
Live Programming in the LogicBlox System:
A MetaLogiQL Approach

Todd J. Green Dan Olteanu
LogicBlox, Inc.∗

firstname.lastname@logicblox.com

Geoffrey Washburn

ABSTRACT
The emerging category of self-service enterprise applications
motivates support for “live programming” in the database,
where the user’s iterative data exploration triggers changes
to installed application code and its output in real time.

This paper discusses the technical challenges in support-
ing live programming in the database and presents the so-
lution implemented in the LogicBlox commercial system.
The workhorse architectural component is a “meta-engine”
that incrementally maintains metadata representing appli-
cation code, guides its compilation into an internal represen-
tation in the database kernel, and orchestrates maintenance
of materialized views based on those changes. Our approach
mirrors LogicBlox’s declarative programming model and de-
scribes the maintenance of application code using declara-
tive meta-rules; the meta-engine is essentially a “bootstrap”
version of the database engine proper.

Beyond live programming, the meta-engine turns out ef-
fective for a range of static analysis and optimization tasks.
Outside of the database context, we speculate that our de-
sign may even provide a novel means of building incremental
compilers for general-purpose programming languages.

Categories and Subject Descriptors
H.2 [Database Management]

General Terms
Algorithms, Design, Languages

Keywords
LogicBlox, LogiQL; Datalog; Incremental Maintenance

∗We wish to acknowledge the many people at LogicBlox
who contributed to the development of the LogicBlox 4.X
platform, in particular Todd Veldhuizen for discussions on
the runtime engine, Shan Shan Huang for introduction to
self-service enterprise applications, and Feliks Kluźniak for
contributions to the meta-engine implementation.

This work is licensed under the Creative Commons Attribution-
NonCommercial-NoDerivs 3.0 Unported License. To view a copy of this li-
cense, visit http://creativecommons.org/licenses/by-nc-nd/3.0/. Obtain per-
mission prior to any use beyond those covered by the license. Contact
copyright holder by emailing info@vldb.org. Articles from this volume
were invited to present their results at the 41st International Conference on
Very Large Data Bases, August 31st - September 4th 2015, Kohala Coast,
Hawaii.
Proceedings of the VLDB Endowment, Vol. 8, No. 12
Copyright 2015 VLDB Endowment 2150-8097/15/08.

Yo dawg, we heard you like Datalog engines. . .
so we put a Datalog engine in your Datalog engine,
so you can derive while you derive!1

1. INTRODUCTION
An increasing amount of self-service enterprise applica-

tions require live programming in the database, where the
traditional edit-compile-run cycle is abandoned in favor of a
more interactive user experience with live feedback on a pro-
gram’s runtime behavior [6]. For instance, in retail-planning
spreadsheets backed by scalable full-fledged database sys-
tems, users can define and change schemas of pivot tables
and formulas over these schemas on the fly. These changes
trigger updates to the application code on the database
server and the challenge is to quickly update the user spread-
sheets in response to these changes.

From a technical perspective, live programming is far from
trivial—especially when working with programs and data of
the scale encountered in the real world. To achieve interac-
tive response times in those scenarios, changes to application
code must be quickly compiled and “hot-swapped” into the
running program, and the effects of those changes must be
efficiently computed in an incremental fashion.

In this paper, we discuss the technical challenges in sup-
porting live programming in the database. The workhorse
architectural component is a “meta-engine” that incremen-
tally maintains metadata representing application code, gui-
des its compilation into an internal representation in the
database kernel, and orchestrates maintenance of material-
ized results of the application code based on those changes.
In contrast, the engine proper works on application data and
can incrementally maintain materialized results in the face
of data updates. The meta-engine instructs the engine which
materialized results need to be (partially or completely) re-
computed. Without the meta-engine, the engine would un-
necessarily recompute from scratch all materialized results
every time the application code changes and would render
the system unusable for live programming.

We present the meta-engine solution that we designed and
implemented in the LogicBlox commercial system2 [4]. Log-
icBlox offers a unified runtime for the enterprise software
stack that sharply contrasts with currently popular stacks
with dozens of specialized systems and programming lan-
guages, where non-trivial integration effort is usually spent
at the interface between these systems.

1With apologies to Xzibit and “Pimp My Ride”
2http://www.logicblox.com

1782

LogicBlox applications are written in an extension of Dat-
alog [22, 2, 11] called LogiQL3 [15]. Datalog is highly declar-
ative, and we believe it strikes the right balance between
usability, expressive power, safety, and performance. The
resurgence of Datalog in academic circles has been well doc-
umented [9, 16]. Other recent industrial systems based on
Datalog include Google’s Yedalog [7], Datomic4, and EVE5.

There are several key aspects of LogiQL that influenced
the design of the meta-engine:

• LogiQL acts as a declarative programming model uni-
fying OLTP, OLAP, and prescriptive and predictive
analytics.

• It offers rich language constructs for expressing deriva-
tion rules (defining queries and views), integrity con-
straints, event-condition-action rules (defining updates),
mathematical optimization, and predictive analytics.

• It supports rule templates and modules to enable large,
modularized declarative code.

• Several code optimizations are expressed in LogiQL
and generated on demand, e.g., rules to create in-
dices to speed up join processing, to cope with event-
condition-action rules in case of data updates, or inline
view definitions.

• A wealth of logical invariants are checked at compile
time to ensure the correctness of LogiQL programs.
Their interaction is non-trivial and it has become in-
creasingly challenging to enforce them in the right or-
der in monolithic imperative implementations.

These aspects make possible new classes of hybrid appli-
cations within the same platform. Being declarative and
high-level, LogiQL code takes much less space than equiv-
alent imperative code and is less error prone. It is consis-
tently reported in practice that high-level languages increase
productivity and improve the maintainability and agility of
software development, e.g., [1, 20]. Since LogiQL acts as a
unifying programming model for various workloads that en-
ables the application logic to be written entirely in LogiQL,
LogiQL programs tend to be much larger than the usual
Datalog programs reported in the research literature. For
instance, a forecast manager, which is a typical LogicBlox
application in the retail sector, needs about 50K lines of
LogiQL code versus millions of lines of C++ code; similar
observations on the gap of code complexity have been pre-
viously made for Datalog-based declarative networking [21]
and metacompilation [8].

Building the LogicBlox meta-engine to effectively support
live programming is a software engineering challenge. We
approached it by relying on database and programming lan-
guage principles and set for declarative, high-level and ex-
tensible metadata management: we effectively use declara-
tive programming to improve the implementation of a declar-
ative database system [8]. In particular, the meta-engine
uses rules expressed in a Datalog-like language called Met-
aLogiQL6; these operate on metadata representing LogiQL
rules to capture the logical invariants of LogiQL programs

3Pronounced “logical”
4www.datomic.com
5www.incidentalcomplexity.com
6Pronounced “metalogical”

and related transformations and optimizations. In the cur-
rent LogicBlox version, there are 200+ meta-rules and more
existing imperative code for metadata is increasingly mi-
grating to meta-rules. There are several advantages of this
declarative approach over an imperative specification of the
meta-engine, including less code, less error prone code, cor-
rectness guarantees while providing efficient maintenance,
and easy extensibility via new MetaLogiQL rules.

Although the functionality of the meta-engine is theoret-
ically subsumed by that of the engine proper, the former
is much more lightweight as it does not need the extensive
code optimizations of the latter, and it works directly on an
objected-oriented representation of LogiQL code that is not
naturally presented in a relational format as required by the
latter.

In the rest of the paper, we introduce various aspects of
the meta-engine, including its persistent, purely-functional
metadata layer, the language MetaLogiQL, and the incre-
mental maintenance and rule materialization mechanisms.

2. LIVE PROGRAMMING APPLICATION
Live programming is indispensable in interactive planning

applications. In this section, we describe the modeler, a self-
service OLAP application built on top of LogicBlox, which
requires live programming in the database, and discuss a
variety of common cases where changes to application code
happen and need to be addressed efficiently.

A user community made up of several hundred merchants,
planners, supply chain personnel, and store managers at a
large retailer wants to analyze historical sales and promo-
tions data in order to assess the effectiveness of their product
assortments, plan future promotions, predict future sales,
and optimize the fulfillment of the demand generated by
those assortments and promotions. The data in this sce-
nario are several terabytes in size, and the model of the
business is made up of a few thousand metrics.

There are multiple users concurrently using the applica-
tion. Some are analyzing historical sales data via pivot (hi-
erarchical) tables, some are editing the data to specify differ-
ent future promotional strategies and generating new predic-
tions of the demand created by those promotions, some are
editing and overriding previously generated sales projections
based on new information that is not available to the system
yet, and some are asking the system for a recommended plan
for fulfilling the demand generated by the promotions. All
reads and writes occur at various levels of resolution, e.g.,
SKU/Store/Day or Dept/Region/Month. These levels are
not known a priori by the application developers.

LogicBlox supports multiple concurrent users and pro-
cesses via workbooks, which are branches of (fragments of)
the database that can be modified independently. Work-
books can be created to allow a business person to analyze
a variety of scenarios that model certain decisions that can
be made to shape or fulfill client demand. Workbooks can
also be created to support long running predictive and pre-
scriptive analytics that can take several hours of machine
time to run.

Figure 1 shows two screenshots of the modeler in which
users can visualize their data and model, both of which can
be evolved in order to reflect new knowledge about their
business. The modeler presents the users with a spreadsheet
interface listing possible dimensions, which are attributes of

1783

——————————————————————–

Figure 1: Excerpts from screenshots of a retail plan-
ning application requiring live programming.

the database schema, and existing measures, which are ma-
terialized views over the input data expressed in LogiQL.
The users can explore the data by defining and changing
the pivot table over dimensions and measures on the fly.
This contrasts with existing static approaches with prede-
fined dimensions such as traditional BI tools and OLAP
cubes. Users can also define and change measures, which
are formulas over the existing schema. This in turn triggers
the update of existing LogiQL code for materialized views
at the database server.

We next discuss common cases of changes to the applica-
tion code in the LogicBlox modeler and how the meta-engine
can be beneficial in each of these cases.

2.1 Derivation rules
Figure 1 (top) shows how the user defines a new formula

for NetSales over existing measures Sales and Returns, which

are in turn defined over dimensions sku (stock keeping unit),
store, and day . The pivot table is presented grouped by
the dimensions sku, store, and day with measures Sales,
Returns, and NetSales computed for each distinct triple of
these dimensions. This formula definition triggers the ad-
dition of a LogiQL derivation rule defining a new predicate
(relation) NetSales, along with updates to the modeler con-
figuration predicates. The formula for NetSales is translated
to a LogiQL derivation rule:

NetSales[sku,store, day] = v ←
Sales[sku, store, day] = v0,

Returns[sku, store, day] = v1, v = v0 − v1.

which states that, for a given tuple of sku, store, and day ,
NetSales is the difference between Sales and Returns. The
bracket notation emphasizes that all three predicates are
functions of the parameters between the brackets.

Figure 1 (bottom) shows the pivot table after it is aggre-
gated by the subclass of products for each sku, with Sales,
Returns, and NetSales measures. Again, requesting this ag-
gregated pivot view triggers an update to the LogiQL pro-
gram whose result is then shown in the spreadsheet. A snip-
pet of the LogiQL code for this aggregation is given by the
next derivation rule:

Sales at subclass[subclass] = v ← agg� v = sum(v0) �
Sales[sku, store, day] = v0,

sku to subclass[sku] = subclass.

The above derivation rule is a Predicate-to-Predicate Rule
(P2P rule) and sums up all sales for a particular subclass
of products. Similar P2P rules are derived for Returns and
NetSales.

In both examples above, the meta-engine would just add
the new derived predicates without recomputing from scratch
the entire program including the existing predicates. This
can lead to huge performance savings in practice.

Besides derivation rules, the application can trigger up-
dates for code representing integrity constraints (e.g., inclu-
sion or functional dependencies), reactive rules, prescriptive
and predictive analytics.

2.2 Integrity constraints
The following integrity constraint expresses that the key

attribute of the Stock predicate consists of products (Product
is a user-defined type here), and that the value-attribute is
a float:

Stock[p] = v → Product(p), float(v).

In general, integrity constraints are expressions of the form
F → G (note the use of a rightward arrow for constraints
instead of a leftward arrow as for derivation rules), where F
and G are formulas. Whereas derivation rules define views,
integrity constraints specify the set of legal database states.
A possible change to the above constraint is to limit the
Stock domain to integer instead of float:

Stock[p] = v → Product(p), int(v).

This change can impact the evaluation of the program, es-
pecially if the predicate Stock is subject to mathematical
optimization, as explained next.

1784

2.3 Mathematical optimization
LogiQL has constructs to support mathematical optimiza-

tion. A predicate R[x1, . . . , xn] = y can be declared to be a
free second-order variable, which means that the system is
responsible for populating it with tuples, in such a way that
the integrity constraints are satisfied. Furthermore, a de-
rived predicate of the form R[] = y can be declared to be an
objective function that should be minimized or maximized.

Suppose there is a predicate totalProfit defined using the
predicate Stock. Assume we would like to automatically
compute stock amounts so as to maximize profit. This can
be expressed in LogiQL as follows:

lang:solve:variable(‘Stock).

lang:solve:max(‘totalProfit).

The first line is shorthand for a second order existential
quantifier and it states that the predicate Stock should be
treated as a free second-order variable that we are solving
for, while the second line states that the predicate totalProfit
is an objective function that needs to be maximized (subject
to the integrity constraints).

Under the hood, the program is translated into a Linear
Programming (LP) problem and passed on to the appro-
priate solver, e.g., [14, 3]. LogicBlox grounds the problem
instance via automatic synthesis of another LogiQL program
that translates the constraints over variable predicates into
a representation that can be consumed by the solver [4].

If the application code is changed such that the predicate
Stock is now defined to be a mapping from products to in-
tegers, then LogicBlox detects the change and reformulates
the problem so that a different solver is invoked, one that
supports Mixed Integer Programming (MIP).

This change from LP to MIP has visible performance im-
plications. The meta-engine enables an important saving
factor by avoiding to repeat the expensive grounding task.
A further saving component happens at a lower level in
the incremental maintenance mechanism built in the en-
gine proper: the grounding logic incrementally maintains
the input to the solver, making it possible for the system to
incrementally (re)solve only those parts of the problem that
are impacted by changes to the input data.7

2.4 Logical Invariants
A further role of the meta-engine is to maintain logical

invariants of the LogiQL program. We discuss one such in-
variant that is necessary for handling correctly data updates.

Reactive rules are used in LogiQL to make and detect
changes to the database state. They are a special form of
derivation rules that refer to versioned predicates and delta
predicates. Here are two examples of reactive rules:

+Sales[“Chocolate”, M&S, 2015-01] = 122.

ˆPrice[“Chocolate”, M&S] = 0.8 ∗ x←
Price@start[“Chocolate”, M&S] = x,

Sales@start[“Chocolate”, M&S, 2015-01] < 50,

+ Promo(“Chocolate”, M&S, 2015-01).

The first reactive rule inserts a new fact into the sales pred-
icate. The second reactive rule discounts the price of choco-
late at M&S if the sales in January 2015 are lower than 50
units, and chocolate is under promotion.

7A capability supported by most modern solvers

program

edbs

idbs revised idbs

execution
graph

revised execution
graph

(meta-data)

(actual data)

Figure 2: While the engine proper deals with main-
tenance of the materialized views for a given pro-
gram (left half), the meta-engine maintains the pro-
gram under code updates and informs the engine
proper which views should be revised (right half).

Reactive rules are derivation rules that may refer to system-
provided versioned predicates and delta-predicates such as
R@start (the content of R at the start of the transaction),
+R (the set of tuples being inserted into R in the current
transaction), −R (the set of tuples being deleted from R in
the current transaction) [15]. The shorthand notation ˆR is
a combination of +R and −R. If R is a base predicate, the
content of R after the transaction is determined by means
of the following system-provided frame rules:

R(x1, . . . , xn)← R@start(x1, . . . , xn), !(-R(x1, . . . , xn)).
R(x1, . . . , xn)← +R(x1, . . . , xn).

LogicBlox maintains the following logical invariant:

If +R or -R appears in the head of a rule in stage
X, then we need a frame rule for R at stage X.

The meta-engine automatically generates such frame rules
whenever necessary.

3. THE LOGICBLOX META-ENGINE
The LogicBlox meta-engine supports declarative and in-

cremental maintenance of program state under changes of
the LogiQL program.

Figure 2 depicts schematically how the meta-engine dif-
fers from the engine proper and how the two engines work
together. The LogiQL program is compiled into an execu-
tion graph, where the predicates (materialized views) are the
nodes and the edges between nodes represent Datalog-like
derivation rules with the children being predicates used as
atoms in the body of a rule whose head predicate is the par-
ent node. The engine proper evaluates the execution graph
bottom-up on the input database (also called extensional
database and consisting of edb predicates) and materializes
the predicates (also called intensional predicates or idbs).
The meta-engine is activated when the program changes. It
incrementally maintains the execution graph (depicted by
a revised execution graph) and informs the engine proper
which materialized views have to be maintained as result of
the program change. To achieve this, the meta-engine de-
scribes declaratively the underlying program together with

1785

the dependencies between the program rules using meta-
rules. This declarative specification of the program code can
then be maintained incrementally using well-known tech-
niques for incremental maintenance of Datalog rules.

In a broader sense, the meta-engine provides a unified ma-
chinery to incrementally maintain the program state and to
orchestrate the evolution of the program code through all
compilation stages. Once the text corresponding to the new
code is parsed and represented as metadata, the meta-engine
uses specific meta-rules to perform a wide range of tasks, in-
cluding type inference; view unfolding to avoid unnecessary
maintenance of intermediate predicates; frame rule genera-
tion to account for reactive rules that update the data; and
construction of the internal executable representation of the
code. Further compilation stages can be added as blocks of
meta-rules.

The next sections describe the components of the Log-
icBlox meta-engine:

• The underlying object-oriented model for metadata
features object immutability and persistent data struc-
tures for efficient search and update operations (Sec-
tion 4).

• A declarative Datalog-like language called MetaLogiQL
is used to express meta-rules on metadata representa-
tion of programs (Section 5).

• The maintenance facilities for MetaLogiQL are based
on well-known algorithms for incremental maintenance
of Datalog programs (Section 6).

There are significant advantages of this design over an
imperative specification of the meta-engine:

• Being declarative, it shares all desirable properties of
Datalog (less code, less error prone).

• It guarantees correctness (following known Datalog ma-
intenance techniques) while providing efficient mainte-
nance.

• The order of enforcing the logical invariants and ap-
plying code optimizations is simply captured by the
dependency graph of meta-rules, no extra treatment is
needed as would be the case for imperative specifica-
tion of this logic in a large, monolithic code.

• The meta-engine is extensible by design. Adding new
meta-rules is as simple as writing them down in Meta-
LogiQL syntax. It is the job of the system to register
them, detect dependencies with other meta-rules, and
maintain them.

These benefits come at the cost of some moderate perfor-
mance overheads. The meta-rules introduce one extra level
of indirection in program code maintenance as they are in-
terpreted at runtime. It is therefore to be expected that
the meta-engine is slower than a hardcoded, monolithic ap-
proach. The meta-engine has to be fast, but not nearly as
fast as the engine proper, since meta-data is many orders
of magnitude smaller than data. By instructing the engine
proper to incrementally maintain the program result rather
than to recompute it from scratch, the overall LogicBlox
system gains arbitrary speedups.

An obvious question is why not use the LogicBlox engine
proper to evaluate the MetaLogiQL program in lieu of the
new meta-engine. In our case at least, the design choice was
dictated by pragmatic concerns:

• There is an impedance mismatch between the rela-
tional format of the input data and the object-oriented
representation of LogiQL programs; while shredding
programs into relations is definitely possible (programs
can be seen as graphs representable as a binary edge
relation), such a translation comes with high perfor-
mance penalty and an unnecessarily complex mainte-
nance mechanism.

• The meta-program is written by the LogicBlox run-
time team who can present the meta-rules already in
an optimized form. There is thus no need for heavy
optimization as done by the engine proper. The meta-
program is also orders of magnitude smaller than the
usual LogiQL programs backing up client applications.

4. PERSISTENT DATA STRUCTURES FOR
META-DATA MANAGEMENT

The meta-engine is built on top of a C++ object man-
agement system that provides support for persistent data
structures and is used internally in the LogicBlox engine
to manage metadata such as program ASTs; we note that
paged (and also persistent) data structures used for storing
actual database tables are not managed by this system. We
present here several aspects of this object management sys-
tem that directly influenced the design of the meta-engine,
in particular object immutability and branching, and purely
functional implementations of versioned data structures; a
full treatment is beyond the scope of this paper.

The object management system provides fast creation and
manipulation of temporary objects, object persistence, ver-
sioning, and support for parallelism. The objects are heap-
allocated and managed. Their references are counted by
object nurseries, and offer an interface similar in spirit to
Java-style objects. This offers protection against bad casts
and segfaults due to null pointers (exceptions are thrown in-
stead) and against heap corruption. The objects are trans-
parently persisted and restored. Examples of managed ob-
jects are databases, transactions, predicates, and LogiQL
programs.

A key feature of this object management system that is
extensively used by the meta-engine is its “mutable until
shared” objects that sit at a useful tradeoff point between
imperative and purely functional: Such objects are mutable
when created and while local to a thread, and become im-
mutable at synchronization and branching points, e.g., when
the data structure is communicated to another thread, per-
sisted, or branched. This gives the efficiency benefits of
the imperative RAM model while doing thread-local ma-
nipulations, but preserves the “pointer value uniquely deter-
mines extensional state” property of purely functional data
structures when objects are shared, which simplifies the pro-
gramming model for incremental maintenance, concurrent
transactions, distributed processing, and, as discussed next,
metadata management in the meta-engine.

Branching an object means to create a mutable fresh (shal-
low) copy of it. This is an O(1) operation in our object man-
agement system (recall from Section 2 that this is used to

1786

Transaction
setup

Add/remove
LogiQL code

Transaction
logic

evaluation
(modify edb
predicates)

Database
logic

maintenance
(maintain idb
predicates)

Query logic
evaluation
(read-only)

Cleanup &
teardown

Tip
workspace

Commit
workspace

Query results

@start @initial @final

Transaction
Meta-engine

Database
Meta-engine

Query
Meta-engine

branch

branch

Database
LogiQL

Transaction+
LogiQL

Query+
LogiQL

Database
execution

graph

Transaction+
execution+
graph

Query+
execution+
graph

Figure 3: Chaining meta-engines for different life-
times (database, transaction, queries) in the Log-
icBlox runtime system.

support concurrent access to the database via workbooks).
When an object is branched, it is marked immutable to-
gether with all mutable objects transitively reachable from
it. Versioned data structures are supported by coupling the
branching functionality with functional-style implementa-
tions that allow for efficient search and set operations such
as the difference between different versions. They represent
a further key feature extensively used by the meta-engine.

We next discuss how this object management philosophy
influenced the design of the meta-engine for two concrete
tasks: managing permanent and transient metadata and in-
cremental maintenance of LogiQL programs.

The metadata representing LogiQL programs can have
three different lifetimes: database lifetime, which persists
beyond ad-hoc queries and transactions, transaction life-
time, which is only relevant for a particular running trans-
action and discarded once the transaction is committed or
discarded, and query lifetime, which is only relevant for
a particular query and discarded afterwards. To manage
metadata of different lifetimes in a uniform way, we chain
meta-engines for different lifetimes as shown in Figure 3. A
transaction-lifetime meta-engine is a branch of the under-
lying database-lifetime meta-engine and thus has access to
and builds on a new version of its data structures for meta-
data. Once the transaction is completed, the instance of the
transaction-lifetime meta-engine is simply discarded includ-
ing its version of the metadata as it has no side-effect on the
underlying database-lifetime meta-engine and its metadata.
The same mechanism works for query-lifetime meta-engines,
which sit on top of transaction-lifetime meta-engines. To
speed up processing, transaction and query-lifetime meta-
engines for blocks of code that are used repeatedly are cached.
This is similar in spirit to precompiled queries.

To efficiently support incremental maintenance of meta-
data, the meta-engine relies on versioned data structures
and in particular on persistent treaps. Treaps are random-
ized binary search trees that offer expected Θ(logn) search,

insertion, and deletion [24]. Treaps have the unique repre-
sentation property: the structure of the tree depends only
on its contents, not on the operation history. With mem-
oization, this permits extensional equality testing in O(1)
time, using pointer comparison. Our treap implementation
is purely functional [23], i.e., the treap nodes cannot be mod-
ified once constructed and all mutating (insert/erase) oper-
ations are performed by duplicating a path from the root
to where the change occurs. Treaps offer efficient support
for set intersection, union, and difference: with memoiza-
tion, the cost of computing a set operation R = op(A,B)
is Θ(δ logn), where δ = min(d(A,R), d(B,R)), and d(X,Y)
is the edit distance measured in update operations between
the sets X and Y [5].

Collections of objects such as meta-predicates, which are
materialized views consisting of features of the program code
such as the heads or bodies of all rules, are stored by the
meta-engine as treaps or their specializations as maps, sets,
or vectors. They naturally meet the requirements of live pro-
gramming applications, in particular they offer support for
efficient incremental maintenance. Detecting the difference
between the previous and current versions of the program is
implemented by taking the difference between two versions
of a meta-predicate that represents the set of program rules
and is implemented as a persistent treap.

5. METALOGIQL
MetaLogiQL, the language for expressing meta-rules on

metadata, inherits the syntax of LogiQL. The core func-
tionality required by the existing meta-rules is that of non-
recursive Datalog with negation. Additional functionality
can be encapsulated via built-in meta-functions that are ex-
posed in meta-rules as meta-predicates with restricted access
patterns, i.e., they have input and output variables and com-
pute value bindings for output variables only when presented
with bindings for the input variables. Such meta-functions
are supported by C++ code to perform any required com-
putation. Some of this additional functionality, in particu-
lar aggregates and a limited form of recursion in the form
of transitive closure, surfaces in the language for two rea-
sons: they are used often enough and we have mechanisms
in place to incrementally maintain meta-rules with such lan-
guage constructs more efficiently than re-evaluating them
from scratch. In contrast, there is no incremental mainte-
nance mechanism for built-in meta-functions.

Meta-rules are registered with the meta-engine in the run-
time code using C++ macros. When the database system,
including the meta-engine, is first started, the meta-engine
collects all meta-rule declarations, builds their execution
graph, and then evaluates and maintains this graph bottom-
up as the database system operates.

To give a sense of the language and the scope of the meta-
rules, we next discuss several meta-rules of varying struc-
tural complexity and give them as they are defined in the
LogicBlox runtime. The meta-engine in the current Log-
icBlox distribution uses 200+ such meta-rules.

5.1 Negation
Our first meta-rule states that the (intensional) meta-

predicate lang_edb, which consists of all extensional predi-
cates (i.e., metadata sources) defined in the input program,
is the difference between the meta-predicates lang_ predname,
which consists of all predicates in the program, and lang_idb,

1787

which consists of all intensional predicates (i.e., views). The
difference operation is expressed using the exclamation (!)
symbol.

BLOX_META_DECLARE_RULE(lang_edb,
"lang_edb(name) <- lang_predname(name),!lang_idb(name).");

The C++ macro environment BLOX_META_DECLARE_RULE

associates the object lang_edb with the meta-rule given as
string. In a live programming application, any of the two
body meta-predicates may change, i.e., new predicates are
declared or existing ones are removed, and the meta-engine
updates the set of extensional predicates (edb) in reaction
to such changes.

5.2 Joins and Built-in meta-functions
As a second example, consider a conjunctive meta-rule

defining the meta-predicate user_predicates:

BLOX_META_DECLARE_RULE(user_predicates,
" user_predicates(lifetime, predname, predicate) <- "
" user_blocks(lifetime, name, block), "
" block_installables(block, inst), "
" installable_directory(inst, directory), "
" directory_get_index(directory, PREDICATES, index), "
" string_object_map(index, predname, predicate). ");

This meta-rule expresses a navigation in the block meta-
data object consisting of user code, first by extracting its
so-called installables, iterating over the directories of each
installable, iterating over the elements in each directory and
selecting only those corresponding to predicates. The meta-
rule uses objects specific to the LogicBlox runtime internals.
Note that in addition to user predicates, there are also pred-
icates generated by the system for internal purposes, such
as derived predicates for sampling and indexing to support
query optimization.

The meta-predicate user_blocks is the only extensional
meta-predicate and passed by the compiler to the runtime
environment; all other meta-predicates are derived from it
using meta-rules. It consists of all blocks of LogiQL code for
database/query/transaction lifetime (recall that Section 4
discusses the concept of the lifetime of predicate.).

BLOX_META_DECLARE_PREDICATE(user_blocks);

The remaining meta-predicates in the body of the above
meta-rule are built-in accessors or meta-functions that nav-
igate inside the code block. The types of their parameters
are dictated by the runtime API. They only work under
restricted access patterns: given a binding for the param-
eter block of type hBlock, it binds the parameter inst

to objects of type hInstallable as returned by the func-
tion installables of type hBlock → hInstallable. The
installable_directory built-in accessor works similarly.

//! Given a block, return its installables
BLOX_META_DECLARE_BUILTIN_ACCESSOR(block_installables,

hBlock, hInstallable, installables);
//! Given an installable, return its directory
BLOX_META_DECLARE_BUILTIN_ACCESSOR(installable_directory,

hInstallable, hDirectory, directory);

We next give a complete specification of the built-in meta-
function directory_get_index:

//! Given a directory and an object kind, return the
// directory index
Directory::hIndex directory_get_index(hDirectory directory,

object_kind_t kind)
{ return directory->getIndex(kind); }
BLOX_META_DECLARE_BINARY_BUILTIN_FUNCTION(directory_get_index,

hDirectory, object_kind_t, Directory::hIndex,
directory_get_index);

The built-in meta-predicate string_object_map iterates
over the map index and binds its entries to tuples of predi-
cate names and objects. The constant PREDICATES is of type
object_kind_t.

5.3 Logical invariants
Meta-rules can also encode logical invariants. We discuss

the invariant presented in Section 2.4 for delta predicates,
i.e., a predicate R that occurs in a code block with a delta
operator + or -. For such predicates, a specialized event-
condition-action (frame) rule is created to allow trigger-like
functionality to be specified in a declarative fashion. The
logical invariant is that if +R or -R appear in the head of a
rule in stage X, then we need a frame rule for R at stage X.
The following meta-rule determines which predicates need
frame rules for a given stage:

BLOX_META_DECLARE_RULE(need_frame_rule,
" need_frame_rule(stage, predName) <- "
" user_rule(stage, _, rule), "
" rule_head(rule, head), "
" head_predicate(head, predName), "
" is_delta_predicate(predName). ");

The meta-rule inspects the head of each user rule and
checks whether it contains a delta predicate.

5.4 Constraints
The next example shows how to express constraints using

meta-logic. The following meta-rule records violation of the
constraint that any predicate is either intensional (idb) or
extensional (edb). For each binding for query variable x,
the built-in meta-function edb_idb_violation binds msg to
a message stating that x is both idb and edb.

BLOX_META_DECLARE_RULE(constraint_fail,
" constraint_fail(msg) <- lang_edb(x), lang_idb(x), "
" edb_idb_violation(x, msg). ");

The meta-predicate constraint_fail is checked for non-
emptiness before a transaction is allowed to commit.

5.5 Transitive closure
The language of meta-rules does not support arbitrary

recursion but only the classical transitive closure pattern
(which can be statically checked at compile time).

We exemplify it next with a meta-rule that detects cycles
in the LogiQL program. Assume we have already defined
the meta-predicate dependencies that collects for all user
predicates the pairs of their names and the names of all other
predicates referenced in their bodies. We can then express
the transitive closure of this meta-predicate as expected:

BLOX_META_DECLARE_RULE(predicates_tc,
" predicates_tc(X, Y) <- "
" dependencies(X, Y); "
" dependencies(X, Z), predicates_tc(Z, Y). ");

1788

In the meta-engine, the above meta-rule pattern is de-
tected and represented by one transitive closure node in the
execution graph of the meta-rules to ease further mainte-
nance. Note the semi-colon in the meta-rule declaration:
this is used to express disjunction. The following meta-
predicate consists of all user predicates in the LogiQL pro-
gram that are cyclic, i.e., the transitive closure of the depen-
dency relation of the user predicates contains a pair (X,X)
for each such predicate X:

BLOX_META_DECLARE_RULE(cyclic,
" predicates_cyclic(lifetime, predName, predicate) <- "
" predicates_tc(predName, predName), "
" user_predicates!120(predName, predicate, lifetime). ");

The trailing !120 in the name of the last meta-predicate
above is due to our indexing convention. This meta-predicate
is the same as user_predicates, but sorted using a differ-
ent order of columns: the first (0) is moved to the end, the
second (1) becomes first, and the third (2) becomes second.
The order of columns is relevant for indexing purposes and
efficient join evaluation, cf. Section 6.

5.6 Maps
In the meta-logic, we often need to execute code on each

element of a collection. This is supported in meta-rules using
a functional-style map higher-order function. For instance,
the following meta-rule creates an execution unit in the ex-
ecution graph of the evaluation engine for each LogiQL rule
in the workspace:

BLOX_META_DECLARE_RULE(exec_rule_units,
" exec_rule_units(lifetime, name, rule, unit) <- "
" map<<>> workspace_rules(lifetime, name, rule), "
" unit = create_rule_unit[lifetime, name, rule]. ");

The meta-rule applies the function create_rule_unit to
each record in workspace_rules and collects the created
units in the new meta-predicate exec_rule_units. The
meta-function is declared as follows:

BLOX_META_DECLARE_BINARY_BUILTIN_FUNCTION(
create_rule_unit,
hExecutionUnit, lifetime_t, hRule,
create_rule_unit);

The C++ function used by the meta-function has the fol-
lowing signature (its definition is skipped):

hExecutionUnit create_rule_unit(lifetime_t lifetime, hRule rule)

5.7 Group-By
MetaLogiQL also features a special group-by construct

that is natural in a nested model, such as the object-oriented
model of metadata used in the LogicBlox runtime. For in-
stance, given a collection of tuples (name, lifetime, head pos,
rule) defining occurrences of predicate names in a rule head
at position head pos, the following meta-rule groups them
by the pair of name and lifetime and, for each such distinct
pair, it creates a set of pairs (head pos, rule):

BLOX_META_DECLARE_RULE(grouped_predicates,
" grouped_predicates(name, lifetime, {head_pos, rule}) <-"
" group-by<<>> head_predicates "
" (name, lifetime, head_pos, rule).");

This functionality is useful for collecting and merging all
definitions of a predicate into a single definition, as expected
by the evaluation engine. We next explain this program
rewriting effected by the meta-engine.

Assume the input program has rules of the form

A(x)← B(x,).

C(y),A(x)← D(, y, x),E(y).

The predicate A is defined by both rules and thus its content
is a union of values x occurring in the predicates B and D
at corresponding positions. The meta-engine rewrites the
program such that the two definitions of the predicate A
are identified, labeled as distinct definitions A1 and A2, and
a new definition for A is added via a merge rule, which
explicitly states that A is the union of A1 and A2:

A1(x)← B(x,).

C(y),A2(x)← D(, y, x),E(y).

A(x)← A1(x); A2(x).

The meta-rule grouped_predicates thus collects all occur-
rences of the predicate A by grouping the collection of all
predicates ocurring in rule heads (as defined by the meta-
predicate head_predicates) on their names and lifetimes.
Subsequent meta-logic, which is not shown here, maps each
element in the set to its index in the set so as to create the
indices 1 and 2 in the example. The variable head pos is
necessary in case the same predicate occurrs multiple times
in a rule head, for instance:

U(x, y),U(y, x)← E(x, y).

6. META-RULE EVALUATION
There are two flavors for meta-rule evaluation: full eval-

uation (or evaluation from scratch) and incremental main-
tenance. For both flavors, the meta-engine uses variants of
known algorithms. We do not re-iterate these textbook algo-
rithms here, but point the reader to works describing them
in detail and focus on several novel aspects.

For incremental maintenance, we adapted the classical
count algorithm on Z-relations [26, 13, 18, 12] to the lan-
guage of meta-rules introduced in Section 5. We also used
a popular algorithm for efficient maintenance of transitive
closure via relational calculus [10].

The count algorithm maintains reference counts for each
derived tuple in a materialized view, since changes in the
input (i.e., tuple inserts or deletes) may only lead to changes
in the number of times a tuple is derived and not necessarily
to its presence or absence from the result. We therefore need
to consider a model based on bag semantics, where we also
record the number of derivations of meta-tuples in meta-
predicates. This contrasts with the set semantics used by
the LogicBlox engine.

For both full evaluation and maintenance, we use a vari-
ant of the leapfrog triejoin (LFTJ) algorithm, the workhorse
join algorithm used by the LogicBlox engine [25]. The ex-
tension to view maintenance is done by running LFTJ as
usual, but using count-style delta rules derived from the
meta-rules. The main distinction is that we need to con-
sider view materialization under the bag semantics instead
of the set semantics, as per our discussion above. This dis-
tinction leads to a different behavior of the algorithm, and

1789

several optimizations relevant to the context of bag seman-
tics. We next quickly explain the standard LFTJ and then
our optimizations.

LFTJ is an improved version of the classical sort-merge
join [25]. It is used to compute the materialized views, or
more specifically, to enumerate the satisfying assignments of
the variables in the bodies of derivation rules. A conjunctive
derivation rule is a multi-way join. LFTJ decides on an order
of the variables in the body of the rule and for each vari-
able xi in this order, it incrementally performs a multi-way
intersection of the meta-predicates on the column xi. Once
an assignment for xi is found in all meta-predicates whose
atoms contain the variable xi, the algorithm proceeds to the
next variable xi+1 in order and seeks satisfying assignments
for it within the scope of the assignment for xi.

For instance, for the meta-rule

A(x, y, z)← R(x, y), S(y, z), T (x, z),

LFTJ first finds a good variable order, say x, y, z. Then, it
intersects πx[R(x, y)] with πx[T (x, z)]. For each satisfying
assignment x = a, it proceeds to the second variable y and
intersects πy[σx=a(R(x, y))] with πy[S(y, z)]. For each sat-
isfying assignment y = b, it proceeds to the last variable z
and intersects πz[σy=b(S(y, z))] with πz[σx=a(T (x, z))]. For
each satisfying assignment z = c, we obtain a result tuple
(a, b, c). The algorithm then backtracks and considers fur-
ther assignments of z under x = a, y = b. When these are
exhausted, it backtracks and considers further assignments
of y and so on. To iterate over the satisfying assignments of
any of the variables, LFTJ leapfrogs (hence its name), i.e.,
makes increasingly larger jumps in the meta-predicates; this
is different from a multi-way sort-merge join, which proceeds
tuple by tuple in each meta-predicate.

LFTJ is a general-purpose algorithm which works well
in practice for a large range of workloads, and has even
been proved to be worst-case optimal for projection-free8

conjunctive queries [25], under the mild assumption that the
input meta-predicates are suitably indexed: for instance,
clustered B+tree indices on R, S, and T that match the
order of the variables would be needed to efficiently perform
the intersection operation.

The meta-engine proceeds exactly as indicated above for
that particular meta-rule. We next present three optimiza-
tions used by the meta-engine for meta-rule evaluation.

Firstly, it may be that there is no good join order. For
instance, the previous variable order does not work for the
following meta-rule

A(x, y, z)← R(x, y), S(y, z), T (z, x),

since if we first join by x, the meta-predicate T is not sorted
by x and this means there is no efficient support for the
intersection of R and T on x. To overcome this, the meta-
engine uses indices defined by additional meta-rules:

T !10(x, z)← T (z, x).

This meta-rule creates a new meta-predicate whose content
is the same as T but with an index first on x and then on
z. The naming convention !10 states that the first (0) and
second (1) columns have been swapped. For simplicity of

8i.e, where all variables in the body also occur in the head
(or more generally, where all body variables are functionally
determined by the head variables).

implementation, the use of indices is manually specified by
the developer when writing the rule; this is in contrast with
LogicBlox runtime proper, where indices are installed and
used transparently.

The meta-rules in the meta-engine are designed such that
the order of occurrences of variables in the body of the meta-
rule is compatible with the order of variables within each
atom in the body. This order is also the LFTJ variable or-
der. Since the variable order can have a huge impact on
the performance of the evaluation, extra care is needed by
the runtime developer to make sure the best possible or-
der is used. In the meta-engine, the meta-rules are known
beforehand and can thus be optimized. In contrast, in the
LogicBlox engine, the user rules may not be known before-
hand and good orders can only be found heuristically using
sampling.

Secondly, the meta-engine’s LFTJ variant needs to com-
pute reference counts for all tuples in the result, which is
potentially an expensive operation. Two optimizations have
been implemented to avoid the need for tracing reference
counts in special, yet common cases of meta-rules in the
meta-engine. For the case of projection-free meta-rules,
there is no need to trace reference counters since the counts
will always be one: a satisfying assignment of all the vari-
ables can only be found once in the input, when the input
meta-predicates are sets and not bags. For the case of “pure
projection” meta-rules, i.e., of indices that just permute the
variables and do not otherwise perform joins, we can skip
LFTJ and create the head meta-predicate in one scan of the
input meta-predicate. For example, this optimization is ap-
plied in case of index creation, such as the predicate T !10
above.

Thirdly, for meta-rules with projection, a further opti-
mization may be performed. Consider for instance the meta-
rule

A(x)← B(x, y), C(x, z).

Since we are only interested in values for x and, for reference
counting, in how many times we can derive each value for
x, we simply iterate over values of x, count the y’s and z’s
for a given x, and multiply these counts.

7. CONCLUSIONS AND FUTURE WORK
Since version 4.0.6 of May 2014, LogicBlox ships with the

meta-engine. The initial version has been continuously re-
fined since then. For live programming applications, there is
a significant performance gain in the engine proper enabled
by smart recomputation of materialized views as instructed
by the meta-engine. This makes a stark, night-and-day dif-
ference in live programming that enabled several client ap-
plications not possible before.

The meta-engine also enables new runtime features, which
were previously prohibitively awkward to implement, e.g.,
removal of blocks of LogiQL code while preserving logical
invariants of programs. The current focus is to refactor more
monolithic C++ runtime code into meta-logic since meta-
rules represent much less code and are much easier to main-
tain. The meta-engine also helps generate only the necessary
number of system LogiQL code for building indices, inlining
view definitions, and properly addressing data updates via
frame rules. This has not been the case before. Further
code optimization is now possible via program transforma-
tion specified using meta-rules. Being more judicious with

1790

internal rule generation makes a significant difference in per-
formance for schemas with upwards of 100K predicates, as
encountered in some client applications.

The meta-engine leverages database principles and tech-
niques, including declarativity and efficient Datalog mainte-
nance, as well as programming language principles, includ-
ing functional data structures, high-level programming and
modularity, to solve what is essentially a software engineer-
ing challenge. Its declarative nature and the high-level spec-
ification of meta-rules come with a price: When compared
with compiled C++ code, there is a performance penalty
for interpreting meta-rules at runtime. A promising direc-
tion for future work is to use specialized compilers to compile
meta-rules to low-level optimized code [17, 19].

8. REFERENCES
[1] Python Programming Language Website. Quotes about

Python, 2014. http://www.python.org/about/quotes/.

[2] S. Abiteboul, R. Hull, and V. Vianu. Foundations of
Databases. Addison-Wesley, 1995.

[3] T. Achterberg. SCIP: Solving constraint integer
programs. Math. Programming Computation,
1(1):1–41, 2009.

[4] M. Aref, B. ten Cate, T. J. Green, B. Kimelfeld,
D. Olteanu, E. Pasalic, T. L. Veldhuizen, and
G. Washburn. Design and implementation of the
LogicBlox system. In SIGMOD, pages 1371–1382,
2015.

[5] G. E. Blelloch and M. Reid-Miller. Fast set operations
using treaps. In SPAA, pages 16–26, 1998.

[6] B. Burg, A. Kuhn, and C. Parnin. 1st int. workshop
on live programming (live). In ICSE, pages 1529–1530,
2013.

[7] B. Chin, D. von Dincklage, V. Ercegovak, P. Hawkins,
M. S. Miller, F. Och, C. Olston, and F. Pereira.
Yedalog: Exploring knowledge at scale. In SNAPL,
pages 63–78, 2015.

[8] T. Condie, D. Chu, J. M. Hellerstein, and P. Maniatis.
Evita raced: metacompilation for declarative
networks. PVLDB, 1(1):1153–1165, 2008.

[9] O. de Moor, G. Gottlob, T. Furche, and A. Sellers,
editors. Datalog Reloaded: Proceedings of the First
International Datalog 2.0 Workshop. Springer, 2011.

[10] G. Dong and J. Su. Incremental maintenance of
recursive views using relational calculus/sql. SIGMOD
Record, 29(1):44–51, 2000.

[11] T. J. Green, S. S. Huang, B. T. Loo, and W. Zhou.
Datalog and recursive query processing. Foundations
and Trends in Databases, 5(2):105–195, 2013.

[12] T. J. Green, Z. G. Ives, and V. Tannen. Reconcilable
differences. Theory Comput. Syst., 49(2):460–488,
2011. Extended abstract in ICDT 2009.

[13] A. Gupta, I. S. Mumick, and V. S. Subrahmanian.
Maintaining views incrementally. In SIGMOD, pages
157–166, 1993.

[14] Gurobi. Gurobi optimizer reference manual, 2015.
http://www.gurobi.com.

[15] T. Halpin and S. Rugaber. LogiQL: A Query
Language for Smart Databases. CRC Press, 2014.

[16] S. S. Huang, T. J. Green, and B. T. Loo. Datalog and
emerging applications: An interactive tutorial. In
SIGMOD, pages 1213–1216, 2011.

[17] Y. Klonatos, C. Koch, T. Rompf, and H. Chafi.
Building efficient query engines in a high-level
language. PVLDB, 7(10):853–864, 2014.

[18] C. Koch. Incremental query evaluation in a ring of
databases. In PODS, pages 87–98, 2010.

[19] C. Koch. Abstraction without regret in database
systems building: a manifesto. IEEE Data Eng. Bull.,
37(1):70–79, 2014.

[20] G. Lea. Survey results: Are developers more productive
in Scala?, 2013.
http://www.grahamlea.com/2013/02/survey-results-
are-developers-more-productive-in-scala/.

[21] B. T. Loo, T. Condie, M. N. Garofalakis, D. E. Gay,
J. M. Hellerstein, P. Maniatis, R. Ramakrishnan,
T. Roscoe, and I. Stoica. Declarative networking.
Commun. ACM, 52(11):87–95, 2009.

[22] D. Maier and D. S. Warren. Computing With Logic:
Logic Programming With Prolog. Addison-Wesley,
1988.

[23] C. Okasaki. Purely functional data structures.
Cambridge University Press, 1999.

[24] R. Seidel and C. R. Aragon. Randomized search trees.
Algorithmica, 16(4/5):464–497, 1996.

[25] T. L. Veldhuizen. Triejoin: A simple, worst-case
optimal join algorithm. In ICDT, pages 96–106, 2014.
Also CoRR abs/1210.0481 (2012).

[26] O. Wolfson, H. M. Dewan, S. J. Stolfo, and Y. Yemini.
Incremental evaluation of rules and its relationship to
parallelism. In SIGMOD, pages 78–87, 1991.

1791

