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ABSTRACT 

Over the last two releases SQL Server has integrated two special-

ized engines into the core system: the Apollo column store engine 

for analytical workloads and the Hekaton in-memory engine for 

high-performance OLTP workloads. There is an increasing demand 

for real-time analytics, that is, for running analytical queries and 

reporting on the same system as transaction processing so as to have 

access to the freshest data. SQL Server 2016 will include enhance-

ments to column store indexes and in-memory tables that signifi-

cantly improve performance on such hybrid workloads. This paper 

describes four such enhancements: column store indexes on in-

memory tables, making secondary column store indexes on disk-

based tables updatable, allowing B-tree indexes on primary column 

store indexes, and further speeding up the column store scan oper-

ator.     

Categories and Subject Descriptors 

H.2.4 [Database Management]: Systems – relational databases, 

Microsoft SQL Server  

Keywords 

In-memory OLTP, column store, OLAP, operational analytics, 

real-time analytics, hybrid transactional and analytical processing. 

1. INTRODUCTION 
Transactional processing (OLTP) and analytical processing are tra-

ditionally separated and running on different systems. Separation 

reduces the load on transactional systems which makes it easier to 

ensure consistent throughput and response times for business criti-

cal applications. However, users are increasingly demanding access 

to ever fresher data also for analytical purposes. The freshest data 

resides on transactional systems so the most up-to-date results are 

obtained by running analytical queries directly against the transac-

tional database. This means that the database system must be able 

to efficiently handle transactional and analytical processing concur-

rently. SQL Server 2016 will include several enhancements that are 

targeted primarily for such hybrid workloads.  

Over the last two releases SQL Server has added column store in-

dexes (CSI) and batch mode (vectorized) processing to speed up 

analytical queries and the Hekaton in-memory engine to speed up 

OLTP transactions. These features have been very successful; cus-

tomers have reported orders-of-magnitude improvements. How-

ever, each feature is optimized for specific workload patterns.  Col-

umnstore indexes are optimized for large scans but operations such 

as point lookups or small range scans also require a complete scan, 

which is clearly prohibitively expensive. Vice versa, lookups are 

very fast in in-memory tables but complete table scans are expen-

sive because of the large numbers of cache and TLB misses and the 

high instruction and cycle count associated with row-at-a-time pro-

cessing.  

This paper describes four enhancements in the SQL Server 2016 

release that are designed to improve performance on analytical que-

ries in general and on hybrid workloads, in particular.  

1. Columnstore indexes on in-memory tables. Users will be 

able to create columnstore indexes on in-memory tables in the 

same way as they can now for disk-based tables. The goal is 

to greatly speed up queries that require complete table scans.  

2. Updatable secondary columnstore indexes. Secondary CSIs 

on disk-based tables were introduced in SQL Server 2012. 

However, adding a CSI makes the table read-only. This limi-

tation will be remedied in SQL Server 2016.  

3. B-tree indexes on primary columnstore indexes. A CSI can 

serve as the base storage for a table. This storage organization 

is well suited for data warehousing applications because it is 

space efficient and scans are fast. However, point lookups and 

small range queries are very slow because they also require a 

complete scan. To speed up such operations users will be able 

to create normal B-tree indexes on primary column stores.  

4. Column store scan improvements. The new scan operator 

makes use of SIMD instructions and the handling of filters and 

aggregates has been extended and improved. Faster scans 

speed up many analytical queries considerably.   

In this paper we use the terms primary index or base index for the 

index that serves as the base storage for the table and the term sec-

ondary index for all other indexes on a table. The corresponding 

terms traditionally used in the SQL Server context are clustered 

index and non-clustered index but they no longer seem to convey 

quite the right meaning. 

The rest of the paper is organized as follows. Section 2 gives an 

overview of the design and status of column store indexes and of 

the Hekaton engine as implemented in SQL Server 2014. Sections 

3 to 6 describe the four enhancements mentioned above including 

some initial performance results. Note that the experiments were 

run on early builds of the system that had not yet been fully opti-

mized. Section 7 contains a brief summary of related work.  

2. BACKGROUND ON SQL SERVER 
As illustrated in Figure 1, SQL Server 2014 integrates three differ-

ent engines. 

1. The classical SQL Server engine primarily used for processing 

disk-based tables in row format. It can also process data from 

the two other stores albeit slower than the specialized engines. 

2. The Apollo engine processes data in columnar format and is 

designed to speed up analytical queries.  

3. The Hekaton engine processes data in in-memory tables and 

is designed to speed up OLTP workloads.  
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Users and applications interact with the system through a common 

frontend in the same way they always have. Queries and transac-

tions can involve all three engines but this is largely transparent to 

users. All engines run in the same multi-threaded service process. 

The backend of the system is also common. For example, all en-

gines use the same log and are integrated with SQL Server’s high 

availability solution (AlwaysOn). The integration greatly simplifies 

use and management of the system.  

The following two sections give a brief overview of the features of 

Apollo (column store indexes and batch processing) and Hekaton 

(in-memory tables).  

SQL Server

Apollo engine
for OLAP

Column store

Classical SQL 
Server engine

Disk-based row 
store

Hekaton engine
for OLTP

In-memory 
row store

Common frontend
Client communications, T-SQL, parser, query optimizer, 

access control, metadata, ...

Common backend
Storage, logging, high availability (AlwaysOn), ...

Figure 1: SQL Server now contains three engines but 

all share the same frontend and backend  

2.1 Columnstore Indexes 
A columnstore index (CSI) stores data column-wise instead of row-

wise as is done in a B-tree index or heap. SQL Server was the first 

of the major commercial systems to integrate column-wise storage 

into the system. A CSI can be used as a base (primary) index or as 

a secondary index.   

Column-wise storage has two key benefits: it saves space because 

columnar data can be better compressed and greatly improved per-

formance on analytical queries that scan large numbers of rows but 

few columns.  This section gives a brief overview of CSIs and batch 

mode processing in SQL Server 2014. Further details can be found 

in [7] [9] [13]. 

2.1.1 Index Storage 
A CSI stores the data from a set of rows as any index does. The set 

of rows is divided into row groups of about one million rows each. 

Each row group is encoded and compressed independently, produc-

ing one compressed column segment for each column in the index. 

If a column uses dictionary encoding, such as a string column, the 

conversion also produces dictionaries, one global dictionary that 

contains the most common values and a local dictionary for each 

segment that contains values not found in the global dictionary.  

Column segments and dictionaries are stored as SQL Server blobs 

(LOB). A directory keeps track of the location of segments and dic-

tionaries so all segments comprising a column and any associated 

dictionaries can be easily found.  The directory contains additional 

metadata about each segment such as number of rows, size, how 

data is encoded, and min and max values. 

Frequently used column segments and dictionaries are cached in an 

in-memory cache (not in the buffer pool) which greatly reduces I/O. 

When a column has to be read in from disk it is done efficiently 

with very deep read-ahead.  

2.1.2 Update processing 
In SQL Server 2014 primary CSIs are updatable while secondary 

CSIs are not. Removing this limitation is one of the enhancements 

covered in this paper.   

Two additional components are needed to make primary CSIs up-

datable: delete bitmaps and delta stores. The delete bitmap of an 

index indicates which rows in the index have been logically deleted 

and should be ignored during scans. A delete bitmap has different 

in-memory and on-disk representations. In memory it is indeed a 

bitmap but on disk it is represented as a B-tree with each record 

containing the RID of a deleted row. A RID consists of row group 

number and the row’s position within the group. 

New and updated rows are inserted into a delta store which is a 

traditional B-tree row store. A delta store contains the same col-

umns as the corresponding column store. The B-tree key is a unique 

integer row ID generated by the system. Large bulk insert opera-

tions do not insert rows into delta stores but convert batches of rows 

directly into columnar format. 

A CSI can have zero, one, or more delta stores. New delta stores 

are created automatically as needed to accept inserted rows. A delta 

store is closed when it reaches 1M rows. SQL Server automatically 

checks in the background for closed delta stores and converts them 

to columnar storage format. All delta stores are transparently in-

cluded in any scan of the column store index. 

2.1.3   Batch Mode Processing 
SQL Server traditionally uses a row-at-a-time execution model, 

that is, a query operator processes one row at a time. Several new 

query operators were introduced that instead process a batch of 

rows at a time. This greatly reduces CPU time and cache misses 

when processing a large number of rows. 

A batch typically consists of around 900 rows where each column 

is stored as a contiguous vector of fixed-sized elements. A "selected 

rows" vector indicates which rows are still logically part of the 

batch. Row batches can be processed very efficiently.  

In SQL Server 2014 most query operators are supported in batch 

mode: scan, filter, project, hash join (inner, outer, semi- and anti-

semi joins), hash aggregation, and union. The scan operator scans 

the required set of columns from a segment and outputs batches of 

rows. Certain filter predicates and bitmap (Bloom) filters are 

pushed down into scan operators. (Bitmap filters are created during 

the build phase of a hash join and propagated down on the probe 

side.) The scan operator evaluates the predicates on the compressed 

data, which can be significantly cheaper and reduces the output 

from the scan. 

2.2 In-Memory OLTP (Hekaton) 
The Hekaton engine in SQL Server 2014 is intended to greatly 

speed up OLTP workloads. Tables managed by the Hekaton engine 

are stored entirely in main memory. The engine is designed for high 

levels of concurrency.  All its internal data structures are latch-free 

(lock-free) to avoid interference among concurrent threads – there 

are no semaphores, mutexes or spinlocks. It uses an optimistic, 

multi-version concurrency control (MVCC) scheme to guard 

against interference among concurrent transactions [8]. Durability 

is guaranteed by logging and checkpointing to durable storage 

[1][2]. 

Hekaton tables are queried and updated using T-SQL in the same 

way as other SQL Server tables. A T-SQL stored procedure that 
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references only Hekaton tables can be compiled into native ma-

chine code for further performance gains [3].  

2.2.1 Tables and indexes  
Hekaton tables and indexes are optimized for memory-resident 

data. Rows are referenced directly by physical pointers, not indi-

rectly by a logical pointer such as a row ID or primary key. Row 

pointers are stable; a record is never moved after it has been created.  

A table can have multiple indexes, any combination of hash indexes 

and range indexes. A hash index is simply an array where each en-

try is the head of a linked list through rows. Range indexes are im-

plemented as Bw-trees which is novel latch-free version of B-trees 

optimized for main-memory [10]. 

2.2.2 Multi-versioning 
Hekaton uses multi-versioning where an update creates a com-

pletely new version of a row. The lifetime of a version is defined 

by two timestamps, a begin timestamp and an end timestamp and 

different versions of the same row have non-overlapping lifetimes. 

A transaction specifies a logical read time for all its reads and only 

versions whose lifetime overlaps the read time are visible to the 

transaction.  

Multi-versioning improves scalability because readers no longer 

block writers. (Writers may still conflict with other writers though.) 

Read-only transactions have little effect on update activity; they 

simply read older versions of records as needed. Multi-versioning 

also speeds up query processing be reducing copying of records. 

Since a version is never modified it is safe to pass around a pointer 

to it instead of making a copy.  

3. CSI ON IN-MEMORY TABLES 
The Hekaton engine stores tables in memory and is very efficient 

on OLTP workloads. SQL Server 2016 allows users to create col-

umn store indexes also on in-memory tables. This enables efficient 

and concurrent real-time analysis and reporting on operational data 

without unduly hurting the performance of transaction processing. 

3.1 Architecture 
A user creates a Hekaton table with a secondary CSI using the fol-

lowing syntax. 

CREATE TABLE <table_name> ( 

    ··· 

   INDEX <index_name> CLUSTERED COLUMNSTORE  

    ··· 

) WITH (MEMORY_OPTIMIZED = ON) 

The table is defined with the MEMORY_OPTIMIZED option set 

to ON so it is stored in memory and managed by Hekaton. A sec-

ondary CSI covering all columns is also created. Figure 2 shows 

the components constructed when the table is created. 

All rows are stored in the in-memory Hekaton table (shown on the 

left) which may have one or more hash or range indexes.  Most of 

the rows (shown in blue) are also stored in the CSI in columnar 

format. The CSI is shown as containing two row groups, each with 

five compressed column segments. Data is duplicated between the 

Hekaton table and the CSI but in practice the space overhead is 

small because of compression. The space overhead is data depend-

ent but typically in the range 10% to 20%.   

The upper portion (in yellow) of the Hekaton table in Figure 2 rep-

resents rows that are not yet included in the CSI. We call this por-

tion the tail of the table.  New rows and new versions of rows are 

inserted into the Hekaton table only, thus growing the tail. A back-

ground thread is responsible for copying rows in the tail portion 

into the column store (see Section 3.3 for details).   

The Hekaton table contains a hidden row ID (RID) column that in-

dicates the location of the row in the column store. A RID consists 

of a row group ID that identifies the compressed row group and the 

position within the row group. The RID column allows a row in the 

column store to be efficiently located in CSI which is crucial for 

fast online processing of updates and deletes. 

For rows in the tail of the Hekaton table, the value in the RID col-

umn is a special invalid value which makes it easy to identify rows 

still in the tail.  These rows are included in a hidden Tail Index 

which is shown as a triangle to the right of the table in Figure 2. All 

rows not yet included in the CSI can be easily found by scanning 

the Tail Index. This is needed for table scans that use the CSI and 

also when migrating rows to the CSI. 

The Deleted Rows Table shown in Figure 2 is a hidden Hekaton 

table that contains RIDs of rows in the CSI that have been deleted 

from the user table. This table is checked during scans to identify 

rows that have been logically deleted and thus should be skipped. 

The compression and decompression algorithms are the same for 

this CSI as for regular SQL Server CSI but the storage for com-

pressed data is different.  The compressed row groups and all 

metadata about them are stored in internal Hekaton tables, which 

allows Hekaton versioning to work correctly for CSI scans. 

Each row group is stored in a separate file on stable storage; this 

permits the system to evict a compressed segment from memory 

and reload it as needed, so that only segments that are in use will 

consume memory resources. 

3.2 User Operations 
 Hekaton normally manages the most performance-critical tables of 

a database so it is crucial that adding a CSI not significantly reduce 

OLTP performance. Ideally, the overhead during normal operations 

should be no higher than that of a Bw-tree index. 

Inserting a new row or row version into the user table consists of 

inserting the row into the in-memory Hekaton table and adding it 

In-memory
table

Columnstore
index

Deleted 
rows table

RID column

Tail index covers rows 
not (yet) included in 

column store

Figure 2: Components of design enabling 
column store indexes on Hekaton tables 

Row group with 5 
column segments
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to all indexes, including the Tail Index. The data will eventually be 

copied to the CSI by a background task.   

Deleting a row from the table consists of first locating the target 

row in the Hekaton table and deleting it from there.  If the RID 

column contains a valid value, a row with that RID is inserted into 

the Deleted Rows Table, which logically deletes the row from the 

CSI. 

To update a row it is first updated in the Hekaton table in the normal 

way, that is, a new version is created and added to the table. The 

new version is included in the Tail Index but not immediately added 

to the CSI. If the old version is included in the CSI (its RID column 

contains a valid value) a row is inserted into the Deleted Rows Ta-

ble to logically delete the old version from the CSI.  

Point lookups or range scans using one of the table’s indexes are 

entirely unaffected by the presence of the CSI. Analytic queries 

scan the compressed row groups in parallel, in the process skipping 

rows whose RIDs occur in the Delete Rows Table.  They also scan 

the tail of the Hekaton table using the Tail Index and append those 

rows to the result.  This implementation ensures correct snapshot 

semantics for table scans because the Deleted Rows Table and the 

Hekaton table both contain versioned rows.  All usual optimizations 

that CSI allows in SQL Server applies to scans in this scenario, such 

as pushing down predicates to the scan operator, elimination of seg-

ments that cannot match a predicate based on max/min value stored 

in the segment, etc. 

3.3 Data Migration 
A background task, known as the data migration task, periodi-

cally copies data from the tail of the Hekaton table into the com-

pressed column store.  This operation is transparent to user transac-

tion and does not affect user’s snapshot-based view of the table.  It 

also needs to avoid disrupting user workloads too much (see Sec-

tion 3.4).  Data migration proceeds in two stages. 

Stage 1 (everything occurs in a single Hekaton transaction):  The 

tail of the Hekaton table is scanned, using the Tail Index, and some, 

but not necessarily all, rows are selected to form a new compressed 

row groups. The intent is to exclude rows that are likely to be fre-

quently updated because they will end up polluting the CSI with 

rows that are logically deleted but still physically present. Such 

rows both waste space and slow down scans. 

SQL Server uses a time-based policy to determine which rows to 

migrate – rows that have been recently changed are presumed to be 

likely to change again and are therefore not migrated.  Temporal 

statistics are kept about rows, and data migration is not even started 

until there is a sufficient number of “cool” rows (at least a million). 

A row is considered “cool” if it has not been modified within some 

specified period of time (at least an hour).  Once started, data mi-

gration will only migrate “cool” rows. 

The row group created is then compressed and written into the in-

ternal tables that implement CSI storage for Hekaton. The compres-

sion process assigns RIDs to each row it compresses. These RIDs 

are inserted into the Deleted Rows Table and the Stage 1 transac-

tion commits. 

After Stage 1 commits, the algorithm has physically migrated rows 

to the CSI but logically the rows are still invisible in the column 

store because the rows are hidden by the entries in the Deleted 

Rows Table. However, the rows are still in the tail of the Hekaton 

table since the RID column for them is still invalid.  Therefore, 

scans see no change in the system. 

To avoid millions of inserts in this stage, the Deleted Rows Table 

actually stores rows representing ranges of RIDs.  In Stage 1, about 

one thousand Deleted Rows Table inserts are sufficient to hide all 

rows in a compressed row group with one million rows. 

Stage 2: This stage uses a sequence of short transactions.  Each 

transaction deletes a row from the Deleted Rows Table that was 

inserted in Stage 2 and updates the RID column of the Hekaton ta-

ble for the rows in the range covered by that Deleted Rows Table 

row.  This makes the corresponding rows in the column store visi-

ble to future transactions, but it also means future transactions will 

not see the rows as part of the tail of the Hekaton table.  This guar-

antees that scans do not see duplicates between the column store 

and the tail of the Hekaton table, and that all scans observe correct 

snapshot semantics. 

3.4 Minimizing data migration overhead  
Stage 2 of the data migration algorithm will update a row in the 

Hekaton table for every row in the new compressed row group.  

Normally this would generate a large log overhead, strongly im-

pacting user workloads.  SQL Server addresses this problem by not 

logging changes to the RID column.  Instead the values in this col-

umn are recovered at database recovery time by scanning the com-

pressed row group, extracting the primary key for each row from it, 

looking up the corresponding row in the Hekaton table, and updat-

ing the value of the RID column appropriately. 

Another potential issue is that Stage 2 transactions may cause write-

write conflicts with user transactions (i.e., both transactions trying 

to update the same row in the Hekaton table, which in a snapshot-

based system results in one of the transactions aborting).  It is im-

portant both to minimize the chances of this and to avoid aborting 

user transactions when this does happen, because user transactions 

would need to be retried when this occurs, hurting performance.   

The reason Stage 2 is done in batches of small transactions is pre-

cisely to minimize the chances of write-write conflict with user 

transaction.  In addition, SQL Server ensures that a background 

Stage 2 transaction never causes a user transaction to abort with a 

write-write conflict.  When such a conflict is detected, if the back-

ground transaction has not yet committed, it is always chosen as the 

victim in the write-write conflict.  If it has committed, SQL Server 

uses special handling logic which causes the user transaction to up-

date the row version created by the background transaction, instead 

of the row version the user transaction wanted to update originally.  

This is possible, since the background transaction does not change 

any user-visible data, so having a user transaction override its 

changes is acceptable. 

3.5 Row Group Cleanup 
When a row group has many deleted rows (i.e., many entries in the 

Deleted Rows Table), scan performance is reduced and memory is 

wasted on storing the compressed data for the deleted rows as well 

as Deleted Rows Table entries for them.  To address this issue, SQL 

Server implements an automatic cleanup algorithm.  When the 

number of deleted rows in a row group exceeds a certain threshold 

(currently 90%), a background task starts that essentially runs the 

data migration algorithm of Section 3.3 in reverse, causing all valid 

rows in the row group to be included in the tail.  A subsequent data 

migration will combine them with other rows to create a pristine 

row group with no deleted rows.  The optimization of Section 3.4 

are applied to this row group cleanup as well, in order to reduce its 

impact on user transactions. 

3.6 Performance 
Recall that the main goal of this improvement is to greatly reduce 

the run time of analytical queries without maintenance of CSIs sig-

nificantly slowing down the transactional workload. In this section 

we report results from micro-benchmarks measuring query speedup 
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and maintenance overhead. We are primarily interested in the effect 

on the elapsed time of transactions, i.e., the upfront cost. There will 

be additional background work for copying data to the CSI but this 

is expected to have only minimal effect on transaction throughput. 

For the experiments we used the lineitem table from the TPC-H 

database with 60M rows. We created two versions of the table, LI-

csi and LI_nocsi. LI_csi had a range index on (l_orderkey, l_lin-

enumber) and a column store index covering all columns. LI_nocsi 

had two range indexes, one on (l_orderkey, l_linenumber)  and one 

on l_shipdate. The experiments ran on a machine with 16 cores (In-

tel Xeon E5-2660 CPUs, 2.20 GHz with 8 cores in 2 sockets). 

3.6.1 Query speedup 
Our first experiment measured the speedup of a simple aggregation 

query against a newly created instance of the table. The CSI con-

tained 107 row groups, about 800K rows were left in the Tail Index 

and the Deleted Rows table was empty. We ran the query 

   Select l_discount, sum(l_quantity*l_extendedprice*l_discount) 

   from lineitem where l_partkey < 1000000 

   group by l_discount 

We ran the query against the row store in interop and in a native 

stored procedure and against the CSI. (In interop the query is exe-

cuted by the classical SQL Server engine making use of a scan op-

erator for Hekaton tables.) There is no index on l_partkey so a com-

plete scan of the table is necessary. Scans of in-memory row stores 

run single-threaded while scans against CSIs are parallelized. The 

measured elapsed times are shown in Table 1. 

Table 1: Elapsed time (sec) of test query 

 

Row store scans are rather slow because the rows are scattered in 

memory resulting in random memory accesses and high cache miss 

rate. Compiling the query to native code helps some but it can’t 

cure the cache-miss problem. 

Scanning the CSI instead gives a 55X performance boost. This is 

caused by several factors: sequential memory access pattern, early 

data reduction by evaluating the filter predicate in the scan opera-

tor, and segment elimination. The operator needed to scan only 45 

out of 107 segments, the rest were eliminated because metadata in-

dicated that they contain no rows satisfying the filter predicate.   

3.6.2 Effects of inserts, updates and deletes 
All indexes increase the cost of inserts, updates, and deletes and 

column store indexes are no exception. Furthermore, changes to the 

data also affect subsequent column store scans. Inserts and updates 

add rows to the tail index which increases scan costs, at least tem-

porarily until the data migration task runs. Updates and deletes add 

rows to the Deleted Rows table which also increases the scan costs.  

We measured the effects by a few micro-benchmarks on the two 

versions of the lineitem table mentioned above. The results of are 

shown in Table 2. 

The second line in the table shows the elapsed time of inserting 

400,000 rows. Having a CSI on the table increased the insert time 

by 11.9% because the Tail Index must be updated. We then ran our 

test query again. The elapsed time increased 8.4% to 0.869 sec 

(from 0.802 sec) because there were more rows in the Tail Index. 

   

Table 2: Cost of inserts, updates, deletes and  

their effect on query time 

Operation Elapsed time (sec)  Increase (%)  

With CSI No CSI Up-
date 

Query 

    CSI scan, interop 0.802   Base 

Insert 400,000 rows 53.5 47.8 11.9%  

   CSI scan, interop 0.869   8.4% 

Update 400,000 rows 42.4 28.9 46.7%  

   CSI scan, interop 1.181   47.3% 

Delete 400,000 rows 38.3 30.5 25.6%  

   CSI scan, interop 1.231   53.5% 

 

Next we updated 400,000 random rows. The cost of maintaining 

the CSI increased the elapsed time by 46.7% (from 28.9 to 42.4 

sec). The additional cost stems from inserting rows in the Deleted 

Rows table to logically delete the old versions and adding the new 

versions to the Tail Index. We then ran the test query again. Its 

elapsed time had now increased by 47.3% (to 1.181 sec from 0.802 

sec). This is caused by two factors: the Tail Index now contains 

400,000 more rows as does the Deleted Rows table.  

In the third step we deleted 400,000 randomly selected rows. The 

CSI increased the cost of deletions by 25.6% (from 30.5 sec to 38.3 

sec). The increase is due to insertions into the Deleted Rows table. 

The additional 400,000 rows in the Deleted Rows table slightly in-

creased the time for the test query from 1.181 sec to 1.231 sec.  

4. UPDATING SECONDARY COLUMN 

STORES 
Few OLTP applications need to store all their data in memory and 

can instead use traditional disk-based tables for less performance 

critical tables. Users obviously want real-time analytical queries to 

run fast regardless of where the tables are stored. This can be 

achieved by creating secondary CSIs on tables used for analytical 

queries. Support for CSIs on disk-based tables has been available 

since SQL Server 2012 but adding a CSI made the table read only.  

In SQL Server 2016, CSIs on disk-based tables become updatable. 

This section describes how updates are handled.  

4.1 Components Added to Support Updates 
Figure 3 illustrates the main components of the implementation and 

how they are used in a column store scan. The colors represent how 

frequently rows are updated: cold (blue) rows are updated infre-

quently and hot (red) rows are frequently updated.  

All rows are stored in the base index which can be a heap or a B-

tree and also included in the CSI, either in a compressed row group 

or a delta store. The coldest rows are included in compressed row 

that have exactly the same structure as for primary CSIs. Primary 

and secondary CSIs have identically structured delete bitmaps but 

secondary CSIs use the delete bitmap slightly differently. 

Hot, recently inserted or modified rows are stored in delta stores. A 

delta store for a secondary CSI is organized as a B-tree with the 

locator of the base index as its key. The locator is a row ID if the 

base index is a heap and the key columns of the base index if it is a 

B-tree.  

 

Scan type Elapsed time (s) Speedup 

Row store scan, interop 44.441  

Row store scan, native 28.445 1.6X 

CSI scan, interop 0.802 55.4X 
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When a row is deleted from the base index we must delete it from 

the CSI as well. We know the row’s locator so we can easily check 

whether it is still in a delta store. If so, we simply delete it from the 

delta store. Otherwise, we know that the row is in one of the com-

pressed row groups. To logically delete it we need to insert an entry 

into the delete bitmap indicating which row group it belongs to and 

its position within the row group. Determining the row’s location 

would require a complete scan of the compressed row groups, 

which would make deletes unbearably slow.    

This is where the delete buffer comes in. Deletes from compressed 

row groups are not immediately added to the delete bitmap but 

saved in the delete buffer and later applied in bulk by a background 

task. The delete buffer is a B-tree containing unique keys of re-

cently deleted rows. The delete buffer batches recent deletes in the 

same way that delta stores batch recent inserts so that they can be 

applied more efficiently in bulk later on.  

However, as illustrated in Figure 3, a scan now has to check both 

the delete bitmap and the delete buffer to eliminate logically deleted 

rows. Conceptually, the scan computes an anti-semijoin between 

the compressed row groups and the delete buffer.  

Note that a secondary CSI need only include columns relevant to 

analytical queries, thereby saving space and speeding up compres-

sion.   

4.2 Handling Deletes 
Most differences between the designs for primary and secondary 

CSIs can be attributed to the handling of deletes. Inserts are treated 

the same in both implementations and updates are split into deletes 

followed by inserts. Primary CSIs are targeted for data warehousing 

applications where deletes are rare and scan performance crucial so 

we are willing to accept a higher delete cost if we can retain high 

scan performance. Secondary CSIs are indexes on OLTP tables 

with frequent updates and deletes and some scan activity. Here the 

tradeoff is the opposite: reduce the cost of deletes (and thereby also 

of updates) in exchange for a small reduction in scan performance. 

Deletes are processed by first finding the locator of each matching 

row in the base index. The locator is the identifier of the row in the 

underlying base index, which is either a heap or a B-tree. After the 

system locates a row in the base index, it proceeds to locate and 

delete the row in secondary indexes using their respective keys (and 

also to process referential constraints and maintain indexed views).  

In case of a secondary CSI, if the index is filtered and the row being 

deleted does not satisfy the filter condition, no further action is 

needed. Otherwise, we iterate through the delta stores, seeking for 

the row using its key. If we find the row in a delta store (the most 

common case, assuming that most deletes and updates target hot 

rows), we can immediately delete it. 

If the row is not found in any of the delta stores, we know that it 

must occur in one of the compressed row groups but we don’t know 

where. Locating the row so we can add it to the delete bitmap would 

require a complete scan. However, scanning all compressed row 

groups to locate the row is not practical in a system for transactional 

processing. To overcome this problem we chose to temporarily 

buffer the keys of deleted rows in a delete buffer and periodically 

apply them using a single scan. 

Since compressed row groups can collectively contain multiple old 

versions of a row with the same key, each delete buffer entry is also 

tagged with a generation. When the system begins compressing a 

delta store, it increments the CSI’s generation number and assigns 

it to the delta store (which is now immutable) and all the resulting 

compressed row groups. Delete buffer entries are tagged with the 

highest generation number assigned at the time of the delete. A de-

lete buffer entry of the form <K, GD> marks as deleted all rows 

with key K appearing in any immutable row group with a genera-

tion number less than or equal to GD. 

4.3 Scan Processing 
Scans of secondary CSIs are necessarily less efficient than scans of 

primary CSIs since they need to consult not just the delete bitmap 

but also the delete buffer. In the worst case, the delete buffer over-

head includes fetching the segments of the key columns (even if the 

scan does not otherwise involve these columns) and then perform-

ing a batch mode hash anti-semi-join with the delete buffer con-

tents.  A logical scan of a secondary CSI is converted during 

runtime plan generation into a batch mode anti-semi-join.  The 

build side of this anti-semi-join is the delete buffer and the probe 

side is the CSI contents. 

4.3.1 Using Bloom filters  
We short-circuit the anti-semi-join, pre-qualifying data using a 

Bloom (bitmap) filter. The bitmap filter is constructed from the de-

lete buffer contents during the hash build. If the bitmap filter test 

fails (i.e. the key is definitely not in the delete buffer) then the row 

is output into the scan. If the test succeeds (the row might be in the 

delete buffer) then the build-side hash table is examined. Selection 

vectors are merged to combine rows qualified by the bitmap filter 

and rows qualified by a full hash lookup. The hash values of the 

keys from the column store to use to probe the bitmap filter and 

hash values are calculated efficiently by using a vectorized ap-

proach. The bitmap filter and vectorized hashing capability is com-

mon to all batch mode joins. 

4.3.2 Exploit segment metadata 
We store min-max metadata for each column segment and compute 

the min-max range for the values in the corresponding delete buffer 

column during hash build. If the two ranges do not overlap, there is 

Locator not in

Compressed
row groups

Delete 
bitmap

Base index

Delta stores

Delete 
buffer

Key not in

Union all

Rows filtered out of 
the column store

Figure 3: Main components of an updatable secondary col-

umn store index on a disk-based table 
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no need to check against the delete buffer for the current row group. 

A fast code path in the anti-semi-join then bypasses bitmap filter 

and hash table lookup. 

4.4 Experimental Results 
Here are some performance results for updatable secondary CSIs. 

These are based on an early build that supports acceleration using 

bitmap filters for the anti-semi-join, but not row group pre-qualifi-

cation based on min/max metadata. We started with the LINEITEM 

table from a 30GB TPC-H database, containing ~180M rows. We 

report warm numbers from a machine with 256GB of memory so 

there was virtually no IO involved. We restricted all statements to 

use a single core (Intel Xeon E5-2695 running at 2.4GHz) and 

measured insert, update, and scan performance for these configura-

tions: 

a) A clustered B-tree index on L_SHIPDATE, with page com-

pression (the highest level of row store compression in SQL 

server, it reduces memory usage but increases the CPU cost 

for both reads and writes. Columnstore delta stores also use 

page compression). 

b) A secondary columnstore index on top of (a), configured with 

a single delta store. 

c) A primary columnstore index, also configured with a single 

delta store. 

Table 3: Elapsed time (sec) of single-threaded  

insert and update operations 

Operation Rows af-
fected 

Row 
store 

Secondary 
CSI 

Primary 
CSI 

1000 updates 10,000 0.893 1.400 6.866 

10% insert 18.00M 233.9 566.0 291.4 

2% update 3.96M 123.2 314.3 275.9 

 

Table 3 summarizes insert and update performance. The first row 

shows elapsed time for 1000 small update statements, each updat-

ing 10 rows (by picking a day and updating the first 10 rows for 

that day). As expected, small updates are much faster (4.9X) for the 

secondary CSI than for the primary CSI which was the main goal 

of this improvement. 

The second row shows elapsed times for inserting an additional 

~18M rows to each index (a copy of the top 10% of existing rows, 

adding one year to L_SHIPDATE). We ran this as a single-state-

ment, single-threaded insert, to show the relative overheads of in-

serting in the different indexes. We disabled the functionality that 

directly compresses large columnstore inserts without first landing 

them in delta stores. As expected, inserts into a table with a second-

ary CSI are significantly slower than insertions into a primary CSI 

because each row has to be inserted into both the base index and 

into the CSI delta store. 

We then updated 2% of each index’s rows to set the value of 

L_LINESTATUS, but with a skewed distribution such that 90% of 

the updates affect the newly inserted rows and the remaining 10% 

affects the original index rows. The update again ran in a single 

thread in a single statement. In the B-tree configuration this is an 

in-place update. For the columnstore configurations, it is processed 

as a delete followed by an insert (or an insert in the delete buffer 

followed by an insert in a delta store for compressed rows for a 

secondary CSI), which involves significant additional logging. 

Elapsed times are shown in the third row of Table 3. 

The updates did not change the clustered B-tree structure, since 

they were all performed in-place. The secondary CSI has  ~180M 

rows in compressed row groups, a delta store with ~20M rows, an 

empty delete bitmap, and a delete buffer with ~2M keys. The pri-

mary CSI similarly has ~2M entries in its delete bitmap. To show 

the effect of processing the delete buffer for secondary CSIs, we 

have also disabled the background process that flushes it to the de-

lete bitmap. 

The 10% insert and 2% update cases are bulk operations and would 

not be common in an OLTP environment. So the fact that they are 

2-3 times slower than when using only a row store is not expected 

to significantly impede use of the updatable secondary CSI feature. 

The benefit to scan queries is substantial and should compensate 

for longer bulk update times. The key targets of the improvements 

are situations with OLTP updates touching a small number of rows 

each, and larger scans for analytical queries. These are covered by 

line one in Table 3 and lines 1 and 2 in Table 4.  

Table 4: Elapsed time (sec) of single-threaded scan. 

 Millions 
of rows 

Row 
store 

Sec-
ondary 
CSI 

Pri-
mary 
CSI 

Newly built 180 99.1 4.7 1.71 

After 1000 updates 180 99.4 5.4 1.75 

After 10% inserts 198 108.7 14.5 9.5 

After 2% updates 198 109.5 16.8 10.0 

 

Table 4 summarizes warm elapsed times for a simple query run be-

fore and after each step in Table 4. The query computes  

sum(L_QUANTITY * L_EXTENDEDPRICE), using a single-

threaded full scan of each index. The first row shows results imme-

diately after the indexes were created (so the delta stores, delete 

bitmaps, and delete buffers for the column stores are all empty). 

The column store scans perform much better than the page-com-

pressed B-tree scan, both because they need to decompress much 

less data and because they avoid row-at-a-time processing. The row 

store index uses 2,145,959 8KB pages. The two columns requested 

by the query, L_QUANTITY and L_EXTENDEDPRICE, com-

press down to just 150,082 pages in the secondary CSI, and 141,350 

pages in the primary CSI. The secondary CSI needs to additionally 

fetch and decompress the two key columns, L_SHIPDATE (22,365 

pages) and the clustered B-tree’s uniquifier (80,404 pages). 

The scan performance after the initial updates (second row) is gen-

erally fairly close to the “clean” columnstore performance. The sec-

ondary CSI is affected more because there is now a non-empty de-

lete buffer. 

Scan performance after inserting 10% additional rows drops signif-

icantly for the columnstore configurations (third row of Table 3), 

because we now need to scan rows and convert them to batches. 

Columnstore performance degrades further for columnstore scans 

after updates (fourth row of Table 4), due to the increased size of 

the delete buffer and delete bitmap, but it is still significantly better 

than that of the row store scan. 

The experiments clearly show that a non-empty delete buffer slows 

down scans of the column store so it is important to empty it as 

soon as possible. 
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5. B-TREES ON PRIMARY COLUMN 

STORES 
A primary CSI is a space efficient way to store a table and provides 

superior scan performance which makes it an excellent choice for 

storing large tables that are used mostly for analytic queries. But 

even so, an analyst may sometimes need to drill down to a small 

portion or even a single row of data. Unfortunately, this still re-

quires scanning the whole table if only a CSI is available. 

In SQL Server 2014 a table with a CSI as its base index cannot have 

any primary key, foreign key or unique constraints.  The reason for 

this restriction is that enforcing such constraints would be prohibi-

tively expensive with only a CSI available.  

To solve both these problems, SQL Server 2016 enables creation 

of B-tree indexes on top of primary CSIs.  Point lookups and small 

range scans can then be done efficiently in B-trees, which will also 

makes it possible to enforce constraints efficiently. 

5.1 Row Locators 
A secondary B-tree index contains some subset of the columns in 

the underlying table, some of which comprise the key of the index. 

In addition, each index entry must contain a locator, that is, some 

information that uniquely identifies the source row in the base in-

dex. What the locator contains depends on the base index type: for 

a heap it is a row ID (page ID plus slot number) and for a B-tree it 

is the key of the base index, possibly augmented with a uniquifier 

column.  

In a B-tree index over a CSI the locator consists of a row group ID 

and position of the row within the row group. However, rows in a 

CSI may be moved with creates a challenge. A primary CSI uses 

delta stores to absorb updates and (non-bulk) inserts. New rows 

may be inserted into a delta store first and later moved to a com-

pressed row group by a background Tuple Mover task. When a row 

has moved, its old locator, which may be stored in multiple second-

ary indexes, becomes out-of-date. If so a lookup through a second-

ary index would fail to find the base row, which of course is not 

acceptable. 

A locator also serves a second role: as a unique identifier of an entry 

in a secondary B-tree index. When we delete a row in the primary 

CSI, the locator value is used to uniquely identify the entry in the 

secondary B-tree index to delete. When a row is moved, its locator 

changes so it no longer identifies the correct index entry. 

We could solve this problem by updating a row’s locator whenever 

the row is moved. However, this would be inefficient for several 

reasons. A base row may participate in multiple indexes and we 

would have to update the locator in each one of them. A compressed 

row group consist of about one million rows. When creating a new 

compressed row group we would then have to update a million en-

tries in each B-tree index. Not only is this slow, it also puts a lot of 

pressure on the transaction log. So we rejected this approach and 

looked for an alternative solution. 

5.2 The Mapping Index 
Our solution relies on an auxiliary table, a Mapping Index, that 

keeps track of row movement. There is only one Mapping Index 

even if the CSI has multiple B-tree indexes.  The index maps a 

row’s original locator to its current locator. It is stored as a B-

tree with the original locator as the key. Whenever a row is moved, 

its entry in the mapping index is updated to indicate its current lo-

cation. 

When a row is created it is first inserted into a delta store or a com-

pressed row group. In either case, it gets an original locator value 

that is included in its index row in every secondary index. If the 

row is inserted into a compressed column store, the original locator 

is a row group ID and position within the row group. If it is inserted 

into a delta store, the original locator is the delta store’s row group 

ID and a unique row number within the group which is assigned 

automatically when the row is inserted.  

However, not all rows in a primary CSI will be moved. Rows in-

serted by a bulk load are compressed on the fly and are unlikely to 

be moved. To reduce the size of the mapping index, it only tracks 

rows that have moved. If a row is never moved, it will leave no 

trace in the mapping index. When a row is moved, its current loca-

tion is recorded in the mapping index which avoids having to up-

date its locator in multiple indexes. 

Since rows in an entire row group are moved at the same time, we 

can avoid tracking the movement of each row individually and in-

stead track the movement of ranges of rows. For example, a row in 

the mapping index may indicate that rows 1 to 1000 in (uncom-

pressed) row group 2 have moved to (compressed) row group 3.  

This is much more efficient than modifying 1000 row locators, pos-

sibly in multiple B-tree indexes. The mapping index introduces a 

level of indirection for lookups via a B-tree index but it does not 

affect performance of scanning the column store.  

A row in a primary CSI must also remember its original locator 

when it is moved. The original locator is used to uniquely identify 

the corresponding entry in a B-tree index which is required, for ex-

ample, when deleting a row from the CSI. To this end an additional 

column (called “original locator”) is added to the CSI when its first 

B-tree index is created. This column remains null if the row has not 

been moved. If the row is moved, it is set to the original locator 

value which is the same as the row’s locator value in a B-tree index. 

Note that this operation can be done very efficiently because rows 

are moved one row group at time – it just adds another column seg-

ment to the new compressed row group. 

B-tree index

Delta store

2

...

1 3

Clustered columnstore index

Rowgroup 3 

Rowgroup 1

Rowgroup 4

Mapping

2'

2

 Rowgroup 2

Delta store

Figure 4: Main components of the design for B-tree in-

dexes on primary column store indexes. 

1747



 

5.3 Index Lookups 
Once the mapping index is created and maintained, point lookups 

are straightforward. Given a row-group ID and row ID, first check 

whether the row group is visible. If it is visible, no lookup in the 

mapping index is needed. If it is not, do a lookup in the mapping 

index to get the row’s current row-group ID and row Id. Then per-

form the lookup in the target row group or delta store.  

Figure 8 shows the components of our design for B-tree indexes on 

a column store. When the first B-tree index on the table is created, 

a mapping index is also created. When the B-tree index in the figure 

was created, the CSI had only one compressed row group (“row 

group 1” in the figure) and a delta store (“row group 2”). Later on, 

row group 2 became full and was compressed into row group 3. At 

that point row group 2 became invisible and eventually its resources 

were released.  A new delta store (“row group 4”) was then created 

to accept new rows. When a new row is inserted into row group 4, 

a corresponding row is inserted into the B-tree index as well. 

A lookup of a row using the B-tree index locates the target row in 

the base index in one of three ways as illustrated in the figure.  

1. Index row 1 has a row locator pointing to a row in compressed 

row group 1 of the column store. Since row group 1 is visible, 

we locate the row directly by its position in the column seg-

ments of row group 1.  

2. Index row 3 points to a row in row group 4. The row group is 

a delta store so we can use the locator to do a direct lookup on 

the key of the delta store.  

3. Index row 2 has a row locator 2 pointing to the invisible row 

group 2. When we look up the base index row, we realize that 

row group 2 is invisible so its rows have all moved somewhere 

else. We then do a lookup in the mapping index and get the 

new locator 2’ which directs us to a row in row group 3. 

When row group 3 was created (from a delta store), a column con-

taining the original locators of its rows was added to the row group. 

The locator value is the old row group ID plus the row’s unique 

number within row group 2.  So if we want to delete the row with 

locator 2’ from row group 3 in CCI, the row will have a non-null 

“original locator” column with a value equal to locator 2. We can 

use the B-tree index key values plus locator 2 from the base row to 

identify the row in the B-tree index to delete. 

5.4 Performance Results 
We ran several experiments to evaluate the lookup performance and 

overhead on bulk inserts of a B-tree index on a column store.  

5.4.1 Lookup performance of a B-tree on CSI  
In the first experiment, we created two tables with one bigint col-

umn, one datetime column, and 20 payload columns of type varbi-

nary(20). We randomly generated 10 million rows and bulk in-

serted them into the two tables. 

Table A has a primary CSI and a secondary B-tree index on the 

bigint column. Table B has a B-tree base index on the datetime col-

umn and a secondary B-tree index on the bigint column. We then 

ran tests to compare the lookup performance on the two tables. If 

all the required columns are in the secondary index, lookup perfor-

mance will be the same regardless of the base index type. Note that 

this is the case for indexes used for checking uniqueness and for-

eign keys. 

However, if some columns have to be retrieved from the base index, 

lookups in table A will be slower than in table B because retrieving 

column values is more expensive in a column store than a row store. 

To get a column value we have to locate the corresponding column 

segment, possibly reading it from disk, and then find the correct 

position. If the column is dictionary encoded we also have to look 

up the actual value in the dictionary. 

The experiment consisted of repeatedly looking up randomly se-

lected rows and retrieving 4, 8 or 20 of the varbinary columns. We 

tested four different cases: table A with and without a mapping in-

dex and table B with and without page compression. In all experi-

ments the data was entirely in memory. 

The results of the experiments are shown in Table 5. The first col-

umn (without mapping) is for the cases where no mapping index is 

involved. This corresponds to a situation where the B-tree is created 

after all the data has been compressed or all data was bulk loaded. 

We report average elapsed times for 4, 8 and 20 output columns.  

Table 5: Elapsed time per lookup in a B-tree index 

Columns 
projected 

B-tree over CSI (ms) B-tree over B-tree  (ms) 

Without 
mapping 

With 
mapping 

No compres-
sion 

Page com-
pression 

4 3.92 5.28 2.41 3.65 

8 4.33 5.73 2.32 3.85 

20 6.67 8.07 2.55 4.44 
   

For the case “with mapping”, we first created an empty table with 

the B-tree index defined, inserted all data into delta stores, and then 

compress all row groups. All lookups then have to go through the 

mapping index to locate a base row which increases the lookup 

time.  

For the case of a secondary B-tree index over a B-tree base index 

we also tested two cases: with and without page compression ena-

bled on the base index. Turning compression on increased the 

elapsed time by 50-75%. 

As expected, lookups in a table A were slower than lookups in table 

B but only by a factor of 2 to 3 depending on how many columns 

must be retrieved from the base index. While this may sound slow, 

it is certainly much faster than a complete scan. Furthermore, keep 

in mind that primary CSIs are normally used for data warehousing 

applications and not for high-performance OLTP applications.  

5.4.2 Overhead when adding a new data partition 
In data warehousing applications, tables are often partitioned and 

partition switching is a common way to load large batches of data 

into the table. To add a new partition of data into the table, a user 

just needs to make sure that the new partition has exactly the same 

organization. The extra cost of having a B-tree index over a CSI is 

the cost to create the B-tree index on the partition to be switched in.   

In this experiment, we used a table with the same schema as table 

A. Table 6 compares the cost of adding a new partition data with or 

without the B-tree index. 

Table 6: Overhead on data loading of having an NCI 

New partition 
size (million 
rows) 

Time for bulk 
load into CSI  
(ms) 

Time to cre-
ate B-tree 
(ms) 

Ratio (index 
creation / 
bulk load) 

1  5,327 66 1.24% 

5  5,335 77 1.45% 

10 5,354 83 1.55% 
 

Due to parallel execution, the elapsed time for bulk loading 1M or 

10M rows remained about the same – multiple row groups were 

compressed in parallel. The overhead of creating the B-tree index 

was minor, around 1.5%.  
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6. CSI SCAN IMPROVEMENTS 
This section outlines several improvements aimed at speeding up 

columnstore scans. Section 6.1 briefly describes the main opera-

tions involved in scanning: decompression of data and evaluating 

predicates. Section 6.2 explains architectural changes in the scan 

operator and the motivation behind them. The following sections 

focus on three scan improvements: performing additional opera-

tions on compressed data, opportunistic pushing of additional op-

erations into scan operator, and using vector instructions (SIMD) 

available in modern CPUs. The last section shows performance re-

sults on a few example queries. 

6.1 Compression and Scan Functionality 
A compressed row group consists of a column segment for each 

column. The values in a column are first encoded (converted to a 

32-bit or 64-bit integer) using either value encoding or dictionary 

encoding. Value encoding applies a linear transformation on nu-

merical values to convert them to integers that can be represented 

with a smaller number of bits. Dictionary encoding is used when 

the number of distinct values is much smaller than the size of the 

segment and, unlike value encoding, can be used for both numeric 

and non-numeric data. The actual values are stored in dictionaries 

and replaced by data ids in the column segment. In case of non-

numeric data, mainly strings, values in the dictionary are packed 

using Huffman encoding. A column segment may reference two 

dictionaries: a shared global dictionary and a local dictionary, 

which is associated with a single row-group. After encoding each 

column segment is compressed using a mixture of RLE compres-

sion and bit packing. 

Every compressed column segment contains two arrays: an RLE 

array and bit-packed values array. The RLE array partitions an or-

dered sequence of column values into pure runs (the same value 

repeated multiple times) and impure runs in which each value is 

encoded separately. Values from impure runs are stored in a bit-

packed values array. As few bits as possible are used to encode a 

column values but the bits of a single value cannot cross a 64-bit 

word boundary. 

The first stage of decompression yields pure sequences of values or 

impure sequences of values after bit unpacking which then pass 

through a decoding stage. Decoding numeric values involves either 

a linear transformation of the value or a dictionary lookup.  

In SQL 2014 the scan operator is responsible for the following 

transformations for each column requested: bit unpacking, decod-

ing, filtering and normalization. Some filters in the execution plan 

can be pushed down to the scan and evaluated in the storage engine 

layer. In SQL 2014 all filters are evaluated on decoded values. Nor-

malization is a data transformation process required for outputting 

rows qualified by the filter in a structure called a row batch used in 

the query execution layer for exchanging data between operators. 

6.2 New Scan Design 
The scan operator was redesigned to improve scan performance by 

means of the following techniques: 

a) Operating on encoded data directly for evaluating filters or ag-

gregation whenever possible, 

b) Using SIMD instructions to operate on multiple scalar values 

simultaneously, 

c) Avoiding conditional expressions and related branch mispre-

diction penalties. 

The improvements were mostly aimed at impure sequences of val-

ues. SQL Server is already taking advantage of RLE compression 

when processing filters, joins and grouping on columns with pure 

sequences of values. The primary goal was to better exploit data 

organization and information about distribution of values resulting 

from dictionary encoding and bit-packing.  

In SQL 2014 processing inside the scan operator is organized as 

follows. A row group is processed in units corresponding to output 

batches, also called row buckets, each with around one thousand 

rows. All output columns are processed one by one. Processing of 

a column is done as a single loop over all involved rows. Iteration 

of a loop does end to end processing of a single column value: bit 

unpacking, decoding, evaluating filters, and normalization. This 

loop is done by calling a function pointer, determined during query 

compilation, corresponding to one of over ten thousand specialized 

statically compiled implementations generated for all possible 

combinations of data type, encoding parameters and filter types.  

We redesigned the scan so that processing of a single row-bucket 

column is split into several more basic precompiled operations each 

running as a sequential pass over all the values. The new strategy 

resulted in code consisting mostly of small independent blocks, 

which simplified greatly adding functionality to the scan, like new 

variants of filters and aggregation, and especially eased the transi-

tion to using SIMD instructions. 

6.3 Operating Directly on Compressed Data 
Unlike in earlier version, filters pushed down to columnstore scan 

can be evaluated on data before decoding. This works for value 

based encoding (linear transform of numerical values) and diction-

ary encoding for both string and numeric dictionaries.  

Arbitrary filters on a dictionary encoded column are translated into 

a bitmap filter. The bitmap in this case contains one bit for each 

dictionary entry that indicates whether the entry satisfies the filter. 

If the resulting set of bits set correspond to one contiguous range of 

bits, it is further transformed into comparison filter. Filtering this 

way is beneficial because typically dictionaries contain signifi-

cantly fewer entries than there are rows referencing them. The re-

sult is fewer evaluations of the filter. If the dictionary is larger than 

the row group, the bitmap filter will not replace the original filter.  

Scalar aggregates can be evaluated before decoding for value-based 

encoded columns, in which case the linear transformation is only 

applied to the result. 

6.4 Opportunistic Pushdown of Operations 
Pushing down data-reducing operations to the scan is particularly 

important for performance, especially if these operations can be 

performed before later stages of data decompression. The new scan 

operator supports a broader repertoire of filters on string columns 

and scalar aggregates.  

Evaluation of the newly added operations happens opportunisti-

cally. During query execution both ways of processing of rows are 

available: the old way that uses traditional data flow through query 

execution operators (slow path) and the new way that uses its re-

placement implemented in scan (fast path). For each row-bucket 

the decision can be made separately as to which path will be taken 

for its rows. For example, the scan operator can implement a sim-

plified version of sum computation, that optimistically assumes that 

there will be no overflow and in case of any risk that this condition 

may not be satisfied reverts to the robust implementation provided 

by the slow path. Having two ways of processing rows available 

simultaneously also means that no changes are needed for delta 

stores, and support for compressed row-groups can be limited based 

on type of encoding and its parameters such as size of dictionaries.   
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6.5 Exploiting SIMD Instructions 
Modern CPUs, such as the latest Haswell family from Intel, have a 

special set of 256-bit registers and a set of instructions that operate 

on them that allow for simultaneous processing of multiples of 1, 

2, 4 or 8-byte floating point or integer values. SQL Server 2016 

utilizes integer variants belonging to the AVX2 instruction set. 

Every operation that uses SIMD also has a variant working with 

previous generation on 128-bit registers with the SSE4.2 instruc-

tion set as well as plain non-SIMD implementation, with the right 

version chosen at run-time based on CPU and OS capabilities.  

SIMD is used for column operations on bit-packed or encoded data. 

The benefits of SIMD instructions are higher with shorter data val-

ues because more of them can fit into a single wide register. Infor-

mation about bits used for bit packing compression allows to 

choose the smallest possible element size for representing encoded 

column values. We use specialized implementations for 2, 4 and 8-

byte encoded values.  

The scan code contains SIMD variants of the following column op-

erations: bit unpacking, comparison filters, bitmap filters, compac-

tion, and aggregation. Compaction is an operation that takes two 

vectors: one with input values and one with Booleans, and removes 

from the first one all entries marked in the second one, densely 

packing the remaining ones. It allows to avoid conditional expres-

sions in the code, which are especially inconvenient for SIMD code 

where multiple adjacent array entries are processed together.  

The bitmap filter implementation has two variants, one when the 

bitmap size does not exceed a single wide register and is stored 

there directly, while the other references bitmap bits in memory and 

uses gather instruction in AVX2 to load multiple words at different 

offsets into a single SIMD register. 

Bit unpacking with SIMD presents some engineering challenges, 

because every case of different numbers of bits requires a slightly 

different code path and set of constants. Our solution was to create 

a C++ code generator to handle most of these tasks automatically.  

Another common problem with code using SIMD is the handling 

of the tail of each array of values, which may be smaller than the 

number of elements in a SIMD register. We chose to reserve extra 

space at the end of each array involved and use a slightly modified 

SIMD loop that masks out the extra elements at the end.  

Table 7: Comparing performance of basic operations  

with and without SIMD instructions 

Operation Billions of values 
per second 

Speedup 

No SIMD SIMD 

Bit unpacking 6bits 2.08 11.55 5.55X 

Bit unpacking 12 bits 1.91 9.76 5.11X 

Bit unpacking 21 bits 1.96 5.29 2.70X 

Compaction 32 bits 1.24 6.70 5.40X 

Range predicate 16 bits 0.94 11.42 5.06X 

Sum 16 bit values 2.86 14.46 5.06X 

128-bit bitmap filter 0.97 11.42 11.77X 

64KB bitmap filter 1.01 2.37 2.35X 

Table 7 compares the performance of elementary building blocks 

of scan code executing with SIMD (AVX2) and without SIMD in-

structions. The table shows billions of input values processed per 

second on a single core of an Intel Haswell CPU with 2.30 GHz 

clock. The test was designed so that the input data resides in the L1 

cache (no cache misses). The data does not include other overheads 

such as the costs of initializations, metadata checks or context 

switching that appear during actual execution of the query. 

6.6 Query Performance  
In this section we present performance results for the old and the 

new columnstore scan implementation.. The data was collected us-

ing a single Intel Haswell CPU with 12 cores, 2.30 GHz and hyper-

threading disabled. We did not observe any significant difference 

for this experiment with hyper-threading enabled. For all of the 

queries we made sure that query plans were the same for both com-

pared implementations. The database used was TPC-H 300G data-

base with primary CSIs created on every table with no delta stores 

and no partitions. We made sure all input data needed was fully 

cached in-memory before running queries. There was no row-group 

elimination based on filters. All queries used new features: SIMD, 

string filter push down, scalar aggregate push down.  

Table 8: Query performance with and without scan  

enhancements (using 12 cores) 

Predicate or aggrega-
tion functions 

Duration (ms) Speed
up 

Billion 
rows 
per sec  

SQL 
2014 

SQL 
2016 

Q1-Q4: select count(*) from LINEITEM where <predicate> 

L_ORDERKEY = 235236 220 140 1.57x 12.9 

L_QUANTITY = 1900 664 68 9.76x 26.5 

L_SHIPMODE='AIR' 694 147 4.72x 12.2 

L_SHIPDATE between 
'01.01.1997' and 
'01.01.1998' 

512 87 5.89x 20.7 

Q5-Q6: select count(*) from PARTSUPP where <predicate> 

PS_AVAILQTY < 10 50 27 1.85x 8.9 

PS_AVAILQTY = 10 45 15 3.00x 16 

Q7-Q8: select <aggregates> from LINEITEM 

avg(L_DISCOUNT)  1272 196 6.49x 9.1 

 avg(L_DISCOUNT), 
min(L_ORDERKEY), 
max(L_ORDERKEY) 

1978 356 5.56x 5.1 

 

The queries used were of two types. The first six queries counted 

rows qualified by a filter on a single column with filters on columns 

of different data types and encoded in a different ways. The last two 

queries evaluated scalar aggregates on the entire table. 

The filter column in Q1 used 32-bit packing with no dictionary en-

coding and no RLE compression. The memory read bandwidth 

used was approaching 50GB/s, which is close to hardware limits. 

In Q2 the filter is on a column with 6-bit packing, dictionary en-

coding and no RLE compression. The great speedup comes from 

evaluating the predicate before doing dictionary lookup using a bit-

map filter computed from the dictionary and the given predicate. In 

this case the bitmap is small enough to be stored in a single SIMD 

register which makes bit lookups very fast. Query Q3 shows the 

improvement coming from string filter push-down. The column 

uses RLE compression and both SQL 2014 and SQL 2016 takes 

advantage of this when evaluating the filter. The only difference is 

that the scan in SQL 2016 applies string filter to a dictionary used 
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in column encoding first and transforms the original predicate into 

search for a specific integer within encoded column.  

Queries Q4 and Q5 use the same column with 16-bit packing, dic-

tionary encoding and no RLE compression. The difference is that 

the first of the two uses range predicate, which gets converted to a 

bitmap filter and the second one uses equality which becomes 

equality predicate on encoded value. SQL does not use sorted dic-

tionaries and therefore range predicates on a column with diction-

ary correspond to a set of indices that do not usually make up a 

single contiguous range. 

7. RELATED WORK 
This section gives a brief overview of systems that include both row 

stores and column stores. It does not cover systems that are either 

pure row stores or pure column stores. 

SQL Server was the first to integrate columnar storage into a row-

based DBMS but all major commercial database systems have now 

done the same. However, the designs vary considerably. IBM mar-

kets columnar storage under the common term “BLU Acceleration” 

but there are several different implementations. DB2 for Linux, 

Unix and Windows supports column-organized tables similar SQL 

Server’s primary CSI but does not allow additional indexes on such 

tables [16]. It also supports shadow tables which are similar to SQL 

Server’s secondary CSI but shadow tables are maintained by repli-

cation so their content lags behind the primary tables. Thus queries 

cannot combine data from regular tables and shadow tables. The 

Informix Warehouse accelerator is based on an earlier version of 

BLU technology and supports what amounts to shadow tables 

stored in memory [4]. DB2 for z/OS relies on an attached analytics 

accelerators based on Netezza [5].  

Oracle has recently added columnar storage [14]. However, the col-

umn store is only an in-memory cache – column segments, diction-

aries, etc. are not stored persistently but computed on demand or at 

system startup.  

Pivotal Greenplum Database began as a row store but now includes 

column store capabilities [15]. Their Polymorphic Storage feature 

allows different partitions of the same table to be stored in different 

form, some row-wise and some column-wise.  

Teradata introduced columnar storage in Teradata 14 [18]. In their 

approach, a row can be divided into sub-rows, each containing a 

subset of the columns. Sub-rows can then be stored column-wise or 

row-wise.  

The systems listed above use traditional disk-based storage for data 

in row format. SAP HANA [17] and MemSql [11] are two hybrid 

commercial systems that require all data to be stored in memory as 

does HyPer [6], a prototype system developed at the Technical Uni-

versity of Munich. 

8. CONCLUDING REMARKS 
Columnstore indexes and batch processing are key to efficient pro-

cessing of analytical queries. With the enhancements added in SQL 

Server 2016, columnstore indexes can be used anywhere where fast 

analytical processing is needed. In data warehousing applications 

they can be used as base indexes and, if needed, augmented with 

secondary B-tree indexes to speed up lookups and enable unique-

ness and foreign key constraints. In OLTP applications they can be 

used as secondary indexes on both in-memory and disk-based ta-

bles to enable real-time analytics concurrently with transactional 

processing. 
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