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ABSTRACT
A growing number of applications require combining SPARQL
queries with generic graph search on RDF data. However, the lack
of procedural capabilities in SPARQL makes it inappropriate for
graph analytics. Moreover, RDF engines focus on SPARQL query
evaluation whereas graph management frameworks perform only
generic graph computations. In this work, we bridge the gap by
introducing SPARTex, an RDF analytics framework based on the
vertex-centric computation model. In SPARTex, user-defined ver-
tex centric programs can be invoked from SPARQL as stored pro-
cedures. SPARTex allows the execution of a pipeline of graph algo-
rithms without the need for multiple reads/writes of input data and
intermediate results. We use a cost-based optimizer for minimiz-
ing the communication cost. SPARTex evaluates queries that com-
bine SPARQL and generic graph computations orders of magnitude
faster than existing RDF engines. We demonstrate a real system
prototype of SPARTex running on a local cluster using real and syn-
thetic datasets. SPARTex has a real-time graphical user interface
that allows the participants to write regular SPARQL queries, use
our proposed SPARQL extension to declaratively invoke graph al-
gorithms or combine/pipeline both SPARQL querying and generic
graph analytics.

1. INTRODUCTION
SPARQL is the standard RDF query language; it allows users

to express subgraph pattern matching queries. On the other hand,
there is an emerging new type of RDF analytics [9, 10] that require
the combination of generic graph search operations with SPARQL
patterns. Examples for such operations are reachability queries,
centrality analysis and community detection. For example, Qu et
al. [9] filter the results of SPARQL queries by a set of graph cen-
trality algorithms to identify the key biological entities within the
resulting RDF subgraphs. Rietveld et al. [10] represent the RDF
data as a directed unlabeled graph, analyze it by degree centrality
and PageRank operations using a generic graph engine, re-write the
result back into RDF format, and run on it SPARQL queries. In this
case, SPARQL queries are evaluated against a mutated RDF graph,
enriched by centrality and PageRank information for each node.
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Putting aside the aforementioned attempts which are application-
specific, state-of-the-art centralized [6, 13] and distributed [7, 2]
RDF data management systems fail to support graph search oper-
ations in a principled way and they only target SPARQL queries.
SPARQL itself lacks procedural capabilities; therefore, expressing
graph operations using SPARQL [12] results in verbose and com-
plex queries that are (i) expensive to evaluate; and (ii) hard to for-
mulate, read and understand by users. This is evident in some re-
cent works [12, 8, 5], which try to express generic graph operations
using SPARQL; these approaches are limited to a small set of graph
operations like clustering and graph diffusion. On the other hand, a
deluge of vertex-centric graph management systems have been pro-
posed for efficient graph analytics, like Pregel [4] and GRACE [1].
However, these systems lack the capability of evaluating ad-hoc
SPARQL queries, which means that a vertex-centric program has
to be written for each SPARQL query. Such an approach is tedious
and requires prior knowledge about the data, in order to select the
optimal query evaluation plan.

In this paper, we introduce SPARTex, a framework that supports
efficient and scalable evaluation of SPARQL and graph analytics,
while enabling expressing queries in an easy and natural manner.
SPARTex capitalizes on two key design principles:
A unified framework. SPARTex is based on the vertex-centric
computation model; hence, it inherits the scalability and abstrac-
tion of vertex-centric systems. SPARTex can be implemented on
top of any system that supports computation at the vertex granu-
larity and exchanging messages between vertices. We propose an
efficient and scalable SPARQL operator on top of SPARTex. Since
different operators in SPARTex require different data access views,
SPARTex has a unified in-memory data store that provides different
views of the same data. For example, while PageRank needs to ac-
cess all outgoing edges of a vertex, SPARQL queries usually select
only edges that match a specific pattern. Consequently, SPARTex
supports both vertex-centric graph analytics and efficient and scal-
able SPARQL query evaluation.
SPARQL and User Defined Procedures. To mitigate SPARQL
limitations, we propose a SPARQL extension that allows the in-
vocation of user defined vertex-centric programs from SPARQL;
such programs are modeled as defined stored procedure in SPAR-
Tex. The data store allows graph algorithms to dynamically main-
tain their computation results in-memory as vertex attributes. Ac-
cordingly, the output of such programs can be supplied as input for
SPARQL and vice-versa in a pipelined fashion.

SPARTex introduces a new and rich type of RDF analytics that
were not feasible before. (i) SPARQL can be used for triggering
and querying generic graph algorithms. For example, a user can
declaratively run PageRank and return the top-k rank values. (ii)
Original RDF data and vertex-computed results can be combined
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Figure 1: Qs retrieves students taking courses taught by their
advisors.

as a subgraph pattern in SPARQL. In other words, triple patterns
of SPARQL queries can be RDF data or vertex-computed derived
data. (iii) Generic graph algorithms and SPARQL query patterns
can be pipelined so the output of one operator is the input to an-
other. For example, the Single Source Shortest Path (SSSP) al-
gorithm can start from the vertices that match a specific SPARQL
pattern.

2. RDF ANALYTICS FRAMEWORK
RDF data is a set of 〈subject, predicate, object〉 triples that

form a directed labeled graph. SPARQL is the standard query lan-
guage for RDF. Queries consist of a set of RDF triple patterns,
where some of the columns are variables. For example, Qs in Fig-
ure 1(a) retrieves all students who take courses taught by their ad-
visors. The query corresponds to the graph in Figure 1(b). The
answer is the set of bindings of ?s, ?c and ?p that render the query
graph isomorphic to subgraphs in the data. SPARQL is restricted
to pattern-matching and does not support advanced graph analytics
(such as shortest path search, PageRank and centrality computa-
tion). Accordingly, current RDF data management systems are not
optimized for graph analytics beyond SPARQL.

2.1 SPARQL Extension
In SPARTex, we introduce a SPARQL extension that allows the

invocation of user defined stored procedures. Assume that a user
is capable of writing and storing his own procedures in a given
system; e.g. Pregel programs. For a procedure called proc which is
located at path, the user can call proc in SPARTex as:

PREFIX prefix : path
CALL prefix :proc(list[ parms ]) AS list[ properties ]

list[parms] is a list of parameters that the procedure expects
while list[properties] is the list of vertex properties that proc will
add to the RDF data. For example, the PageRank algorithm expects
the maximum number of computation iterations and introduces a
pRank property per vertex. PageRank can be invoked as follows:

PREFIX algo: <file:// path to algorithms>
PREFIX sptx: <http:// www . spartex . com/ analytics/>
CALL algo: PageRank ( max iter ) AS sptx: pRank

PageRank in the previous example runs on the entire RDF graph.
However, we may want to apply them to only a subset of the graph.
For this, we introduce constructs that filter the RDF graph based on
vertices and edges. Invoked procedures are optionally associated
with one or more filters.

FILTER VERTEX AS filter name WHERE { BGP }
FILTER EDGE AS filter name WHERE { BGP }

All triple patterns of the basic graph pattern BGP in the WHERE
clause must have a common vertex. In other words, BGP is a star
query around a specific vertex. For FILTER VERTEX, vertices
that do not match BGP are filtered out. Similarly, all edges that
do not satisfy the BGP pattern of FILTER EDGE are filtered out.
For example, we can exclude objects of triples with rdf : type
predicates from the PageRank algorithm as follows:

PREFIX rdf: <http:// www.w3. org /1999/02/22−rdf−sy
ntax−ns#>

FILTER EDGE AS no type WHERE {
?s ?p ?o .
FILTER (! sameterm (?p, rdf:type ))

}
CALL algo: PageRank ( max iter ) USING no type AS

sptx: pRank

So far, we have seen vertex properties set or deleted by stored
procedures. However, users may want to deliberately set or delete
some vertex properties. Therefore, we introduce two constructs for
adding and deleting vertex properties.

ADD PROPERTY {list[ property patterns ]} WHERE {BGP}
DROP PROPERTY {list[ property patterns ]} WHERE {BGP}

BGP in the optional WHERE clause can be an arbitrary pattern;
e.g., the following drops pRank properties smaller than a threshold:

DROP PROPERTY {?x sptx: pRank ?val} WHERE{
?x sptx: pRank ?rank .
FILTER (? rank < threshold )

}

2.2 Use Cases
Combining the expressiveness of SPARQL with generic graph

computations opens opportunities for deeper RDF data analysis.
We now discuss use cases that are not feasible without this extension.

2.2.1 Combining SPARQL and graph properties
Consider Qs in Figure 1 and assume we want to filter students

based on whether their advisors are popular and teach core courses.
Assume that PageRank and centrality properties are used to mea-
sure popularity of professors and importance of courses, respec-
tively. If both PageRank and centrality algorithms are available as
user-defined stored procedures, Qs can be rewritten as:

PREFIX sptx: <http:// www . spartex .com / analytics/>
CALL algo: centrality () AS sptx: centrality
CALL algo: PageRank ( max iter ) AS sptx: pRank
SELECT ?s WHERE {

?p teaches ?c .
?s takes ?c .
?s advisor ?p .
?p sptx: pRank ?rank .
?c sptx: centrality ?cent .
FILTER (? rank > val1 && ?cent > val2)

}

Note that the query has two types of triple patterns; the first one
comes from the structure of the input graph, while the second is
derived from the vertex-computed values. Without the proposed
extension, such a query would not be easy to express.

2.2.2 Combining SPARQL and analytics
We now demonstrate a use case where the results of SPARQL are

used in graph analytics. Consider Qs in the previous example and
suppose we want to find the shortest path between popular profes-
sors that match the pattern and every other vertex in the graph. This
can be done by executing the Single Source Shortest Path (SSSP)
algorithm starting from these professors as follows.

PREFIX sptx: <http:// www . spartex .com / analytics/>
CALL algo: centrality () AS sptx: centrality
CALL algo: PageRank ( max iter ) AS sptx: pRank
ADD PROPERTY {?p sptx: popular "1" . } WHERE {

?p teaches ?c .
?s takes ?c .
?s advisor ?p .
?p sptx: pRank ?rank .
?c sptx: centrality ?cent .
FILTER (? rank > val1 && ?cent > val2)

}
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Figure 2: SPARTex Architecture.

FILTER VERTEX AS start WHERE {
?p sptx: popular "1" .

}
CALL algo:SSSP () USING start AS sptx:sssp

Using the ADD PROPERTY construct, we identify the popular
professors by setting their sptx : popular property as 1. Then, we
create a vertex filter to exclude all vertices without this property.
Finally, the filter is associated with the SSSP procedure call so it
only starts from vertices defined in the filter.

2.3 SPARTex Architecture
SPARTex is an RDF analytics framework that supports declara-

tive SPARQL queries as well as procedural graph algorithms, based
on the discussed SPARQL extension. SPARTex can call user-defined
stored procedures written as vertex-centric programs. These proce-
dures can be executed in a pipelined fashion and can dynamically
maintain their computation results in memory as vertex attributes.
Subsequent operators can use these results if needed. An overview
of SPARTex is depicted in Figure 2. In the rest of this section, we
detail each of the different components of our framework.

2.3.1 Vertexcentric Framework
Vertex-centric computation frameworks are built on top of dis-

tributed file systems for data persistence, such as the input graph,
check-pointing files, and computation outputs. The user defines a
generic function, which is executed on each vertex independently.
Graph vertices interact with each other through message passing.
In SPARTex, any vertex-centric program is considered as a user
defined stored procedure.

2.3.2 Unified InMemory Data Store
SPARTex stores G = (V,E, FE , LE , FV , LV , Ψ). G a directed,

labeled and vertex-attributed graph. V and E are the set of vertices
and edges in G, respectively. e(u, v) ∈ E denotes a directed edge
from u to v. LE is the set of possible edge labels while FE : E →
LE is a labeling function that assigns a label to each edge. LV

is the set of possible vertex labels and FV : V → LV assigns
a unique label for each vertex. Ψ defines a set of properties that
can be associated to a vertex. Each vertex v ∈ V is associated
with a set of m properties (p1(v), p2(v), ...pm(v)) such that pi(v)
denotes the value of the property pi for v.

Our graph model is generic and can be easily adopted for RDF
data. We use the labels of subjects, predicates, and objects as their
unique identifiers. 1 Therefore, V is the the set of subjects and
objects, while E is the set of edges defined by the input triples. LE

is the set of unique predicate labels. Ψ is initially empty; however,
during execution a vertex can be given one or more properties.

1The labels of subjects are uniform resource identifiers (URIs) or
blank nodes, predicates are represented by URIs, while objects can
be URIs, blank nodes or literals.

While SPARQL queries access incoming and outgoing edges of
a vertex using predicate labels, graph algorithms like PageRank
may disregard labels and access all outgoing edges. Therefore,
rich RDF analytics requires modeling the data in a uniform way,
while providing different data access methods. Specifically, our
framework supports: (i) label-based data access used for SPARQL
query evaluation; (ii) label-oblivious data access used by graph al-
gorithms; and (iii) dynamically adding, deleting, or updating ver-
tex properties. SPARTex also supports data filtering constraints.
Computations in vertex-centric frameworks are done at the vertex
granularity; thus, our unified in-memory data store supports the
aforementioned types of data accesses via the following indices:

1. Miniature RDF Data Index: For each vertex, we maintain: (i)
a Predicate-Object (PO) Index which, given an edge predicate p,
returns all outgoing neighbors (objects) from edges labeled p; and
(ii) a Predicate-Subject (PS) Index which, given an edge predicate
p, returns all incoming neighbors (subjects) from edges labeled p.

2. Miniature In-Memory Store: each vertex maintains an in-
memory key-value store where algorithms can delete, add or update
a vertex property.

These indices are accessed through a set of API calls. Filtering
constraints, that are associated with procedures function calls, are
registered in the unified data store; only data that satisfy the filtering
constraints are retrieved or modified.

2.3.3 SPARQL Operator
The SPARQL operator evaluates RDF rich data analysis tasks.

The parser is responsible for preprocessing incoming queries. It
segregates the analytics constructs from the pattern matching of
SPARQL. The subgraph pattern is then converted into a graph rep-
resentation. Afterwards, both the analytics constructs and the pat-
tern graph are passed to the query planner. The query planner
checks the existence of the called procedures and the consistency of
their parameters. Then, it sends the pattern graph to the query op-
timizer to compile the query execution plan. The query optimizer
utilizes global statistics maintained in the statistics manager. The
planner consolidates the generic analytics part and the optimized
pattern matching query plan into a global pipelined execution plan.
Finally, the plan is evaluated by the pipelined executer.

3. DEMONSTRATION
We implemented SPARTex on top of GPS [11], an open-source

Pregel clone. SPARTex is deployed on a cluster of 12 machines
each with 148GB RAM and two 2.1GHz AMD Opteron 6172 CPUs.
The machines run 64-bit 3.2.0-38 Linux Kernel and connected by
a 10Gbps Ethernet switch. We plan to conduct the demonstration
with remote access to this cluster which will be accessible from the
conference site. As the amount of data communicated between the
GUI and the cluster is minimal (queries and final results), we are
not expecting significant delays during the demonstration. Using
the synthetic LUBM2 benchmark, we have generated LUBM-4000
dataset which contains 534 million triples. Besides, we also used
YAGO23, a real dataset consisting of 295 million triples.

3.1 Audience Interaction
Figure 3 shows the GUI interface of SPARTex. Using the GUI,

we offer two different interaction scenarios:

SPARQL Query Evaluation: Participants can select a dataset
against which they can execute either manually written SPARQL
2http://swat.cse.lehigh.edu/projects/lubm/
3www.mpi-inf.mpg.de/yago/
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Figure 3: SPARTex Graphical Interface

queries or choose one from the predefined benchmark queries. Pre-
defined queries for YAGO2 dataset are those defined in [7] whereas
LUBM queries are the same queries used in [2]. The predefined
queries provide a mixture of queries with varying structural char-
acteristics and selectivity classes. Once the query and the dataset
are specified, SPARTex evaluates the query and displays the results
as well as the total query response time.

RDF Graph Analytics: Participants can run vertex-centric graph
algorithms on a dataset of their choice. We provide a wide range
of graph algorithms from which participants can choose. In par-
ticular, the following algorithms are available: PageRank, Degree
Centrality, SSSP, Peer-Pressure clustering and Graph Diffusion.

Using the set of supported algorithms and our extension, partic-
ipants are allowed to run different algorithms on the dataset they
choose. Moreover, they can pipeline SPARQL queries and graph
analytics as needed. For example, on YAGO2 dataset, participant
can evaluate many possible use cases, like: (i) using our filtering
construct, a participant can define a filter that limit PageRank eval-
uation to only vertices that have the property hasPage. (ii) Write
a SPARQL query that retrieves the vertices with the highest PageR-
ank values. (iii) Cluster the entire YAGO2 graph and retrieve the
clusters information. (iv) Managing (add/delete) vertex properties.
(v) Run SSSP from vertices that belong to certain cluster or has
certain property value. All these use cases are defined and partic-
ipants can visualize its query syntax and and modify it if needed.
Moreover, they can also define and evaluate other use cases.

3.2 Evaluation Results
We evaluate the two use cases described in Section 2.2 using

SPARTex and LUBM-4000 dataset. Since no other system can
fully support these use cases, we use combinations of SPARQL
engines and analytics systems. We use H2RDF+ [7] as SPARQL
engine with two different analytics systems. The first combina-
tion is H2RDF+ with PEGASUS [3], a graph mining library on
top of MapReduce. The second combination uses H2RDF+ with
GPS [11]. In both cases, data need to be moved between multiple
systems and formatted accordingly. Figure 4 shows the execution
time for both use cases. In the first case, graph analytics is per-
formed prior to query evaluation. SPARTex performs better than
H2RDF+GPS because it maintains the computation results in its
in-memory store. Therefore, no data formatting or re-indexing is
required. GPS on the other hand needs to output the results to
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Figure 4: Rich RDF Analytics.

HDFS for further processing in H2RDF+. PEGASUS, performs
worse than GPS confirming that MapReduce approaches do not
perform well for graph analytics. Both H2RDF+PEGASUS and
H2RDF+GPS require data formatting and re-indexing by H2RDF+
before evaluating SPARQL queries. The cost of data formatting
and indexing is very substantial accounting for more than 80% of
the processing time. Finally, when evaluating SPARQL queries,
SPARTex performs significantly better than H2RDF+. The same
applies on the second use case; however, since the SSSP algorithm
is not available in PEGASUS, we only compare to H2RDF+GPS.
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