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ABSTRACT
The most effective way to explore data is through visualizing the
results of exploration queries. For example, an exploration query
could be an aggregate of some measures over time intervals, and a
pattern or abnormality can be discovered through a time series plot
of the query results. In this paper, we examine a special kind of ex-
ploration query, namely object-centric exploration query. Common
examples include claims made about athletes in sports databases,
such as “it is newsworthy that LeBron James has scored 35 or more
points in nine consecutive games.”

We focus on one common type of visualization, i.e., 2d scat-
ter plot with heatmap. Namely, we consider exploration queries
whose results can be plotted on a two-dimensional space, possibly
with colors indicating object densities in regions. While we model
results as pairs of numbers, the types of the queries are limited only
by the users’ imagination. In the LeBron James example above, the
two dimensions are minimum points scored per game and number
of consecutive games, respectively. It is easy to find other equally
interesting dimensions, such as minimum rebounds per game or
number of playoff games.

We formalize this problem and propose an efficient, interactive-
speed algorithm that takes a user-provided exploration query (which
can be a blackbox function) and produces an approximate visual-
ization that preserves the two most important visual properties: the
outliers and the overall distribution of all result points.

1 Introduction
Our work is partially motivated by observing claims made about
interesting facts from data in the context of computational jour-
nalism [6, 5]. For example, ESPN Elias Says...1 produces many
factual claims based on players’ performance statistics for a variety
of professional sports in North America. While these claims come
in very different forms, the key ingredient is comparison against
claims in the same form. As an example, consider the following
two claims about the performance of two NBA players.

• Kevin Love’s 31-point, 31-rebound game on Friday night ...
Love became the first NBA player with a 30/30 game since

∗Work partially done at Google Research New York.
1http://espn.go.com/espn/elias
This work is licensed under the Creative Commons Attribution-
NonCommercial-NoDerivs 3.0 Unported License. To view a copy of this li-
cense, visit http://creativecommons.org/licenses/by-nc-nd/3.0/. Obtain per-
mission prior to any use beyond those covered by the license. Contact
copyright holder by emailing info@vldb.org. Articles from this volume
were invited to present their results at the 41st International Conference on
Very Large Data Bases, August 31st - September 4th 2015, Kohala Coast,
Hawaii.
Proceedings of the VLDB Endowment, Vol. 8, No. 12
Copyright 2015 VLDB Endowment 2150-8097/15/08.

Moses Malone had 38 points and 32 rebounds in a game
back in 1982.2

• He (LeBron James) scored 35 or more points in nine consec-
utive games and joined Michael Jordan and Kobe Bryant as
the only players since 1970 to accomplish the feat.3

The purposes of both claims above are to highlight some player’s
performance, but they describe different aspects of the game. Com-
mon to both claims is the attempt to impress the reader by stating
that few others have done the same or better before.

However, instead of just singling out outliers in text, it is more
powerful to visualize the set of points representing all claims of
the same form. Figure 1a shows one such visualization of all NBA
players’ points and rebounds stats in a single game by treating
them as 2d points and plotting them in a scatter plot of the “sparse”
points and a heatmap showing the density of the remaining points
(we will define “sparse points” formally in Section 2.2). The visu-
alization gives clear context on how impressive Kevin Love’s 31/31
performance is by showing not only whether the performance is
on the skyline, but also how far away it is from the edge of the
cloud of mediocre performances. Furthermore, this single visual-
ization can help the users explore many outstanding performances
for which the same form of claims can be made, and see the distri-
bution of players’ performance in terms of points-rebounds in a
single game. A similar visualization can be generated to evaluate
LeBron James’ 9-game 35-plus-point streak. Indeed, this visual-
ization can be used for any form of claim that can be represented
by a 2d scatter plot.

We identify two visual features essential to data exploration—
outliers and clusters. This leads us naturally to the choice of over-
laying a scatter plot (for outliers) on a heatmap (for clusters).

Given a large set S of points to visualize, we do not need to
show the exact distribution of S because in practice because ordi-
nary users are unable to perceive the difference between two dense
regions containing a similar number of points (say 200 versus 210).
Approximation can be easy in certain cases. For example, in the
Kevin Love case, if the underlying data are stored as points and
rebounds per player per game, each exploration query is a simple
lookup. One can apply many existing outlier detection and density-
estimation techniques to produce an approximation of the final plot.
In many other cases, however, computing this visualization, even
approximately, is a non-trivial task since it involves running many
potentially expensive aggregate queries over the entire database.
For example, in the LeBron James case, it takes an algorithm lin-
ear time to scan through a player’s game-by-game scoring stats to
2http://espn.go.com/espn/elias?date=20101113
3http://www.nba.com/cavaliers/news/lbj_mvp_candidate_
060419.html
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Notation Description
Ri data for object i, as a sequence of tuples
ni number of tuples in Ri
N number of objects
D dataset, as a collection of data R1...N for objects 1 . . . N
‖D‖ total number of tuples in D

f an exploration query
Sf (D) result of evaluating f on D, as a multi-set of 2d points

NR2 (p; r) neighborhood of a 2d point p given radius r
NS(p; r) neighbors of a 2d point p in multi-set S given radius r
Ssparse points of S in a sparse neighborhood
Ssketch a “sketch” of S \ Ssparse, as a set of weighted 2d points
rx, ry neighborhood size
τ neighborhood density threshold for points in Ssparse

Table 1: Table of notations.

produce S representing his prominent scoring streaks [10]. In such
cases, without knowing how the input is transformed into S, it is
impossible to sample directly from S.

We observe that many datasets for exploration are comprised of
data for objects (e.g., players or teams), and an exploration is often
represented as a 2d point set S obtained by evaluating a blackbox
exploration query on all the objects. It is clear that the objects do
not contribute equally to the visual properties of the visualization of
S: many objects produce only points that will be buried inside dense
regions, and are not interesting from the visualization perspective
except that they contribute to the density color.

Consider a user-provided exploration query modeled as a func-
tion f that maps the data of each object to a set of 2d points, our
goal is to, without knowing how f behaves, find a small set of ob-
jects, evaluate f on their data and produce a good approximation
of the scatter plot with heatmap visualization of S and preserve the
two aforementioned key visual features: outliers and clusters.

The main contributions of this paper include:

1. We formally define the two key visual features of scatter plot
with heatmap type visualization, and quantify the quality of
approximation.

2. We propose a two-phase sampling-based algorithm that ef-
ficiently generates an approximation of S for visualization
without obtaining the exact S by evaluating f on the full data.
Quantitative justification is provided.

3. We perform extensive experiments to evaluate both the qual-
ity of approximation and the efficiency of the sampling-based
algorithm for interactive data exploration.

2 Exploration Query Problem
In this section, we introduce the basic notations (Section 2.1) and
formally define the problem (Section 2.2). In Section 2.3, we present
three examples of exploration queries that we study in this paper.
For readers’ convenience, we summarize all notations in Table 1.

2.1 Preliminaries
Suppose we have data D for N distinct objects as N relations R1,

. . . ,RN . The data for object i, Ri = (ti,1, . . . , ti,ni ), is an ordered
set of ni tuples. All tuples ti,j conform to the same schema R. Let
‖D‖ =

∑N
i=1 ni denote the total number of tuples for all objects.

Let f denote an exploration query that takes input an ordered
set of tuples conforming to R, and outputs a (multi-)set of points
in R2. The result of evaluating f on data D = {R1, . . . ,RN} is
denoted by Sf (D), or simply S when the context is clear. Sf (D) is
defined as the bag of the results of evaluating f on each Ri, i.e.,

Sf (D) = ]Ni=1f(Ri), or simply S when the context is clear. We
formally define the neighborhood of a point p ∈ R2 as

NR2 (p; r) = {p′ ∈ R2 | ‖p− p′‖ ≤ r},

with the radius r as an input.
The neighbors of a point p in a finite set S is denoted by

NS(p; r) = NR2 (p; r) ∩ S.

In the remainder of the paper, we use (scaled) L∞-norm for ‖ · ‖
in the neighbor definition above, i.e.:

NR2 (p; rx, ry) = {p′ ∈ R2 | |p.x− p′.x| ≤ rx ∧ |p.y − p′.y| ≤ ry};
NS(p; rx, ry) = NR2 (p; rx, ry) ∩ S.

However, the results of this paper extend to other commonly used
norms as well, e.g., L1-norm, L2-norm.

2.2 Problem Definition
Given an exploration query f on dataset D, our goal is to efficiently
generate the following two components for visualizing Sf (D).

• Ssparse: points of Sf (D) in a sparse neighborhood (for scatter
plot);

• Ssketch: a “sketch” of rest of the points, as a set of weighted
points (for heatmap).

We define the sparse points Ssparse as the set of points whose
number of neighbors is no more than some sparsity threshold τ .
Given rx and ry that define the neighborhood of a point and sparsity
threshold τ , all points with a sparse neighborhood can be precisely
identified.

For all the other points, i.e., S \ Ssparse, we create a sketch Ssketch

(not to be confused with the concept of sketch in data streams). The
sketch consists of a set of weighted points, where (p, wp) ∈ Ssketch

represents an estimated wp points of S \ Ssparse in p’s neighborhood.
A good sketch should have each point of S\Ssparse “covered” by one
point of Ssketch. We use the sketch distance function δ, which will be
defined later in this section, to capture the quality of a sketch Ssketch

measured w.r.t. S \ Ssparse.
The challenge in evaluating an exploration query comes with a

computation budget. To serve the purpose of realtime exploration,
we would like to evaluate the query f without performing the eval-
uation on the full data of all objects. With a limited amount of data
accesses, an approximate solution (S̃sparse, Ssketch) needs to be found.
The quality of S̃sparse is measured by its precision and recall w.r.t.
Ssparse, while the quality of Ssketch is measured by δ w.r.t. S \ Ssparse.

Motivated by achieving as high quality as possible for both Ssparse

and Ssketch within a budget constraint, we formally define the explo-
ration query evaluation problem as follows.

Definition 1 (Exploration Query Evaluation). With a relational
schema R, a dataset of N objects D = {Ri}Ni=1, the full result
of an exploration query f is given by S = ]Ni=1f(Ri).

Given neighborhood radius rx, ry , a sparsity threshold τ , solve
the following two tasks:

• Task 1. Find S̃sparse that approximates the set of sparse point
Ssparse ⊆ S, where

Ssparse = {p ∈ S | |NS(p; rx, ry)| ≤ τ}.

• Task 2. Find a weighted point set

Ssketch = {(p, wp) | p ∈ S ∧ wp ∈ Z+}

that minimizes δ(S \ Ssparse, Ssketch).

subject to a given computation budget η ∈ (0, 1] such that at most
η · ‖D‖ tuples can be accessed during evaluation.
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(a) Ssparse and Ssketch from full result.
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(b) S̃sparse and Ssketch from an approximate solution: true positive; false
positive; false negative (all w.r.t. Ssparse).

Figure 1: Projection query example on (points,rebounds), visualized using 2d scatter plot for Ssparse and S̃sparse, on top of heatmap for
Ssketch. In the heatmap, the weight of each point is distributed uniformly in its neighborhood.

Sketch Distance. The distance function δ measures the quality of
the sketch Ssketch w.r.t. S \ Ssparse and needs to capture two aspects of
sketch quality:

I. the distribution of Ssketch should resemble that of S \ Ssparse;

II. the magnitude of Ssketch should be close to that of S \ Ssparse.

Definition 2 (Sketch Distance). Given a multiset of points P =

{p1, p2, . . . , pn} and a weighted point set Q = {(q1, w1), (q2, w2),

. . . , (qm, wm)}, the sketch distance4 between P and Q is defined as

δ(P,Q) = 1−
OPT

max{|P |, ‖Q‖}
,

where ‖Q‖ =
∑m
j=1 wj and OPT is the optimal solution to the

following integer program:

maximize
m∑
i=1

n∑
j=1

xij1[pj ∈ NR2 (qi; rx, ry)], (1)

subject to
n∑
j=1

xij ≤ wi, 1 ≤ i ≤ m (2)

n∑
i=1

xij ≤ 1, 1 ≤ i ≤ n (3)

xij ∈ {0, 1}, 1 ≤ j ≤ n, 1 ≤ i ≤ m. (4)

Consider P as the set of points to be sketched, i.e., S \ Ssparse,
and the weighted point set Q as the sketch. A point (q, w) ∈ Q

can cover a point p ∈ P if p and q are neighbors, and q can cover
at most w points in P . On the other hand, each point of p can be
covered by at most one point of Q. Hence, OPT is the maximum
number of points of P that Q can cover.

The quantity OPT
max{|P |,‖Q‖} measures the similarity between P

and sketch Q. Dividing by the larger of |P | and ‖Q‖ penalizes
possible disparity between them.

Let us revisit Kevin Love’s 31-point, 31-rebound game exam-
ple. Consider the performance of all NBA players in all games in
4The sketch distance is adapted from the Earth Mover’s Distance [15]
widely used in measuring the dissimilarity between two images in image
processing. Adaptations are made to suit the purpose of this work.

terms of point-rebound, and visualize all points (≈106 of them) by
combining Ssparse and Ssketch.5 In Figure 1a, points of Ssparse are plot-
ted as red dots. Ssketch is visualized using heatmap, by distributing
the weight of each point evenly in its neighborhood. Here, Ssparse

and Ssketch are produced using an expensive baseline algorithm (Al-
gorithm 1), which performs full evaluation on the entire dataset D
and guarantees δ(S \ Ssparse, Ssketch) = 0.

On the other hand, Figure 1b visualizes, in the same way, ap-
proximated sets S̃sparse and Ssketch produced by Algorithm 2, which
accesses only 20% tuples of the entire dataset, with the projection
query passed in as a blackbox function. To compare with the visu-
alization on the full result, we show false positives and false nega-
tives of S̃sparse w.r.t. Ssparse as grey and black dots, respectively. It is
obvious in both Figure 1a and 1b that Love’s 31-point, 31-rebound
performance was impressive, being far from the vast majority of all
points. One can also see the resemblance between the two figures,
even though Figure 1b incurs significantly fewer data accesses and
hence much lower latency.

2.3 Query Types
We study the following three types of exploration queries com-
monly made on sports data. In Section 6.1, we also show appli-
cations to two other domains, the Computer Science bibliography
and the Wikipedia edit history.

I. Projection Query. Given numerical attributes A,B ∈ R,

f(R) = {(t.A, t.B) | t ∈ R}.

An example application of the projection query would be
to find a player’s point-rebound stats in every game; i.e.,
(A,B) = (points,rebounds). When f is applied to Kevin
Love, one of the result 2d points would be (31, 31), which
corresponds to “Kevin Love’s 31-point, 31-rebound game.”

II. Count Query. Given numerical attribute A ∈ R,

f(R) = {(v, c) | v ∈ R.A ∧ c = |{t ∈ R | t.A ≥ v}|}.

5We set rx = ry = 2 and τ = 16 such that Ssparse contains roughly 100
points so that human eye can perceive.
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For example, Michael Jordan’s 38 games with 50 or more
points (most in NBA history6) maps to a 2d point (50, 38)

when evaluating a count query on Jordan’s game-by-game
stats data with A = points. Note that f can return multiple
points for Michael Jordan, with lower point values associated
with higher count values.

III. Streak Query. Given numerical attribute A ∈ R,

f(R) = Pareto optimal subset of {(v, len = r − l + 1) |
1 ≤ l ≤ r ≤ nR ∧ v = min

l≤i≤r
ti.A}.

This is known as the set of prominent streaks in sequence
R.A [10]. For instance, LeBron James’s 9-game 35-or-more-
points streak is represented by a 2d point (35, 9) in the result
set of evaluating a streak query on James’ stats (with A =

points).

While these three types of exploration queries are represented by
very different functions f , they share one common characteristic—
same formats of input (a relation conforming to schema R) and
output (a set of points in R2). In the rest of the paper, we illustrate
our algorithms using these query types.

3 System Overview
In this section, we first describe our storage structure for data, and
then walk through the flow of the algorithm.

3.1 Data Storage and Working Memory
From a system point of view, we would like to host the exploration
query evaluation service for multiple datasets. Hence, we will not
dedicate memory to storing the entire dataset, even if it fits into
memory by itself. Instead, the dataset is stored in SSTable [4], a
distributed key-value storage system supporting efficient lookup.
The data of an object is accessed via a service API using its index
as the key; additionally, any single tuple can be accessed using the
object index along with the tuple index as the key. In other words,
the API allows both object- and tuple-level access.

On the other hand, we do assume that a small amount of mem-
ory is reserved for storing a small sample of the dataset, and that
enough working memory is available, on a per-query basis, for stor-
ing data accessed during query evaluation (whose size is capped by
budget η) and for query evaluation.

3.2 Workflow
Here we describe the high-level workflow of evaluating an explo-
ration query (Figure 2). Detailed algorithms and analysis will be
provided in Sections 4 and 5, respectively.

0. Upon initialization of the query evaluator, we establish the
connection to the dataset D, and “prefetch” a random sample
of ζ‖D‖ tuples into memory, where ζ is the sample rate and
‖D‖ is the total number of tuples in D. We leave the the
details of this prefetching step to Section 4.

Since the prefetching step is performed only once and its cost
is amortized over all ensuing exploration queries regardless
of their types, we do not count its data accesses towards the
budget η in our problem definition. On the other hand, the
sample rate ζ is bounded by the amount of memory reserved
for storing the sample, which is far less than the total data
size.

6www.nba.com/jordan/list_50games.html

Algorithm 1: ExploreBase(f, rx, ry , τ)

1 S← ∅;
2 for i = 1 to N do
3 Ri ← LoadObjectData(i);
4 S← S ] f(Ri);
5 Ssparse ← ∅; Ssketch ← ∅;
6 foreach p ∈ S do
7 if |NS(p; rx, ry)| ≤ τ then
8 Ssparse ← Ssparse ] {p};
9 else

10 Ssketch ← Ssketch ] {(p, 1)};
11 return Ssparse, Ssketch;

1. When an exploration query comes in, f is passed in as a
blackbox function, with attribute(s) specified as parameter(s)
of f .

2. At its discretion, the algorithm executes function f on the
prefetched sample, and/or full data for a subset of the objects
retrieved via the object-level API. Depending on the algo-
rithm, this step may be performed more than once.

3. Based on the results of executing f in the previous step,
the algorithm computes the set Ssparse of sparse points and
a sketch of the remaining points S \ Ssparse, or approximations
thereof.

4. The results are then combined to produce a visualization for
the result of the exploration query, using a scatter plot over-
laid on top of a heatmap.

In this workflow, the evaluator assumes that it knows only the
input and output format of f , and nothing about how f actually
processes the input and produces the output. In other words, an
exploration query can be represented by any blackbox function f
carrying the signature specified in Section 2.1, with a few examples
given in Section 2.3.

4 Algorithms
In this section, we present two algorithms. The baseline algorithm
(Algorithm 1) performs exact evaluation of an exploration query
f , ignoring computation budget η, and computes accurate (Ssparse,
Ssketch) for the full result set S. The sampling-based algorithm (Al-
gorithm 2) produces approximate solutions to Ssparse and Ssketch more
efficiently than the baseline, within the computation budget η.

4.1 Baseline Algorithm
We first present a straightforward algorithm (Algorithm 1) that per-
forms exact evaluation on the full dataset given an exploration query
f . The algorithm takes as input (i) a callable function f specifying
the exploration query, and (ii) radii rx and ry that define the neigh-
borhood of a point, and sparsity threshold τ .

Algorithm 1 evaluates the exploration query in a brute-force fash-
ion. For each object i, we load its data Ri into memory (line 3). (If
a tuple is in the prefetched sample, we can avoid reloading it; this
detail is not shown in Algorithm 1.) Then, we feed object i’s data
as input to function f to evaluate (line 4). S is simply the union of
execution output over all objects. For each point p ∈ S, we include
it in Ssparse if it has no more than τ neighbors in S. Otherwise, we
simply create a sketch point for it with weight 1 in Ssketch.
Counting Neighbors. Neighbor counting by brute force can take
as much as O(|S|2) time. We use the following heuristic by parti-
tioning the result set S using grid cells each of size rx × ry .
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Figure 2: System workflow.

By Lemma 1, the neighborhood of a point p ∈ R2 contains the
grid cell �ij containing p, and is contained by the 3 × 3 grid cells
centered at �ij . Moving from R2 to the finite result set S, for a
p ∈ S that belongs to some partition Pij = S∩�ij , p’s neighbors in
S, i.e., NS(p; rx, ry), form a superset of Pij and fall within the 3×3

partitions centered at Pij (Corollary 1).

Lemma 1. For any p ∈ R2, if p ∈ �ij , where �ij = [i · rx, (i+ 1) ·
rx)× [j · ry , (j + 1) · ry), then we have

i. �ij ⊆ NR2 (p; rx, ry);

ii. NR2 (p; rx, ry) ⊆
⋃i+1
i′=i−1

⋃j+1
j′=j−1

�i′j′ .

Corollary 1. Given S ⊆ R2, partition it as S =
⋃
i,j∈Z Pij , where

Pij = S ∩ �ij . For any p ∈ Pij , we have

i. Pij ⊆ NS(p; rx, ry);

ii. NS(p; rx, ry) ⊆
⋃i+1
i′=i−1

⋃j+1
j′=j−1

Pi′j′ .

Because S is determined by f , whose behavior is assumed to be
unknown to the algorithm, it is not possible to index S beforehand
in order to speed up neighbor counting. However, with Corollary
1, we can avoid performing O(|S|2) comparisons, and narrow down
the possible neighbors of a point to its 9 adjacent partitions. More-
over, if a partition Pij contains more than τ points, we can imme-
diately determine that all its points should be added to the sketch.
Time Complexity. The execution of Algorithm 1 consists of three
steps: (i) loading each object’s data into memory, (ii) executing f
on each object’s data, and (iii) computing Ssparse and Ssketch from S.

Step (i) requires accessing the full dataset, which requires fetch-
ing (1 − ζ)‖D‖ tuples, with prefetched ones excluded. This use
of the prefetched sample is not very effective; we will see a much
better use of this sample in Section 4.2.

Steps (ii) and (iii) are carried out in memory. Step (ii) depends
on how f behaves, while step (iii) only depends on the size of the
result set S and the sparsity threshold τ .

For step (ii), the time complexity for the brute-force execution of
f is linear in the number of tuples for all three types of exploration
queries described in Section 2.3. Hence, the overall complexity of
executing such queries on D is O(‖D‖).

For step (iii), thanks to the counting technique we have described,
the worse case complexity is improved from O(|S|2) to O(τ · |S|).
The worse-case scenario is that each (non-empty) partition of S

contains τ points (so no point can be pruned for counting), and
each non-empty partition is adjacent to one or more (at most 8)
other non-empty partition(s). In this case, the total number of pairs
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(a) f1 : Projection on points-
rebounds plain
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(b) f2 : Projection on assists-
steals plain

Figure 3: Comparing results of projection queries with different
attributes.

of points compared is O
(
τ2 · |S|

τ

)
= O(τ · |S|). In particular, for all

three types of exploration queries we consider, |S| = O(‖D‖), i.e.,
linear in the size of the full dataset D.

Result Quality. In terms of the quality of the output, without
imposing the computation budget η, Algorithm 1 trivially returns
the exact Ssparse and a sketch that gives δ(S \ Ssparse, Ssketch) = 0.

4.2 Sampling-based Algorithms
The baseline algorithm essentially fetches the full dataset D, object
by object. Due to the large volume of the data, accessing the en-
tire dataset piece by piece via service API can be very costly. The
complexity of full evaluation and counting makes it inefficient to
perform such brute-force evaluation in an interactive environment.

The baseline algorithm also disregards the computation budget
η. Working under a budget constraint is challenging. Because we
do not assume anything about the behavior of f , there is no guar-
antee that evaluating f on partial data of an object will produce a
partial output of evaluating f on the object’s full data. Therefore,
in order to comply with the budget constraint, we must choose to
evaluate f on the full data for a subset of objects, and completely
ignore the remaining objects. But how can we know which subset
of objects to choose, without knowing how f behaves? The chal-
lenge is compounded by the problem that the data Ri of each object
i follows some unknown distribution. For example, in the context
of the basketball data, an object could be a player or a team. For a
player object, depending on the players’ position on the court (e.g.,
point guard vs. power forward), and depending on the ability of the
player (e.g., a superstar like Michael Jordan vs. a mediocre player),
the distribution of this object’s data will obviously be very different
from other objects.

Fortunately, the prefetched sample comes to rescue. Suppose
that for each object, we have a sample of its data. Then, the result
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Algorithm 2: ExploreSample(f, {RS
i}
N
i=1, rx, ry , τ, η)

1 SS ← ∅;
2 for i = 1 to N do
3 SS ← SS ] f(RS

i );
4 (O+,O−)← SelectObjects(SS, η);
5 S+ ← ∅;
6 foreach i ∈ O+ do
7 Ri ← LoadObjectData(i);
8 S+ ← S+ ] f(Ri);
9 S− ← ∅;

10 foreach j ∈ O− do
11 Rj ← LoadObjectData(j);
12 S− ← S− ] f(Rj);
13 S̃sparse ← ∅; Ssketch ← ∅;
14 foreach p ∈ S+ do
15 if |NS+ (p; rx, ry)|+ λ · |NS− (p; rx, ry)| ≤ τ then
16 S̃sparse ← S̃sparse ] {p};
17 else
18 Ssketch ← Ssketch ] {p, 1};
19 foreach p ∈ S− do
20 Ssketch ← Ssketch ] {p, λ};
21 return S̃sparse, Ssketch;

of applying f on the prefetched sample may resemble the full result
S in terms of outlier identities, even though the outliers returned by
f , e.g., a streak query, represent low-probability events that come
from one or a few tuples of the full data. In Section 5.1, we provide
an analysis of this connection between the result on the sample and
that on the full data for projection queries.

In the remainder of this section, we describe a general sampling-
based algorithm that uses the prefetched sample to select a small
number of objects, for which we access their full data for evaluation
(Algorithm 2).
Prefetching. Algorithm 2 assumes a prefetching step (Step 0 de-
scribed in Section 3.2) that works as follows. Upon initialization of
the query evaluator, given a fixed sample rate ζ, for each object i,
we sample ζni times uniformly and independently at random from
t1, . . . , tni with replacement. All the ζni sample tuples form the
sample data RS

i of object i. The full set of sample data {RS
i}
N
i=1

sits in the memory throughout the lifetime of the evaluator, and is
fed into the evaluation of each forthcoming exploration query f in
Algorithm 2.
Objects Selection. Algorithm 2 first executes f on the prefetched
sample for all objects. The result, denoted by SS, is the union of
f(SS

i ) along with the ownership of each point in the result (line 3).
Base on SS, we select two disjoint subsets of objects (line 4): (i) O+,
the set of objects such that we envision for each p ∈ Ssparse, the
object i that yields p under f (i.e., p ∈ f(Ri)) belongs to O+, and
(ii) O−, a random sample of all objects O excluding O+ (i.e., O \
O+). We ensure that the total number of tuples contained in the
full data for these objects is within the budget η. We defer the
discussion of how the objects are selected (line 4) to Section 5.
Full Execution. The two sets of objects O+ and O− are presum-
ably much smaller than the set of all objects. Algorithm 2 then
executes f on the full data for O+ and O−; we denote the result sets
as S+ and S− respectively.
Counting. There are two key differences in neighbor counting
and result generation compared to Algorithm 1: (1) only points of
S+ may be included in S̃sparse, and (2) while each point of S+ is
counted once as before, the presence of each point in S− is multi-
plied by λ, a multiplier depending on how the budget η is divided

between O+ and O−. The choice of the value of λ will also be
described in Section 5.

Time Complexity. Compared to the complexity of the Algorithm 1,
Algorithm 2 reduces the cost of fetching data and counting from
O(‖D‖) toO((ζ+η)·‖D‖). For cost of execution f for a query with
linear/super-linear complexity T (n), the overall time complexity is
reduced to T ((ζ + η) · ‖D‖). Specifically, for the three types of
queries we consider with linear time complexity, the overall time
complexity is also reduced to O((ζ + η) · ‖D‖).

Difficulty of Provisioning O+. It is obvious that the choice of
O+ is critical to the quality of S̃sparse—if i 6∈ O+, there is no chance
for points of f(Ri) to appear in S̃sparse. To understand why it is
necessary to perform online selection of O+ and O− based on SS,
one must consider the diversity of queries that can be applied to a
single dataset.

Figure 3 shows the scatter plot with heatmap of accurate results
for two queries of the same type (projection) but on different at-
tributes. Query f1 projects the NBA players’ game-by-game per-
formance to the points-rebounds plane, while f2 projects the
same data on two different attributes assists and steals. For
each of f1 and f2, we use a rectangular neighborhood of size ap-
proximately 1

10
× 1

10
of the result space, and a proper value of τ

that limits the size of Ssparse to be roughly 100. Comparing S1sparse
for f1 and S2sparse for f2, S1sparse has 99 points (possibly overlapping)
corresponding to 40 distinct objects, and S2sparse has 101 points cor-
responding to 46 distinct objects. Together, S1sparse and S2sparse consist
of a total of 83 distinct objects, sharing only 3 in common.

This example illustrates that it is impossible to use a static choice
of O+ to provide a good coverage of objects that result in points of
Ssparse for all possible queries. Therefore, we perform query-specific
online object selection, as we explain in the next section.

5 Objects Selection
In this section, we discuss how O+ and O− are selected in Algo-
rithm 2 (line 4).

At a high level, this process is analogous to the problem of com-
puting a small coreset of a large point set that can be used for ap-
proximating various “extent measures” of the full point set [1].
More specifically, for the exploration query evaluation problem,
we would like to approximate two types of extent measures—the
sparse points Ssparse ⊆ S, and a density estimate for all other points
S\Ssparse. The challenge here is that we do not have direct access to
the full point set S. For example, as we treat the evaluation function
f as a blackbox, there is no way to sample points uniformly and in-
dependently from S without computing it first, i.e., performing full
evaluation on all objects. In other words, with an f whose behavior
is unknown to Algorithm 2, the coreset we construct cannot be an
arbitrary subset of S. It has to be the result point set obtained by
evaluating f for a subset of the objects in O.

Overall, given a budget η on the number of tuples in {Ri}i∈O+∪O− ,
we first select O+ with budget η+, and then use whatever is left of
the budget to select O−.

5.1 Selecting O+

The objects selection step in Algorithm 2 (especially the choice of
O+) is crucial to the efficiency of the algorithm and to the qual-
ity of approximation (S̃sparse, Ssketch) to the actual solution (Ssparse,
S \ Ssparse). A large O+ will give S̃sparse a good coverage of Ssparse.
However, a large O+ also leads to slower evaluation. Given a fixed
budget η+ on the number of tuples allowed to be accessed, effi-
ciency would not be an issue anymore, as the number of tuples to
be evaluated is limited, so the question becomes how to choose O+
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of limited size in order to maximize the recall of S̃sparse with respect
to Ssparse.

Observe that for any point p ∈ Ssparse where p ∈ f(Ri) (i.e., p
comes from object i), it is a necessary condition that i ∈ O+ for p
to possibly appear in S̃sparse. We assume that if an object produces
outlier points of S (when f is evaluated on the full data), it is likely
to also produce outlier points when the same query f is evaluated
on a sample of its data. Therefore, the prefetched sample serves as
a good guide for choosing O+. We take a partition-based approach
to address this problem.

Recall that SS denotes the result of executing f on the prefetched
sample for all objects (Algorithm 2, line 3). To select objects
for O+, we first partition SS into PS into grid cells each of size
rS
x × rS

y . More precisely, PS =
⋃
i,j∈Z PS

ij , where PS
ij = SS ∩ �S

ij ,
�S
ij = [i·rS

x, (i+1)·rS
x)×[j ·rS

y , (j+1)·rS
y). Based on the partitioning

PS and the point-object ownership relation, we propose two strate-
gies, namely sparsest-grid-cell (Section 5.1.1) and sparsest-object
(Section 5.1.2) for choosing O+ objects, given an upper bound η+
on the data size (in number of tuples).

5.1.1 Sparsest Grid Cell
The sparest-grid-cell strategy works as follows. Examine the par-
titions in non-descending order of their sizes. For a partition PS

ij ,
include in O+ all objects that contribute at least one point in PS

ij ,
i.e., O+ = O+ ∪ {k | SS

k ∩ PS
ij 6= ∅}. Terminate when the budget

η+ is reached.
We illustrate the idea behind this strategy using the projection

query. The projection query simply projects the high-dimensional
tuples onto a plane defined by two given attributes. Thus, the result
on sample SS is a random sample of the full result S of size ζ‖D‖.

It is known [16, 14] that for a d-dimensional point set P of size
n, and a random sample S of P of size k = (d/ε2) log(2n/δ), with
probability at least 1− δ, for all d-dimensional axis-aligned rectan-
gle R: ∣∣∣∣ |P ∩R||P |

−
|S ∩R|
|S|

∣∣∣∣ ≤ ε.
For projection query, let P = S, k = ζ‖D‖, rS

x = rx, and rS
y = ry ,

it follows that with probability at least 1 − 2‖D‖ · exp(ζ‖D‖ε2/2),
for all q ∈ SS:∣∣∣∣∣ |NS(q; rx, ry)|

‖D‖
−
|NSS (q; rS

x, r
S
y)|

ζ‖D‖

∣∣∣∣∣ ≤ ε.
This means, with high probability, for all points of SS, its neigh-

borhood density is close to its neighborhood density in S. There-
fore, a point of SS with a sparser neighborhood has a higher proba-
bility of being present in Ssparse.

Similar analysis can be conducted for the other query types as
well. While the sparsest-grid-cell strategy is oblivious to the be-
havior of the query evaluation function f , it follows the idea behind
the analysis above by choosing points with sparest neighborhood.

By Corollary 1, for any point p in a partition PS
ij , its number of

neighbors |NSS (p; rS
x, r

S
y)| is bounded from below by |PS

ij |. We use
this lower bound instead of counting the exact number of neighbors
for each point of SS for efficiency reasons.

5.1.2 Sparsest Object
An object that contributes to Ssparse might not be selected by the
sparsest-grid-cell strategy due to an “unfortunate” draw of sample.
However, if the “overall quality” of the object is good, we can hope
to reduce the role of luck in this process by considering the overall
sparsity of points produced by this object in SS.

For each object i, we define its overall sparsity as

µi = meanp∈SS∩f(RS
i
){|PS

ij | | p ∈ PS
ij}.

In other words, for each object i, we consider the mean neigh-
borhood sparsity of all points in SS that are produced by object i.
Again, the partition size is used as an approximation for the actual
number of neighbors for efficiency reasons.

In fact, the sparsest-grid-cell strategy can be considered as a spe-
cial case of the sparsest-object strategy with p = −∞ for the power
mean function

Mp(x1, x2, ...xn) =

(
1

n

n∑
i=1

xpi

)1/p

(5)

It is known that M−∞(x1, x2, ..., xn) = min(x1, x2, ..., xn), repre-
senting the strategy deployed by sparsest-grid-cell.

We experiment this strategy with three other instantiations of the
power mean function M, namely arithmetic mean (p = 1), geomet-
ric mean (p = 0), and harmonic mean (p = −1).

5.2 Selecting O−

We adopt a simple strategy for selecting the object set O−—given
O+, include each object of O \ O+ independently with probability
p. The multiplier in Algorithm 2 is set to λ = 1/p to maintain
expectation, i.e. for any point in S \ S+, its expected frequency in
S− is λ · p = 1.

Another way to think of this strategy is to sample points from S

with correlation. For any object i ∈ O \ O+, the sample point set
S− either includes all points of f(Ri), or none of it.

O− affects the quality of output by Algorithm 2 in several ways.
First, not all points of S+ lead to points in Ssparse after evaluating f
on O+. It is up to O− and S− to exclude false positives and include
true positives (line 15). Second, the quality of Ssketch is determined
primarily by S− (line 20).

5.2.1 Budget Constraint
Note that we need to comply with the total budget constraint η. Let
Xi ∼ Ber(p) be the Bernoulli random variable denoting if object
i is chosen to be included in O−, for i ∈ O \ O+. All Xi’s are
independent of each other. Let Y be the total number of tuples for
objects in O−. Let ‖O+‖ denote the number of tuples for objects in
O+. Following notations from Section 2.1, the expected number of
tuples for O− is given by

µY = E

 ∑
i∈O\O+

Xini

 =
∑

i∈O\O+

E[Xi]ni = p · (‖D‖ − ‖O+‖).

The variance in the number of tuples in O− is given by

σ2
Y = Var

 ∑
i∈O\O+

Xini

 = p(1− p) ·
∑

i∈O\O+

n2
i .

By (one-sided) Chebyshev’s inequality, we have

Pr [Y ≥ (1 + ∆) · µY ] ≤
1

1 + (∆µY /σY )2
.

By setting (1 + ∆)µY = η · ‖D‖ − ‖O+‖, we have

Pr
[
Y + ‖O+‖ ≥ η · ‖D‖

]
≤

1

1 + (∆µY /σY )2
,

where

∆ =
η · ‖D‖ − ‖O+‖

µY
− 1.

Since µY is monotone in p, choosing a smaller value of p gives a
better chance of complying with the budget constraint η.

1758



5.2.2 Quality of S̃sparse

We study how O− affects the quality of S̃sparse in two ways.

1. For a point in S+ ∩ Ssparse, what is the minimum probability
that it is included in S̃sparse?

2. For a point in S+ \ Ssparse, what is the maximum probability
that it is included in S̃sparse?

For a point q ∈ S+ ∩ f(Ri), i.e., a point of S+ coming from object
i, let Cj = |NS(q) ∩ f(Rj)| be the number of neighbor of q in S

coming from object j 6= i. We attempt to provide a bound for the
two questions above in the worst case, where all q have at least one
neighbor in S+. Let random variable Z denote the estimated num-
ber of q’s neighbors. Following the notation of random variable
Xi’s from Section 5.2.1, Z can be written as follows:

Z = 1 + λ ·
∑
j 6=i

XjCj .

And we have

µZ = 1 +
∑
j 6=i

Cj = |NS(q)|, σ2
Z =

1− p
p
·
∑
j 6=i

C2
j .

1. If µZ ≤ τ , by Chebyshev’s inequality, we have

Pr[Z > τ ] ≤
1

1 + (µZ − τ)2/σ2
Z

.

2. If µZ > τ , symmetrically, we have

Pr[Z ≤ τ ] ≤
1

1 + (µZ − τ)2/σ2
Z

.

These bounds suggest a couple of things. First, the farther µZ
deviates from τ , the more confident we can be that Algorithm 2
will make the right decision on whether to include q in S̃sparse. In
other words, it is harder to classify points correctly whose actual
neighborhood density in S is close to the sparsity threshold τ . Also,
since τ is presumably small, in general it is harder to classify points
of Ssparse correctly than S\Ssparse, i.e., high recall is harder to achieve
than high precision. Second, a larger budget for O− would lead to
a larger p, thus higher confidence in classification.

5.2.3 Quality of Ssketch

Recall that the sketch distance (defined in Section 2.2) is used to
measure the quality of a sketch Ssketch w.r.t. S \ Ssparse. While the
exact sketch distance is not easy to come by, an upper bound can
be obtained as follows.

Ignore Ssparse for now. Partition the result set S such that any
two points in the same partition are neighbors. For example, under
L∞-norm neighborhood definition, partition S into grid cells each
of size rx × ry . Let P1, . . . , Pm denote the resulting partitions. Let
Zj = λ · |S ∩ Pj | be the estimated number of points in partition Pj
by the sketch. Let Z =

∑
j Zj be the estimated total number of

points.
We have the following bound on δ(S, Ssketch), expressed in terms

of the means and variances of Zj’s and Z.

Pr

[
δ(S, Ssketch) ≥ 1−

1−∆−

1 + ∆+

]
≤
∑
j

1

1 + (∆−µj/σj)2
+

1

1 + (∆+µZ/σZ)2
. (6)

Tighter bounds can be obtained by taking into account the corre-
lation among Zj’s. When the distributions of number of points by
objects are identical in all partitions, we have

Pr

[
δ(S, Ssketch) ≥ 1−

1−∆

1 + ∆

]
≤

2

1 + (∆µZ/σZ)2
. (7)

If, on top of the identical distribution scenario, Ci’s are all equal,
we have µ2

Z

σ2
Z

= Np
1−p , and

Pr

[
δ(S, Ssketch) ≥ 1−

1−∆

1 + ∆

]
≤

2

1 + ∆2Np/(1− p)
. (8)

On the other hand, in the worse case where all Zj’s are indepen-
dent and µj = σj , we would have

Pr

[
δ(S, Ssketch) ≥ 1−

1−∆

1 + ∆

]
≤

N + 1

1 + ∆2p/(1− p)
. (9)

Taking Ssparse back into account, since the frequency counts in S+

are all precise (estimates with zero variance), including Ssparse does
not nullify any results above.

Proofs of the above bounds and additional remarks can be found
in the appendix. Note that these bounds may still be quite loose.
We will show the quality of sketch produced by Algorithm 2 via
empirical results in Section 6.

6 Experiments
We implemented our algorithms in C++ and evaluated the effi-
ciency and result quality on three real datasets. All experiments
are conducted on a machine with Intel Core i7-2600 3.4GHz CPU
and 7.8GB RAM.

6.1 Datasets
NBA players’ game-by-game performance statistics (NBA)7: By
considering a player as an object and his performance stats in each
game as a tuple, the dataset consists of 1.01 million tuples (‖D‖ ≈
1.01× 106) for a total of 3,129 players (n = 3129).

DBLP8: For the DBLP data set, we consider authors as objects,
and year-by-year performance of an author in terms of the author’s
numbers of publications in different venues; i.e., a tuple represents
an author’s performance in a given year, where attributes represent
the author’s publication counts in different venues in that year. This
dataset consists of ∼67k tuples (‖D‖ ≈ 67× 103) for ∼32k distinct
authors (n ≈ 32× 103)

Wikipedia edit history data (WIKI)9: The raw Wikipedia edit
log in the main namespace consists of a total of ∼116.6 million
entries, each representing a revision of an article, with information
of the user ID, article category, edit size, etc. We consider users as
objects, and a tuple is the (number, size) of all edits and minor edits
in one day. For over 3.3 million users (n ≈ 3.3 × 106), we have a
total of ∼8.91 million tuples (‖D‖ ≈ 8.91× 106).

6.2 Quality Evaluation
We evaluated the quality of (S̃sparse, Ssketch) in two aspects—(i) qual-
ity of S̃sparse w.r.t. Ssparse in terms of recall and, less importantly,
precision, and (ii) quality of Ssketch w.r.t. S \ Ssketch as measured by
the sketch distance function δ.

Note that the baseline algorithm (Algorithm 1) performs full
evaluation, and hence produces the exact Ssparse. Also, under L∞-
norm (rectangular neighborhood), the grid-partition-based baseline
algorithm trivially achieves δ(Ssketch, S \ Ssparse) = 0. Therefore,
7http://www.basketball-reference.com
8http://dblp.uni-trier.de
9https://snap.stanford.edu/data/wiki-meta.html
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Figure 4: (NBA) Vary sample rate ζ between 1-10%. Fix η+ = η− = .1.
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Figure 5: (NBA) Vary budget η+ for O+ between 2-20%. Fix ζ = .05, η− = .1.

we are only interested in evaluating the quality of results of the
sampling-based algorithm (Algorithm 2).

The same set of experiments were conducted on all three datasets.
We first illustrate observations common to all data sets using the
NBA data set.

Impact of O+ selection strategy and neighborhood definition.
We tested the performance of Algorithm 2 with (i) different strate-
gies for selecting O+ described in Section 5.1 (Mp with p = 1, 0,
−1, −∞), and (ii) different ‖ · ‖ functions in the neighborhood defi-
nition (Eq. 2.1), namely L1-, L2-, and L∞-norms, corresponding to
diamondoid, oval, and rectangular neighborhood, respectively. No
significant difference was observed in the quality of result produced
by Algorithm 2. We omit the figures here due to limited space.

Varying sample rate ζ. Performance of Algorithm 2 at different
sample rates ζ is shown in Figure 4. Results suggest that increasing
ζ gives notable improvement in the quality of S̃sparse in the begin-
ning (Figures 4a and 4b), but the improvement diminishes after-
wards (beyond 5% for NBA). On the other hand, ζ has almost no
impact on the quality of the sketch Ssketch in terms of distance to the
exact solution S \ Ssparse (Figure 4c).

Varying budget η+ for O+. In Figure 5, we fix ζ and η−, and ob-
serve the performance of Algorithm 2 with varying budget η+. We
see that as η+ increases, precision and recall keep increasing and
approach 100% (Figures 5a and 5b). Similar to the results for vary-
ing ζ, η+ shows little impact on the quality of Ssketch (Figure 5c).

Varying budget η− for O−. In contrast to ζ and η+, increas-
ing η− gives big improvement on the quality of Ssketch (Figure 6c),
while recall of S̃sparse is barely affected (Figure 5b). It is worth not-
ing that having too few objects O− may increase the amount of false
positives in S̃sparse, accounting for the increase in precision shown
in Figure 5a.

Varying overall budget η. Results above show how η+ or η−,
when the other is fixed, affects different aspects of result quality.

Now we show the tradeoff between η+ and η− when fixing the
overall budget η. In Figure 7, we fix the total budget η = η++η− =

20%, and show the three quality indicators, varying the budget al-
location between η+ and η−. From the earlier experiments, it is
expected that a larger η+ would lead to better precision and recall,
while a larger η− would lead to a better sketch with a smaller dis-
tance to the ground truth.

To measure the overall quality of a solution by Algorithm 2, we
use a generalized version of the F-score, by taking the weighted
harmonic mean of the three quality measure, precision, recall, and
distance. We assign weights β2

P , β2
R, β2

δ to precision, recall, and
1−δ, respectively, where βR > βδ > βP > 0, signifying decreasing
importance. Formally,

FβP ,βR,βδ =
β2
P + β2

R + β2
δ

β2
P
P

+
β2
R
R

+
β2
δ

1−δ(Ssketch,S\Ssparse)

. (10)

We show results of two F-scores, F1,3,2 and F2,4,3. In Figure 7a
and 7b, both F1,3,2 and F2,4,3 peak at η+ = 14%, leaving η− at 6%.
On the contrary, for streak query (Figure 7c), the quality of Ssketch is
still decent even with η− as small as 2%, which allows the majority
of the overall budget to be allocated to O+ in order to improve the
quality of S̃sparse.

Precision versus recall. From the results on NBA, we see a higher
precision than recall when sufficient budget is given. The same
holds for results on DBLP and WIKI. As we have shown in Sec-
tion 5.2.2, S− plays an important role in both eliminating false pos-
itives from and keeping true positives in S+. While the probabil-
ity of false positives only depends on the rate at which objects are
sampled from O \O+ to form O−, the probability of false negatives
is conditional on the fact that the object that yields some point of
S+∩ S̃sparse is included in O+ in the first place. And we discuss next
why it is hard to ensure the right objects are chosen for O+.
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Figure 6: (NBA) Vary budget η− for O− between 2-20%. Fix ζ = .05, η+ = .1.
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Figure 7: (NBA) Fix total budget η = .2 for O+ and O−, vary η+ for O+ between 2-18%.

We should note that the effectiveness of O+ selection depends
on both the data distributions and the query type. Algorithm 2 as-
sumes neither. To see how the data distribution affects the effec-
tiveness of O+, we compare the recall of S̃sparse on NBA and on
WIKI. In Figure 8a, we show the recall of S̃sparse on WIKI data with
varying sample rate. The result is significantly worse than that on
the NBA data (Figure 4b). For NBA, the average number of tuples
per player is over 300. In contrast, the average number of tuples
per author is below 2. Even the most renowned researchers have
tuples for fewer than 40 years. The consequence of a small sample
rate is a high probability of missing all tuples of an author, even for
the most prolific ones. A second set of results shown in Figure 8a
is based on a different sampling method: sample for each object at
a rate proportional to the size of the object, while the overall sam-
ple rate remains the same. By adopting this sampling strategy, we
implicitly assume that points of Ssparse are likely to be yielded by
objects with more tuples, and we get significant improvement over
uniform sampling.

The other important factor that influences the effectiveness of
O+ selection is the query type. On the NBA data, we see a notable
difference between the recall S̃sparse for count query and the other
two query types. Similarly, on the WIKI data, we observe a notable
difference between streak query and the other two types (Figure 9).
For streak query, a point of Ssparse comes from a (possibly small)
number of consecutive tuples. Uniformly sampled tuples may not
be representative at all for the overall quality of an object w.r.t. a
streak query. Similarly, for projection query, say for NBA, a gener-
ally lousy player could have one outstanding game that contributes
to Ssparse, which will unlikely be picked up by a small uniform sam-
ple. On the contrary, any point in S of a count query considers all
tuples of an object, making O+ selection less vulnerable to uni-
form samples. Had Algorithm 2 known the behavior of the query
function f , smarter sampling strategies could be deployed to better
guide the selection of O+.

6.3 Efficiency
We evaluate the efficiency of the sampling-based algorithm when
varying various parameters, namely (i) the object selection strat-
egy, (ii) the distance metric (L∞-/L1-/L2-norm), and (iii) the com-
putation budget η. The efficiency is measured as execution-time
speed-up over the baseline algorithm (Algorithm 1), which per-
forms full evaluation on all objects. Not surprisingly, the object
selection strategy and the distance metric do not influence the effi-
ciency of Algorithm 2. Hence, the results are omitted.

Varying ζ, η+, and η−. Figure 10 shows the speed-up of the
sampling-based algorithm over the baseline, varying ζ, η+, and
η−, respectively, with the other two fixed. The solid optimal curve
shows the maximum possible speed-up, i.e. (ζ + η+ + η−)−1, for
linear-time query function f , excluding any overhead during object
selection. Roughly the same amount of speed-up is observed for
all three query types, regardless of the size and distribution of the
input data. Results on DBLP and WIKI data are similar and thus
omitted due to limited space.

7 Related Works and Discussion
Visualization-assisted data analysis has recently attracted a lot of
attention in both database and CHI communities. Jugel et al. [11]
studied data reduction techniques for high-volume time series data
driven by visualization constraints, while our work is motivated by
limit on data access. Along the same line, the idea of data reduction
for efficient visualization of time series data had previously been
explored by Burtini et al. [3].

The problem of rapid generation of approximate visualizations
while preserving crucial properties was studied by Blais et al. [13]
for bar chart, which employs very different techniques. Efficiency-
precision tradeoff for exploratory visualization of large dataset has
also been studied in the CHI community [8, 9]. The idea of us-
ing prefetching techniques to improve visualization efficiency for
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Figure 8: (DBLP) Compare recall of S̃sparse with two different sampling strategies, at vary-
ing sample rate 1-10%, fixing η+ = η− = .1.
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Figure 9: (WIKI) Recall of S̃sparse. Vary η+
2-20%. Fix ζ = .05, η− = .1
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Figure 10: (NBA) Efficiency of algorithms varying sample rate and budget.

real-time responses in an interactive environment has been stud-
ied by Doshi et al. [7]. Kandel et al. presented Profiler [12] for
visualization-assisted data exploration and anomaly detection from
an HCI perspective.

In this paper, we have considered outliers as points having a
small number of neighbors (thus not necessarily on the skyline), but
the idea of finding global outliers from promising objects by evalu-
ating sample data can apply to outliers of other forms, such as sky-
line points [2]. The sketching algorithm using points of S+ \ S̃sparse

along with S− with estimated counts can work as is.
The type of uniqueness-based fact-finding has been studied for

skyline and skyband points [17]. There, specialized algorithms
were proposed to efficiently find all interesting and unique points
of a large point set; in this paper, we propose a neighborhood spar-
sity based uniqueness definition and propose an algorithm tailoring
towards the visualization method instead of the claim type.

The idea behind the two-phase sampling-based algorithm is re-
lated to the notion of coreset [1] in computational geometry. Since
we do not have direct access to the result set S, for each query in-
stance f , we construct “coresets” of objects O+ and O− instead of
coresets of points. The selection of O− using random sampling is
analogous to drawing random samples from the point set [16, 14].
On the other hand, the selection of O+ is optimized towards pre-
serving another extent measure: minimum density points of S.

Experiments in this paper are all conducted in memory. How-
ever, at service time, to support exploration query evaluation for
many datasets, and to avoid dedicating the memory to a single
dataset, objects’ full data is hosted in SSTable [4] and brought
into memory only upon request via the SSTable service API. Data
accessing cost will become even more dominant in the execution
time. In that case, our sampling-based algorithm with a data access
budget would increase its advantage over the baseline algorithm.
Also, we have not explored the possibility of parallel evaluation of

query function f . On large data sets, parallel query evaluation for
different objects will further speed up the overall efficiency.

8 Conclusion
In journalism, claims derived from data are important ingredients
for many stories, ranging from politics to sports. A common anal-
ysis for determining the quality of a claim is to compare it with
other claims of the same form. Such exploratory analysis can usu-
ally be carried out effectively via visualization. In this paper, we
consider claims that can be modeled as queries whose results can
be represented as 2d points, and we focus on one common type
of visualization—a combination of 2d scatter plot for outliers and
a heatmap for overall distribution. We propose an efficient two-
phase sampling-based algorithm that works with any query func-
tion. The algorithm first executes the query function on a sample
of the dataset, and then, based on the result, further selects addi-
tional data to access in order to produce a final approximate an-
swer. Experiments show that our algorithm is efficient and is able
to preserve result properties important to visualization—namely the
outliers and the overall distribution.
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APPENDIX
Following the notations of Section 5.2.3, we derive the bounds on
δ(S, Ssketch) here.

First, by linearity of expectation, we have

µj = E[Zj ] = |S ∩ Pj |, µZ = E[Z] = |S|.

It is easy to see the following bound on δ(S, Ssketch):

δ(S, Ssketch) ≤ 1−
∑
j min{Zj , |S ∩ Pj |}

max{Z, |S|}
= 1−

∑
j min{Zj , µj}
max{Z, µZ}

.

By the (one-sided) Chebyshev’s inequality, we have

Pr

∑
j

min{Zj , µj} ≥ (1−∆−)µZ


≥Pr

⋂
j

Zj ≥ (1−∆−)µj


≥1−Pr

⋃
j

Zj ≤ (1−∆−)µj


≥1−

∑
j

1

1 + (∆−µj/σj)2

and

Pr
[
max{Z, µZ} ≥ (1 + ∆+)µZ

]
= Pr

[
Z ≥ (1 + ∆+)µZ

]
≤

1

1 + (∆+µZ/σZ)2
.

Combining the two inequalities above, we have

Pr

[
δ(S, Ssketch) ≥ 1−

1−∆−

1 + ∆+

]

≤Pr

∑
j

min{Zj , µj} ≤ (1−∆−)µZ ∨ Z ≥ (1 + ∆−)µZ


≤
∑
j

1

1 + (∆−µj/σj)2
+

1

1 + (∆+µZ/σZ)2
.

To see the bounds dependent on correlation of point distribution
by objects, let cij denote the number of points in partition Pj that
come from object i; i.e., cij = |f(Ri) ∩ Pj |, and Ci =

∑
j cij =

|f(Ri)|. It follows that Zj = λ ·
∑
iXicij . We have, for each i:

µi =
∑
j

cij , σ2
i =

1− p
p
·
∑
i

c2ij ,

and for Z,

µZ =
∑

Cj , σ2
Z =

1− p
p
·
∑
i

C2
i .

For any two partitions j and j′, the covariance and correlation
between Zj and Zj′ are given by

σjj′ =
1− p
p
·
∑
i

cijcij′ , ρjj′ =
σjj′

σjσj′
.

The tighter bound can be obtained by taking into account the
correlation among Zj’s, using the dependent multi-variate Cheby-
shev’s inequality as follows:

Pr

⋂
j

Zj ≥ (1−∆−)µj


≤1−

1

m2

√u+
√
m− 1

√√√√ m

(∆−)2

∑
j

σ2
j

µ2j
− u

2

,

where

u =
1

(∆−)2

∑
j

∑
j′

ρjj′

µjµj′
.

Setting ρjj′ = 1 for all j, j′, and we get Ineq. (7), (8), and (9).
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