

Query Optimization in Oracle 12c Database In-Memory
Dinesh Das*, Jiaqi Yan*, Mohamed Zait*, Satyanarayana R Valluri†, Nirav Vyas*,

Ramarajan Krishnamachari*, Prashant Gaharwar*, Jesse Kamp*, Niloy Mukherjee*

*
 Oracle USA, {firstname.lastname}@oracle.com

†
 EPFL, Switzerland, satya.valluri@epfl.ch (Work done while at Oracle)

ABSTRACT

Traditional on-disk row major tables have been the dominant

storage mechanism in relational databases for decades. Over the

last decade, however, with explosive growth in data volume and

demand for faster analytics, has come the recognition that a

different data representation is needed. There is widespread

agreement that in-memory column-oriented databases are best

suited to meet the realities of this new world.

Oracle 12c Database In-memory, the industry’s first dual-format

database, allows existing row major on-disk tables to have

complementary in-memory columnar representations. The new

storage format brings new data processing techniques and query

execution algorithms and thus new challenges for the query

optimizer. Execution plans that are optimal for one format may be

sub-optimal for the other.

In this paper, we describe the changes made in the query

optimizer to generate execution plans optimized for the specific

format – row major or columnar – that will be scanned during

query execution. With enhancements in several areas – statistics,

cost model, query transformation, access path and join

optimization, parallelism, and cluster-awareness – the query

optimizer plays a significant role in unlocking the full promise

and performance of Oracle Database In-Memory.

1. INTRODUCTION
A confluence of events is reshaping the data processing world.

Rapid advances in hardware are bringing faster processors; faster,

cheaper and higher-capacity memory; larger persistent storage

devices; and faster interconnect with higher bandwidth. At the

same time, the number of data sources and their variety is

exploding. To make sense of and monetize the large volume of

data, businesses, large and small, need complex analytic queries

answered faster than ever.

Column-oriented databases have risen to meet this challenge.

Larger memory sizes and high compression ratios allow much

columnar data to fit entirely in memory. New algorithms allow

evaluating relational operations directly on the compressed

columnar data. Every major database vendor, including Oracle,

has support for column-oriented databases.

With a new storage format comes new query processing

techniques. While tables stored in memory in columnar form are

generally faster to access than those on disk, analytic queries are

rarely just simple table scans. They usually involve complex joins

and aggregations. In addition, the applications themselves are

becoming more complicated, with OLTP and data warehouse

workloads expected to run in the same database.

Various vendors have taken different approaches to generating

execution plans for in-memory columnar tables compared to row

major on-disk tables. Some make no changes to the query

optimizer with the expectation that the change in data format itself

will make the plans perform better. Other systems have

implemented simple heuristics to allow the optimizer to generate

different plans. Still others limit their optimizer enhancements to

specific workloads like star queries.

In this paper, we argue that a comprehensive optimizer redesign is

necessary to handle a variety of workloads on databases with

varied schemas and different data formats running on arbitrary

hardware configurations with dynamic system constraints (like

available memory). An execution plan generated by an optimizer

designed for an on-disk row major format may be sub-optimal on

an in-memory columnar format. It is imperative that the query

optimizer use a holistic approach, taking into account not only all

the operations in a query but also the specific storage formats and

system configuration. Without this requirement, as we show in

this paper, many workloads will see limited benefit or none at all

from in-memory columnar tables.

In this paper, we describe the Oracle query optimizer in Oracle

12c. Section 2 provides a brief overview of Oracle 12c Database

In-Memory. Section 3 presents the enhancements in the query

optimizer for in-memory. Section 4 contains experiments to

validate the optimizer changes. Section 5 provides an overview of

related work. Finally, we conclude the paper in Section 6.

2. ORACLE DATABASE IN-MEMORY
This section provides a brief introduction to Oracle DBIM; more

details are in [13] and [18].

Oracle 12c Database In-Memory (DBIM) is a dual-format

database where data from a table can reside in both columnar

format in an in-memory column store and in row major format on

disk. The in-memory columnar format speeds up analytic queries

and the row major format is well-suited for answering OLTP

queries. Note that scanning on-disk tables does not necessarily

mean disk I/O; some or all of the blocks of the table may be

cached in the row major buffer cache [4].

A dedicated in-memory column store called the In-Memory Area

acts as the storage for columnar data. The in-memory area is a

subset of the database shared global area (SGA).

This work is licensed under the Creative Commons Attribution-

NonCommercial-NoDerivs 3.0 Unported License. To view a copy of this

license, visit http://creativecommons.org/licenses/by-nc-nd/3.0/. Obtain
permission prior to any use beyond those covered by the license. Contact

copyright holder by emailing info@vldb.org. Articles from this volume were

invited to present their results at the 41st International Conference on Very

Large Data Bases, August 31st – September 4th 2015, Kohala Coast, Hawaii.

Proceedings of the VLDB Endowment, Vol. 8, No. 12

Copyright 2015 VLDB Endowment 2150-8097/15/08.

1770

mailto:satya.valluri@epfl.ch

The creation and storage of columnar data in the in-memory area

is called population. Population is done from the on-disk row

major data. The columnar representation consists of contiguously

allocated chunks called In-Memory Compression Units (IMCUs).

Each IMCU contains the contents from a set of rows. Within each

IMCU, each column is stored separately and contiguously as a

column Compression Unit (CU). Partitions and sub-partitions of a

partitioned table are organized into IMCUs independently of each

other; an IMCU cannot span multiple partitions. A single

partition can, however, have multiple IMCUs.

Each column may be compressed at different compression levels

and it is even possible for different CUs of the same column to be

compressed differently. Different compression levels are suitable

for different use cases. There are three classes of compression

algorithms optimized for different criteria: for DML performance,

for query performance and for space capacity. Figure 1 shows an

overview of the storage format of an in-memory table.

Figure 1: Data Format in Oracle DBIM Column Store

It is not necessary for the entire table to be populated in-memory

nor is it necessary for all columns of a table to be populated. Thus,

if memory is a constraint, users can decide what tables and

columns to enable for in-memory. For partitioned tables, it is

possible to enable some of the partitions for in-memory and leave

others on disk.

Oracle Real Application Clusters (RAC) [20] is a shared-disk

cluster allowing multiple Oracle instances running on different

nodes to access a common database. While the on-disk data is

shared, each node has its own private in-memory area that is

accessible only to that node’s instance.

There are two ways to populate tables in-memory in RAC:

DUPLICATE and DISTRIBUTE. Under DUPLICATE mode, all

the IMCUs are populated on at least two instances. This provides

fault tolerance in case one of the instances goes down. The

DUPLICATE ALL mode populates all the IMCUs on all

instances; this provides full fault tolerance. The DISTRIBUTE

mode has three options: distribution by PARTITION, by

SUBPARTITION, or by ROWID RANGE. The DISTRIBUTE

AUTO option lets Oracle choose the distribution method.

The DISTRIBUTE mode provides a way to efficiently use the

combined in-memory areas of all nodes and access the data using

parallel queries on the in-memory tables. However, if the query is

executed in serial on a single instance, there will be disk I/O since

parts of the table will be populated in-memory on other nodes.

Running in parallel but with insufficient processes will also result

in disk I/O. Thus, even though a table may be fully populated in-

memory in RAC, it is possible to incur disk I/O depending on the

execution plan.

An in-memory scan starts by locating the IMCUs that contain the

required rows. Within each IMCU, it is only necessary to look at

the CUs of the columns referenced in the query. All necessary

columns must be in-memory-enabled to use an in-memory scan.

Each CU has an in-memory storage index that contains the

minimum and maximum column values for all rows in that CU.

The storage index is used to prune CUs using predicates on the

column. Even if a CU is not pruned, certain predicates are much

more efficiently evaluated on compressed data instead of the SQL

execution engine. For this reason, Oracle pushes down many

types of predicates to the in-memory scan.

When rows are deleted from a table, the corresponding entries in

the IMCUs for these rows are marked as invalid. When new rows

are inserted into an in-memory table, they are first stored in an in-

memory row major transaction journal until they reach a certain

threshold, after which the IMCUs are rebuilt. Thus, when

scanning an in-memory table, invalid rows from the CUs are

skipped and additional rows in the transaction journal are scanned.

Transactional consistency is maintained in all cases.

3. QUERY OPTIMIZATION
The in-memory columnar format of tables fundamentally changes

the performance of operations like scans, joins and aggregations.

New query execution techniques like vector predicate evaluation

and bloom filter pushdown into scans are possible on columnar

tables. On Oracle RAC (a shared-disk cluster), in-memory tables

can be distributed in the in-memory areas of different nodes,

making it shared-nothing with respect to the separate in-memory

column stores. A query optimizer designed only for row major

tables is unlikely to yield plans that are optimal when some or all

of the tables are in-memory.

In this section, we describe the enhancements in the optimizer in

Oracle DBIM to be cognizant of in-memory tables. These

enhancements ensure that the optimizer generates plans that are

optimal regardless of whether tables are fully, partially, or not at

all, in-memory and whether queries are executed on a single node

or on a cluster.

Oracle DBIM also introduces a new in-memory aggregation

feature that accelerates many classes of analytic queries with

complex joins and aggregations. We do not describe it in this

paper but more details are available in [19].

In the remainder of this paper, on-disk table refers to a traditional

row major table stored on disk while in-memory table refers to an

on-disk table which is also populated in-memory. As mentioned

in Section 2, a scan of an on-disk table does not mean physical

disk I/O.

3.1 In-memory Statistics
It is well known that a query optimizer needs accurate statistics

[5] to generate optimal plans. Broadly speaking, there are two

kinds of statistics: object statistics and system statistics.

Object statistics on tables can be categorized as logical or

physical. Logical statistics are a function only of the data, not the

table’s storage format. Such statistics include the number of rows,

average row length, column histograms, column minimum and

maximum values and so forth. (Auxiliary structures like indexes

also have logical statistics like number of distinct index keys.)

Physical statistics of tables are a function of the data, their storage

representation and database settings. For row major on-disk

tables in Oracle, they include, among others, the number of blocks

and number of chained rows.

1771

System statistics include the number of CPUs, CPU speed, I/O

throughput, number of nodes in the cluster, available memory, and

so on.

The optimizer uses logical object statistics primarily to estimate

cardinalities of various operations like table and index scan, join,

and GROUP BY. The estimated cardinalities, along with physical

object statistics and system statistics are used to estimate costs for

these operations. Accurate costs are necessary to choosing the

best plan from among several alternatives; this means that

complete and up-to-date statistics are a must for the optimizer.

For in-memory tables, logical object statistics are still necessary

since they are used to estimate cardinalities which are independent

of the physical storage representation of the data. Physical object

statistics, however, depend on the actual data storage format.

Since Oracle DBIM allows tables to be declared in-memory, new

physical object statistics are needed for such tables. Indexes

cannot be declared in-memory and thus no new statistics are

needed for them.

Oracle DBIM introduces the following new physical table

statistics (which we will call in-memory statistics in this paper):

number of IMCUs, number of in-memory blocks, number of in-

memory rows, number of in-memory transaction journal rows,

and the in-memory quotient. For partitioned tables, in-memory

statistics, like other table statistics, are maintained at the partition

level. Table-level in-memory statistics are derived by aggregating

partition-level statistics.

An in-memory block corresponds to a specific disk block of the

table. If the table is fully populated in-memory, there will be an

equal number of in-memory blocks and on-disk blocks. A table

partially populated in-memory will have a smaller number of in-

memory blocks compared to the on-disk blocks. The in-memory

quotient is the ratio of the in-memory blocks to the number of on-

disk blocks. Its value ranges from 0 to 1, both inclusive, and it

indicates the fraction of the table that is populated in-memory. If

an in-memory table is partitioned, the in-memory quotient is

computed for each partition, since in-memory statistics are

partition-specific.

In-memory statistics are maintained in real-time since parts of a

table can be populated in or evicted from the in-memory area at

any time. For example, if enough new rows are inserted into a

table, then the number of IMCUs might change. If a large number

of rows are inserted and there is not enough space in the in-

memory area, then some rows will remain on disk only which

means an in-memory quotient less than 1. The optimizer takes

into account the current in-memory statistics during query

compilation to ensure accurate costing and plan selection. Cached

query execution plans are invalidated using the same mechanism

as when regular table statistics change.

For queries on partitioned tables, the optimizer can sometimes

determine the partitions that must be scanned by analyzing the

predicates on the table. If this partition pruning [10] is possible at

compilation time, the optimizer computes in-memory statistics for

the remaining partitions by aggregating the in-memory statistics

of each partition.

Consider a table with four partitions, P1 through P4, where P1 and

P2 are on-disk while P3 and P4 are in-memory. For these

partitions, suppose M1 through M4 are the number of in-memory

blocks and D1 through D4 are the number of disk blocks, Mi ≤ Di.

Since P1 and P2 are on-disk, M1 and M2 will be 0. The in-memory

quotient of the entire table is (M3+ M4)/(D1+ D2+ D3+ D4), which

is a value less than 1.

Consider three possible queries on this table where partition

pruning takes place:

 Only partitions P1 and P2 must be scanned. The

optimizer will compute the aggregate in-memory

quotient as 0 since these two partitions are disk-only. In

other words, this query will be satisfied purely from a

disk scan with no benefit from in-memory.

 Only partitions P3 and P4 must be scanned. The

aggregate in-memory quotient will be computed as

(M3+ M4)/(D3+ D4). This value will be 1 if these two

partitions are entirely in-memory (M3 and M4 are equal

to D3 and D4, respectively) which means that the table

scan will be entirely from in-memory with no disk

access.

 Partitions P2 and P3 must be scanned. The aggregate in-

memory quotient will be M3/(D2+ D3) which is a value

less than 1. This matches the fact that the scan of P2

will be from disk and that of P3 will be from in-memory.

As the above example shows, the aggregation of in-memory

statistics after partition pruning allows the optimizer to accurately

estimate scan costs that reflect the true cost. Using global in-

memory statistics is not appropriate. This is especially important

because partitions are often highly skewed with some containing

far more data than others.

When executing queries on Oracle RAC, each instance compiles

the query separately. The instance where the query is submitted

compiles and generates the initial execution plan followed by each

of the other instances doing the same. Oracle’s parallel query

framework requires each instance to reproduce the same execution

plan.

On RAC, each instance has its own in-memory area. Suppose a

query references an in-memory table. If this table is defined as

DUPLICATE ALL, it will be populated in the in-memory areas of

each instance. This means that the in-memory statistics of the

table are the same on all the instances. Thus the optimizer on each

instance will estimate the same cost for the table scan and

generate the same plan for the query.

Now suppose the in-memory table is defined as DISTRIBUTE

AUTO. The table will be distributed in the in-memory areas of

each instance so that no instance has the entire table in its in-

memory area. The in-memory statistics on each instance will

reflect this, with an in-memory quotient that will be less than 1. A

naïve optimizer would assume that some disk scans would be

required. However, the Oracle query execution engine allocates

parallel processes on each instance in such a way that the entire

table scan is satisfied purely with in-memory scans from the

instances where the data is populated in the in-memory area.

If a query includes distributed in-memory tables, the optimizer

computes the effective in-memory statistics. These statistics are

computed by treating the multiple RAC nodes as a single node

and in-memory areas of all the nodes as one single store. For

example, the effective number of in-memory blocks is the sum of

the in-memory blocks in each node.

3.2 Cost Model
A query optimizer takes into account object statistics, system

statistics, and database settings when evaluating alternative

1772

execution plans. The optimizer is usually comprised of various

components. The estimator component computes predicate

selectivities (which help determine the resulting cardinalities of

tables, joins, and aggregations) and estimates the costs of various

database operations including access paths, join methods,

aggregations, communication between parallel processes, and

many more. A cost-based query transformation component [1]

works in conjunction with the estimator to enumerate and

compare semantically equivalent forms of the query.

The cost model of an optimizer includes I/O, CPU, and network

communication costs. Scans of on-disk row major tables have

different I/O and CPU costs than in-memory columnar tables. In

Oracle DBIM, we have enhanced the cost model to include new

cost formulas for in-memory tables. The in-memory-aware

optimizer supports queries with any combination of on-disk row

major tables and fully or partially populated in-memory columnar

tables. The awareness extends to RAC where the tables may be

duplicated or distributed in the in-memory column stores of

different instances. Below we describe the enhancements and

some of the new cost components in the cost model.

Storage index pruning cost: The optimizer estimates how many

IMCUs must be scanned after the in-memory storage index prunes

non-matching IMCUs. This is computed by applying the table

filter predicates on the minimum and maximum values of the

corresponding column CU. Consider the predicate c1 < 10.

Suppose the minimum value of one of the column’s CU is 15.

Then we can safely prune away that CU for scanning since none

of its rows will satisfy the predicate. The optimizer determines

this for every CU of the column. If there are predicates on

multiple columns, say c1 < 10 AND c2 > 5, the pruning is

computed for each column. Because these predicates are AND-

ed, the optimizer can prune an IMCU if any single predicate

prunes its column’s CU.

Because storage index pruning requires scanning every IMCU

header, the optimizer includes this in its cost for the table scan.

There are several other operations that are performed during the

scan. These operations are described below. Note that the costs

for these operations are included only for the IMCUs remaining

after storage index pruning. In the corner case where all IMCUs

are pruned, none of the following costs will apply.

Decompression cost: At run-time, column CUs must be

decompressed to retrieve the corresponding values. This must be

done for all referenced columns for the table. The decompression

cost of a CU is a function of the compression method used for that

CU. Different CUs, even for the same column, may be

compressed differently.

Predicate evaluation cost: Predicate evaluation on in-memory

tables takes place during the scan. For example, the predicate c1

< 10 may be evaluated on encoded column values while the CUs

for c1 are being scanned. In addition, the evaluation can be done

on multiple rows using vector operations on a SIMD system. If

there are multiple AND-ed predicates like c1 < 10 AND c2 > 5,

any IMCU that is eliminated because of an earlier predicate is

skipped for subsequent predicates.

Row stitching cost: This includes stitching all projected columns

into rows for the subsequent operation, like join, in the plan.

Transaction journal scan cost: The in-memory transaction

journal contains rows that were inserted or updated by DML

statements but that have not yet been populated in IMCUs. These

rows are in row major format and must be scanned in addition to

the data in the IMCUs.

All the above costs apply to the scan of the in-memory portion of

a table. Consider a table with D disk blocks and N rows that is

partially populated in-memory. The in-memory statistics will

reflect the partial population status: the in-memory quotient will

be q (< 1) and number of in-memory blocks will be Dq (< B). A

scan of this table will require reading both the in-memory and on-

disk portions. The in-memory scan cost is computed as described

above using the in-memory statistics. The on-disk scan cost is

computed using the standard cost model for row major tables but

with prorated statistics of D(1-q) blocks and N(1-q) rows (this

cost will include both I/O and CPU). These costs are then

combined to get the total table scan cost.

For partitioned tables, the optimizer uses aggregated in-memory

statistics as described in Section 3.1. This ensures that partition

pruning is correctly accounted for in the cost model.

3.3 Predicate Pushdown
Oracle DBIM can evaluate many types of single table filter

predicates on columnar formats directly using a bytecode

interpreter when scanning CUs. Such evaluations filter out rows

early on and avoid the cost of stitching columns of these rows.

Also, storage index pruning can make use of in-list and range

predicates to prune CUs before the scan takes place.

During query compilation, the optimizer figures out which

predicates in the query can be evaluated on compressed formats,

splits out these predicates, and pushes them down the query plan

to the in-memory scan. Predicates which cannot be evaluated

during the in-memory scan are still evaluated in the SQL

Execution engine.

The optimizer also generates implied predicates based on the user-

specified predicates in the WHERE clause and pushes them down

for storage index pruning.

3.4 Join Processing
Oracle supports three join methods: nested loops (where the

access is driven by an index), hash join, and sort merge. Each of

these join methods is implemented for different join types: inner,

outer, semi and anti joins. The latter two are a result of un-nesting

EXISTS and NOT EXISTS sub-queries respectively. Oracle also

supports several parallelization techniques for processing joins in

a multi-core and multi-node hardware configuration. These

techniques take into account the attributes of the tables processed

by the join (such as the static partitioning of the tables, size of the

tables), the join method, the join type, the number of processes

assigned to the join, the hardware configuration (number of nodes

in a cluster), etc. These techniques have now been enhanced to

also take into account how the tables are populated in-memory.

3.4.1 Parallel Join Processing
The most effective way to speed up join processing is to use a

larger number of processes. The join is executed in parallel by

dividing the joined tables’ rows into chunks and sending one or

more chunks to the processes performing the join. Dividing the

rows is performed by the set of processes (producers) producing

the rows, which, in the simplest case, scan a table from disk. The

producers send chunks to the set of processes (consumers)

performing the join. The work of dividing and sending the tables’

rows (called data redistribution) adds to the overall time to

complete the join processing. So it is important to pick the most

efficient way to redistribute data. Oracle supports several

1773

redistribution techniques from which the optimizer decides based

on the table sizes, the join method, the join type, the number of

processes performing the join, and the hardware configuration [6].

One such technique, referred to as partition-wise join [24], applies

when joining two tables on their partitioning key. The benefit of

this technique is the absence of any data exchange between the

producers and consumers. For example, consider the following

query which returns the revenue for all orders in year 2014:

 SELECT sum(l_extendedprice*(1-l_discount)) as rev

 FROM lineitem, orders

 WHERE l_orderkey = o_orderkey

 AND o_orderdate between ’01-01-2014’ and

 ’12-31-2014’

Lineitem and orders are partitioned using hash on l_orderkey and

o_orderkey columns, respectively. Since the join key is the same

as the partitioning key, the parallel processing of the join can be

implemented using partition-wise join where each process joins

one partition from table lineitem to the corresponding partition in

orders, i.e., the process scans both partitions and processes the

join. Assuming P partitions and S processes, each process will end

up performing the scan and join P/S times. Tables can also be sub-

partitioned and partition-wise join can happen when the join key

is the sub-partitioning key. The partition-wise dimension is

referred to as either PARTITION or SUB-PARTITION depending

on whether the join is on the partitioning or sub-partitioning key.

Figure 2 illustrates the parallel partition-wise join between

lineitem and orders for the above example query using 4

processes. Lineitem is partitioned by hash on column l_orderkey

and sub-partitioned by hash on l_custkey. Orders is partitioned by

hash on o_orderkey. Each process (Pi) scans one partition of

lineitem (comprised of sub-partitions Li1, Li2, Li3, and Li4) and one

partition of orders (Oi).

Figure 2: Parallel Partition-wise Join

When joining partitioned in-memory tables in a RAC system, the

query optimizer must account for how the rows are populated in-

memory. Partitioned tables that are distributed can be populated

using three options: row-id range, partition, or sub-partition. The

first option divides the table into row-id ranges and populates

every range into the in-memory area of one node of a RAC

system. The second (resp. third) option populates one partition

(resp. sub-partition) into the in-memory area of one node of a

RAC system. The populate dimension is referred to as either

PARTITION or SUB-PARTITION depending on whether the

population is done using the partition or sub-partition option.

When the joined tables are populated along a dimension that does

not match the partition-wise dimension, then the scan operation

will have to read data from disk. Only when both the population

and partition-wise dimensions are the same does the scan read the

data entirely from in-memory.

Using the same example, assume lineitem is hash partitioned on

l_orderkey column (4 partitions) and hash sub-partitioned on

l_custkey column (4 sub-partitions) while orders is hash

partitioned on o_orderkey column (4 partitions). Figure 3

illustrates the case when lineitem is populated on the sub-partition

dimension. When process P3 scans the third partition of lineitem

(L31 … L34), it will read from in-memory only ¼ of the rows (L33

colored in green) with the rest read from disk (L31, L32, L34

colored in red). Figure 4 illustrates the case when lineitem is

populated on the partition dimension. A process Pi scanning the ith

partition of lineitem (Li1 … Li4) will find all its rows in-memory

and will perform no disk reads. The optimizer cost model for

partition-wise join has been enhanced to be aware of the populate

dimension. So for the same query on the same tables, the

optimizer may not use partition-wise join when the tables are read

from in-memory while it would use partition-wise join when the

tables are read from disk. The decision depends on the tradeoff

between reading data from memory and doing inter-process

communication (not using partition-wise join) vs. reading the data

from disk and not doing inter-process communication (using

partition-wise join).

Figure 3: Lineitem Populated on Sub-partition Dimension

Figure 4: Lineitem Populated on Partition Dimension

3.4.2 Join Filter
As explained earlier in Section 3.3, filter predicates are used by

the in-memory scan to discard CUs based on storage index

pruning. A join operation also throws away rows from the joined

tables that do not satisfy the join condition. The in-memory scan

can be made more efficient if the effect of join predicate filtering

is pushed down to the scan. This reduces the number of rows that

the scan has to construct (stitch), rows that would be just thrown

away by the join operation anyway. This is accomplished in

Oracle using a join filter, similar to the bloom filter concept

described in [2]. A join filter is created from the join key values of

the tables with which the in-memory table is joined using equality

comparison, and pushed down along with the other table filters.

Join filters are optimized for in-memory by evaluating them only

once per distinct value of the join key instead of once per row.

Using join filters reduces the throw away factor in joins and

reduces the row stitching cost in the in-memory scan. Join filters

provide extremely high performance improvement for certain

classes of queries such as star queries where dimension tables

1774

have filter predicates that reduce the rows returned from the scan

of the fact table by several orders of magnitude. In the example

query in Section 3.4.1, while scanning table orders, a join filter is

built based on the join key o_orderkey and combined with the

table filters evaluated during the scan of lineitem. This reduces the

number of rows constructed during the in-memory scan of

lineitem.

3.4.3 Partition Join Filter
A partition join filter is similar to a join filter but is used to prune

partitions instead of CUs. A partition join filter is generated for a

table if it is joined on its partitioning key. The join filter is used to

eliminate partitions during the scan and provide a level of pruning

above the CU. This optimization is used for disk-based scans as

well. In the example query given in Section 3.4.1, lineitem is

joined on its partitioning key, so a partition join filter is generated

when scanning orders and used to prune partitions during the scan

of lineitem.

3.5 Hybrid Data Access
Oracle DBIM allows a table to be partially populated in-memory

so a scan operation on such a table must be able to process both

on-disk database blocks as well as in-memory CUs. Since the cost

and time of reading on-disk data is very different than reading in-

memory data, it is possible that an index may perform better than

a full table scan for on-disk data but not for in-memory data. In

other words, the best way to access data from a partially populated

in-memory table may be a hybrid access path: index access path

for on-disk data and an in-memory scan for in-memory data. The

same principle applies when joining to a partially in-memory

table: a nested loops join can be used for the on-disk data and a

hash join can be used for the in-memory data.

Hybrid execution plans is an optimization technique introduced in

Oracle Database 11.2 for queries involving partially indexed

tables. For example, using the Oracle partitioning feature, a table

can be partitioned into physically independent partitions and every

partition can be indexed independently. Partial indexing is

commonly used for tables where most partitions are static, e.g., a

date-partitioned table with no data changes for partitions older

than a week. Creating indexes on the static partitions results in

zero overhead from DML on the table since DML will only affect

the non-indexed partitions. Access to the non-indexed partitions

will always use sequential scan while access to the indexed

partitions can use either sequential scan or index scan. Queries

that read data from both indexed and non-indexed partitions may

use a hybrid execution plan. The fact that a table is partially

indexed leads not only to a different access path for that table but

also affects other optimizer decisions, including the join method,

the join order, and query transformations (if they are cost-based).

Similar to partially indexed tables, any partition of a partitioned

table can be independently populated in-memory. Indeed, a

partially populated in-memory table may also be partially

indexed. The optimizer has been enhanced to generate hybrid

execution plans when the query accesses a mix of on-disk and in-

memory table partitions. This is made possible by the changes to

the cost model described in Section 3.2 which in turn uses the

partition-specific in-memory statistics described in Section 3.1.

The hybrid plan optimization for in-memory tables has been

implemented as a new cost-based query transformation which

rewrites a query into a semantically equivalent form where the

table is replaced by a UNION-ALL view with two branches: one

branch represents the access to the in-memory data only and the

other branch represents the access to the on-disk data only. Each

branch has filter conditions to restrict access to the relevant

partitions. Other operations in the query (e.g., join) can be pushed

into the UNION-ALL view. A cost-based decision determines

which operations to push into the view and therefore includes all

factors that are taken into account in the cost model.

For example, consider the following query which returns the

average revenue per zip code in outlet stores for year 2014:

SELECT stores.zipcode, avg(sales.revenue)

 FROM sales, stores

 WHERE sales.store_id = stores.id

 AND stores.type = ’Outlet’

 AND sales.sales_date between ’01-01-2014’

 AND ’12-31-2014’

 GROUP BY stores.zipcode

Table SALES has indexes on some of the columns commonly

used to join to dimension tables. One such index is on column

store_id. The table is partitioned monthly on the sales_date

column, i.e., every partition contains data for a single month of a

single year. With most queries accessing data from a subset of the

partitions, the table definition is changed to make the October to

December partitions in-memory. Since the query accesses data

from all of year 2014, the query optimizer has an opportunity to

use a different execution plan for the January-September

partitions than for the October-December partitions. An example

of such an execution plan is shown below. The optimizer

generated a hybrid execution plan with the first branch using a

nested loops join to fetch rows from SALES using an index on the

join key, and the second using a hash join to fetch rows from

SALES using an in-memory scan.

--

| ID | Operation | Name |

--

| 0| SELECT STATEMENT | |

| 1| HASH GROUP BY | |

| 2| VIEW | VW_TE_5 |

| 3| UNION-ALL | |

|* 4| TABLE ACCESS BY INDEX ROWID | SALES |

| 5| NESTED LOOPS | |

|* 6| TABLE ACCESS INMEMORY FULL | STORES |

| 7| PARTITION RANGE AND | |

|* 8| INDEX RANGE SCAN | S_STORE_ID |

|* 9| HASH JOIN | |

|* 10| TABLE ACCESS INMEMORY FULL | STORES |

| 11| PARTITION RANGE AND | |

|* 12| TABLE ACCESS INMEMORY FULL | SALES |

--

Predicate Information (identified by operation id):

 4 - filter(TIME_ID < '09-01-2014' AND

 TIME_ID >= '01-01-2014')

 6 - inmemory(TYPE='Outlet')

 8 - access(SALES.STORE_ID = STORES.ID)

 9 - access(SALES.STORE_ID = STORES.ID)

 10 - inmemory(TYPE='Outlet')

 12 - inmemory(TIME_ID >= '09-01-2014' AND

 TIME_ID < '12-31-2014')

3.6 Parallel Execution
Parallelism is an effective way to improve the performance of a

SQL statement. During the parallel execution of the statement,

every SQL operation in the execution plan is divided into tasks,

each assigned to a different process (slave process). For example,

the scan operation is parallelized by assigning a granule [6] of the

scanned table (sequence of database blocks) to a different process.

Data produced by a set of processes executing one operation are

distributed to the set of processes executing the next operation in

1775

the plan. The number of processes assigned to a SQL operation is

called the degree of parallelism (DOP).

Oracle supports two modes of parallelization: manual and

automatic. In the manual mode, the user specifies the DOP using

one of three options: (1) table property, (2) session configuration,

(3) hint. The order of precedence is hint, then session, then table

property. The automatic mode (Auto DOP) was introduced in

Oracle 11.2 to make it easier to deploy parallel execution in

database applications. At a high level, Auto DOP is a two step

process. In the first step (called serial optimization pass), the

query optimizer estimates the query execution time in serial mode

and the optimal DOP for every operation in the execution plan.

The estimated time is compared to a time threshold: if the

estimated time is less than the threshold, then the query is

executed in serial mode, otherwise it goes through the second

step. In the second step (called parallel optimization pass), the

optimizer derives the maximum DOP from all the operations in

the execution plan (computed in the first step) and re-optimizes

the statement using that DOP. If the ratio of serial execution plan

cost to the parallel execution plan cost is greater than DOP *

scalability-factor, then the optimizer generates a parallel plan

using the computed DOP, otherwise it generates a serial execution

plan. The scalability factor (a value between 0 and 1) is used to

account for the overhead of using parallel execution (creating and

assigning processes, various forms of communication, etc.).

Auto DOP applies to statements using on-disk tables or in-

memory tables. However, it works differently when applied to in-

memory tables as follows:

 The DOP derived for the in-memory scan accounts for

the same factors (described in Section 3.2) that the

optimizer cost model does: pruning of CUs, no disk

reads, rate of processing, etc.

 For a partially in-memory table, using the in-memory

quotient, a portion of the scan DOP is computed based

on the disk scan and another portion based on the in-

memory scan.

In a RAC environment, an in-memory table can be distributed

across multiple nodes. The optimizer ensures that the final DOP is

adjusted to a multiple of the number of nodes. For example, if the

computed DOP is 6 for a statement on tables distributed on 4

nodes, then the final DOP is 8 (4*2).

4. EXPERIMENTAL RESULTS
We evaluated the query optimizer using experiments. The goal of

these experiments was two-fold:

 Consider two identical queries, one using on-disk tables

and the other in-memory tables. Did the query with in-

memory tables perform better than that with the on-disk

tables?

 Consider a query with in-memory tables. If we disabled

all the in-memory-related enhancements to the

optimizer, did the query perform worse than with the

enhancements enabled?

In short, the goal was to verify whether the enhanced optimizer

generated optimal plans for queries with in-memory tables.

The experiments were performed on a system using Intel Xeon

with 16 CPU cores and 252 GB DRAM running Linux and Oracle

Database 12c Enterprise Edition. For the RAC experiments, we

used a 4-node cluster where each node had this same

configuration (for a total of 64 CPU cores and 1 TB DRAM).

In all the experiments that follow, except for the ones in Section

4.3, we cached all on-disk tables and indexes in the buffer cache.

This ensured a fair comparison between on-disk tables and in-

memory tables: there was no physical I/O for any query and the

performance differences were attributable solely to differences in

execution plans and data formats (row major in buffer cache vs.

columnar in-memory). This is an important point to keep in mind

when reviewing the results.

In the experiments in Section 4.3, the on-disk tables were not

cached in the buffer cache because the experiments were

specifically intended to verify and measure the amount of disk I/O

incurred.

4.1 Single Table Query
For this experiment, we created an on-disk table T_100_DISK

with 100M rows with 100 columns named C0 through C99. Then

we created an in-memory table T_100_IM with the same structure

and content as T_100_DISK. T_100_IM was fully populated in-

memory. For both tables, we created B-tree indexes on the column

C48 which was a unique column with values ranging from 1 to

100M.

We used a single node for this experiment and ran the following

query in serial:

SELECT <projected columns>

FROM <T_100_DISK | T_100_IM>

WHERE C48 < :bind

We ran several experiments by using all the combinations

possible by varying the following:

 Use T_100_DISK or T_100_IM.

 Use 12 different values for :bind to obtain predicate

selectivities of 0.00001%, 0.0001%, 0.001%, 0.01%,

0.1%, 1%, 5%, 10%, 25%, 50%, 75%, and 100%.

 Use 12 sets of projected columns: 1, 5, 10, 20, 30, 40,

50, 60, 70, 80, 90, and 100.

 Use optimizer hint to force an index access path (IDX)

or full table scan (FTS).

Figure 5: Single Table Query with 5 Projected Columns

0

50

100

150

200

250

1
E-

0
5

0
.0

0
0

1

0
.0

0
1

0
.0

1

0
.1

1

5

1
0

2
5

5
0

7
5

1
0

0

 N
o

rm
al

iz
ed

 T
im

e

Selectivity (%)

IDX

FTS-On-Disk

FTS-IM

1776

Figure 5 shows the performance of the IDX, on-disk full FTS, and

in-memory FTS plans for 5 projected columns at various

selectivities. As expected, the index plan is good at very low

selectivities but then rapidly degrades at higher selectivities. On-

disk FTS is worse than in-memory FTS at all selectivities, also as

expected. What is also remarkable is that at lower selectivities,

in-memory FTS is competitive with the index; only at extremely

low selectivities is the index better than in-memory FTS (although

this is not visible in the graph). This shows that certain indexes,

especially those used for analytic queries, can be dropped for in-

memory tables without loss of performance. On the other hand,

indexes used for OLTP queries, which often do single-value

lookups, may out-perform in-memory table scans and so cannot

be dropped.

Figure 6: Single Table Query with 20 Projected Columns

Figure 6 shows the same three plans with 20 projected columns.

Here too IM FTS is competitive with the index at low selectivities

and outperforms on-disk FTS at all selectivities. Comparing the

two figures, note the slightly worse performance of in-memory

FTS at high selectivities with more projected columns. This is

due to the increased cost in decompressing the additional CUs and

stitching them together into rows.

It is well known that an index is a good choice when there are

low-selectivity predicates that can be used as keys. As the

selectivity increases, the index performs worse and a full table

scan becomes more attractive. The inflection point is the

selectivity at which the index performs as well as a full table; the

index is better below the inflection point, and the table scan is

better above. The estimated inflection point is based on the

optimizer’s estimated cost of the access paths at various

selectivities. The actual inflection point is based on the run-time

performance of the two access paths. The estimated and actual

inflection points are generally close for any good optimizer but

not necessarily the same because of variations in runtime state and

inherent optimizer uncertainties. But one of the more

fundamental tests of the optimizer is whether the estimated and

actual inflection points for a given query follow a similar trend

when varying some aspect of the query, like the number of

projected columns. This metric is important because it indicates

the optimizer’s ability to adapt to various changes in the query or

table formats and correctly choose the optimal plan.

Figure 7: Time/Cost for Single Table Query

Figure 7 shows the normalized time to cost ratio at various

projected columns for both on-disk and in-memory FTS. The key

observation here is that both lines are more or less flat indicating

that the time increases proportionally with the optimizer cost

which indicates that the estimated cost is very accurate.

Another interesting question is what would happen if an in-

memory table was partially populated in-memory. This scenario

can arise in a real system either because of memory constraints or

because of the DBA consciously enabling only some partitions

(perhaps the most frequently accessed ones) for in-memory.

We created a table T_100_HPART_IM that was identical to

T_100_IM except that it was hash partitioned on the column C48

with 16 partitions. Then we ran the following query in serial:

SELECT <projected columns>

FROM T_100_HPART_IM

WHERE C49 < :bind

We conducted several experiments by using all the combinations

possible by varying the following:

 Use 2 different values for :bind to obtain predicate

selectivities of 1% and 10%.

 Use 2 sets of projected columns, 5 and 20.

 Start with all 16 partitions in memory (in-memory

quotient of 1). Alter one partition at a time to be non-

in-memory until all partitions are non-in-memory

making the table on-disk only. Assuming the partitions

are of equal sizes (the reason why we chose to partition

by hash), this will result in 17 different in-memory

quotients ranging from 0 to 1 in increments of 1/16.

Figure 8: Cost and Time with Varying In-Memory Quotient

0

50

100

150

200

250

1
E-

0
5

0
.0

0
0

1

0
.0

0
1

0
.0

1

0
.1

1

5

1
0

2
5

5
0

7
5

1
0

0

N
o

rm
al

iz
ed

 T
im

e

Selectivity (%)

IDX
FTS-On-Disk
FTS-IM

0

5

10

15

20

1 5 10 20 30 40

N
o

rm
al

iz
e

d

Ti
m

e
/C

o
st

 a
t

A
ct

u
al

In

fl
e

ct
io

n
 P

o
in

t

Projected Columns

FTS-IM

FTS-On-Disk

0
50

100
150
200
250
300
350

0

6
.2

5

1
2

.5

1
8

.7
5

2

5

3
1

.2
5

3

7
.5

4

3
.7

5

5
0

5

6
.2

5

6
2

.5

6
8

.7
5

7

5

8
1

.2
5

8

7
.5

9

3
.7

5

1
0

0

N
o

rm
al

iz
e

d
 T

im
e

In-Memory Quotient (%)

Normalized Estimated Cost

Execution Time

1777

If a table is partially in-memory, then some I/O is necessary (in

our experiments, this was logical I/O rather than physical disk I/O

since we ensured that all table blocks were in the buffer cache).

Since buffer cache reads are more expensive than in-memory, we

expect that as the in-memory quotient increases from 0 (on-disk)

to 1 (fully in-memory), the table scan should become faster.

Moreover, the optimizer cost should also decrease in the same

manner. Figure 8 (10% selectivity and 20 projected columns)

shows that this is indeed true. Using current in-memory statistics

that reflect the state of the table, the cost model accounts for the

mixed dual format scans accurately enough that the cost closely

tracks the elapsed time.

4.2 Join Query
For the join experiment, we used the same tables T_100_DISK

and T_100_IM described in Section 4.1. The experiments were

run on a single node in serial. The query was:

SELECT <projected columns>

FROM T LT, T RT

WHERE LT.C0 < :bind

 AND LT.C49 = RT.C48

For simplicity, we used the same table for the left and right sides.

This has no effect on the result. The following criteria were

varied:

 Use T_100_DISK or T_100_IM for T.

 Use 12 different values for :bind to obtain predicate

selectivities for the left table of 0.00001%, 0.0001%,

0.001%, 0.01%, 0.1%, 1%, 5%, 10%, 25%, 50%, 75%,

and 100%.

 Use 4 sets of projected columns: 1, 5, 10, and 20, using

a mix of columns from both the left and right tables.

 Use optimizer hint to force an index nested loops join or

hash join.

Note that we used C48 as the join column on the right side. This

was because both T_100_DISK and T_100_IM are indexed on

this column and so the index could be used with a nested loops

join. For hash join, the access path on the right side was a full

table scan. The access path of the left side table was fixed at full

table in-memory scan for all experiments.

Figure 9: Join Query with 5 Projected Columns

Nested loops join is optimal when the left table is small; larger

tables mean more index lookups on the right side which is sub-

optimal. Thus, there is an inflection point when nested loops join

becomes worse than hash join. For both on-disk and in-memory

joins, this inflection point is clearly seen in Figure 9 (with 5

projected columns) and Figure 10 (with 20 projected columns).

As expected, the in-memory hash join takes longer with

increasing selectivities and projected columns

Figure 10: Join Query with 20 Projected Columns

The nested loops results in Figure 9 deserve a closer examination.

The right side of the plans in both NLJ-IM and NLJ-On-Disk use

the same index access path. However, NLJ-IM uses an in-

memory scan for the left side whereas NLJ-On-Disk has a full

table scan from the buffer cache. At high selectivities, an in-

memory scan is worse than a buffer cache scan because of the

extra row stitching costs which explains why NLJ-IM becomes

worse than NLJ-On-Disk.

Figure 11: Time/Cost for Join Query

Figure 11 shows the normalized time to cost ratio for the join

query at various projected columns for both on-disk and in-

memory FTS. Both lines are mostly flat indicating that the time

increases proportionally with the optimizer cost. The cost is

reasonably accurate but the margin of error is slightly higher than

for the single table query.

4.3 Parallel Join Processing
The purpose of this experiment was to demonstrate the

importance of making the optimizer aware of the populate

dimension on RAC when the join key is the same as the partition

key of one or both tables in the join, as explained in Section 3.4.1.

We created a partitioned version of the 100M rows table

T_100_DISK described in Section 4.1. Table T_100_HH_IM was

partitioned by hash on column C48 into 16 partitions and sub-

partitioned by hash on column C49 into 16 sub-partitions. The

table was populated in-memory on the partition dimension which

allows an in-memory full partition-wise join if joined on C48.

0

100

200

300

400

500

600

700

1
E-

0
5

0
.0

0
0

1

0
.0

0
1

0
.0

1

0
.1

 1

5

1
0

2
5

5
0

7
5

1
0

0

N
o

rm
al

iz
ed

 T
im

e

Selectivity (%)

HJ-IM
NLJ-IM
HJ-On-Disk
NLJ-On-Disk

0

200

400

600

800

0
.0

0
0

0
1

0
.0

0
0

1

0
.0

0
1

0
.0

1

0
.1

 1

5

1
0

2
5

5
0

7
5

1
0

0
 N

o
rm

az
li

ed
 T

im
e

Selectivity (%)

HJ-IM
NLJ-IM
HJ-On-Disk
NLJ-On-Disk

1

2

4

1 5 10 20 N
o

rm
al

iz
e

d

Ti
m

e
/C

o
st

 a
t

A
ct

u
al

In

fl
e

ct
io

n
 P

o
in

t

Projected Columns

IM

On-Disk

1778

We constructed a self join query and forced a hash join executed

by 4 processes running on a 4-node RAC system, i.e., each

process was assigned to a different node. We varied the following:

 Join key. We generated 4 join conditions using different

permutations of C48 and C49 for probe and build tables.

 Number of projected columns. We used 5 and 20 items

with equal proportion from both build and probe tables.

 Number of rows used in the build table of the hash join.

We ran with 1M rows and 10M rows using a filter

condition on the build table.

In all, we ran 8 versions of the following query (B refers to the

build table and P to the probe table):

SELECT <5 columns | 20 columns>

FROM T_100_HH_IM B, T_100_HH_IM P

WHERE B.C0 < {1000000 | 10000000}

 AND B.<C48 | C49> = P.<C48 | C49>

In addition to the optimizer’s default plan, we also repeated the

execution by forcing a different plan to compare the quality of the

query optimizer decision.

We found that the optimizer used partition-wise join only when

the partition-wise join dimension matches the distribution

dimension, i.e., when the tables are joined on C48 regardless of

the number of projected columns and the number of rows in the

build table. That plan results in no disk reads and no inter-process

communication: every process reads the table rows from the local

node’s in-memory area. This is shown as the bar labeled “Full

PWJ on Distribution Dim” in Figure 12 and Figure 13.

Figure 12: Impact of Distribution Dim. on PWJ (sel=1%)

When the join uses C49 for the build table and C48 for the probe

table, then the query optimizer chose to broadcast the build table

instead which resulted in inter-process communication. This is the

purple bar labeled “Broadcast Build Table” in Figure 12 and

Figure 13. The alternatives, partition-wise join and partial

partition-wise join, performed much worse. These are shown

respectively as the bars labeled “Forced Full PWJ on Non

Distribution Dim” and “Forced Partial PWJ” in Figure 12 and

Figure 13. The optimizer also chose to broadcast the build table

when the join uses C49 for both the build and probe table, and

when the join uses C48 for the build table and C49 for the probe

table.

Figure 13: Impact of Distribution Dim. on PWJ (sel=10%)

4.4 Customer Workload
For this experiment, we used a workload from one of Oracle’s

customers. The database consisted of 31 tables and 35 indexes

with almost 3 billion rows in the largest table. 3 of the tables were

partitioned. 10 tables were composite-partitioned (partitioned at

two levels) and the rest were non-partitioned. The total on-disk

size of the database was approximately 1 TB. When all the tables

were fully populated in-memory, the total memory footprint was

156 GB, a compression ratio of approximately 7.

The workload had 32 decision support queries, none of which

were tuned in any way: there were no hints or parameters to

constrain or “help” the optimizer. We performed three different

experiments on this workload:

1. On-disk. All tables were on-disk only. This run served

as our baseline.

2. IM-. All tables were in-memory. In-memory awareness

was disabled for the optimizer but not for the SQL

execution engine. In other words, all plans were the

same as On-disk above, but all full table scans in the

plans were in-memory scans.

3. IM+. All tables were in-memory. All optimizer

enhancements were enabled to choose the best plans for

the workload.

We ran these 3 experiments twice: first on a single node and then

again on a 4-node RAC. On RAC, we declared the tables

DISTRIBUTE AUTO which meant that Oracle automatically

8
3

%
 I

/O

8
4

%
 I/

O

9
0

%
 I/

O

8
9

%
 I/

O

0

100

200

300

400

500

600

700

N
o

rm
al

iz
e

d
 T

im
e

Forced Full PWJ on Non Distribution Dim

Forced Partial PWJ

Broadcast Build Table

Full PWJ on Distribution Dim

Column Projection = 20 Column Projection = 5

8
5

%
 I/

O

1
3

%
 I/

O

8
0

%
 I/

O

8
2

%
 I/

O

0

100

200

300

400

500

600

700

N
o

rm
al

iz
e

d
 T

im
e

Forced Full PWJ on Non Distribution Dim
Forced Partial PWJ
Broadcast Build Table
Full PWJ on Distribution Dim

Column Projection = 20 Column Projection = 5

1779

distributed the tables into the in-memory areas of each of the 4

nodes. All experiments were done using Auto DOP.

The goal, as in earlier experiments, was to verify whether the

optimizer enhancements worked as designed, and generated plans

optimized for in-memory. There are two comparisons that are

interesting:

 Compare On-disk with IM-. This compares the

performance of the same execution plan when the only

change is making all tables in-memory.

 Compare IM- with IM+. Between these two runs, the

execution plans may be different and the goal is to

verify whether the optimizer, enhanced for in-memory

tables, picks plans that are optimal for in-memory.

Figure 14 shows the cumulative time for the workload in each of

the three experiments in both single node and RAC environments.

IM+ was significantly better than IM-: 65% on the single instance

and 66% on RAC. This is very encouraging because it shows that

our enhancements worked as designed: the optimizer chose the

plans and DOP that were in-memory-aware and cluster-aware.

Another point worth noting is that the On-Disk and IM-

performance was extremely close. This is because this workload

had queries where often an index was the best choice for certain

tables. The table scans that were in the plans became in-memory

scans in IM- which accounts for the slight improvement over On-

Disk.

The results of this experiment validate one of the key claims in

this paper. To get significant performance improvements, it is not

enough to just take on-disk row major tables and make them in-

memory columnar tables. The optimizer must also be made in-

memory-aware so that it can correctly cost and explore alternative

plans before choosing the best one.

Figure 14: Cumulative Time for Customer Workload

5. RELATED WORK
In recent years, there have been a number of main-memory-only

databases optimized for OLTP performances, including both

research prototypes such as HYRISE [9], H-store [11], HyPer [12]

as well as commercial systems such as solidDB [17], VoltDB

[23], SQL Server Hekaton [7] and Oracle TimesTen [14]. These

systems usually require the entire database to fit in memory.

While this speeds up transaction processing, it is sub-optimal for

analytic queries which scan a vast number of rows while

projecting only a few columns. In contrast, Oracle DBIM allows

the table to be partially populated in-memory depending on the

workload requirements, and the data could be present in both row

major format (in the buffer cache) and columnar formats. Oracle

DBIM provides all the features of a relational database, including

full ACID properties, with complete application transparency.

The idea of column major tables dates all the way back to the

1980s. Sybase IQ was the first commercialized column-major

storage product, and has been around since 1994. In the mid

2000s, the MonetDB [3] and C-Store [22] research prototypes

revived interest in column-oriented databases for analytic

workloads. The major contribution of these research prototypes

was to directly evaluate queries against the columnar formats. A

commercialized version of C-store eventually evolved into

Vertica [15], now marketed by HP. One feature that distinguishes

Vertica is the ability to define projections, which, like indexes in

row stores, contain copies of the base data that are in domain

order, rather than the default order in which rows are initially

loaded. While projections can provide improved performance for

queries requiring ordering, they consume additional storage and

complicate both database design and the re-assembly of rows

during query execution. MonetDB also spawned a

commercialized version called Vectorwise [25], which stores each

column separately as a vector.

Since the 2010s, major business intelligence and database vendors

have also begun to integrate columnar storage into their products.

SAP HANA [8] is a columnar in-memory database which

supports both OLTP and BI workloads. Microsoft provides

column store as an additional index through the SQL Server

Column Storage Index [16] and some new query operators that

take advantage of these indexes. IBM’s DB2 BLU [21]

acceleration has a query engine that operates directly on

compressed data format for scans, joins and aggregations.

Most of the main memory databases optimized for OLTP

workloads have limited enhancements in their query optimizers

for columnar tables. For example, Hekaton has no significant

changes to SQL Server’s optimizer, and H-store uses a simple

optimizer which is based on the communication costs across the

network.

Query optimizations for columnar databases are mostly focused

on leveraging the columnar-specific structures and execution

operators. For example, MonetDB has a simple optimization to

restrict the join order selection based on the physical properties of

the join columns. Similarly, C-store’s optimizer is mostly used to

pick the projection structure created for column groups. This

optimizer is minimalist in that the projections it reaches first are

chosen for the query and the join order of the projections are

completely random. Vertica’s original optimizer was targeted for

star schemas, and every query had to be first converted to a star

schema. It has since acquired capabilities found in traditional

optimizers, including a physical cost model and column

histograms. IBM BLU’s optimizer generates different types of

execution plans, called evaluator chains, specifically for columnar

compressed tables. The evaluators work only on single table

queries, and join queries are restructured into a list of single table

queries by the optimizer.

12037 12284 12011 12278

4233 4130

0

2000

4000

6000

8000

10000

12000

14000

Single Node RAC

N
o

rm
al

iz
e

d
 T

im
e

On-Disk

IM-

IM+

1780

6. CONCLUSION
Oracle Database 12c introduces a revolutionary dual-format in-

memory columnar technology. It provides substantial

performance benefits with very minimal user effort and no

application changes. Oracle DBIM works with all workloads,

including OLTP and data warehouse workloads.

In this paper, we described the changes made to Oracle’s leading-

edge query optimizer to make it in-memory-aware. These

changes enable the optimizer to choose plans that are optimal for

the specific configuration and system state when a query is

executed. This includes queries executed on a single node and on

RAC, and queries that involve on-disk and in-memory tables

where the latter may be fully or partially populated in-memory.

Using multiple workloads, including a large customer workload,

we showed that the optimizer picks the best plans and degree of

parallelism for queries with in-memory tables. We also showed

that if the optimizer enhancements are disabled, the performance

drops to the level of on-disk tables. These experiments confirm

that the optimizer enhancements are effective and essential.

Without these enhancements, the optimizer may choose sub-

optimal plans which can negate the expected benefits of an in-

memory columnar database.

The query optimizer plays an important role in realizing the full

potential of fast query performance in Oracle Database In-

Memory.

7. REFERENCES
[1] Ahmed, R. et al. Cost-Based Query Transformation in

Oracle. Proceedings of the International Conference on Very

Large Data Bases (VLDB), pp. 1026-1036, 2006

[2] Bloom, B. Space/Time Trade-offs in Hash Coding with

Allowable Errors. Communications of the ACM, 13(7), pp.

422-426, 1970

[3] Boncz, P. et al. MonetDB/XQuery: A Fast XQuery Processor

Powered by a Relational Engine. Proceedings of the 2006

ACM SIGMOD International Conference on Management of

Data, pp. 479-490, 2006

[4] Bridge, W., Joshi, A., Keihl, M., Lahiri, T., Loaiza, J. The

Oracle Universal Server Buffer Manager. Proceedings of the

23rd VLDB Conference, pp. 590-594, 1997

[5] Chakkappen, S. et al. Efficient and Scalable Statistics

Gathering for Large Databases in Oracle 11g. In Proceedings

of the 2008 ACM SIGMOD Conference on Management of

Data, pp. 1053-1064, 2008

[6] Cruanes T., Dageville, B., Ghosh, B. Parallel SQL Execution

in Oracle 10g. Proceedings of the 2004 ACM SIGMOD

International Conference on Management of Data, pp. 850-

854, 2004

[7] Diaconu, C. et al. Hekaton: SQL Server’s Memory-

Optimized OLTP Engine. Proceedings of the 2013 ACM

SIGMOD International Conference on Management of Data,

pp. 1243-1254, 2013

[8] Färber, F. et al. The SAP HANA Database—An Architecture

Overview. IEEE Data Eng. Bull. 35(1), pp. 28-33, 2012

[9] Grund, M. et al. HYRISE: A Main Memory Hybrid Storage

Engine. Proceedings of the VLDB Endowment, 4(2), pp. 105-

116, 2010

[10] Jakobsson, H., Zait, M., Dageville, B. Method and

Mechanism for Partition Pruning. U.S. Patent No. 6,965,891,

2005

[11] Kallman R. et al. H-Store: A High-Performance, Distributed

Main Memory Transaction Processing System. Proceedings

of the VLDB Endowment, 1(2), pp. 1496-1499, 2008

[12] Kemper, A., Neumann T. HyPer: A Hybrid OLTP&OLAP

Main Memory Database System Based on Virtual Memory

Snapshots. Proceedings of the 2011 IEEE 27th International

Conference on Data Engineering, pp. 195-206, 2011

[13] Lahiri, T. et al. Oracle Database In-Memory: A Dual Format

In-Memory Database. Proceedings of the 2015 IEEE 31st

International Conference on Data Engineering, pp. 1253-

1258, 2015

[14] Lahiri, T., Neimat, M., Folkman, S. Oracle TimesTen: An In-

Memory Database for Enterprise Applications. IEEE Data

Eng. Bull. 36(2), pp. 6-13, 2013

[15] Lamb, A. et al. The Vertica Analytic Database: C-Store 7

Years Later. Proceedings of the VLDB Endowment, 5(12), pp

1790-1801, 2012

[16] Larson, P., Hanson, E., Price, S. Columnar Storage in SQL

Server 2012. IEEE Data Eng. Bull., 35(1): pp. 15-20, 2012

[17] Lindstrom J., Raatikka, V., Ruuth, J., Soini, P., Vakkila, K.

IBM solidDB: In-Memory Database Optimized for Extreme

Speed and Availability. IEEE Data Eng. Bull. 36(2), pp. 14-

20, 2013

[18] Oracle Database In-Memory. Oracle White Paper, Oracle

2014

[19] Oracle Database In-Memory: In-Memory Aggregation.

Oracle White Paper, Oracle, 2015

[20] Oracle Real Application Clusters (RAC). Oracle White

Paper, Oracle, 2013

[21] Raman, V. et al. DB2 with BLU Acceleration: So Much

More than Just a Column Store. Proceedings of the VLDB

Endowment, 6(11), pp. 1080-1091, 2013

[22] Stonebraker, M. et al. C-Store: A Column-oriented DBMS.

Proceedings of the the 31st International Conference on Very

Large Data Bases (VLDB), pp. 553-564, 2005

[23] Stonebraker, M., Weisberg, A. The VoltDB Main Memory

DBMS. IEEE Data Eng. Bull. 36(2), pp. 21-27, 2013

[24] Zait, M., Dageville, B. Parallel Partition-wise Joins. U.S.

Patent No. 6,609,131, 2003

[25] Zukowski, M., Boncz, P. Vectorwise: Beyond Column

Stores. IEEE Data Eng. Bull., 35(1): 21-27, 2012

1781

