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ABSTRACT
Data analysts often engage in data exploration tasks to discover in-
teresting data patterns, without knowing exactly what they are look-
ing for. Such exploration tasks can be very labor-intensive because
they often require the user to review many results of ad-hoc queries
and adjust the predicates of subsequent queries to balance the trade-
off between collecting all interesting information and reducing the
size of returned data. In this demonstration we introduce AIDE ,
a system that automates these exploration tasks. AIDE steers the
user towards interesting data areas based on her relevance feedback
on database samples, aiming to achieve the goal of identifying all
database objects that match the user interest with high efficiency.
In our demonstration, conference attendees will see AIDE in ac-
tion for a variety of exploration tasks on real-world datasets.

1. INTRODUCTION
Traditional DBMSs are suited for applications in which the ques-

tions to be asked are already well understood. There is, however,
a class of Interactive Data Exploration (IDE) applications in which
this is not the case. Examples of such interactive applications in-
clude, but are not limited to, scientific computing, financial analy-
sis, evidence-based medicine, and genomics.

IDE is fundamentally a long-running, multi-step process with
end-goals not stated explicitly. Users try to make sense of the un-
derlying data space by navigating through it. The process includes
a great deal of experimentation with queries, backtracking on the
basis of query results, and revision of results at various points in
the process. To make the most of the increasingly complex big data
sets, users need an automated service to effectively and efficiently
guide them through the data space. One example can be found
in scientific applications (e.g., LSST [3], SDSS [4]) which collect
enormous data sets periodically. Here, as data volumes and the user
community continue to grow, there is a strong need for interactive
data exploration: that is, when a scientist connects to an extremely
large database, she may not be able to express her data interests
precisely. Instead, she may want to navigate through a subspace of
the data set (e.g., a region of the sky) to find the objects of interest,
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Figure 1: The AIDE framework

or may want to see a few samples, provide yes/no feedback, and
expect the data management system to find more similar objects.

This demonstration will introduce AIDE (Automatic Interac-
tive Data Exploration), a data navigation system that addresses the
above challenges. AIDE is an automated data exploration system
that steers the user towards interesting data areas based on her rel-
evance feedback on database samples, aiming to achieve the goal
of identifying all database objects that match the user interest with
high efficiency. It relies on a combination of machine learning tech-
niques and sample selection algorithms to provide effective data
exploration results (matching the user interest well) as well as high
interactive performance over databases of large sizes.

2. SYSTEM OVERVIEW
AIDE employs an automatic user steering approach: it automat-

ically learns the user’s interests and drives the exploration process
towards data relevant to these interests. To achieve this, it relies on
an active learning model that iteratively requests user feedback on
strategically collected data samples. In a nutshell, the user engages
in a “conversation” with the system by characterizing a set of data
samples as relevant or irrelevant to her interest. The user feedback
is incrementally incorporated into the system and used to gradually
improve its effectiveness, that is, to identify interesting data spaces
for further exploration and eventually generate a user model that
precisely predicts the set of data matching the user interest.

Initially the user is given a database schema D and elects d at-
tributes for data exploration, where these d attributes may include
attributes both relevant and irrelevant to the final expression that
captures the true user interest. The exploration is performed in
a d-dimensional space of T tuples where each tuple represents a
d-dimensional object. For a given user, our exploration space is
divided to the relevant object set T r and irrelevant set Tnr .

The steering process starts when the user provides feedback on
the relevance of the first set of retrieved samples. We assume a bi-
nary relevance system where the user indicates whether a data ob-
ject is relevant or not to her. The labeled samples are used to train a
classification model of the user interest, e.g., it predicts which ob-
jects are relevant to the user based on the feedback collected so far
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(Data Classification). The User Model may use any subset of the d
attributes of the exploration space to characterize user interests.

Each iteration i refines the characterization of the user interest
by exploring further the data space. Specifically, we leverage the
previous user model Ci−1 to identify promising data areas to be
sampled further (Space Exploration) and to retrieve the next sample
set Si ⊆ T to show to the user (Sample Extraction). Based on the
collected labeled samples up to the i-th iteration, a new user model
Ci is generated.

The above steps are executed iteratively towards convergence to
a user model that captures the user interest, i.e., eliminating irrel-
evant objects while identifying all or most relevant to the user ob-
jects. The steering process is completed when the user terminates
the process explicitly, e.g., when reaching a satisfactory set of rel-
evant objects or when she does not wish to label more samples.
Hence, the user decides on the effort she is willing to invest (i.e.,
number of samples she labels) while the system leverages her feed-
back to maximize the accuracy of her user interest model.

Our exploration approach, first introduced in [8], fundamentally
differs from active learning theory (e.g., [6]) which often requires
searching the entire database to find the “best” sample to show to
the user next. Such exhaustive search is infeasible for ever-growing
databases sizes and precludes any interactive performance. Instead,
AIDE seeks to identify promising subareas of the data space and
samples in those areas that will quickly increase the accuracy of our
model, leading to both effective and highly efficient exploration.

2.1 Discovering Linear Patterns
In [8] we introduced a number of data exploration techniques for

discovering linear patterns, i.e., interests captured by conjunction
and/or disjunction of linear (range) predicates. We refer to such
interests as relevant areas in the d-dimensional exploration space.

To identify linear patterns, our system relies on decision tree
classifiers and includes three exploration phases which are de-
signed to improve the F -measure of the final decision treeC on the
total data space T , defined as F (T ) = 2×precision(T )×recall(T )

precision(T )+recall(T )
,

while offering interactive performance to the user. This effective-
ness measure captures the trade-off between collecting all relevant
information and reducing the size of returned data. Next we high-
light our exploration techniques. More details can be found in [8].

Relevant Object Discovery. Our first exploration phase aims
to increase the probability of “hitting” data areas of interest to the
user. For uniform data distributions, AIDE uses a d-dimensional
grid, defined by the normalized domains of the d exploration at-
tributes the user picked, and it randomly samples the center of each
grid cell (see Figure 2(a)). If no relevant object is retrieved from
one cell, we further explore this grid cell by“zooming-in”, i.e.,
splitting the specific cell to finer sampling areas. An example of
this operation is shown in the low right grid cell in Figure 2(a).

To handle skewed distributions AIDE uses the k-means algo-
rithm [7] to partition the data space into k clusters. Each cluster
includes similar objects (where similarity is defined by a distance
function) and AIDE collects samples around the centroid of each
cluster. This approach allows us to apply more dense sampling in
the dense subspaces. AIDE also creates multiple exploration levels,
where higher levels include fewer clusters than lower ones, allow-
ing for to zoom-in into the dense parts of the data space.

Misclassified Exploitation. The grid-based sampling strives to
identify single points of interest, one per each grid cell. In order
to expand them to relevant areas, a significant number of relevant
objects from within each area needs to be fed to the classification
algorithm. To address this, AIDE defines a sampling area around
objects labeled as relevant but classified as non-relevant and col-
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Figure 2: Exploration phases for the linear patterns

lects random samples within this area. To further reduce the sam-
pling areas, clustering techniques are used to identify clusters of
false negatives (which most likely belong to the same relevant area)
and create a sample area around each of the generated clusters (see
Figure 2(b)). This technique increases the F -measure since it in-
creases the relevant samples while reducing the misclassified ones.

Boundary Exploitation. Given a set of relevant areas identi-
fied by the decision tree classifier, our next step is to refine them
by incrementally adjusting their boundaries. This leads to better
characterization of the user’s interests, i.e., higher accuracy of our
final results. For a relevant area characterized by a predicate on a
set of attributes < t1, ..., td > we collect random samples across
the domain of each attribute ti such as the distance of each value
of ti is less than a value k from the boundary of the relevant area.
Figure 2(b) shows an example of a predicted area and the sampling
around the boundaries of the attribute A. The approach is applied in
parallel to all the boundaries of the hyper-rectangles for the relevant
areas, allowing us to shrink/expand each area as we get more feed-
back from the user. By refining the boundaries of the relevant areas,
AIDE discovers more relevant tuples and increases its accuracy.

2.2 Discovering Non-Linear Patterns
Non-linear patterns, i.e., patterns that cannot be captured

by range predicates, are prevalent in applications ranging from
location-based searches to scientific exploration tasks using com-
plex predicates. While our decision tree based approach can ap-
proximate non-linear patterns, it suffers from poor performance.
For example, to predict a circle-shaped relevant area “(rowc−
742.76)2+(colc−1022.18)2 < 1002” on two location attributes
rowc and colc in the SDSS dataset [4], the decision tree model
required over 2000 training samples and approximated the cir-
cle region using 58 range predicates combined through conjunc-
tion/disjunction, as illustrated in Figure 3(a). This motivated us to
seek a more efficient approach to supporting non-linear patterns, re-
ducing both the user labeling effort and the querying and sampling
cost in the database.

Our new approach uses Support Vector Machines (SVMs) as
the classification algorithm. Here, the training set (i.e., labeled
samples) in the data space is mapped, via a kernel function, to
a higher-dimensional feature space where examples of different
classes are linearly separable. Figure 3(b) shows a 3-dimensional
feature space (manually selected by us) where the training points
of the circle area in Figure 3(a) are linearly separated; in practice
an SVM may need many more dimensions to see such linear sep-
aration. Then among the many hyperplanes that might classify the
data in the feature space, SVM selects the one, called the decision
boundary L, with the largest distance to the nearest mapped sam-
ples of any class; this boundary L is used as the model of user
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(a) A circle area (green area) approxi-
mated by decision trees (blue area), with
training points in 2-D data space (red: Y,
green: N).
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(b) Linear separation of training points
in a 3-D feature space using SVM (red:
Y, green: N).
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(c) AIDE architecture.

Figure 3: (a-b) SVM for learning a non-linear (circle) relevant area and (c) the AIDE architecture.

interest as it separates relevant from irrelevant objects. The main
challenge here is to identify at each iteration of the exploration pro-
cess, the next to-be-labeled sample that can quickly improve the
accuracy of the current user model L.

Recent active learning theory [6] proposed to choose the exam-
ple closest to the current decision boundary. However, they suggest
a search through the entire dataset in each iteration, which is pro-
hibitively expensive. AIDE puts active learning theory into prac-
tice: we find the unlabeled example closest to the current decision
boundary L without retrieving all the tuples and evaluating their
distances to L. AIDE includes the following two techniques for
identifying samples to show to the user in each iteration.

Bounding the search area using decision trees. We define a
δ-region around the current SVM decision boundary L and form a
two-class training dataset such that points inside the δ-region are
the relevant class and points outside the δ-region are not. Then a
decision tree can be trained to approximate the δ-region and can be
easily translated to an exploration query, Q, to send to the database
D. Finally given the query result Q(D) ⊆ D, we iterate over this
set and find the example closest to L. Note that δ can be set to
balance two trends: a too small δ can lead to too few training points
in the relevant class while a too large δ may result in Q(D) = D.

Branch and bound search. AIDE also builds indexes such as
R-trees [5] and CF trees [9] over the database, and perform fast
branch-and-bound search over these indexes. Take R-tree for ex-
ample. Each R-tree node offers a hyper-rectangle, [aj , bj ], j =
1, . . . , d, as a minimum bounding box of all the data points reach-
able from this node. Given the current SVM decision boundary
L, we search the R-tree top-down in a depth-first fashion and al-
ways maintain the current closest tuple, x∗, and its distance to L,
f(x∗,L) def

= f∗. Note that f∗ =+∞ before any leaf node is vis-
ited. For each intermediate node visited, we dynamically compute
a lower bound of the distance from any point in its hyper-rectangle
to L by calling a constrained optimization solver: minx f(x,L)
s.t. aj ≤ x(j) ≤ bj , j = 1, . . . , d. If the lower bound is already
higher than f∗, we can prune the entire subtree rooted at this node.
Once we reach a leaf node, we can update x∗ and f∗ accordingly.
Then the final x∗ is the closest tuple to L in the entire database.

3. USER INTERFACE
Our AIDE prototype is designed on top of a traditional relational

database system and its architecture (shown in Figure 3(c)) includes
three software layers: (1) an interactive visualization front-end, (2)
the AIDE middleware that implements all our exploration tech-
niques as detailed in §2.1 to §2.2, and (3) a database backend sup-
porting our data exploration techniques.

Our visualization front-end provides several functionalities. The

user is initially presented with the database schema and she can se-
lect an initial subset of attributes of interest, which will be refined
later by the data exploration. Our front-end can also visualize do-
main distributions of each attribute to further allow the user to filter
attributes based on the domain characteristics and restrict the value
ranges of the relevant attributes for consideration (e.g., focus on a
dense region or a region close to a landmark). Users can select be-
tween different types of plots of the underlying data distributions,
such as histograms and heat maps. Figure 4(a) shows a histogram
example on an attribute in the SDSS [4] dataset.

In the next step the system starts a series of iterations of sample
labeling, model learning and space exploration. The visualization
front-end supports this process by visualizing various subspaces of
the exploration attributes, presenting data samples to the user, col-
lecting yes/no labels from the user regarding the relevance of the
shown samples and showing the locations of labeled samples in the
exploration space. Figure 4(b) shows an example of this interface.

Sitting below the visualization front-end is the “automatic user
steering” layer (AIDE middleware in Figure 3(c)), which is the
heart of our system. This component is implemented in Java, with
a few machine learning libraries integrated in the system. At each
iteration it incorporates the newly collected labeled samples and
generates a new classification model. At any point the user can re-
quest a visualization of the current user model (i.e., decision tree
or SVM decision boundary) which entails highlighting the objects
classified as relevant to the user. The user can then decide to stop
the exploration (if she is satisfied with the current set of identified
objects) or to proceed to the next round of exploration.

The database backend uses PostgreSQL. The database engine in-
cludes various sampling techniques implemented as stored proce-
dures. These techniques are designed to support the exploration
approaches we discussed in §2.1 to §2.2. For example one proce-
dure supports the decision tree approach to learning linear patterns
(§2.1) by selecting a predefined number of random samples within
a given distance from the center of a d-dimensional area, while
other procedures support random and weighted sampling.

4. DEMONSTRATION
In our demonstration attendees will be able to explore the fol-

lowing real world datasets.
1. AuctionMark [1]: It includes information on action items and

their bids (e.g., the initial/current price, number of bids, and
number of days an item in an auction). We expect that atten-
dees will have a sufficient understanding of this domain and
will be able to easily formulate ad-hoc, intuitive, exploration
tasks (e.g., “identify auction items that are good deals”). This
dataset has size of 1.77GB.
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(a) Histogram visualization for exploration attributes. (b) Exploration visualization (learned areas, labeled samples).
Figure 4: AIDE Frontend Interface

2. Sloan Digital Sky Survey [4]: This is a scientific data set
generated by digital surveys of stars and galaxies and it is
often used by astronomers to find “observations” of interest-
ing sky objects. It has a complex schema and a large data
size. We will use it to demonstrate the efficiency of our opti-
mizations. Furthermore, this dataset includes attributes with
different value distributions, allowing us to experiment with
both skewed and uniform exploration spaces. We will use
various datasets with size of 1GB-100GB.

We are also investigating alternative datasets that include both
numerical and categorical domains (e.g., US housing and used cars
datasets available through the DAIDEM Lab [2]).

During the demonstration, we will run AIDE on two laptop ma-
chines and our backend will use the PostgreSQL database engine.
Smaller datasets will be stored on the local disk and an external
hard drive will be used for our largest datasets.

Our audience will observe the following demonstration scenar-
ios for predicting both linear and non linear patterns of user in-
terests. Specifically, we will demonstrate the effectiveness of the
decision tree based techniques described in §2.1 for predicting lin-
ear patterns, while we will demonstrate the SVM-based techniques
described in §2.2 by predicting non linear patterns.

Scenario 1: System utility In this scenario, attendees will ex-
plore our system’s utility by comparing it to the traditional manual
exploration approach. Specifically, they can pick a dataset and a set
of exploration attributes, and then start an ad-hoc search for “inter-
esting” areas (e.g., search for “good deals” in the Auctions [1]”) by
writing their own series of SQL queries that potential captures that
interest. After reviewing their results they can adjust their query
predicates aiming to collect only relevant objects. This iterative
process will continue until the users are satisfied with their query
output. The results of final query will be then treated as the user’s
interest, i.e., her relevant objects, and we will use AIDE to automat-
ically identify them. Using AIDE attendees will review and provide
relevance feedback only on a few selected samples. Attendees will
observe that through AIDE their relevant objects can be identified
with significant less reviewing effort and user wait time, similar to
the results of our user study [8].

Scenario 2: System step-through In this scenario we will
demonstrate to attendees the exploration techniques used by our
system. Attendees can start searching for interesting areas using
AIDE and at each iteration, they will observe through our front-
end: (a) the collected relevance feedback on data samples, (b) the
prediction of the current classification model, and (c) the sampling
areas for collecting the next set of samples. Using our visualiza-
tion interface we will guided them step-be-step through each of the

techniques described in §2.1 to §2.2, demonstrating how they lead
to the selection of the sampling areas for the next iteration. This
scenario will work with either pre-defined relevant areas (i.e., for
which the relevance feedback is known a-priori) or ad-hoc relevant
areas that the attendees have highlighted for us through the visual-
ization interface. In both cases, the target set of relevant objects are
known in advance which will allow attendees to confirm that AIDE
improves its accuracy in each iteration.

Scenario 3: Optimization effectiveness This scenario will use
pre-defined relevant areas and attendees will be able to observe var-
ious real-time experiments with a range of queries and exploration
spaces by adjusting various “knobs” such as the data size, the num-
ber of exploration attributes, and data distributions (i.e., degree of
skewness). They will also be able to change the configuration of
relevant areas (i.e., “large” vs “small” areas, the number of rele-
vant areas) and observe the effects on our system effectiveness and
efficiency. In addition, attendees will be able to select the explo-
ration techniques and optimizations that AIDE applies and observe
the impact on the user wait time and accuracy.

5. CONCLUSION
Through our demonstration of AIDE we will illustrate that (a) it

is feasible to automate the labor-intensive task of data exploration,
and (b) combining machine learning algorithms and data manage-
ment optimizations can lead to interactive exploration performance
and reduction of the user exploration and data reviewing effort.
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