
VINERy: A Visual IDE for Information Extraction

Yunyao Li
IBM Research - Almaden

650 Harry Road
San Jose, CA 95120

yunyaoli@us.ibm.com

Elmer Kim∗

Treasure Data, Inc.
201 San Antonio Cir

Mountain View, CA 94040
elmer.k.kim@gmail.com

Marc A. Touchette
IBM Silicon Valley Lab

555 Bailey Avenue
San Jose, CA 95141

matouche@us.ibm.com
Ramiya Venkatachalam

IBM Silicon Valley Lab
555 Bailey Avenue

San Jose, CA 95141
venkatra@us.ibm.com

Hao Wang
IBM Silicon Valley Lab

555 Bailey Avenue
San Jose, CA 95141

haowang@us.ibm.com

ABSTRACT
Information Extraction (IE) is the key technology enabling analyt-
ics over unstructured and semi-structured data. Not surprisingly, it
is becoming a critical building block for a wide range of emerging
applications. To satisfy the rising demands for information extrac-
tion in real-world applications, it is crucial to lower the barrier to
entry for IE development and enable users with general computer
science background to develop higher quality extractors.

In this demonstration1, we present VINERY, an intuitive yet ex-
pressive visual IDE for information extraction. We show how it
supports the full cycle of IE development without requiring a single
line of code and enables a wide range of users to develop high qual-
ity IE extractors with minimal efforts. The extractors visually built
in VINERY are automatically translated into semantically equiv-
alent extractors in a state-of-the-art declarative language for IE.
We also demonstrate how the auto-generated extractors can then
be imported into a conventional Eclipse-based IDE for further en-
hancement. The results of our user studies indicate that VINERY
is a significant step forward in facilitating extractor development
for both expert and novice IE developers.

1. INTRODUCTION
Information Extraction (IE) is the task of automatically extract-

ing structured information from unstructured or semi-structured
text. Programs performing information extraction, also known as
annotators or extractors, are becoming the foundation for a wide
range of emerging enterprise applications, such as social data ana-
lytics, patient record analytics, and financial risk analysis.

Extractor development has been a daunting task for many due
to its high barrier to entry and steep learning curve. To be able to
start developing extractors, one has to spend days, if not weeks,
to acquire working knowledge of machine learning models for IE
∗Work done while at IBM
1Demo recording available at https://vimeo.com/131232302

This work is licensed under the Creative Commons Attribution-
NonCommercial-NoDerivs 3.0 Unported License. To view a copy of this li-
cense, visit http://creativecommons.org/licenses/by-nc-nd/3.0/. Obtain per-
mission prior to any use beyond those covered by the license. Contact
copyright holder by emailing info@vldb.org. Articles from this volume
were invited to present their results at the 41st International Conference on
Very Large Data Bases, August 31st - September 4th 2015, Kohala Coast,
Hawaii.
Proceedings of the VLDB Endowment, Vol. 8, No. 12
Copyright 2015 VLDB Endowment 2150-8097/15/08.

(e.g. CRF/HMM) or learn a non-trivial rule language (e.g. AQL in
SystemT [10], JAPE in GATE [5], and UIMA Ruta [9]). As a result,
extractor development remains a major bottleneck in satisfying the
increasing demands of real-world applications based on IE. Hence,
lowering the barrier to entry for extractor development becomes a
critical requirement.

Previous work on improving the usability of IE systems has
mainly focused on reducing the manual effort involved in extrac-
tor development [3, 6, 11, 12, 16, 17] with a few exceptions.
WizIE [14, 18] lowers the extractor development entry barrier with
a wizard-like environment that guides extractor development based
on best practices drawn from expert developers. However, users
still need to learn a non-trivial rule language, which requires at least
hours of training. Special-purpose systems such as [1, 2] are ef-
fective in enabling novice users to develop extractors with minimal
learning requirement but are of limited practical use due to their
limited expressivity.

In this demonstration, we present VINERY, a Visual INtegrated
Development Environment for Information extRaction. It was de-
signed to lower the barrier to entry for practical extractor devel-
opment and enable a wide range of users to develop high qual-
ity extractors for real-world extraction tasks. VINERY consists
of the following key elements: (1) The foundation of VINERY is
VAQL, a visual programming language for information extraction,
designed based on AQL [10], a state-of-the-art declarative language
for information extraction. VAQL provides a visual abstraction for
the core functionalities of AQL to ensure both expressivity and sim-
plicity of VINERY. (2) VINERY embeds the visual constructs of
VAQL in an intuitive web-based visual IDE for constructing ex-
tractors. Visual extractors created via VINERY are automatically
translated into AQL and executed by the corresponding runtime en-
gine [7] for scalability and efficiency. If needed, the auto-generated
extractors in AQL can be imported into a conventional development
environment(e.g. [13]) for further enhancement. (3) VINERY in-
cludes a rich set of easily customizable pre-built extractors to help
jump-start extractor development. (4) VINERY provides features
to support the entire life cycle of extractor development. VINERY
is available as part of [8].

To the best of our knowledge, VINERY is the first visual IDE
for information extraction for practical extraction tasks. Our pre-
liminary user studies show that both novice and expert developers
can benefit from VINERY — minimal effort is required to develop
high-quality extractors within the UI, with merely minutes, as op-
posed to hours or even days, of learning required.

1948



Figure 1: System Overview of VINERy

The rest of the paper is organized as follows. Sect. 2 describes
the architecture of VINERY. Sec. 3 and Sec. 4 present VAQL
and the key features included in the demonstration respectively.
Sec. 5 summarizes the results of our preliminary user studies with
VINERY. Then in the final section, we outline the demo scenario
that we will use to show the effectiveness of VINERY.

2. SYSTEM OVERVIEW
Fig. 1 presents a high-level overview of the system. As shown, a

user can visually construct extractors with a rich set of constructs in
the UI (detailed in Sec. 3) and pre-built extractors from the Extrac-
tor Catalog. The visual representations of the extractors are auto-
matically translated into performant IE code in AQL. The users can
execute extractors with the underlying SystemT execution engine
against an input document collection. They may analyze the exe-
cution results and further refine the visual extractors to their satis-
faction. They can then either publish the extractors for deployment
or, in the cases where the user may need functionalities not yet sup-
ported by VINERY (e.g. a user-defined function), they can import
the auto-generated IE code into a conventional IE development en-
vironment (e.g. [13]) for further development.

3. VAQL
The core of VINERY is VAQL, designed to capture the core

functionality of the underlying AQL language [15] using the same
algebraic approach. In this section, we describe the main constructs
of VAQL. VINERY supports two types of extractors: (1) Pre-built
extractors refer to pre-defined extractors that work as black boxes,
with a pre-defined set of customizable dictionaries; (2) User-built
extractors are those constructed in VINERY using one or more of
the following visual constructs.
Extract constructs perform extraction over the input data, including
• Pre-built Extracts matches using a pre-built extractor.
• Dictionary Extracts matches for a dictionary that consists of a

list of terms or pairs of terms.
• Regular Expression Extracts matches for one or more regular

expressions.
• Literal Extracts matches for a single string.
• Sequence Pattern Extracts matches based on a user-specified

pattern.
• Proximity Extracts a range of tokens.
Select constructs define the output schema of the extraction results.
• Projection Outputs selected attributes (aka. output columns)

from the input of the current extractor or from another extrac-
tor.

• Expression Outputs an attribute with a fixed string value or the
results of a scalar function, where a scalar function performs an

operation based on the values of other output columns from the
same extractor.

• Consolidation Handles overlapping matches based on a user
specified consolidation policy.

Filter constructs refine the extractor to filter out unwanted results.
• Inclusive/Exclusive Keeps/removes any extraction result that

conforms to the filter.
Union merges output from two or more extractors.

Fig. 2 illustrates a PersonPhone relation extractor constructed us-
ing aforementioned constructs. As can be seen from Fig. 2(a), each
extract construct is visualized as a box labeled with the name of the
extractor (e.g. 〈Person〉 and 〈PhoneNumber〉). A sequence pattern
is visualized as a nested box with a sequence of boxes (e.g. 〈Phone
Number 1〉 and 〈Phone Number 2〉), while a union is visualized
as a nested box with in one-level of child boxes (e.g. 〈Person
Phone〉). A nested box can be expanded or collapsed to control the
level of details shown for each extractor. For instance, all boxes
in Fig. 2(a) are expanded to show full details. Additional details
about each extractor (i.e. select and filter constructs) are included
as editable properties for the extractor (e.g. Fig. 2(b)).

4. VISUAL EXTRACTOR DEVELOPMENT
Fig. 3 depicts the key UI features of VINERY designed to sup-

port the entire life cycle of extractor development.

Project Management Each project in VINERY consists of a set
of extractors and an input document collection. The Project
Panel (Fig. 3(1)) enables a user to create a new project and
load/delete/modify an existing project.
Document Management Document Viewer (Fig. 3(2)) allows a
user to add/remove documents from local file system or HDFS
for extraction. Each document may be displayed in snippet view,
where snippets of multiple documents are displayed in the panel,
or full view, where only one single document is displayed. For doc-
uments with tags (e.g. HTML/XML documents), the user can also
turn on/off the detag option.
Extractor Construction VINERY is designed to enable the vi-
sual construction of extractors. Canvas (Fig. 3(4)) is the main
workspace for extractor construction. The user can create atomic
extractors (without nested boxes) by adding them directly on the
canvas via a context menu (e.g. dictionaries) or by drag-and-
dropping pre-built extractors from the Extractor Catalog (Fig. 3
(3)). A rich set of pre-built extractors for a wide range of domains
(Fig. 3(1)) are provided to help jump start extractor development.
The user can also create composite extractors (with nested boxes)
by dragging multiple extractors together in sequences or unions.
The Property Pane (Fig. 3(5)) allows the user to further refine each
extractor. It has three tabs: (1) General tab displays descriptions
about the extractor; (2) Settings tab shows properties that can be
modified to refine the extractor’s semantics (e.g. adding/removing
a term from a dictionary or customize a pre-built extractor); and
(3) Output tab allows the user to control the extractor output: The
user can add /remove output columns, add filters to refine the ex-
tractor behavior, and/or specify consolidation to handle overlapping
matches.
Extractor Execution and Results Exploration The user can select
one or more extractors on the Canvas to execute over the input doc-
uments. Results of the execution are then displayed in the Results
Grid (Fig. 3(6)) as well as highlighted in the Document Viewer.
The Results Grid consists of a set of tabs corresponding to the set
of extractors executed, each with a view of the output annotations

1949



(a)

(b)

Figure 2: Example PersonPhone Extractor

or results. When a tuple in the Results Grid is clicked on, the corre-
sponding results are shown and selected in the Document Viewer.
Results can also be exported as .csv files.
Publish and Deployment Once the user is happy with the extrac-
tor, she can save an extractor built via the Canvas to the Extractor
Catalog. She can also deploy any extractor from the catalog on a
cluster or export it for deployment in downstream applications or
into a conventional IDE (e.g. [13]) for further development. The
figure below shows a sample Eclipse project with auto-generated
AQL extractors imported from VINERY along with a sample AQL
file.

5. USER STUDIES
We conducted preliminary user studies to evaluate the usability

and effectiveness of VINERY in assisting both expert and novice
users.
Expert Users: This informal study included four experienced IE
developers with brief experience of using VINERY for IE devel-
opment prior to the study. All employed at IBM with moderate
to extensive experience with IE. In the pre-study, for the question
“What is your experience with Text Analytics”, the median rating
was 4, on a scale of 0 (no experience) to 5 (expert).

We interviewed the participants with a pre-defined set of ques-
tions adapted from SUS usability survey [4]. Overall, the partici-
pants found that VINERY was much better than other IE develop-
ment tools in terms of learning curve, ease of use, and development

time and effort required. For the question “In general, how does
VINERY compare to the way you and other currently perform IE
tasks?”, on a scale of 1 (much worse) to 5 (much better), the median
rating was 4.25 on learning curve, and 4.75 on both development
time required and ease of use, 5 on effort required.

The participants also liked the main features of
VINERY(described in Sec. 4). For the question “How much
do you like the main features of VINERY”, the responses were
overall positive: on a scale of 1 (not at all) to 5 (very much),
the median rating ranging from 3+ for property pane and project
management to 4+ for others.
Novice Users: This study included 10 participants with minimal
prior experience with IE, all employed at IBM. In the pre-study,
for the question “What is your experience with Text Analytics”, the
median rating was 1, on a scale of 0 (no experience) to 5 (expert).

In a 60-minute session, participants were asked to develop ex-
tractors for two tasks: Task1: Identify mentions of company rev-
enue by division from the company’s official press releases; Task2:
Identify education history from biographies (see Fig. 3). Authors
of this paper were present to help participants during the session.
After the session, participants filled out a survey about their expe-
rience.

All participants, except for one, completed both tasks under 60
minutes. On average Task1 took 29 minutes and Task2 took 23.6
minutes. It is worthy noting that Task1 was adapted from the lab
comparative study by [18]. In that study, the participants first per-
formed Task1 without WIZIE on Day 1 and then completed the
same task in 90 minutes or less using WIZIE on Day 2. The par-
ticipants in our study had no prior exposure to the task. However,
with the help of VINERY they were able to complete the same task
about trice as fast on average as the participants using WIZIE, but
with much less training (minutes vs. days). This result is a strong
indication that VINERY is a significant step forward in enabling
extractor development for novice users.

To evaluate the usability of VIPER, in a post-study survey,we
used questions adapted from SUS usability survey [4] to gather the
participants’ opinions about the system. Overall, the participants
found the system useful and easy to learn. On a scale of 1 (Strongly
Disagree) to 5 (Strongly Agree), the median rating was 4.0 for both
the questions “I would like to use the system frequently and would
recommend it to others” and “The system was easy to use”, and 2.0

1950



Figure 3: Snapshot of VINERY GUI: (1) Project Pane; (2) Document Viewer; (3) Extractor Catalog; (4) Canvas; (5) Property Pane; (6) Result Grid.

for the question “I need to learn a lot of things to use the system.”.
The participants also unanimously found all the features dis-

cussed in Sec. 4 very useful. For the question “How easy are the
main features”, the responses were overwhelming positive: on a
scale of 1 (Very Difficult) to 5 (Very Easy), the median rating was
4.5+ for all the features. One participant with brief experience of
IE development even wrote that “[Compared to what he has used
before] This is 100 times better.”

The participants felt confident in using VINERY to create
extractors, despite their minimal experience in IE development.
Meanwhile, they also suggested possible improvements to the
system, such as adding more contextual help and a step-by-step
graphic guide to extractor development.
Summary: Our preliminary results indicate that VINERY is a ma-
jor step forward towards facilitating extractor development, partic-
ularly for novice users. We plan to conduct a formal study of using
VINERY to create extractors for several real business applications
after usability and feature enhancements based on user feedback.

6. DEMONSTRATION
We have implemented VINERY as a stand-alone web applica-

tion. In this demonstration1 we showcase the entire extractor de-
velopment life cycle in VINERY with features described in Sec. 4,
from project creation to the incremental and iterative process of ex-
tractor development, and the final deployment of extractors. Our
demonstration centers around the task of identifying education his-
tory from biographies of DB researchers. We start by demonstrat-
ing the process of developing three atomic extractors for identify-
ing Degree, Major and Institution mentions. We then show how to
put them together to construct a more complex extractor for iden-
tifying mentions of EducationHistory. We will also illustrate how
to deploy the constructed the extractor in a downstream analytics
application as well as how to continue development based on the
actual IE code automatically generated behind the scenes in a pro-
fessional IDE [13].

7. REFERENCES
[1] A. Akbik et al. Propminer: A workflow for interactive

information extraction and exploration using dependency
trees. In ACL, 2013.

[2] A. Akbik et al. Exploratory relation extraction in large text
corpora. In COLING, 2014.

[3] F. Brauer et al. Enabling information extraction by inference
of regular expressions from sample entities. In CIKM, 2011.

[4] J. Brooke. SUS-a quick and dirty usability scale. Usability
evaluation in industry, 189:194, 1996.

[5] H. Cunningham et al. Gate: an architecture for development
of robust hlt applications. In ACL, 2002.

[6] S. Gupta and C. D. Manning. Spied: Stanford pattern-based
information extraction and diagnostics. In ACL-ILLVI, 2014.

[7] IBM. Gumshoe, Midas, SIMPLE, etc. 2012.
[8] IBM. InfoSphere BigInsights. https://ibm.biz/bdfhnd, 2015.
[9] P. Kluegl et al. UIMA Ruta Workbench: Rule-based text

annotation. In COLING, 2014.
[10] R. Krishnamurthy et al. SystemT: a system for declarative

information extraction. SIGMOD Record, 37(4):7–13, 2008.
[11] Y. Li et al. Regular expression learning for information

extraction. In EMNLP, 2008.
[12] Y. Li et al. Facilitating pattern discovery for relation

extraction with semantic-signature-based clustering. In
CIKM, 2011.

[13] Y. Li et al. SystemT: A Declarative Information Extraction
System. In ACL (Demonstration), 2011.

[14] Y. Li et al. WizIE: a best practices guided development
environment for information extraction. In ACL, 2012.

[15] F. Reiss et al. An algebraic approach to rule-based
information extraction. In ICDE, 2008.

[16] S. Soderland. Learning information extraction rules for
semi-structured and free text. Machine Learning,
34(1-3):233–272, February 1999.

[17] B. R. Soundrarajan et al. An interface for rapid natural
language processing development in UIMA. In ACL
(Demonstrations), 2011.

[18] H. Yang et al. I can do text analytics!: designing
development tools for novice developers. In CHI, 2013.

1951


