent model. The inte-
grated model represents the entire set of training tuples as

a single relation, whereas the independent model separates
them into two relations, one for the positive tuples and the
other for the negative ones.

The conventional choice is processing the positives and
the negatives separately, corresponding to the independent
model. Indeed, compared to the independent model, using
the integrated model appears to have no benefits but intro-
duce the overhead of performing extra selection operations
to pick the positive/negative tuples. However, we find that
we can utilize the integrated model to improve the join per-
formance. After putting the positives and the negatives in a
single relation, we can see that for each literal, the four join
queries q+

1

, q+
2

, q�
1

, and q�
2

shown in Table 1 have the com-
mon join between two relations T and L. The common join
can be shared if we push the join operation below the selec-
tion operation. In Section 4.2.4, we will introduce the con-
tinuous query execution model which enables the operator
sharing and allows a single query execution to produce mul-
tiple query outputs. In contrast to the independent model
where we need to perform two joins T

+

./ L and T� ./ L
separately, using the integrated model replace them to one
T ./ L followed by selection.

Using one holistic join rather than two separate joins has
two advantages when we put the training relation(s) as the
inner in the join(s) and we implement a multi-column join
as a single-column join on one join condition and a fil-
ter on other join conditions (the two choices are justified
later in Section 4.2.2). First, eliminating a join reduces one
pass/scan over the common relation L. Second, merging the
positives and the negatives has good cache locality for the
filter. Consider a tuple t in L that has multiple matching
training tuples in the single-column join. After an attribute
value of t is read from memory for a matching training tuple,
it likely resides in the CPU cache when it is accessed again
for other matching tuples, since these matching tuples are
processed in succession. Hence, putting the positives and
the negatives can improve the sharing for tuples with both
positive and negative matchings.

The integrated model raises an important implementation
issue. Recall that the initial training set for building a new
rule consists of those positive training examples that are not
covered by previous rules and the entire set of negative ex-
amples. The two sets of training examples do not originally
belong to one relation: The negative examples are part of
the target relation, whereas the uncovered positive exam-
ples are a temporary relation generated in the end of the
last search of rules. Therefore, using the integrated model
needs to combine data from di↵erent relations into a new
relation, while we should not drop the original relations. Be-
cause physically copying data is very expensive, we design
virtual blocks so that the data of a relation can be borrowed
from other relations. A virtual block is a read-only block
that does not itself own any data but simply refers to other
blocks. The access to virtual blocks is transparent to op-
erators by a unified iterator interface. Therefore, we can
incorporate the negative tuples from the target relation into
the initial training relation by simply adding a virtual block
pointing to the storage blocks containing the negatives. We
can consider the initial training relation as a view on two
relations, which is not explicitly materialized by the use of
virtual blocks.

6

…

…
Iterator interface Notifier interface DISTINCT aggregate COUNT aggregate

selection2

selection1L3 T L1 L1 L1
L2 L1

compound join

D C D C

CD

Figure 4: Query execution plan. The DISTINCT aggrega-
tion operators count the number of distinct tuples, and the
COUNT aggregation operators count all the input tuples.

the output tuples as arguments. Clearly, a producer can
have more than one changeconsumer. Therefore, we can
merge multiple queries with shared operators into one graph-
structured query execution plan.

It is important to note that an operator can open multiple
registration points. Not only can the final output of an op-
erator be shared with other operators, but any intermediate
results can also be shared using the continuous model. For
example, a join operator can share four types of outputs: in-
ner join result, semi-join result, (left/right) outer join result
and (left/right) anti-join result.

The continuous query model can be mixed along with the
traditional iterator model. The only restriction is that the
query plan should not have a path that uses the iterator
interface after the notifier interface (to prevent breaking the
data flow). Note that if no operator is registered in more
than one operators, no extra materialization cost is incurred;
otherwise, materialization may be needed since the inputs
from multiple producers are not synchronized. This materi-
alization can be completely avoided in QuickFOIL.

Figure 4 shows the unified execution plan to compute the
aggregates for all the candidate literals that have a com-
mon variable in the current clause. For each candidate lit-
eral, the lower selection operator (selection1) evaluates the
join predicates that have not been evaluated in the single-
predicate join, and the upper selection operator (selection2)
determines the positive/negative label of the input binding
tuples. All the single-predicate join operations are executed
by a single compound join operator. As this join operator is
shared, we use the notifier interface between the compound
join operator and the selection1 operator. Since the selec-

tion1 operator subscribes to the compound join operator’s
notifier interface, it is connected to the selection2 using the
notifier interface, even though the selection1 operator is not
shared. The selection2 operator has two registration points
for the case when the selection predicate is true and the case
when it is false. An aggregate operator is registered in one
of the two points based on whether it counts the positive
or the negative tuples. Next, for each literal, four aggregate
values (i.e. d+, |T 0

+|, d� and |T 0
�|) are returned, based on

which the final score is then computed using Equation 5.

5 Experiments
In this section, we evaluate the QuickFOIL approach.

5.1 Experiment setup
Datasets. For our experiments, we use two real-life datasets
(WebKB and HIV), and synthetic datasets (Bongard), which
are summarized in Table 3.

204

Name #P #N #T #Pred.

WebKB-Student 418 2.7K 278K 935
WebKB-Department 561 225K 280K 942

HIV-Large 5.3K 33K 10M 80
HIV-Small 45 90 39K 33

Bongard-TH1 270K 270K 53M 9
Bongard-TH2 18K 18K 36M 9
Bongard-TH3 900K 900K 178M 9

Table 3: The number of positive (#P) and negative (#N)
examples in the training set, and the total number of tuples
(#T) and the number of predicates (#Pred.) in the back-
ground knowledge for each type of training datasets.

WebKB [11] is a standard dataset for link classification and
discovery, and is available at http://www.biostat.wisc.
edu/~craven/webkb/. It contains web pages of faculty mem-
bers, research projects and students, as well as hyperlinks
between them, crawled from web sites of four computer
science departments. The background knowledge was con-
structed from the link structure, word occurrences, and po-
sitions on the web pages. We performed two learning tasks
on this dataset. The first task, WebKB-Student, constructs
rules to identifying student pages. The second task, WebKB-
Department, determines the “department-of” relationship be-
tween a pair of pages. We used leave-one-university-out
cross validation to evaluate the learning model. Specifically,
we partition all tuples into four partitions according to which
university they are from, and perform four rounds of vali-
dation. Each round leaves one partition out for testing and
keeps the remaining for training.
HIV-Large is a collection of over 42,000 compounds for
the National Cancer Institute’s AIDS antiviral screen.3 This
dataset contains 62 background predicates for atom elements,
1 for the compound-atom relationship, 1 for the atom-bond
relationship and 15 for the properties of atoms and bonds.
We also created a small sample of data, HIV-Small. We
assign positive labels to compounds that have a substructure
C-C-O-C=O (in the SMILES format), which is a frequent
substructure in compounds capable of inhibiting the HIV
virus [22]. We used 10-fold cross validation for this task.
Bongard datasets consist of labeled pictures, each having
a few simple geometrical objects (circle, rectangle, triangle).
The learning problem is to find theories that distinguish the
positive pictures from the negative ones given the shapes and
the positions relative to each other. We have implemented a
program4 that randomly generated a corpus of 100 million
pictures, each having 8–10 objects. The three target theories
shown in Table 4 were used to label the pictures, resulting
in three sets of positive pictures which bound the number of
positive training examples shown in Table 3. TH1 is a very
simple concept that has only three objects and two corre-
lated relations. TH2 and TH3 represent two different hard
problems. TH2 contains a large number of objects but the
pairwise relations are independent, whereas the relations in
TH3 are all correlated. We created four different datasets
for each of the three problems and report the averaged exe-
cution time in this paper. Each dataset has an equal number
3
https://wiki.nci.nih.gov/display/NCIDTPdata/AIDS+

Antiviral+Screen+Data

4Available at http://www.cs.wisc.edu/~qzeng/quickfoil/

bongard-generator.html

Name Definition

TH1 positive(P) :- inside(C, T), east(T, R)

TH2 positive(P) :- inside(C1, TD), east(T1, R1),
east(T2, T3), north(C2, C3), inside(TU, R2)

TH3
positive(P) :- inside(O1, O2), east(O2, O3),
east(O3, O4), north(O4, O5), inside(O5, O6),
north(O1, O5)

Notations: P: picture; C: circle; T: triangle; R: rectangle;
TU/TD: point-up/point-down triangle; O: any object.

Table 4: Labeling theories for the Bongard datasets. To
avoid literal overloading, predicates other than east, north
and inside are omitted and the variable name is used to
indicate omitted predicates on the variable.

of positive tuples and negative tuples, with ten percent for
testing. The training set has five percent of positive tuples
and the same percent of negative tuples that are assigned
wrong labels to introduce noise.
Comparisons. We compare QuickFOIL with an in-memory
implementation in Quickstep with the following two sys-
tems, which are also in-memory systems.
1) FOIL is the FOIL program written by J. R. Quinlan. We
use the latest version, namely FOIL 6.45.
2) Aleph [33] is a popular ILP system that has been widely
used in prior work. To find a rule, Aleph starts by building
the most specific clause, which is called the “bottom clause”,
that entails a seed example. Then, it uses a branch-and-
bound algorithm to perform a general-to-specific heuristic
search for a subset of literals from the bottom clause to
form a more general rule. We set Aleph to use the heuristic

enumeration strategy, and the maximum number of branch
nodes to be explored in a branch-and-bound search to 500K.
Metric. We use the standard metrics precision, recall and
F-1 score to measure the quality of the results.

All experiments were run in a single thread on a 2.67GHz
Intel Xeon X5650 processor. The server had 24GB of main
memory and was running Scientific Linux 5.3.

5.2 Results with real-life datasets
5.2.1 WebKB learning tasks
There are two important features in the WebKB datasets.
First, it is well known that the link structure in the web
follows a power-law distribution [4], which is highly skewed.
For the WebkKB datasets, the largest in-degree of a page
is 179, while 60% of pages have only one in-link. As dis-
cussed in Section 3.1, such skew raises performance issues.
Second, although the WebKB datasets has nearly 1000 pred-
icates, the hypothesis search space is not very large because
only one of these predicates has an arity greater than one.
However, the large number of predicates makes it harder
to produce high-quality rules because they add uncertainty
into the learning process, and increase the probability and
penalty of making a mistake.

Figures 5(a) and 5(b) compares the quality of the re-
sults produced by QuickFOIL, FOIL and Aleph. Quick-
FOIL achieves the best F-1 scores on both tasks. For the
WebKB-Student task, FOIL has the worst performance with
a low recall of 12.7%. For the WebKB-Department task,
Aleph failed to finish on two of the four-fold cross validation
rounds as it exceeded the amount of available main memory.
The quality measures shown in Figure 5 only includes the
5Available at http://www.rulequest.com/Personal/

205

0.00

0.25

0.50

0.75

1.00

Precision Recall F−Score

 QuickFOIL FOIL Aleph

(a) on WebKB-Student

0.00

0.25

0.50

0.75

1.00

Precision Recall F−Score

 QuickFOIL FOIL Aleph

(b) on WebKB-Department

1e+00

1e+01

1e+02

1e+03

1e+04

1e+05

Student Department

 QuickFOIL FOIL Aleph

(c) Execution time (s)

Figure 5: Results with the WebKB datasets

two successful runs. QuickFOIL also produces the small-
est number of rules. For example, QuickFOIL outputs one
rule in three of the four validation rounds for the WebKB-
Student task, while Aleph and FOIL produce more than 10
output rules. Next, we describe the reasons why Aleph and
FOIL produce (relatively) lower quality rules.

FOIL is not good at incorporating predicates with an ar-
ity greater than one, which restricts its ability to mine richly
structured data. The FOIL gain function is biased towards
literals that introduce new variables and cover a large num-
ber of positive tuples, yet not necessarily reducing the cov-
erage of the negatives tuples. Most of these literals dramat-
ically increase the size of the binding set. To reduce the
impact of the problem, FOIL drops these previously added
literals that contain free variables when it finds a new lit-
eral with exclusively bound variables, which in most cases
is an unary literal. On one hand, the FOIL scoring function
prevents it from finding good literals due to this bias. On
the other hand, FOIL cannot fully utilize the relationship
presented in the background knowledge as it tends to drop
literals of high arity and to construct clauses with mostly
unary literals. Specifically, for the WebKB datasets with
hundreds of unary predicates, FOIL typically first adds two
link-to literals and then replaces them with an unary lit-
eral. Notice that the unary literal is a greedy selection for
the current clause containing the two link-to literals, but is
kept as the new addition literal to the clause after the drop
action. Therefore, it is unable to find a latent link between
the student/department page with other pages. Compared
to FOIL, QuickFOIL does not use the growing strategy and
the scoring function is able to alleviate the problem that is
associated with the FOIL gain as it takes into account the
coverage of the negative tuples.

Aleph uses a classic branch-and-bound algorithm to guide
its search. It discards a constructed clause only when the
upper bound on the scores of the clause and all the ex-
panded clauses from it is smaller than the score of another
constructed clause. The search is terminated when there
is only one available clause left, or when the limit on the
maximum number of constructed clauses is reached. As it
is usually infeasible to have a tight upper bound, this prun-
ing strategy is not effective. In fact, Aleph usually ends up
evaluating the maximum number of clauses, creating a big

HIV-Small HIV-Large
FOIL QuickFOIL QuickFOIL

F-Score Time (s) F-Score Time (s) F-Score Time (s)

0.36 261 0.81 4.2 0.84 783

Table 5: F-Score and the execution time on the HIV tasks.

memory footprint that is required to maintain the large set
of constructed clauses.

Aleph suffers from this problem starkly on the WebKB-
Department task. Due to rich structure in the link graph
of the dataset, the length of the bottom clause to cover an
example of a binary Department predicate is 10 times the
length for the unary Student predicate. The search space
for the WebKB-Department task is thus far larger than the
space for the WebkKB-Student task. Aleph is unable to
find a good clause even after evaluating the maximum 500K
clauses, thus resulting in relatively worse performance on the
WebKB-Department task than the WebKB-Student task. In
contrast to the search in Aleph, the greedy algorithm used
by QuickFOIL abandons previously constructed clauses and
keeps only one clause for future expansion. Aleph explores
orders of magnitude more clauses than QuickFOIL in each
single-clause search. For the WebKB task, QuickFOIL ex-
plored on average 28K literals, whereas Aleph constructed
more than 10M clauses.

From Figure 5(c), we observe that QuickFOIL is 100X
faster than FOIL, and more than 6000X faster than Aleph
on the WebKB-Student task. The key reason behind this be-
havior is that QuickFOIL needs to evaluate a smaller num-
ber of literals, and constructs fewer rules than FOIL and
Aleph. As an example, FOIL searches 17 times as many lit-
erals as QuickFOIL on the WebKB-Student task. Database
query processing techniques also help improve the perfor-
mance, but they are not significant factors in this experi-
ment, as most background relations in the WebKB datasets
only have dozens of tuples.

5.2.2 HIV learning tasks
The HIV task is to find a structure pattern in the posi-
tive compounds. The problem is challenging, because each
compound has hundreds of atoms that are connected to one
another, and the hypothesis space of target patterns is large.

Table 5 reports the result on the HIV tasks. QuickFOIL is
the only program that can process the HIV-Large dataset.
Aleph did not terminate after 24 hours on both the HIV
datasets, and FOIL started thrashing on the HIV-Large
dataset. The reasons for the poor performance of Aleph
and FOIL here are the same as those discussed in Sec-
tion 5.2.1. However, another important reason why they
do not work well on the HIV datasets is that they are lack
of an effective pruning strategy. For example, an interme-
diate clause built by FOIL contains the following consecu-
tive literals: bond(L,B,M), bond(N,O,G), bond(P,Q,M),
bond(R,B, S). Likewise, Aleph expands the built clause
starting with the following four literals: atom(A,B), atom(A,
C), atom(A, D), atom(A, E). These literals are not “inter-
esting,” as the constraint that they enforce is subsumed by

206

●

●

●
●

●

●

●

0.1

1.0

10.0

1 4 16 64 256Ex
ec

ut
io

n
tim

e
(s

ec
) TH1

●

●

● ●

●

0.25

1.00

4.00

2 8 32
Data size (K)

TH2

● ●

●

●

●
●

●
●

1

10

100

1000

4 32 256 2048

TH3

(a) Scalability
0.00

0.25

0.50

0.75

1.00

 Part+Build
 Join(q1−2)
 Sel(q1−2)
 Agg(q1−2)
 q3

 Other

(b) Time breakdown

1.3X

2.8X

1.6X 1.3X

0

3

6

9

12

naïve +cache+merge+group+holisticEx
ec

ut
io

n
tim

e
(1

00
0

se
c)

(c) Incremental improvement

Figure 6: Performance of QuickFOIL with the Bongard datasets

other existing literals. Adding these literal dramatically in-
creases the size of binding sets, since each of them introduces
new variable(s). The pruning criterion based on the replace-
able duplicates can effectively eliminate these literals.

Drilling down further into the pruning component, the av-
erage number of replaceable duplicates encountered during
the ten-fold execution on the HIV-Large dataset is 9 times
the number of renaming duplicates. We ran another set
of experiments where we measured the performance of two
cases: 1) the case when we only eliminate the queries for the
renaming duplicates, and 2) the case when we only prune lit-
erals based on type constraints. For both cases, we ensured
that no replaceable duplicates can be added to the built
clause to guarantee that they have the same output result.
This experiment revealed that 1) performance slows down
by 34% when only eliminating the renaming duplicates, and
2) although the replaceable duplicates make up only 1.3% of
the total literals that are explored, the performance speedup
is 1.54X when removing them from the step that computes
the scores. Thus, these experiments validate the effective-
ness of our pruning strategy. Additional discussion on the
WebKB and the HIV datasets can be found in [37].

5.3 Microbenchmarks on synthetic datasets
This section studies the performance of QuickFOIL using the
Bongard datasets. Except for the scalability experiment, all
other experiments use the TH3 datasets.
Scalability. In this experiment, we vary the size of the
training sets for the three Bongard learning problems. The
results plotted in Figure 6(a) demonstrate that QuickFOIL
is able to tackle large datasets efficiently. QuickFOIL takes
less than half an hour to finish processing the dataset with
2 million examples and with 178 million tuples in the back-
ground relations.
Execution breakdown. Figure 6(b) presents the detailed
breakdown of the execution time on the TH3 datasets with
two million examples. This figure breaks down the execu-
tion time into six categories: the time spent on partitioning
relations and building hash tables (Part+Build); the time
spent within the compound join operator (Join), the selec-

tion1 operators (Sel), and the aggregation operators (Agg)
in executing the merged plan for q1 and q2 (cf. Figure 4);
the execution time for q3; and the time spent on all other
components. The selection operators take ⇠50% of the to-
tal time, as it incurs a large number of random memory
accesses. The next largest component is the join operator,
which takes up ⇠30% of the total time. Overall, over 90%
of the total time is spent in executing q1 and q2 (to calculate
the literal scores).

Figure 6(c) shows the performance improvement on the
TH3 dataset by incrementally adding the four optimization
techniques that were described in Section 4 in the follow-
ing order: 1) caching the intermediate partitioning results

and hash tables (cache), 2) grouping queries that share the
same inner join column (group), 3) merging the four queries
q+1 , q�1 , q+2 and q�2 for every candidate literal (merge) and 4)
radix partitioning the background relations holistically on
the join column values (holistic). The first three techniques
are discussed in Section 4.2.2, 4.2.3 and 4.2.4, respectively.
The last technique is introduced at the end of Section 4.2.2.
We can see that the merging and the grouping techniques
yield the biggest performance improvements. Collectively,
the four techniques improve performance by a factor of 7X.
Additional empirical results for these techniques are in [37].

6 Related Work
A survey of ILP work can be found in [29]. Past ILP systems
have used a number of heuristic scoring functions, includ-
ing accuracy [27], weighted relative accuracy [24], informa-
tion [7], gini index [33] and m-estimates [13]. Other similar
scoring functions, include the two weighted gain functions
fg [30] and fr [23] (cf. Equation 1 and 2). Fossil [16] em-
ploys MCC as its scoring function to utilize the uniform scale
property as its stopping criterion. The major problem with
MCC is that it does not capture an important optimization
goal of ILP, namely to maximize the coverage of the positive
tuples. QuickFOIL achieves a more robust measure by com-
bining MCC and the AUE gain, which can be considered as
a variant of information gain but with a bounded scale.

The problem of conjunctive query containment was first
studied in [8], and is related to the ✓-subsumption test [21].
In prior work, ✓-subsumption is used to specialize clauses,
determine the coverage of examples, and for post-pruning re-
dundant literals from complete learnt rules [27], but not for
pruning search space when building rules. Note that remov-
ing replaceable duplicates is not equivalent to eliminating
extended clauses that are subsumed by the base clauses.

There has been a long interest in scaling ILP to large
datasets. FOIL-D [5] is an earlier SQL implementation of a
simplified version of FOIL. To compute the scores for each
candidate literal, it estimates the query results based on
single-column histograms on relations, rather than actually
executing the queries. While that strategy improves the
performance, it relies on having accurate estimates, which
can be challenging especially for multi-predicate join queries.
CrossMine [36] is another work that aims to optimize the
join queries that results from running FOIL. Instead of ma-
terializing the binding sets, CrossMine does not stitch tu-
ples from the joined relations together but assigns the IDs
of joined training examples to each tuple. When computing
the coverage of examples for a candidate literal, CrossMine
propagates the tuple IDs to the relation of the candidate lit-
eral from another joined relation. This tuple ID propagation
approach can only be applied to a join on exactly two rela-
tions, one of which cannot correspond to an existing literal in

207

the current rule. Therefore, the hypothesis language space
of CrossMine is smaller than that of QuickFOIL. In particu-
lar, CrossMine generally cannot add a candidate literal that
has common variables with multiple existing literals, which
requires a join on more than two relations. Another fun-
damental distinction between CrossMine and QuickFOIL is
that CrossMine counts the coverage of examples in the scor-
ing function, while the scoring function in QuickFOIL is
based on the coverage of the bindings. Counting examples
is more expensive than counting bindings, because it needs
an extra semi-join to find distinct examples in the bindings.
PILP [35] scales ILP by compressing training examples. It
groups multiple related examples into a single example and
gives the resulting example a probabilistic label based on the
proportion of each label in the original example set. There
are also research efforts in parallel or distributed ILP sys-
tems [1, 34]. These are orthogonal to our work that focuses
on improving the single-core performance.

We build on a rich body of work on sharing work across
and within queries (e.g. [2, 6, 19, 38]). For example, Quick-
FOIL combines positive and negative tuples into a single
table for query processing, resembling the input merging
techniques in CJoin [6] and DataPath [2]. QuickFOIL also
shares hash tables, partitioning results, and the intermediate
results of common single-predicate join operators amongst
different queries, which are classic computation sharing tech-
niques. However, there are several key differences from ex-
isting work. First, as a main-memory ILP engine, Quick-
FOIL favors computation sharing over scan sharing. As a
result, QuickFOIL pushes the join operation below the selec-
tion operation to improve the opportunity for join sharing,
in contrast to the traditional selection push-down strategy.
Second, the join in QuickFOIL is not a simple primary-key
foreign-key join, but has multiple join predicates. In fact,
there is no common join operation amongst queries for dif-
ferent literals in a literal search iteration. QuickFOIL ex-
poses work sharing by executing a multi-predicate join as
a single-predicate join with a subsequent selection opera-
tion, and then groups the joins to find overlapping compu-
tations. Third, QuickFOIL simultaneously performs mul-
tiple join operations that have different join predicates in
a special join operator – i.e. the compound join operator.
This operator carefully coordinates a partitioned hash join
technique to achieve good cache locality.

7 Conclusions and Future Work
To scale ILP, we need two key components: a good learning
algorithm that can produce high-quality results in a small
number of search iterations without exhausting a large num-
ber of clauses, and an efficient and scalable implementation.
This paper proposes a new ILP algorithm QuickFOIL that
uses a top-down, greedy search with a novel scoring func-
tion and a new pruning strategy to meet these challenges.
We have also developed query processing techniques for an
efficient in-database implementation of QuickFOIL, and em-
pirically demonstrated the effectiveness of our techniques.

There are a number of directions for future work, includ-
ing expanding QuickFOIL to distributed environments, ex-
ploring the proposed query processing methods for general
database workloads, and most importantly building on the
connection between ILP and query processing articulated
here to the broader field of Relational Learning.

8 Acknowledgements
This work was support in part by the National Science Foun-
dation under grants III-0963993 and IIS-1250886, and by a
gift donation from Google.

9 References
[1] Parallel ilp for distributed-memory architectures. Machine Learning,

74(3):257–279, 2009.
[2] S. Arumugam, A. Dobra, C. M. Jermaine, N. Pansare, and L. Perez. The

datapath system: A data-centric analytic processing engine for large data
warehouses. SIGMOD, pages 519–530, 2010.

[3] C. Balkesen, J. Teubner, G. Alonso, and M. Ozsu. Main-memory hash
joins on multi-core cpus: Tuning to the underlying hardware. In ICDE,
pages 362–373, 2013.

[4] A.-L. Barabási and R. Albert. Emergence of scaling in random networks.
Science, 286(5439):509–512, 1999.

[5] J. Bockhorst and I. Ong. FOIL-D: Efficiently scaling foil for
multi-relational data mining of large datasets. In ILP, volume 3194, pages
63–79. 2004.

[6] G. Candea, N. Polyzotis, and R. Vingralek. A scalable, predictable join
operator for highly concurrent data warehouses. VLDB, 2(1):277–288,
2009.

[7] J. Cendrowska. Prism: An algorithm for inducing modular rules.
International Journal of Man-Machine Studies, 27(4):349–370, 1987.

[8] A. K. Chandra and P. M. Merlin. Optimal implementation of conjunctive
queries in relational data bases. STOC ’77, pages 77–90, 1977.

[9] C. Chasseur and J. M. Patel. Design and evaluation of storage
organizations for read-optimized main memory databases. VLDB,
6(13):1474–1485, 2013.

[10] V. S. Costa, A. Srinivasan, R. Camacho, H. Blockeel, B. Demoen,
G. Janssens, J. Struyf, H. Vandecasteele, and W. V. Laer. Query
transformations for improving the efficiency of ILP systems. JMLR,
4:465–491, 2003.

[11] M. Craven and S. Slattery. Relational learning with statistical predicate
invention: Better models for hypertext. Machine Learning,
43(1-2):97–119, 2001.

[12] S. Das, Y. Sismanis, K. S. Beyer, R. Gemulla, P. J. Haas, and
J. McPherson. Ricardo: integrating R and hadoop. In SIGMOD, pages
987–998, 2010.

[13] S. Džeroski. Handling imperfect data in inductive logic programming.
SCAI, pages 111–125, 1993.

[14] X. Feng, A. Kumar, B. Recht, and C. Ré. Towards a unified architecture
for in-RDBMS analytics. In SIGMOD, pages 325–336, 2012.

[15] N. Fonseca, V. Costa, F. Silva, and R. Camacho. On avoiding redundancy
in inductive logic programming. In ILP, volume 3194, pages 132–146. 2004.

[16] J. Fürnkranz. Fossil: A robust relational learner. ECML, pages 122–137,
1994.

[17] A. Ghoting, R. Krishnamurthy, E. Pednault, B. Reinwald, V. Sindhwani,
S. Tatikonda, Y. Tian, and S. Vaithyanathan. SystemML: Declarative
machine learning on MapReduce. In ICDE, pages 231–242, 2011.

[18] G. Graefe. Volcano: An extensible and parallel query evaluation system.
TKDE, 6(1):120–135, 1994.

[19] S. Harizopoulos, V. Shkapenyuk, and A. Ailamaki. Qpipe: A
simultaneously pipelined relational query engine. SIGMOD, pages
383–394, 2005.

[20] J. M. Hellerstein, C. Ré, F. Schoppmann, D. Z. Wang, E. Fratkin,
A. Gorajek, K. S. Ng, C. Welton, X. Feng, K. Li, and A. Kumar. The
MADlib analytics library: Or MAD skills, the SQL. VLDB,
5(12):1700–1711, 2012.

[21] J.-U. Kietz and M. LÃĳbbe. An efficient subsumption algorithm for
inductive logic programming. In ICML, pages 130–138, 1994.

[22] S. Kramer, L. De Raedt, and C. Helma. Molecular feature mining in hiv
data. In KDD, pages 136–143, 2001.

[23] N. Lavrac and S. Dzeroski. Inductive Logic Programming: Techniques and
Applications. Routledge, 1993.

[24] N. Lavrac, P. A. Flach, and B. Zupan. Rule evaluation measures: A
unifying view. In Proceedings of the 9th International Workshop on
Inductive Logic Programming, ILP ’99, pages 174–185. Springer-Verlag,
London, UK, UK, 1999.

[25] S. Manegold, P. Boncz, and M. Kersten. Optimizing main-memory join on
modern hardware. TKDE, 14(4):709–730, 2002.

[26] B. W. Matthews. Comparison of the predicted and observed secondary
structure of t4 phage lysozyme. Biochimica et Biophysica Acta
(BBA)-Protein Structure, 405(2):442–451, 1975.

[27] S. Muggleton. Inverse entailment and Progol. New Generation Computing,
13(3-4):245–286, 1995.

[28] S. Muggleton and W. L. Buntine. Machine invention of first order
predicates by inverting resolution. In ML, pages 339–352, 1988.

[29] S. Muggleton, L. Raedt, D. Poole, I. Bratko, P. Flach, K. Inoue, and
A. Srinivasan. ILP turns 20. Machine Learning, 86(1):3–23, 2012.

[30] J. R. Quinlan. Learning logical definitions from relations. Machine
Learning, 5(3):239–266, 1990.

[31] L. D. Raedt. Inductive logic programming. In Encyclopedia of Machine
Learning, pages 529–537. 2010.

[32] R. Ramakrishnan, Y. Sagiv, J. D. Ullman, and M. Y. Vardi. Proof-tree
transformation theorems and their applications. PODS, pages 172–181,
1989.

[33] A. Srinivasan. The Aleph manual.
http://www.cs.ox.ac.uk/activities/machlearn/Aleph/aleph.html.

[34] A. Srinivasan, T. A. Faruquie, and S. Joshi. Data and task parallelism in
ILP using MapReduce. Mach. Learn., 86(1):141–168, 2012.

[35] H. Watanabe and S. Muggleton. Can ilp be applied to large datasets? In
ILP, pages 249–256, 2010.

[36] X. Yin, J. Han, J. Yang, and S. Philip. Crossmine: efficient classification
across multiple database relations. In ICDE, pages 399–410, 2004.

[37] Q. Zeng, J. M. Patel, and D. Page. QuickFOIL: Scalable inductive logic
programming (extended version).
http://research.cs.wisc.edu/quickstep/pubs/quickfoil-extended.pdf.

[38] M. Zukowski, S. Héman, N. Nes, and P. Boncz. Cooperative scans:
Dynamic bandwidth sharing in a dbms. VLDB, pages 723–734, 2007.

208

