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ABSTRACT
Given a large graph with several millions or billions of nodes
and edges, such as a social network, how can we explore it
e�ciently and find out what is in the data? In this demo
we present Perseus, a large-scale system that enables the
comprehensive analysis of large graphs by supporting the
coupled summarization of graph properties and structures,
guiding attention to outliers, and allowing the user to inter-
actively explore normal and anomalous node behaviors.

Specifically, Perseus provides for the following opera-
tions: 1) It automatically extracts graph invariants (e.g.,
degree, PageRank, real eigenvectors) by performing scal-
able, o✏ine batch processing on Hadoop; 2) It interactively
visualizes univariate and bivariate distributions for those in-
variants; 3) It summarizes the properties of the nodes that
the user selects; 4) It e�ciently visualizes the induced sub-
graph of a selected node and its neighbors, by incrementally
revealing its neighbors.

In our demonstration, we invite the audience to interact
with Perseus to explore a variety of multi-million-edge so-
cial networks including a Wikipedia vote network, a friend-
ship/foeship network in Slashdot, and a trust network based
on the consumer review website Epinions.com.

1. INTRODUCTION
How can we explore a large graph e�ciently and find out

what the data can tell us beyond formal modeling and hy-
pothesis testing? In graph mining, although there is often
a clear motivation to look at the data and their underlying
connections, it is not always clear exactly what one should
be looking for. Most traditional methods assume that the
user has coding knowledge and/or knows what she is looking
for. Thus, they usually focus on one of the following tasks:
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Figure 1: Perseus: system overview. The input graph

is automatically processed to summarize graph statistics

which are used for o✏ine anomaly detection and visu-

alization. The front-end visualization module, combines

the graph properties and anomalies in six linked plots

and a dynamic egonet.

analysis and modeling of a single graph property; dedicated
engines that support querying graphs; speeding up existing
graph algorithms; design of anomaly detection algorithms;
(interactive) layout-based visualization of a graph. How-
ever, often the user does not know how to code, nor what
she should be looking for in the data. Instead, she needs to
interactively explore a graph and its properties in order to
find out what is in the data and be able to specify complex
questions to ask.

At a high level, Perseus is an interactive, large-scale
graph mining system that addresses users without program-
ming experience who want to perform guided, preliminary
exploration in order to gain insights into their graph data.
Our system consists of three main components:

• Fully-automatic Pattern Summarization: To sum-
marize the patterns in the input graph we leverage
some of the Pegasus [2] algorithms, which execute
in a distributed o↵-line manner. We fully automate
the process of extraction and summarization of graph
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properties (e.g., as PageRank, radius, degree), which
are used both for anomaly detection, and the visualiza-
tion of distribution plots. This process also generates
information about the nodes and the data dependen-
cies, which are used for linking the displayed plots.

• Fast Anomaly Detection: In addition to generat-
ing distributions of graph properties for visualization
purposes, Perseus uses the processed data to detect
outliers. For this purpose, we leverage G-FADD [5],
a fast, density-based anomaly detection method that
finds local and global outliers in two or more dimen-
sions. The anomalous candidates are valuable for an-
alysis and attention routing, as they reveal interesting
relationship patterns, such as suspicious users (e.g.,
fraud accounts in Figure 2).

• Interactive Visualization: Perseus combines the
data provided by the first two components into a com-
prehensive and interactive visualization channel for an-
alysts. It displays univariate and bivariate distribu-
tions of the extracted patterns, which may reveal com-
pliance to or deviation from common laws, such as
power-law, and guides attention to outliers. Perseus
also links a selected point to corresponding points in
other plots, allowing the user to interactively explore
patterns across di↵erent distributions. Simultaneously,
it provides a summarization of the selected node’s prop-
erties, its egonet (the induced subgraph of a node and
its neighbors), and the properties of some ‘similar’
nodes, which can be used for further exploration. Thus,
by visualizing di↵erent feature aspects, Perseus pro-
vides the users with a global understanding of the nor-
mal and anomalous patterns in the data.

Our audience will be invited to interact with Perseus
on several social and other networks, including a friend-
ship/foeship network based on the technology-related news
website named Slashdot1, which consists of 77, 360 users and
about 1M edges.

2. SYSTEM OVERVIEW
The following subsections describe in detail how Perseus

integrates its three main components to support the ex-
ploratory analysis of real-world graphs that couples multiple
feature aspects, and contributes to a global understanding
of the existing patterns.

2.1 Fully-automatic Pattern Summarization
To compute graph statistics e�ciently, we leverage the

algorithms provided by Pegasus [2], a Peta-scale graph
mining system built on top of Hadoop—an open source
implementation of the MapReduce framework which was
originally designed for web-scale data processing by Google.
Pegasus proposed an eigensolver for billion-scale, sparse
matrices, as well as an optimized primitive for Generalized
Iterated Matrix-Vector multiplication, which is a generaliza-
tion of the plain matrix-vector multiplication and up to 9
times faster than that. In an o✏ine manner, it e�ciently
computes important graph properties such as degree, Page-
Rank, radius, connected components, and eigenvectors.

1
https://snap.stanford.edu/data/soc-Slashdot0811.html

Perseus fully automates graph processing: It obtains a
single graph as input, performs the appropriate transforma-
tions depending on its type (e.g., (un)directed) and, for sum-
marization purposes, computes six commonly-used graph
properties. These properties include the degree, PageRank,
radius, and the first, second and third eigenvectors of the
adjacency matrix of the input graph. All of them follow
known distributions in real-world graphs. For example, the
node degrees follow a power-law-like distribution [1]; there
is multi-modal/bi-modal pattern of radius plots [3]; and
the eigenvectors of graphs exhibit the “EigenSpokes” pat-
tern [6]. Deviations from those patterns reveal anomalous
nodes, such as spammers in social networks.

2.2 Fast Anomaly Detection
For anomaly detection, we use G-FADD [5], a near-linear,

density-based outlier detection algorithm, which operates on
multi-dimensional clouds of points. G-FADD builds upon
the widely-used Local Outlier Factor algorithm (LOF), which
detects outlier points by measuring their local deviations
(LOF-scores) with respect to their neighboring points. If
the LOF-score of a data point is large, then this point is
considered anomalous. However, LOF has quadratic run-
time due to the large number of duplicate points in distri-
bution plots. G-FADD overcomes this problem in multi-
dimensional plots by (a) treating duplicate points as one
super-node, and (b) applying a k-dimensional grid on the
cloud of points and considering only the cells with su�cient
number of supernodes. These optimizations allow G-FADD
to run on datasets with tens of millions of points, while LOF
runs out of memory even for 20, 000 data points.

Perseus leverages G-FADD to find anomalies in two-
dimensional plots that correspond to univariate and bivari-
ate distributions of the pre-computed graph properties: (i) de-
gree, (ii) radius, (iii) degree vs. PageRank, (iv) degree
vs. radius, (v) 1st vs. 2nd eigenvector, (vi) 2nd vs. 3rd eigen-
vector. Traditional methods only focus on one or two distri-
bution plots, but Perseus provides a comprehensive view
of six plots, and links anomalous points across all of them,
allowing an ‘ensemble’ discovery of patterns. The user can
run anomaly detection for di↵erent grid sizes (e.g., 0, 8, 16,
32, where 0 finds global outliers and 32 finds local outliers),
and Perseus annotates the outliers in all the plots. For
example, in the first plot (degree distribution) of Figure 2,
all the red points correspond to degree-related anomalies for
grid size equal to 16. At di↵erent granularity, di↵erent data
points may be flagged as anomalous.

2.3 Interactive Visualization
The front-end visualization component presents six inter-

active distribution plots and a pane to display egonets. The
users can select data points in the plots, find their coordi-
nates, choose to see anomalous points, get the summarized
graph properties of one or more selected nodes, and incre-
mentally visualize a node’s egonet (bottom right pane in
Figure 2). The interactive visualization component consists
of two main parts: six linked plots and a dynamic egonet
pane.

Linked Plots. The visualization component provides six
“linked” univariate and bivariate distribution plots, such as
degree distribution, degree vs. PageRank, and eigenvector
plots. The user can scroll over the plots, retrieve the co-
ordinates of a specific point, click on it and retrieve the
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Figure 2: Perseus front-end system overview. From top,

left to right: i) degree distribution; ii) degree vs. Page-

Rank distribution; iii) radius distribution; iv) degree

vs. radius distribution; v) 1st vs. 2nd
eigenvector; vi) 2nd

vs. 3rd eigenvector. Bottom left: an information console

presents a summary of the graph properties for selected

nodes. Bottom right: dynamic egonet. The annotated

red points correspond to automatically detected outliers.

corresponding points in the other five plots (cyan points
in Figure 3(a)). For example, if the user picks a point in
the degree distribution plot (e.g., nodes of degree 21), then
Perseus randomly selects at the most ten such nodes and
highlights their corresponding points in the other distribu-
tion plots. The user can also perform anomaly detection at
di↵erent granularities and the system highlights the anoma-
lous points per plot (red points in Figure 2). As we show in
Section 3, the linked plots help the user get the whole picture
by connecting the dots across di↵erent plots and features,
and better understand the data at hand.

Dynamic Egonet. The information console at the bot-
tom left of Figure 2 summarizes the graph properties of one
or more selected nodes. The user can select a node from
the information console and Perseus generates an incre-
mental visualization of its egonet on the bottom right pane.
Many systems attempt to visualize the whole egonet of a
node, resulting in a clutter of nodes and edges which is very
slow to generate. Perseus avoids this problem by incre-
mentally generating the egonet of a node: when a node is
clicked, the next ten highest-PageRank neighbors and their
induced subgraph are displayed. The intuitive interaction
with the dynamic egonet contributes to further exploration
and the understanding of the patterns in the data [4], and
complements the distribution-based patterns highlighted by
the linked plots.

3. ANALYSIS EXAMPLES
Here we showcase the two ways that Perseus can be used,

for anomaly detection: (i) user-guided mode, on the Slash-
dot network1, and (ii) system-guided mode, on the Wiki-
pedia vote network2. The six linked plots and the displayed
dynamic egonet help discover several interesting patterns in
the above, real-worlds networks.

3.1 User-Guided Anomaly Detection
Here, the user selects a point in one of the distribution

plots, and then examines the connections to the other plots
and the egonet visualization. Suppose that the user selects
point X in the degree distribution (see Figure 3(a), left).
Perseus automatically highlights several points in the de-
gree vs. PageRank plot, as well as in the radius plot (Fig-
ure 3(a), middle and right). These points correspond to
nodes with the user-specified degree.

This type of multi-faceted analysis can reveal anomalies,
such as node B in Figure 3(a), which exhibits strange be-
havior, and specifically in the plot of degree-vs.-PageRank.
Without the bivariate distribution plot, node A (id: 2786)
and node B (id: 45759) appear to be normal, as their cor-
responding point (point X) in the degree distribution seems
“normal”: it fits the power law. Also they are very close to
each other in the radius distribution (point X’), which does
not raise any suspicions. However, they di↵er not only in
the degree vs. PageRank plot, but also their egonet struc-
ture: In our ’user-guided’ scenario, the user could click on
node ’B’ and see its egonet (Figure 3(c)), which looks like
a star: ’B’ follows many people, who do not reciprocate.
In contrast, when the user clicks on node ’A’, Perseus re-
sponds with Figure 3(b), which exhibits a highly reciprocal
behavior, which seems to be the usual/norm, thus making
node ’B’ a suspicious node.

(a) The selected point X in the degree distribution plot
maps to the cyan points in the other two plots.

(b) Egonet of node A. (c) Egonet of node B.

Figure 3: User-guided anomaly detection.

2
https://snap.stanford.edu/data/wiki-Vote.html
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3.2 System-Guided Anomaly Detection
Here, the user lets Perseus detect outliers, which are an-

notated as red points in each plot. The user then clicks on a
flagged point and examines its corresponding points on the
other plots, and/or egonet. For example, while analyzing the
wiki-Vote dataset2, the user may click on node 766 in the sec-
ond plot of Figure 5, which is flagged as anomalous in the 1st

vs. 2nd eigenvector plot too. The plot shows that this node
has a large degree and low PageRank, which means that
node 766 mainly follows high-PageRank neighbors without
being followed by them. Observing the dynamic egonet of
the node reveals a ‘reciprocity’ pattern, which appears in
the communities of “famous” nodes: a node follows multiple
tightly-knit communities, but few nodes follow him back.

Figure 4: Egonet of anomalous node 766.

Figure 5: System-guided anomaly detection: The system

flags node 766 as anomalous. Its corresponding points

are highlighted in red circles.

4. DEMONSTRATION PLAN
In preparation for the demo, the automatic pattern sum-

marization component pre-computes the graph statistics
that are used for the univariate and bivariate distributions,
and imports them into a Django database. The fast anomaly
detection component uses the pre-computed graph statistics
to detect anomalous nodes at various granularity levels, and
prepares them for visualization. Figure 2 shows a snapshot
of the interface with which the audience is invited to inter-
act. The interface includes three main components:

Toolbar. Users can select from a set of datasets that in-
cludes the Slashdot graph1, the Wikipedia vote network2,

and other social networks. Users can also choose the gran-
ularity level of G-FADD in order to detect local or global
outliers in the displayed distributions.

Linked Plots. Users can mouse over data points (either
a point or node of interest, or the marked-in-red anomalies)
in the displayed plots to inspect their coordinates, or click on
one point to obtain a summary of the node’s properties and
its egonet. The clicked data point as well as its correspond-
ing points in the other plots get highlighted. The summary
of graph properties is displayed in the information console.
Selecting nodes in the console triggers the visualization of
their egonets.

Egonet. After selecting a node, users can see a summa-
rized version of its egonet, where the node is centered and
only ten of its neighbors with the highest PageRank values
are displayed. Users can either click on any neighbor to in-
crementally expand its egonet, or click on the same node
again to reveal the next ten highest-PageRank neighbors, as
well as the connections between them. For example, Fig-
ure 4 shows the egonet of node 766, which consists of its 60
neighbors with the highest PageRank values.

We invite our audience to try out Perseus, and make
guided discoveries in large real-world graphs.
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