
SAASFEE: Scalable Scientific Workflow Execution Engine

Marc Bux
∗

Humboldt-Universität zu
Berlin, Germany

bux@informatik.hu-
berlin.de

Jörgen Brandt
∗

Humboldt-Universität zu
Berlin, Germany

brandjoe@informatik.hu-
berlin.de

Carsten Lipka
Humboldt-Universität zu

Berlin, Germany

lipka@informatik.hu-
berlin.de

Kamal Hakimzadeh
KTH Royal Institute of
Technology, Sweden

mahh@kth.se

Jim Dowling
KTH Royal Institute of
Technology, Sweden

jdowling@kth.se

Ulf Leser
Humboldt-Universität zu

Berlin, Germany

leser@informatik.hu-
berlin.de

ABSTRACT
Across many fields of science, primary data sets like sen-
sor read-outs, time series, and genomic sequences are an-
alyzed by complex chains of specialized tools and scripts
exchanging intermediate results in domain-specific file for-
mats. Scientific workflow management systems (SWfMSs)
support the development and execution of these tool chains
by providing workflow specification languages, graphical ed-
itors, fault-tolerant execution engines, etc. However, many
SWfMSs are not prepared to handle large data sets because
of inadequate support for distributed computing. On the
other hand, most SWfMSs that do support distributed com-
puting only allow static task execution orders. We present
SAASFEE, a SWfMS which runs arbitrarily complex work-
flows on Hadoop YARN. Workflows are specified in Cunei-
form, a functional workflow language focusing on paralleliza-
tion and easy integration of existing software. Cuneiform
workflows are executed on Hi-WAY, a higher-level sched-
uler for running workflows on YARN. Distinct features of
SAASFEE are the ability to execute iterative workflows, an
adaptive task scheduler, re-executable provenance traces,
and compatibility to selected other workflow systems. In
the demonstration, we present all components of SAASFEE
using real-life workflows from the field of genomics.

1. INTRODUCTION
Over the last years, research in essentially all fields of sci-
ence has become more and more data-intensive. The pre-
dominant way of analyzing scientific data is to use complex
pipelines composed of highly specialized, domain-dependent

∗These authors contributed equally to this work.

This work is licensed under the Creative Commons Attribution-
NonCommercial-NoDerivs 3.0 Unported License. To view a copy of this li-
cense, visit http://creativecommons.org/licenses/by-nc-nd/3.0/. Obtain per-
mission prior to any use beyond those covered by the license. Contact
copyright holder by emailing info@vldb.org. Articles from this volume
were invited to present their results at the 41st International Conference on
Very Large Data Bases, August 31st - September 4th 2015, Kohala Coast,
Hawaii.
Proceedings of the VLDB Endowment, Vol. 8, No. 12
Copyright 2015 VLDB Endowment 2150-8097/15/08.

Figure 1: The SAASFEE software stack, comprising
the Cuneiform language and Hi-WAY scheduler.

tools. These tools are developed by a community of re-
searchers in a multitude of different languages. General-
purpose scripting languages (Python, Perl, Bash) are as
common as domain-specific tools (R, MATLAB, LINPACK)
and low-level programming languages for time-critical tasks
(C, Fortran). SWfMSs have emerged to facilitate the de-
sign, implementation, execution, optimization, monitoring,
and exchange of such heterogeneous pipelines.

Existing SWfMSs can be roughly classified into two dif-
ferent groups [4]. Systems of the first group (e.g., Taverna,
Kepler, Galaxy) focus on usability and ease-of-assembly, yet
provide only (if any) limited horizontal scalability. Mem-
bers of the second group emphasize distributed execution
but typically lack the ability to run iterative workflows with
control structures (e.g., Askalon, Pegasus). In addition, all
current SWfMSs we are aware of come with their own pro-
prietary execution engines which are not designed to man-
age all compute resources within a cluster and have been
superseded by more general resource managers and sched-
ulers, such as YARN [12] or MESOS [10]. Recently, a third
class of systems, which in principle are suitable for executing
scientific workflows, emerged around the MapReduce pro-
gramming model (e.g., Spark [13], Stratosphere/Flink [1]).
While these systems excel at providing abstractions for pro-
gramming compute-intensive tasks, reusing and controlling
software with no Java API is quite cumbersome. In sum-
mary, there exist no platforms that (a) can easily embrace
the ever-evolving research tools developed and maintained
by thousands of scientists, (b) scale to very large data sets,
and (c) are able to execute arbitrarily complex workflows.

1892

Figure 2: Hi-WAY architecture: the language in-
terface parses a workflow and reports tasks to the
scheduler, which is provided with statistics on pre-
vious task executions by the provenance manager.

Here, we demonstrate SAASFEE1, a ScAlAble ScientiFic
workflow Execution Engine (see Figure 1), which aims at
closing this gap. SAASFEE workflows are specified in the
functional workflow language Cuneiform [3]. Cuneiform al-
lows for loops and conditionals (to support complex, iter-
ative workflows) and can seamlessly integrate third-party
tools and languages. Cuneiform scripts are executed by Hi-
WAY, a higher-level scheduler for YARN, Hadoop’s resource
management component, from which Hi-WAY inherits its
scalability and fault tolerance. Hi-WAY supports iterative
workflows, adaptive scheduling to cope with virtualized ex-
ecution environments, and re-executable provenance traces.
Furthermore, Hi-WAY can execute workflows specified in
languages other than Cuneiform, which reduces the need to
run different platforms on the same cluster.

2. CUNEIFORM
Cuneiform is a functional language for specifying scientific
data analysis pipelines at large. It focuses on algorithmic
skeletons for deducing parallelization possibilities and easy
reuse of existing software. To offer the highest amount of
extensibility, Cuneiform has black-box data and operator
models. Thus, integrating foreign code or passing around
proprietary data formats comes at no cost. At the down-
side, a black-box operator model prevents optimization by
task reordering, and a black-box data model requires devel-
opers to take care of format conversions. However, we find
the former to be generally of little use in scientific work-
flows with their highly specialized operations (we focus on
scheduling instead), and the latter imposing only moderate
effort, since most workflows operate within a single domain
(e.g., genomics, astrophysics) where usually a few different
formats cover almost all use cases.

In Cuneiform, tasks are the basic unit of abstraction. The
user can define and apply tasks like functions in functional
programming languages. When a task is applied to a list
of data items, the user determines whether this task is in-
voked separately for each element of the list, or only once,
thereby consuming the list as a whole. Cuneiform also al-
lows aggregation functions, making it straightforward to de-
fine MapReduce-like workflow structures. However, it goes
well beyond MapReduce by allowing rich control structures

1http://saasfee.informatik.hu-berlin.de/

within the language, which are also part of the scheduled ex-
ecution plan. For instance, some applications necessitate a
more general form of iteration than a map. Consider an iter-
ative learning algorithm, which in each invocation consumes
the output of the previous invocation until a convergence cri-
terion is met. In Cuneiform, it is possible to express such
an unbounded iteration by means of tail recursion with an
exit condition. For instance, the following code snippet im-
plements a k-means clustering in Cuneiform (presupposing
low-level functions implemented as Python scrips):

deftask classify (labeled(File)
: dataset(File) meanset(File))in python

deftask refine (meanset1(File)
: labeled(File))in python

deftask hasconverged (<converged> q1
: dataset(File) meanset(File) q)in python

deftask kmeans (result(File)
: dataset(File) meanset(File) q) {

labeled = classify (dataset: dataset
meanset: meanset);

meanset1 = refine (labeled: labeled);
converged q1 = hasconverged (dataset: dataset

meanset: meanset1
q: q);

result = if converged then meanset1
else kmeans (dataset: dataset

meanset: meanset1
q: q1)

end;
}

Cuneiform scripts are usually executed on distributed com-
putational infrastructure using Hi-WAY (see next section).
In addition, Cuneiform provides a local mode primarily in-
tended for debugging and development purposes. However,
this local mode fully exploits multicore machines and can au-
tomatically resume workflows after failure without repeating
successfully finished tasks, making it a serious alternative
for less compute-intensive runs. Cuneiform also provides an
interactive console and an editor, which automatically gen-
erates the graphical representations of a workflow during
specification (see Figure 4).

3. Hi-WAY
The prominent Apache Hadoop framework has recently been
extended to support arbitrary programming models beyond
MapReduce through its resource management component
YARN. Hi-WAY is a higher-level scheduler for YARN spe-
cialized in executing scientific workflows. Hi-WAY executes
each workflow task in its own container, which is YARN’s
basic unit of computation, encapsulating resources such as
memory and virtual CPU cores (see Figure 2). Hi-WAY
is capable not only of running Cuneiform scripts, but can
also execute workflows from Pegasus [8], as well as from
Galaxy [9], a popular platform for workflows from the field
of bioinformatics. The system comes with a number of fur-
ther features important for supporting scientific analysis.

First, repeatability of experiments is of utmost impor-
tance in science [6]. Accordingly, Hi-WAY generates a com-
prehensive provenance trace that logs events at different
levels of granularity (file, task invocation, workflow run).
Traces are written to HDFS by default but can also be stored
in a NoSQL database or an RDBMS for convenient long-
term storage and post-analysis – e.g., to determine the lin-
eage of a data product of a workflow run. Traces are directly
re-executable and are therefore, together with the workflow
input, a verifiable proof of the way an analysis result was
derived.

1893

http://saasfee.informatik.hu-berlin.de/

Second, many complex types of analyses require workflows
with control structures such as loops and conditions. In gen-
eral, the execution plan of such a workflow cannot be deter-
mined upfront, but is data-dependent and only emerges dur-
ing workflow execution. Unlike most established SWfMSs,
Hi-WAY supports iterative workflows and dynamically ex-
panding execution plans (see Section 2).

Third, as no assumptions whatsoever can be made on the
black-box tasks comprising a workflow, reordering task exe-
cution across data dependencies while guaranteeing equiva-
lence of results (as in classical query optimization) is impos-
sible. Instead, Hi-WAY focuses on optimizing task schedul-
ing. To this end, it provides a set of adaptive scheduling al-
gorithms tailored to running workflows on virtualized hard-
ware, which are typically subject to sudden and unforesee-
able changes in resource performance and availability (like
network or local I/O bandwidth) [5].

Note that Hi-WAY is completely agnostic to the nature of
the tasks it executes, as well as their implementations and
I/O formats. A prerequisite to this feature is that the neces-
sary tools are pre-installed on the cluster. To this end, con-
figuration routines are comfortably supported in the form of
Chef cookbooks, which can be run using the VM provision-
ing toolkit Karamel2.

In a preliminary evaluation of Hi-WAY’s scalability, we
specified the variant calling workflow described in Section 4.2
in Cuneiform and in Apache Tez3. Tez enables execution of
complex dataflows on YARN and is therefore probably the
system most similar to Hi-WAY. The major differences are
Tez’s lower-level architecture, resulting in dataflows having
to be programmed in Java, and that it builds on a key-value
data model – two design decisions that severely impact its
usability for scientific workflows. We ran both systems on
a Hadoop installation across 24 compute nodes with 24 GB
main memory and two Intel Xeon E5-2620 processors with
12 logical cores each. Each of the up to 576 concurrently
running containers was provided with its own virtual pro-
cessor core and 1 GB of main memory. The results shown
in Figure 3 indicate that Hi-WAY scales well even past 500
concurrent tasks and also outperforms Tez. However, the
main advantage of SAASFEE compared to Tez was develop-
ment time, which was days in Cuneiform yet more than two
weeks in Tez. Note that in our cluster, scalability beyond
96 containers was severely hampered by network bandwidth
(1 GBit switch).

4. DEMONSTRATION
The demonstration encompasses three simple, introductory
workflows and two more complex real-life workflows from
genome research. It showcases how workflows are designed,
edited, debugged, executed, re-executed, and monitored. In
particular, users are introduced to (a) the user interface,
foreign tool support, and parallelization capabilities of Cu-
neiform, and (b) the Hadoop integration, scalability, prove-
nance capabilities, and multiple workflow language support
of Hi-WAY. Users can interact by developing their own work-
flows, interactively debugging scripts, easily setting up clus-
ter environments, running workflows on different (virtual)
cluster configurations, and inspecting and rerunning work-
flow traces.

2http://www.karamel.io/
3http://tez.apache.org/

20

40

80

160

72 144 288 576

R
u

n
ti

m
e

in
 M

in
u

te
s

Number of Containers

Hi-WAY Tez

Figure 3: Mean runtimes of the variant calling work-
flow with increasing number of containers.

4.1 Simple workflows
We commence with a simple hello world example to intro-
duce Cuneiform’s language features regarding parallelization
and foreign code integration. Since we are free in the choice
of the scripting language in which we define a task, we can
come up with, e.g., a greet task written in Bash or R:

deftask greet (out : person)in bash *{
out="Hello $person"

}*
deftask greet (out : person)in r *{

out = paste("Hello", person)
}*

We next inspect a word count workflow similar to the well-
known MapReduce example from [7]. We implement low-
level functions for counting words in a text file (map) and
for summing up the counts (reduce) in Python. In contrast
to the hello world example, these functions now process files
instead of strings. In the demonstration, we show how sim-
ple it is to produce variations of this workflow (filtering, dot
and cross products, low-level tasks in other languages, etc.).

deftask count (counts(File) : text(File))in python
deftask merge (sums(File) : <counts(File)>)in python

Next, we analyze the Galaxy 101 workflow, a still compa-
rably simple, yet real-life workflow computing distributions
of mutations over genes. We show how straightforward it
is to run this workflow (or other workflows designed in and
exported from Galaxy) on Hi-WAY with its superior scal-
ability. The only requirements are that input files are ex-
plicitly specified in the workflow and a Galaxy installation is
available (but not necessarily running) on all worker nodes.

4.2 Complex workflows
As an example of a complex Cuneiform workflow, we explain
and demonstrate a workflow for solving variant calling [11]
(VC), an important step in the analysis of next-generation
sequencing data. The problem is to determine and annotate
variants in a genome, based on the output of a sequencing
machine. The VC workflow encompasses index-based string
similarity search, probabilistic reasoning to cope with the
noisy data, and multiple database look-ups for finding re-
lated information. Scalability of this workflow is of major
importance, as modern sequencing machines produce multi-
ple terabytes of genomic data per week.

In the first step of the workflow, reads, the primary prod-
uct of the sequencer, are aligned against a reference genome
using the tool BWA. The resulting alignments are sorted
using SAMtools, before variants are predicted with VarScan

1894

http://www.karamel.io/
http://tez.apache.org/

Figure 4: The VC workflow in the Cuneiform editor.

and finally annotated with ANNOVAR. Note that each of
these steps can be (and, in practice, often is) performed by
other similar tools. The workflow can be parallelized by
partitioning the read set, the reference (e.g., into chromo-
somes), or both. In the demonstration, we use real read files
from the 1000 Genomes project. Parts of the workflow and
its high-level structure are displayed in Figure 4.

In the next step of this demonstration, we replace indi-
vidual tools in the script to generate variations of this work-
flow, e.g., by using a read mapper other than BWA, align-
ing against another reference, increasing the amount of in-
put (read) data, or using another data partitioning scheme.
Note that determining optimal tool chains and parametriza-
tion for a given experimental setting is a highly relevant
and complex topic in many fields of science, including ge-
nomics [2]; even slight modifications may have a dramatic
impact and must be carefully tested. Providing such flexi-
bility is thus very important for end users.

Our fifth and most complex demonstration workflow was
also designed in Galaxy. The TRAPLINE RNAseq work-
flow4 (see Figure 5) processes and compares RNA sequenc-
ing data samples. It consists of more than 60 tasks, has a
degree of task parallelism of twelve, and takes hours to com-
pute already for a single genomic sample due to very CPU-
intensive tasks processing large amounts of data. Scaling
out this workflow is important as current genomics projects
easily produce hundreds of such samples. We show how this
workflow can be exported from Galaxy and run on Hi-WAY,
profiting from the provenance, fault tolerance, and horizon-
tal scalability features of SAASFEE.

5. CONCLUSION
SAASFEE is a fully functional scientific workflow system
which combines the flexibility of present SWfMSs with the
scalability of Hadoop YARN. It offers a unique set of fea-
tures tailored to making the scalable execution of scientific
workflows on distributed hardware as simple as possible.
SAASFEE is part of the BiobankCloud5 stack, which also
provides a web interface for running and monitoring work-
flows, easy provisioning and configuration of local or remote
resources (e.g., Amazon’s EC2), a workflow repository, a se-
curity toolset, and role-based access rights.

4http://www.sbi.uni-rostock.de/RNAseqTRAPLINE
5http://www.biobankcloud.com/

Figure 5: The TRAPLINE workflow in Galaxy’s
workflow repository visualized in its web interface.

6. FUNDING
M. Bux and J. Brandt are funded by the BiobankCloud EU
project. We also acknowledge funding by the DFG graduate
school SOAMED and an AWS in Education Grant.

7. REFERENCES
[1] A. Alexandrov et al. The stratosphere platform for big

data analytics. VLDB Journal, 2014.

[2] T. S. Alioto et al. A comprehensive assessment of
somatic mutation calling in cancer genomes. bioRxiv,
012997, 2014.

[3] J. Brandt, M. Bux, and U. Leser. Cuneiform: A
functional language for large scale scientific data
analysis. In Proceedings of the Workshops of the
EDBT/ICDT, volume 1330, pages 17–26, 2015.

[4] M. Bux and U. Leser. Parallelization in scientific
workflow management systems. arXiv:1303.7195,
2013.

[5] M. Bux and U. Leser. Dynamiccloudsim: Simulating
heterogeneity in computational clouds. Future
Generation Computer Systems, 2014.

[6] S. B. Davidson and J. Freire. Provenance and
scientific workflows: challenges and opportunities. In
Proceedings of the 2008 ACM SIGMOD Conference,
pages 1345–1350, 2008.

[7] J. Dean and S. Ghemawat. Mapreduce: Simplified
data processing on large clusters. Communications of
the ACM, 51(1):107–113, 2008.

[8] E. Deelman et al. Pegasus: A workflow management
system for science automation. Future Generation
Computer Systems, 46:17–35, 2015.

[9] J. Goecks, A. Nekrutenko, and J. Taylor. Galaxy: a
comprehensive approach for supporting accessible,
reproducible, and transparent computational research
in the life sciences. Genome Biology, 11(8):R86, 2010.

[10] B. Hindman et al. Mesos: A platform for fine-grained
resource sharing in the data center. In Proceedings of
the 8th USENIX Conference on Networked Systems
Design and Implementation, pages 295–308, 2011.

[11] S. Pabinger et al. A survey of tools for variant analysis
of next-generation genome sequencing data. Briefings
in Bioinformatics, 15(2):256–278, 2014.

[12] V. K. Vavilapalli et al. Apache hadoop yarn: Yet
another resource negotiator. In Proceedings of the
Fourth ACM Symposium on Cloud Computing, 2013.

[13] M. Zaharia et al. Spark: Cluster computing with
working sets. In Proceedings of the 2nd USENIX
conference on Hot topics in cloud computing, 2010.

1895

http://www.sbi.uni-rostock.de/RNAseqTRAPLINE
http://www.biobankcloud.com/

	Introduction
	Cuneiform
	Hi-WAY
	Demonstration
	Simple workflows
	Complex workflows

	Conclusion
	Funding
	References

