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ABSTRACT
Distributed RDF systems partition data across multiple com-
puter nodes. Partitioning is typically based on heuristics
that minimize inter-node communication and it is performed
in an initial, data pre-processing phase. Therefore, the re-
sulting partitions are static and do not adapt to changes in
the query workload; as a result, existing systems are unable
to consistently avoid communication for queries that are not
favored by the initial data partitioning. Furthermore, for
very large RDF knowledge bases, the partitioning phase be-
comes prohibitively expensive, leading to high startup costs.
In this paper, we propose AdHash, a distributed RDF

system which addresses the shortcomings of previous work.
First, AdHash initially applies lightweight hash partitioning,
which drastically minimizes the startup cost, while favoring
the parallel processing of join patterns on subjects, with-
out any data communication. Using a locality-aware plan-
ner, queries that cannot be processed in parallel are evalu-
ated with minimal communication. Second, AdHash moni-
tors the data access patterns and adapts dynamically to the
query load by incrementally redistributing and replicating
frequently accessed data. As a result, the communication
cost for future queries is drastically reduced or even elimi-
nated. Our experiments with synthetic and real data verify
that AdHash (i) starts faster than all existing systems, (ii)
processes thousands of queries before other systems become
online, and (iii) gracefully adapts to the query load, being
able to evaluate queries on billion-scale RDF data in sub-
seconds. In this demonstration, audience can use a graphi-
cal interface of AdHash to verify its performance superiority
compared to state-of-the-art distributed RDF systems.

1. INTRODUCTION
The RDF data model does not require a predefined schema

and is a versatile way for representing information from di-
verse sources. Therefore, social networks, search engines
and scientific databases are adopting RDF for publishing
Web content.
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As the volume of RDF data continues soaring, manag-
ing, indexing and querying very large collections of RDF
data becomes challenging. Early efforts focused on build-
ing efficient centralized RDF systems; like RDF-3X [9] and
TripleBit [13]. However, centralized data management and
search does not scale well for complex queries on web-scale
RDF data. As a result, distributed RDF management sys-
tems were introduced to improve performance. Such sys-
tems scale-out by partitioning RDF data among many com-
puter nodes and evaluating queries in a distributed fashion.
A SPARQL query is decomposed into multiple subqueries
that are evaluated by each node independently. Since data
is distributed, the nodes may need to exchange intermediate
results for finalizing the query result. Consequently, queries
with large intermediate results incur high communication
cost, which is detrimental to the query performance [7, 5].

Distributed RDF systems aim at minimizing the number
of decomposed subqueries by partitioning the data carefully.
In other words, their goal is to partition the data such that
each node has all the data it needs to evaluate the entire
query, without exchanging intermediate results. Thus, in
a parallel query evaluation, each node contributes a partial
result of the query; the final query result is the union of all
partial results. To do so, some triples need to be replicated
in multiple partitions which allows each node to answer the
query without communication. Still, even sophisticated par-
titioning and replication cannot guarantee that arbitrarily
complex SPARQL queries can be processed in parallel; thus,
expensive distributed query evaluation, with intermediate re-
sults exchanged between nodes cannot always be avoided.

Challenges. Existing distributed RDF systems are facing
two limitations. (i) Partitioning cost: graph partitioning
is an NP-complete problem; therefore, existing systems are
based on partitioning heuristics. Systems that use simple
heuristics like hash partitioning [10, 14] incur excessive com-
munication during query evaluation, as the chances that a
query can be evaluated in parallel without any communi-
cation between nodes are low. On the other hand, sophis-
ticated partitioning heuristics [5, 7, 8, 12] suffer from high
preprocessing cost and sometimes high replication. More
importantly, they pay the cost of partitioning the entire data
regardless of the anticipated workloads. However, as shown
in a recent study [11], only a small fraction of the whole
graph is actually accessed by typical real query workloads.
For example, a real workload consisting of more than 1,600
queries executed on DBpedia (459M triples) touches only
0.003% of the whole data. Therefore, we argue that dis-
tributed RDF systems need to leverage query workloads in
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Figure 1: System architecture of AdHash

data partitioning. (ii) Adaptivity: WARP [6] and Partout
[3] consider the workload during data partitioning. They
achieve a significant reduction in the replication ratio, while
showing better query performance compared to systems that
partition the data blindly. However, both systems assume
a representative (i.e., static) workload for data partitioning
and do not adapt to changes in the workload. SPARQL
query evaluation exhibits poor data locality, therefore, re-
gardless of the partitioning heuristic used, there will always
be queries that cross partition boundaries and require ex-
pensive distributed evaluation. Furthermore, because of
the diversity and dynamism of workloads, another study [1]
showed that systems need to continuously adapt to work-
loads to consistently provide good performance.
In this paper, we propose Adaptive Hashing (AdHash), a

distributed in-memory RDF engine. It alleviates the afore-
mentioned limitations based on the following key principles.
Lightweight Initial Partitioning: AdHash uses an ini-
tial hash partitioning, which distributes triples by hashing
on their subjects. This partitioning (i) has low cost and (ii)
does not incur replication. Thus, the preprocessing time is
significantly reduced, partially addressing the first challenge.
Hash-based Locality Awareness: AdHash achieves com-
petitive performance by maximizing the number of joins
that can be executed in parallel without data communi-
cation by exploiting hash-based locality; the join patterns
on subjects included in a query can be processed in parallel.
The locality-aware query optimizer of AdHash uses this nice
property to compute an evaluation plan that minimizes the
size of intermediate results shipped between workers.
Adapting by Incremental Redistribution: AdHash mon-
itors the executed workload and incrementally updates a hi-
erarchical heat-map of accessed data patterns. Hot patterns
are redistributed and potentially replicated in the system in
a way that future queries that include them are executed in
parallel by all workers without data communication. To con-
trol replication, AdHash operates within a budget and em-
ploys an eviction policy for the redistributed patterns. This
way, AdHash overcomes the limitations of static partitioning
schemes and adapts dynamically to changing workloads.

2. AdHash ARCHITECTURE
AdHash employs the typical master-slave paradigm (see

Figure 1) and is deployed on a shared-nothing cluster of
machines which communicate through message passing.

2.1 Master
The master begins by partitioning the data among workers

and collecting global statistics. Then, it receives queries

from users, generates execution plans, coordinates workers,
collects final results, and returns results to users.
String Dictionary: RDF data contains long strings in the
form of URIs and literals. To avoid the storage, processing,
and communication overheads, we encode RDF strings into
numerical IDs and build a bi-directional dictionary.
Data Partitioner: A recent study [4] showed that joins
on the subject column account for 60% of the joins in a
real workload of SPARQL queries. Therefore, AdHash uses
lightweight hash-based triple sharding on subject values.
Statistics Manager: maintains statistics about the RDF
graph, which are used for global query planning and during
adaptivity. Statistics are collected in a distributed manner
during bootstrapping.
Redistribution Controller: monitors the workload in
the form of heat maps and triggers the adaptive Incremen-
tal ReDistribution (IRD) process for hot patterns. Only
data accessed by hot patterns are redistributed and poten-
tially replicated among workers. A redistributed hot pattern
can be answered by all workers in parallel without commu-
nication. Using hierarchical representation, replicated hot
patterns are indexed in a structure called Pattern Index
(PI). Patterns in the PI can be combined for evaluating fu-
ture queries without communication. Further, the controller
implements replica replacement policy to keep replication
within a threshold.
Locality-Aware Query Planner: uses the global statis-
tics and the pattern index from the redistribution controller
to decide if a query, in whole or partially, can be processed
without communication. Queries that can be fully answered
without communication are planned and executed by each
worker independently. On the other hand, for queries that
require communication, the planner exploits the hash-based
data locality and the query structure to find a plan that min-
imizes communication and the number of distributed joins.
Failure Recovery. The master does not store any data
but can be considered as a single-point of failure because
it maintains the dictionaries, global statistics, and PI. A
standard failure recovery mechanism (log-based recovery [2])
can be employed by AdHash. Assuming a stable storage, the
master can recover by loading the dictionaries and global
statistics because they are read-only and do not change in
the system. The PI can be easily recovered by reading the
query log and reconstructing the heat map.

2.2 Worker
Storage Module. Each worker wi stores its local set of
triples Di in an in-memory data structure, which supports
the following search operations: (i) given a predicate p, re-
turn set {(s, o) | 〈s, p, o〉 ∈ Di}. (ii) given a subject s and
a predicate p, return set {o | 〈s, p, o〉 ∈ Di}.; and (iii) given
an object o and a predicate p, return set {s | 〈s, p, o〉 ∈ Di}.

Since all the above searches require a known predicate,
we primarily hash the triples in each worker by predicate.
The resulting predicate index (simply P-index) immediately
supports search by predicate. Furthermore, we use two
hash maps to re-partition each bucket of triples having the
same predicate, based on their subjects and objects, respec-
tively. These two hash maps support the second and the
third types of search and they are called predicate-subject
and predicate-object indexes, respectively. Given that the
number of unique predicates is typically small, our storage
scheme avoids unnecessary repetitions of predicate values.
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Note that when answering a query, if the predicate itself is
a variable, then we simply iterate over all predicates. The
storage module computes statistics about its local data and
shares them with the master after data loading.
Replica Index. Each worker has an in-memory replica
index that stores and indexes replicated data as a result of
the adaptivity. This index initially contains no data and is
updated dynamically by the IRD process.
Query Processor. Each worker has a query processor
that operates in two modes: (i) Distributed Mode for queries
that require communication. In this case, all workers solve
the query concurrently and exchange intermediate results.
(ii) Parallel Mode for queries that can be answered without
communication. Each worker has all the data needed for
query evaluation locally.
Local Query Planner. Queries executed in parallel mode
are planned by workers autonomously. For example, star
queries that join on the subject are processed in parallel
because of the initial data partitioning. Moreover, queries
that can be answered in parallel as a result of the adaptivity
process are also planned by the local query planner.

2.3 System overview
Here we give an abstract overview of AdHash. After

encoding and partitioning the data, each worker loads its
triples and collects local statistics. The master node aggre-
gates these statistics and AdHash starts answering queries.
A user submits a SPARQL query Q to the master. The
query planner at the master consults the redistribution con-
troller to decide whetherQ can be executed in parallel mode.
The redistribution controller uses global statistics to trans-
form Q into a hierarchical representation Q′. If Q′ exists
in the Pattern Index (PI) or if Q′ is a star query joining
on the subject column, then Q can be answered in parallel
mode, otherwise, it is executed in distributed mode. If Q
is executed in distributed mode, the locality-aware planner
devises a global query plan. Each worker gets a copy of this
plan and evaluates the query accordingly. If Q can be an-
swered in parallel mode, the master broadcasts the query to
all workers. Each worker generates its local query plan using
local statistics and executes Q without communication. As
more queries get submitted to the system, the redistribution
controller updates the heat map, identifies hot patterns, and
triggers the IRD process. Consequently, AdHash adapts to
the query load by answering more queries in parallel mode.

3. DEMONSTRATION DETAILS
We provide an interactive GUI to demonstrate the effec-

tiveness of AdHash using large-scale real and synthetic RDF
datasets. In addition to AdHash, we also deploy other dis-
tributed RDF systems so participants can evaluate the per-
formance of any of these systems against AdHash.

3.1 Demonstration Setup
We implemented AdHash in C++ and used MPI for syn-

chronization and communication. Our non-adaptive version
of AdHash is coined as AdHash-NA. We deploy AdHash,
SHAPE, SHARD and H2RDF+ on a cluster of 12 machines
each with 148GB RAM and two 2.1GHz AMD Opteron 6172
CPUs. The machines run 64-bit 3.2.0-38 Linux Kernel and
are connected by a 10Gbps Ethernet switch.
Datasets Specifications: Table 1 shows the characteris-
tics of the datasets. Bio2RDF is a community project that

Table 1: Datasets Statistics in millions (M)
Dataset Triples (M) #S (M) #O (M) #P

Bio2RDF 4,644.44 552.08 1,075.58 1,714
LUBM-10240 1,366.71 222.21 165.29 18
WatDiv 109.23 5.21 17.93 85

Table 2: Preprocessing time (minutes)
LUBM-10240 WatDiv Bio2RDF

AdHash 14 1.2 115
METIS 523 66 4,532
SHAPE 263 79 >24h
SHARD 72 9 143
H2RDF+ 152 9 387

provides linked data for life sciences. We use Bio2RDF1 re-
lease 2 which contains 4.64 billion triples connecting 24 dif-
ferent biological datasets. We also use the synthetic LUBM-
102402 dataset which contains 1.36 billion triples. WatDiv3

dataset contains 109 million triples and provides a wide spec-
trum of queries with varying characteristics.

3.2 Demonstration Interface
Figure 2 show our GUI interface for the deployed systems

and datasets. We offer three different interaction scenarios:
Dataset Loading: We will demonstrate the data prepro-
cessing time of AdHash. Participants can select a dataset to
load and index in AdHash and monitor the progress of the
loading phase. The loading and indexing cost of the other
engines is significantly high (see Section 3.3.1). Therefore,
we limit this feature to AdHash only since it is the only
system that provides practical startup costs. Note that for
other systems, the data are already preprocessed and in-
dexed offline.
Query Evaluation: Participants can write any SPARQL
query or choose one of the predefined queries. The pre-
defined queries are either selected from a real query log
(Bio2RDF), or they are benchmark queries (LUBM and
WatDiv). Predefined queries are selected such that they
provide a mixture of queries with varying structural charac-
teristics and selectivity. Once the query and the associated
dataset are defined, participants can choose the underly-
ing execution engine from AdHash, SHAPE, H2RDF+ or
SHARD. Then, the query is submitted through the GUI
and evaluated using the chosen system.
Direct Comparison: By deploying different distributed
engines as well as AdHash, we allow participants to com-
pare these systems head-to-head. Participants can experi-
ence these metrics themselves using the demonstration GUI
and reproduce/validate our findings.

3.3 Experimental Evaluation

3.3.1 Preprocessing Time
This experiment measures the time it takes a system for

preparing the data prior to answering queries. The results
are shown in Table 2 for all datasets. For TriAD, we show
only the time to partition the graph using METIS4. As Ta-
ble 2 shows, sophisticated partitioning techniques employed
by TriAD and SHAPE are prohibitively expensive compared

1http://download.bio2rdf.org/release/2/
2http://swat.cse.lehigh.edu/projects/lubm/
3http://db.uwaterloo.ca/watdiv/
4http://www.cs.umn.edu/∼metis
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Table 3: Query runtime (seconds)
System

LUBM-10240 WatDiv (GeoMean) Bio2RDF
L1 L2 L3 L4 L5 L6 L7 L1-L5 S1-S7 F1-F5 C1-C3 B1 B2 B3 B4 B5 B6

AdHash 0.317 0.120 0.006 0.001 0.001 0.004 0.220 0.002 0.001 0.010 0.012 0.004 0.002 0.002 0.004 0.002 0.001
AdHash-NA 2.743 0.120 0.320 0.001 0.001 0.04 3.203 0.009 0.006 0.235 0.123 0.0198 0.016 0.036 0.227 0.187 0.001

Triad-SG5 2.15 2.02 1.65 0.001 0.001 0.001 16.86 0.002 0.003 0.029 0.270

Trinity.RDF5 7.00 3.50 6.00 0.004 0.003 0.001 27.50
SHAPE 25.32 4.38 25.36 1.60 1.57 1.56 15.02 1.87 1.82 1.84 2.72 NA NA NA NA NA NA
H2RDF+ 285.43 71.72 264.78 24.12 4.76 22.91 180.32 5.44 8.68 18.46 65.79 5.58 12.71 322.30 29.55 7.96 4.28
SHARD 413.72 187.31 ABORT 358.20 116.62 209.80 469.34 ABORT ABORT ABORT ABORT 239.35 309.44 512.85 788.02 787.10 112.28

Figure 2: Demonstration Interface

to lightweight partitioning techniques adopted by SHARD
and H2RDF+. For Bio2RDF, SHAPE took more than 24
hours in the partitioning phase only. Moreover, it resulted
in a severe imbalance by placing 98.2% of the data in one
machine while distributing the rest 1.8% among the other
11 machines. AdHash uses lightweight hash partitioning
and avoids the upfront cost of sophisticated partitioning
schemes. As Table 2 shows, AdHash starts 4X up orders
of magnitude faster than existing systems.

3.3.2 Query Performance
Table 3 shows the query response times of all systems.

Bio2RDF queries (B1-B6) are extracted from a real query
log while we use queries L1-L7 (also used in [14, 5]) for the
LUBM dataset. WatDiv queries have four categories: lin-
ear (L), star (S), snowflake-shaped (F) and complex queries
(C). Queries can be classified based on their selectivity and
structural complexity into two categories: simple and com-
plex. Simple queries are L2, L4, L5, L6, S1-S7, L1-L5, B1,
B3, B4 and B7 whereas complex queries are L1, L3, L7,
F1-F5, C1-C3, B2, B5 and B6. SHARD and H2RDF+
suffer from the expensive overhead of MapReduce; there-
fore, their performance is significantly worse than all other
systems for complex queries. However, H2RDF+ performs
better than SHARD for simple queries as these queries are
solved in a centralized fashion using HBase scanners. On the
other hand, SHAPE incurs minimal communication and per-
forms better than SHARD and H2RDF+ due to the utiliza-
tion of semantic hash partitioning. Nonetheless, as it uses
MapReduce for dispatching queries to workers, it still suf-
fers from the overhead of MapReduce. In-memory RDF en-
gines, Trinity.RDF and TriAD, perform significantly better

5Trinity [14] and TriAD [5] are not publicly available, there-
fore, we compare to the numbers they reported using the
same datasets they use on a comparable hardware.

than MapReduce-based systems. Due to the sophisticated
partitioning scheme (i.e., METIS) employed by TriAD, its
performance is better than Trinity.RDF, which relies on the
fast underlying network. Observe that, even with simple
hash partitioning, AdHash-NA achieves better or compa-
rable performance to TriAD for all queries. Furthermore,
AdHash is significantly faster than all systems and provides
sub-second execution times for all query complexities.
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