
Profiling R on a Contemporary Processor

Shriram Sridharan
University of Wisconsin–Madison

shrirams@cs.wisc.edu

Jignesh M. Patel
University of Wisconsin–Madison

jignesh@cs.wisc.edu

ABSTRACT
R is a popular data analysis language, but there is scant
experimental data characterizing the run-time profile of R
programs. This paper addresses this limitation by system-
atically cataloging where time is spent when running R pro-
grams. Our evaluation using four different workloads shows
that when analyzing large datasets, R programs a) spend
more than 85% of their time in processor stalls, which leads
to slower execution times, b) trigger the garbage collector
frequently, which leads to higher memory stalls, and c) cre-
ate a large number of unnecessary temporary objects that
causes R to swap to disk quickly even for datasets that are
far smaller than the available main memory. Addressing
these issues should allow R programs to run faster than they
do today, and allow R to be used for analyzing even larger
datasets. As outlined in this paper, the results presented
in this paper motivate a number of future research inves-
tigations in the database, architecture, and programming
language communities. All data and code that is used in
this paper (which includes the R programs, and changes to
the R source code for instrumentation) can be found at:
http://quickstep.cs.wisc.edu/dissecting-R/.

1. INTRODUCTION
R is a statistical programming environment that has be-

come the de facto standard for data analytics. R is the
most commonly used data analysis language after SQL [22],
and the most popular data mining tool [7]. In addition,
many large enterprise database vendors have started to pro-
vide R as an interface alongside SQL for in-database analyt-
ics [4, 12]. There are four main reasons for this widespread
adoption of R: open-source, ease of use, a strong community
of users (both academic and enterprise), and a huge repos-
itory of CRAN (Comprehensive R Archive Network) pack-
ages. As of June 2014, the CRAN repository has 5684 pack-
ages. CRAN is one of the key strengths of R as it enables
developers to contribute their code back to the community,
and allows R users to leverage this rich body of work.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee. Articles from this volume were invited to present
their results at The 41st International Conference on Very Large Data Bases,
August 31st - September 4th 2015, Hawai’i Island, Hawaii.
Proceedings of the VLDB Endowment, Vol. 8, No. 2
Copyright 2014 VLDB Endowment 2150-8097/14/10... $ 10.00.

While there are a number of different environments to run
R, the most common setting is to run R in a single thread on
datasets that fit in memory. In this paper, we focus on this
common environment for running R, and profile how R uses
memory and processor components using four characteristic
workloads. The paper aims to provide a better understand-
ing of where does time go when running R programs today.
We also discuss how these insights lead to a number of open
research issues. Furthermore, for some of the key issues,
we also present an estimate of the potential benefits that R
programs could see if some of these issues are addressed.

To the best of our knowledge, this is the first paper to
characterize the execution time breakdown of R when run-
ning on a contemporary processor with four different work-
loads — a machine learning workload, a statistical modeling
workload, a cluster analysis workload, and a primitive linear
algebra operation. Since R is open-source, we were also able
to drill through the code and execution profile to determine
the factors that characterize the execution time breakdown.
We make three key observations, as summarized below.

First, for all the workloads, more than 85% of the total
execution time is spent in stalls. This result shows how
poorly the R kernel performs on these workloads, and im-
plies that there is huge potential for performance improve-
ment by exploring new implementation techniques (in the R
kernel), micro-architectural features, or automatic compiler
optimization.

Second, stalls due to other components (branch mispredic-
tion and frontend stalls) contribute from 6-18% of the total
execution time. Hence, the scope of methods that target
reducing these stalls from within the R kernel is limited.

Third, memory stalls account for nearly 75% of the to-
tal execution time in all the workloads. The key reason for
memory stalls is the frequent triggering of the garbage col-
lector. The garbage collector in R produces a random mem-
ory access pattern as it traverses lists of pointers. This ac-
cess pattern reduces the spatial locality in the CPU caches,
and hence increases the memory stall time. Thus, meth-
ods to improve the garbage collector have the potential to
significantly improve the performance of R programs.

Another reason for memory stalls is the Create-Copy-GC
loop in R. When executing code, the R kernel creates a large
number of temporary objects, a majority of which are either
unnecessary or duplicates of existing objects. This behav-
ior increases the memory pressure, and in-turn triggers the
garbage collector frequently. This large use of main memory
is also the key reason behind R swapping to disk even when
the input datasets are far smaller than the main memory

173

Metadata

Type Class Gen . . .

Next Node

Previous Node

Data

Metadata

Type Class Gen . . .

Next Node

Previous Node

Allocated Length

Actual Length

Data [Variable Size]
(8-byte aligned)

 4
0

 b
yt

es
C

on
s

C
el

l
V

ec
to

r
C

el
ls

 5
6

by
te

s
C

on
s

C
el

l

Pointer to an SEXP or a VECSEXP
structure based on context.

8
 b

yt
es

SEXP VECSEXP

4
by

te
s

Figure 1: High-level model representing the internal
data structures in a 64-bit build of R.

size. Hence, reducing the number of temporary objects that
are created can significantly improve the performance of R.

R only provides a column-oriented storage layout and lin-
ear algebra operations that access them in a row-oriented
manner suffer from memory stalls due to loss of spatial local-
ity in the processor caches. Implementing additional storage
layouts, or modifying linear algebra operations into cache-
conscious algorithms can help minimize these stalls.

The observations highlighted above shed insights into the
behavior of R on a contemporary processor. These insights
can be used by database vendors who package R with their
database products to better understand how the R “co-
processing engine” works, and thus allows better packag-
ing of R in database appliances and/or database cloud de-
ployments. These insights might also be valuable to the
database research community to consider exploring the use
of database storage and query processing techniques to im-
prove the R kernel. We hope that the architecture and the
programming language communities also find this work use-
ful as it allows them to consider architecture and compiler
techniques to improve the performance of R programs. Also,
with the increasing sizes of DRAM and decreasing costs [26],
improving the R kernel presents big opportunities for much
faster in-memory data analytics.

The remainder of this paper is organized as follows: Sec-
tion 2 introduces preliminary concepts. Section 3 presents
the processor model that we use to characterize the exe-
cution time breakdown. The experimental results are pre-
sented in Sections 4 and 5, and Section 6 presents opportu-
nities to improve the R kernel. Section 7 discusses related
work, and Section 8 contains our concluding remarks.

2. PRELIMINARIES
In this section, we describe key components that are used

in the R kernel.

2.1 R Internals
R is an implementation of the S programming language

(which is object-oriented). Internally, R implements con-
structs derived from both Lisp and Scheme, which are func-
tional languages. Thus, R has both a functional and an
object-oriented flavor.

Metadata

Type: 1 (“Symbol”)
Class: 0 (“Non Vector”)
Gen: 0 (“Lowest”)

 . . .

Next Node

Previous Node

Name

Value

Internal

NULL

Type: 9 (“Char”)
Class: 1 (“Vector”)
Gen: 0 (“Lowest”) …

Metadata
Next Node

Previous Node
1
1

65 (“A” in ascii)

NULL

Type: 14 (“Real”)
Class: 2 (“Vector”)
Gen: 0 (“Lowest”) …

Metadata
Next Node

Previous Node
2
2

1.1
2.2

NULL

NULL

Data
8 bytes

Data
16 bytes

A ← c(1.1, 2.2)

...

...

...

...

......

First VECSEXP

Second VECSEXP

An SEXP

Figure 2: Usage of data structures in R.

Data Structure

R uses S-expressions (also referred to as a node or an object)
as introduced and popularized by Lisp to represent all of
its internal structures. S-expressions in R can be classified
into vector and non-vector nodes. A vector node, which is
represented internally using a VECSEXP, is used to store
data. A non-vector node, which is represented internally
using an SEXP, is used for all other structures like symbols,
parse trees and linked lists. A high-level representation of
an SEXP and a VECSEXP is shown in Figure 1.

SEXP and VECSEXP are both pointers to structures that
contain a header and data. The first field of the header iden-
tifies important information like the type of the node (e.g.,
symbol, function, datatype, etc), the node class, generation
of the node for garbage collection, and the reference count
to this node. Subsequent fields contain pointers to the meta-
data, the next node, and the previous node. The header of
a vector node also contains two extra fields to indicate the
allocated and the actual length of the vector that is stored
in the node. The data portion of a non-vector node is a
union of structures that can represent a symbol, function,
linked list, etc. depending upon the context. Each structure
contains three pointers which can point either to an SEXP
or a VECSEXP depending upon the type of the non-vector
node. A vector node, however, does not contain pointers
to data. Instead, the data follows contiguously in memory
after the header.

Nodes in R also belong to one of eight node classes. Non-
vector nodes (by default) belong to class 0. Vector nodes
(classes 1-7) are divided into small vector nodes and large
vector nodes depending upon the amount of data that is
stored in the node. R allocates small vector nodes from
pages that are maintained by R to reduce internal fragmen-
tation. However, large vector nodes are directly allocated
from the heap. As shown in Figure 1, R also has the notion
of cons cells and vector cells. Every SEXP and the header of
a VECSEXP is a cons cell. Data allocated in a VECSEXP
is 8-byte aligned and each such 8-byte is a vector cell.

Figure 2 shows how these data structures are used to rep-
resent a simple vector (A <- c(1.1,2.2)) in R. In this ex-
ample, A is a symbol whose data is a real vector with two

174

Fetch
Units

Instruction Decode
Unit (IDU)

Instruction Decode
Queue (IDQ)

Register Allocate/
Rename Unit (RARU)

Reservation
Station (RS)

Execution
Units

Re-Order
Buffer (ROB)

F
ro

n
te

n
d

 (
In

-O
rd

er
)

B
ac

ke
n

d
 (

O
u

t-
of

-O
rd

er
) µop Issued

µop Dispatched

µop Executed

µop Retired

ITLB

STLB

DTLB

L1 I

L1 D

L2

L3

In-Core Out-of-Core

IMC

To RAM

Retirement/
Writeback

Figure 3: Overview of the processor architecture
used to characterize the execution time.

values: 1.1 and 2.2. The variable name is stored in a VEC-
SEXP of length 1 (First VECSEXP in Figure 2) and the
values are stored in a VECSEXP of length 2 (Second VEC-
SEXP in Figure 2). An SEXP of type Symbol is used to as-
sociate the variable name with its value. Note that the data
portion of the SEXP contains fields that represent a symbol
structure. Figure 2, however, is a simplified representation
as R internally uses another level of indirection (using hash
tables) for associating variables with their values. We omit
these details in the interest of space.

Garbage Collection

R has an in-place generational garbage collector with two
older generations. The garbage collector is based on [13].
This garbage collector maintains a circular doubly linked
list of nodes for each generation of each node class (using
the next node and the previous node pointers shown in Fig-
ure 1). Initially, when a node is allocated in R, it is snapped
into the lowermost generation of the doubly linked list cor-
responding to the node’s class. Lower generation objects
get more frequently collected than higher generation ob-
jects, and objects that are not garbage collected during a
collection get promoted to the next higher generation. This
mechanism is based on the observation that objects that sur-
vive more collections are likely to be referenced for a longer
time, and hence should not be garbage collected in the near
future.

The garbage collector in R is triggered either when the
number of cons cells currently allocated crosses a threshold,
or the number of vector cells currently allocated crosses a
threshold. The thresholds are dynamically adjusted after a
full collection (i.e, after all generations are collected) based
on the current memory usage of R.

Garbage Collection (GC) happens in two phases — Mark
and Sweep. During the Mark phase, all nodes reachable from
a root node are marked by traversing the circular doubly
linked lists of pointers. During the Sweep phase, all the
unmarked nodes in the generation(s) that is being collected
are freed. After every full collection, all the small nodes
allocated in pages are sorted by reorganizing the pointers so
that the locality of reference is improved.

Reference Counting

R has a naive reference counting implementation to provide
copy-on-write semantics, where a copy of an object is only
made if the object has multiple references, and there is a
write from some reference to this object. However, this ref-
erence counting implementation just indicates whether the
object has single or multiple references (i.e. it does not keep
an actual count of the number of references to the object).

2.2 The Read-Eval-Print Loop
An R script can contain many lines of code. Since R is

interpreted, each line in the script is executed independently
in a Read-Eval-Print Loop (REPL). The following example
illustrates how the REPL mechanism works.

Example: The R code to sum two objects and assign the
result to another object is: A <- B + C. Executing this line
of code triggers the following sequence of actions:

1. The read function parses the line of R code into an SEXP
structure, which is a linked list based on the prefix nota-
tion. In our example, the parsed code in prefix notation
is: <- A + B C, where each element is an SEXP.

2. The eval function takes the linked list parsed by the read
function and processes it. In this example, it evaluates
the SEXP <- to be a builtin function, and hence calls
it with the remaining elements of the list as arguments.
The <- function in-turn evaluates its arguments. Here,
the first argument is the symbol A and the second argu-
ment is the function +. Evaluating the second argument
results in a call to the + function which again evaluates
its arguments, computing the sum, and returns the result
back to <-. The <- function performs the assignment and
returns control back to the original eval function. Note
that both functions and data are passed as arguments,
thus the functional programming paradigm in R.

3. The print function outputs the results, if necessary. In
this example, no printing is needed, and control returns
to the interactive shell to evaluate the next line of R code.

3. THE PROCESSOR MODEL
In this section, we explain the different hardware compo-

nents that contribute to the execution time. The processor
architecture that we use to characterize the execution time
breakdown is shown in Figure 3, and is based on [31].

The processor is a pipeline of different units with queues
in between them to hold instructions. The pipeline can be
divided into the in-order frontend and the out-of-order back-
end. The frontend components have the following responsi-
bilities:

1. The Instruction Fetch Unit fetches the next instruction to
be executed, with the help of the Branch Prediction Unit,
from the L1 I-Cache and provides it to the Instruction
Length Decoder (ILD). The ILD prepares the instruction
for execution and puts it into an instruction queue.

2. The Instruction Decode Unit (IDU) takes the instruction
from the instruction queue, converts it into a set of µops
(micro-operations), and puts them into the Instruction
Decode Queue (IDQ). A µop represents the smallest unit
of operation that can be executed in the execution units.

The backend components have the following responsibilities:

175

Variable Description
TC Computation time
TBr Branch misprediction stall time
TFe Frontend stall time

TILD Instruction Length Decoder stalls
TIDU Instruction Decode Unit stalls
TRARU Register Allocate and Rename Unit stalls
TL1I Stall time due to L1 instruction cache misses

that hit the L2 cache
TITLB Stall time due to ITLB misses that result

in a STLB hit or cause a page walk
TBe Backend stall time

TL1D Stall time due to L1 data cache misses
that hit the L2 cache

TL2 Stall time due to L2 misses that hit in the L3
TL3 Stall time due to L3 misses that hit in

the DRAM
TDTLB Stall time due to DTLB misses that result

in a STLB hit or cause a page walk
TALU Stall time due to the ALU execution units

Table 1: Execution time components.

1. The Register Allocate and Rename Unit (RARU) allo-
cates resources required for the µop like a ROB (Re-
Order Buffer) entry, RS (Reservation Station) entry, load
or store buffers before the µop is issued to the Reserva-
tion Station. The Re-Order Buffer (ROB) stores the µops
temporarily, which can be executed out-of-order.

2. The Reservation Station (RS)/Scheduler is responsible
for dynamically dispatching µops to one of the execution
units. The execution units are fully pipelined and per-
form ALU and load/store operations. µops can be sched-
uled for execution in parallel and out-of-order as long as
the program correctness is not affected.

3. Once all the µops corresponding to an instruction have
been executed, then the instruction is said to have com-
pleted execution and can be safely retired (usually done
by write-back of state to the architectural registers).

The model for characterizing execution time: A µop goes
through different stages – Issued, Dispatched, Executed, Re-
tired – during its execution (see Figure 3). We use the µop
issue flow within the pipeline to characterize the execution
time based on [3], resulting in the following breakdown:

1. Computation Time: Issued µops that subsequently retire
contribute to the computation time (TC).

2. Branch Misprediction Stalls: Issued µops that do not re-
tire contribute to the “wasted work” done by the execu-
tion units due to a wrongly predicted branch (TBr).

3. Frontend Stalls: µops that were not issued because of a
stall in any unit in the frontend of the pipeline contribute
to the frontend stalls (TFe).

4. Backend Stalls: µops that were available in the Instruc-
tion Decode Queue but were not issued because of re-
sources being held-up in the backend contribute to the
backend stalls in the pipeline (TBe).

Putting all of this together, the time taken to execute a
single line of R code (TR) is the sum of the computation
time and the various stall times. Thus,

TR = TC + TBr + TFe + TBe

Characteristic L1 L2 L3
Cache Size 32 KB Data (D), 256 KB 24 MB

32 KB Instr. (I)
Associativity L1 I – 4 way, 8 way 24 way

L1 D – 8 way
Inclusivity Non-inclusive Non-inclusive Inclusive
Miss penalty 10 35 180
(cycles) (hits in the L2) (hits in the L3)

Table 2: Intel Xeon E7-4850 cache characteristics.

The stall time due to the frontend and the backend can
be further divided into different components as shown in Ta-
ble 1. Note that the RARU stalls (TRARU) are accounted
under frontend stalls, even though it is a backend compo-
nent as we use the µop issue flow to characterize the ex-
ecution time breakdown. Moreover, since the L2 and the
L3 caches are unified, TL2 and TL3 are not only the stall
times due to data fetch misses but also due to instruc-
tion fetch misses. Note that, some of the stall times due
to the smaller stall components can overlap with instruc-
tion execution in the pipeline because of techniques like
dynamic instruction scheduling, speculative execution, and
data prefetching. Hence, the contribution of their stall cy-
cles to the total execution time is approximate and an upper
bound. We discuss this issue further in Section 4.3.

4. EXPERIMENTS
In this section, we describe our hardware platform, the

workload, and the measurement methodology that we use.

4.1 Hardware platform
For the experiments, we used a 2GHz Intel Xeon E7-4850

processor (we will just refer to this as the Xeon processor)
based on the Nehalem micro-architecture. While this pro-
cessor has 10 cores, R can only use one of the cores as it is
single-threaded. We also pinned the R process to a physical
core and disabled hyper-threading. The cache characteris-
tics of the Xeon processor are shown in Table 2. Note that
the L3 cache is inclusive, i.e. the cache lines found in the
L1 and L2 caches (across all the cores) are also present in
the L3 cache. The L1 cache has a separate instruction (I)
and data (D) cache, whereas the L2 and L3 cache are uni-
fied and cache both instructions and data. The processor
has its own integrated memory controller (IMC) to connect
to the DRAM via a 1066 MHz bus. The test machine has
64GB DRAM, and we used R-3.0.2 (64-bit version) running
on Scientific Linux 6.

4.2 Workload
We used four different workloads for our study. The work-

loads consist of a machine learning technique — Decision
Trees (Classification), a statistical modeling technique —
Linear Regression (Regression), a cluster analysis technique
— KMeans (Clustering), and a linear algebra operation —
Matrix Multiplication. The reason for choosing classifica-
tion, regression and clustering is because they are common
and popular analysis methods. We also refer to these three
collectively as the data analysis workloads. We also choose
a primitive linear algebra workload because it is used as a
building block in many data analysis algorithms, and R is
also widely used to evaluate linear algebraic operations.

176

Workload Package Algorithm
Decision Tree rpart [30] Recursive Partitioning
Linear Regression stats QR Decomposition
KMeans stats Lloyd’s Algorithm

Table 3: Data analysis workloads, their packages,
and the algorithms used for their implementation.

Dataset. We used the Airline Ontime Dataset [1] for the
data analysis workloads. The dataset consists of flight ar-
rival and departure details for all commercial flights within
the USA, from October 1987 to April 2008. There are nearly
120 million rows with 29 different columns in the dataset.
The on-disk size of the uncompressed dataset is 11GB af-
ter preprocessing. The in-memory size when the complete
dataset is loaded in R is 27GB because of the binary file type
representation. For every data analysis workload, we use the
maximum dataset size that can be analyzed in-memory for
that workload without swapping to disk. In some cases, the
workload was able to analyze the complete dataset without
swapping. To stress these workloads, we increased the num-
ber of rows in the original dataset by repeating the dataset.
For matrix multiplication, we use uniform sampling to con-
struct two large matrices.

Table 3 shows the list of data analysis workloads along
with the package they are found in, and the algorithm that is
used. Matrix Multiplication is exposed via the base package
in R. All these packages are available as part of the native
R distribution and work completely in-memory.

All the workloads are invoked via an R script. Each R
script consists of one or more lines of Extract-Transform-
Load (ETL) operations, followed by explicit garbage col-
lection, and then followed by calling the actual R function
that implements the workload. The ETL operations are
necessary to load the data and set it up for the workload
under study. To focus on the core computation, we only
load the required columns for the workload, and not the
whole dataset. We use explicit garbage collection so that
unnecessary data allocated during the ETL operations does
not trigger a garbage collection event during the execution
of the workload (the main target of this study). Note in
the performance results presented in the later sections, we
only measure the workload (the last line of R code in every
script); i.e. the ETL and the garbage collection times are
not included. Also note that all the workloads, except the
linear algebra operation, are R functions written using many
lines of R code. The R functions can in-turn call their own
C/Fortran code if efficient or custom processing is required.
The R scripts are described below. Only part of the R ETL
code is provided due to space constraints.

Decision Trees: We built a decision tree model to clas-
sify whether an airline can be late or not based on the day
of the week and the departure delay. We term an airline as
Late if its arrival delay is greater than 10 minutes. The R
script is as follows:

A <- read.table(file="airline220MRows.csv", sep=",", ...)
A$Late <- A$ArrDelay > 10
A$Late <- as.factor(A$Late)
gc(T)
result <- rpart(Late ~ DepDelay + DayOfWeek, data = A)

Variable Description Value
TR Total execution time of

the R script
Actual unhalted CPU
cycles

TC Computation time Estimated based on the
number of µops retired

TBr Branch misprediction
stall time

Estimated based on the
number of µops issued
and number of µops re-
tired

TBe Backend stall time Actual stall cycles
TL1D L1 D-cache stalls #Misses * 10 cycles
TL2 L2 stalls #Misses * 35 cycles
TL3 L3 stalls #Misses * 180 cycles
TDTLB DTLB stalls #DTLB misses * 7 cy-

cles + Page walk cycles
TALU ALU stalls Actual stall cycles

TFe Frontend stall time TR-TC-TBr-TBe

TILD ILD stalls Actual stall cycles
TL1I L1 I-cache stalls #Misses * 10 cycles
TITLB ITLB stalls #ITLB misses * 7 cy-

cles + Page walk cycles
TMISC Other stalls Estimated stall cycles

Table 4: Measurement methodology for each com-
ponents’ stall time.

Linear Regression: Similar to the decision tree model,
we built a linear regression model to characterize the arrival
delay of an airline based on the day of the week and the
departure delay. The R script is as follows:

A <- read.table(file="airline100MRows.csv", sep=",", ...)
gc(T)
result <- lm(ArrDelay ~ DepDelay + DayOfWeek, data = A)

KMeans: We used five numeric columns (removing miss-
ing values) to find two clusters in the dataset. The R script
is as follows:

A <- read.table(file="airline150MRows.csv", sep=",", ...)
gc(T)
result <- kmeans(na.omit(A), 2, algorithm="Lloyd")

Matrix Multiplication: We used two matrices with 230

elements each for matrix multiplication. Elements of the
matrices were uniformly sampled from numbers between 1
and 100 and NA (to include missing values). R internally
uses BLAS [24] libraries for linear algebra operations. How-
ever, in the presence of missing values, the R kernel imple-
ments its own matrix multiplication. Since the focus of this
paper is to characterize the R kernel, we introduced missing
values into the matrices. The R script is as follows:

A <- matrix(sample(c(1:100, NA), 230, replace=T), ncol=222)
B <- matrix(sample(c(1:100, NA), 230, replace=T), nrow=222)
gc(T)
result <- A%*%B

Our workload consists of a range of R scripts from those
that allocate minimal memory which does not require any
deallocation (matrix multiplication) to those that deallocate
most of the allocated memory (data analysis workloads).
The former accounts for scripts that are compute-bound and
the latter for scripts that are memory-bound.

177

Tc 8.36%
TBr 2.06%

TFe 3.92%

TBe
85.66%

Decision Tree

Tc 11.29%

TBr 2.49%

TFe 4.68%

TBe
81.54%

Linear Regression

Tc 13.97%

TBr 2.91%

TFe 7.6%

TBe
75.52%

KMeans
Tc 8.58%

TBr 11.92%

TFe 6.03%

TBe
73.47%

Matrix Multiplication

Figure 4: Execution time breakdown of the different workloads.

4.3 Measurement tools and methodology
We used PAPI [15] to measure the native performance

counters of the Xeon processor. We measured 36 different
performance events exposed by the Nehalem microarchitec-
ture. Our measurements indicate the amount of time that
R spends in the eval portion of the REPL. To do this, we
modified the R source code to start collecting counters using
PAPI just before eval is called, and stop collecting counters
just after eval is stopped. We also needed to profile specific
components of the R kernel like the garbage collector. We
used PAPI in a very similar way to achieve this.

To increase confidence intervals, every workload was run
multiple times and the maximum standard deviation for any
significant performance counter across all the workloads was
less than 3%. Table 4 shows the measurement methodology
for the individual stall components. As can be seen:

1. The frontend stall cycles is measured as TR-TC-TBe-TBr.
This equation holds from the processor model discussed
in Section 3.

2. The backend stall cycles is approximated as the number
of cycles no µop was executed in any of the ALU execu-
tion units, since when µop execution is stalled, the RS get
backed up quickly and hence no more µop can be issued
to the RS from the IDQ (cf. Section 3 and Figure 3).

3. Except for the ALU stalls, the measurement methodol-
ogy for the individual components of the backend stalls
assumes a sequential penalty model (i.e, the total back-
end stall cycles =

∑
performance impacting events number of

occurrences of the event × average penalty cycles for that
event [3]). This method overcounts due to the capabil-
ity of the processor to hide some of these stalls by out-
of-order execution. However, for simplicity, we use the
computed stall cycles to only compare between the dif-
ferent individual stall components. We do not use it to
compare with the total execution cycles or the backend
stall cycles.

4. TIDU and TRARU have been replaced with TMISC . This
measure is estimated from the computed frontend stall
cycles and the other frontend stall components.

5. RESULTS
We executed the workloads described in Section 4.2 on

the hardware platform described in Section 4.1, and present
our findings in this section.

5.1 Execution Time Breakdown
Figure 4 shows the execution time breakdown of the dif-

ferent workloads. The graphs show the distribution of the

computation time (TC), the branch misprediction stall time
(TBr), the frontend stall time (TFe) and the backend stall
time (TBe) as a percentage of the total execution time for
all the workloads. As can be seen, nearly 85-90% of the time
is spent in stalls (TBr, TFe and TBe) for all the workloads
– an alarmingly high component that indicates how poorly
R performs in-memory data analysis for large datasets on
current processors. On the other hand, this behavior also
presents big opportunities for performance improvements in
R. As DRAM sizes continue to increase while dropping in
cost [26], improving the R kernel presents opportunities to
analyze far larger datasets than is possible today (in R), and
far more efficiently.

Backend stalls account for approximately 75-85% of the
total execution time. The reason for the backend stalls can
be either memory-bound stalls or ALU execution unit stalls
like a divide, square root or any floating point operation.
However, for all the workloads, the measured stall cycles
due to the ALU execution units is < 1% of the backend stall
cycles and hence we approximate the entire backend stalls to
be memory-bound stalls. Thus, reducing the memory-bound
stalls in R can dramatically improve the performance of the
computation time in all the workloads. As we will see in the
Section 5.2.1, an additional benefit is to considerably reduce
the memory footprint for certain workloads.

5.2 Backend Memory Stalls
Figure 5 shows the decomposition of the backend mem-

ory stall time into four components TL1D, TL2, TL3, and
TDTLB . Since the L2 and the L3 caches are unified, TL2

and TL3 also include the stall time due to instruction fetches
that do not hit in the L2 cache. However, the number of in-
struction fetch requests that miss the L2 is four orders of
magnitude smaller compared to the number of accesses to
the L3 cache. Hence, TL2 and TL3 can be approximated to
be the stall time only due to data fetches.

In our experiments, the L1D stalls accounts only for 1.5
- 3% of the total memory stall time, and the DTLB stalls
only for 0.5 - 5% of the total memory stall time in all our
workloads. DTLB stalls occur when the address translation
for the given virtual to physical address misses in the DTLB.
When this happens, the Xeon processor looks up in its STLB
(“Second-level TLB”) cache, which is shared between the
DTLB and the ITLB and also has many more entries than
each of them. If the virtual address is not present even
in the STLB, then it triggers a page-walking mechanism.
However, in our measurements, the number of page-walk
cycles (which is directly measured using a hardware counter)
is comparatively low, probably due to fast hardware page-
table-walkers present in the x86-64 based Xeon processor.

178

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

DT LR KM MM

L1 D-Stalls (Bottom) L2 Stalls L3 Stalls DTLB stalls (Top)

P
er

ce
n

ta
ge

 o
f

m
em

o
ry

 s
ta

ll
ti

m
e

Figure 5: Backend memory stalls breakdown.
DT: Decision Trees, LR: Linear Regression, KM:
KMeans, MM: Matrix Multiplication.

This effect minimizes the contribution of the DTLB stalls
to the memory stall time. Moreover, the high latency to
service the L2 and L3 cache misses further diminishes the
contribution of the DTLB and the L1D stalls to the memory
stall time. Also, a miss in the L1D cache that hits in the
L2 cache incurs very low latency, and can be overlapped
with other computation due to the out-of-order pipelined
execution units. Hence, the actual contribution of the L1D
stalls to the backend memory stalls should be lower than
reported. Since both the DTLB and the L1D stalls are very
low, we do not consider them further in this paper.

For all the data analysis workloads, TL3, which is DRAM
latency-bound, is the dominant stall with nearly 95% of the
memory stall time attributed to it. Even for the matrix mul-
tiplication workload, TL3 is the dominant stall component
contributing nearly 99% of the memory stall time. How-
ever, matrix multiplication can also become L3 bound or L2
bound depending upon the size of the matrices. The rea-
sons for stalls in both these workloads are discussed further
in Sections 5.2.1 and Sections 5.2.2 respectively.

5.2.1 Stalls - Data analysis workloads:
As discussed above in Section 5.2, L3 stalls, which are

bound by the DRAM-latency, contribute to about 95% of
the memory stall time for the data analysis workloads. Al-
though out-of-order execution of other instructions can over-
lap with some of these misses, the L3 miss stalls still dom-
inate the stall time. This behavior is likely due to the ex-
horbitant number of stall cycles for servicing a miss in the
L3 cache from the DRAM. Past and current trends indicate
that this number of cycles has only increased over the years,
and this trend is likely to continue. With the current R ker-
nel, L3 stalls will continue to worsen over time, and hence
methods to focus on minimizing the number of L3 cache
misses could pay rich (performance) dividends.

The L3 cache misses arise due to a lack of spatial local-
ity in the access pattern of the allocated data. To better
understand the reasons for this behavior from within the
R kernel, we inspected and profiled the R kernel at various
points of interest. Our investigation revealed that one of the

0%	

10%	

20%	

30%	

40%	

50%	

60%	

70%	

80%	

90%	

100%	

DT	 LR	 KM	

Pe
rc
en

ta
ge
	 o
f	 L
3	
m
iss
es
	

0%	

10%	

20%	

30%	

40%	

50%	

60%	

70%	

80%	

90%	

100%	

DT	 LR	 KM	

Pe
rc
en

ta
ge
	 o
f	 c
om

pu
ta
Bo

n	
Bm

e	
(T

c)	

Figure 6: Percentage of L3 misses and percentage
of computation time spent doing garbage collection.
DT: Decision Tree, LR: Linear Regression, KM:
KMeans.

major sources of the L3 cache misses is the garbage collec-
tor in R. As explained in Section 2, the garbage collector
traverses circular doubly linked lists of pointers as part of
its mark-and-sweep generational garbage collection method.
Traversing a list of pointers has an adverse effect on the spa-
tial locality of the processor caches, and hence increases the
number of L3 misses. We also found that during the evalua-
tion of the data analysis workloads, the R kernel allocates a
large number of temporary objects from the heap, a major-
ity of which are either unnecessary or duplicates of existing
objects. These actions not only increase the memory pres-
sure but also trigger the garbage collector frequently. We
call this the Create-Copy-GC loop in R. This aspect is also
the major reason that causes R to swap to disk even for
datasets that are far smaller than the main memory size.

Impact of Garbage Collection

Figure 6 shows the impact of garbage collection on the L3
misses and the computation time (TC) for the data analysis
workloads. The linear algebra workload is not shown as it is
compute-bound and does not trigger the garbage collector.
As can be seen, garbage collection is the reason for nearly
90% of the L3 cache misses for the linear regression and the
kmeans workloads. Also, both these workloads spend more
than half their computation time doing garbage collection.
Hence, minimizing the number of L3 misses due to garbage
collection can greatly improve the performance of these two
workloads.

When improving the R kernel will not greatly improve the
performance of an R script? Figure 6 also shows that for
the decision tree workload, only 20% of the total L3 misses
are due to garbage collection, and this program spends 30%
of its computation time in garbage collection. By further
inspecting and profiling the rpart CRAN package, we find
that it uses custom C code to implement certain parts of
the recursive partitioning algorithm using the “.Call” API,
which allows calling custom C code from R. The custom C
code manipulates data structures using pointers in a cache-
insensitive manner and contributes to most of the remaining
L3 cache misses. In such cases, optimizing the R kernel can
boost performance only by a small amount. To get higher
performance improvements, the decision tree implementa-
tion itself has to be modified to make it cache-conscious.

Computation Speed vs Memory Utilization Tradeoff. One
possible way to reduce the number of L3 misses is to mini-

179

0%	

10%	

20%	

30%	

40%	

50%	

60%	

70%	

80%	

90%	

100%	

DT	 LR	 KM	

Pe
rc
en

ta
ge
	 o
f	 L
3	
m
iss
es
	 d
ue

	 to
	 G
C	

0	

5	

10	

15	

20	

25	

30	

35	

40	

45	

50	

DT	 LR	 KM	
M
ax
im

um
	 m

em
or
y	
fo
ot
pr
in
t	 	
(in

	 G
Bs
)	

Cons Cells Vector Cells

Figure 7: Left: Percentage of L3 misses caused by
triggering the garbage collector due to cons cells
and vector cells crossing their thresholds. Right:
Maximum memory footprint of cons cells and vec-
tor cells. DT: Decision Tree, LR: Linear Regression,
KM: KMeans.

mize the number of times that the garbage collector is trig-
gered. Recall from Section 2 that the garbage collector is
triggered when the number of cons cells allocated crosses a
threshold (Threshcons), or the number of vector cells cur-
rently allocated crosses a threshold (Threshvec). R checks
for both these conditions before it allocates any memory
from the heap. These thresholds are also dynamically ad-
justed after every full collection to suit the memory demands
of the current workload in R. Figure 7 shows the percent-
age of the L3 cache misses that are caused by triggering the
garbage collector due to either of these two conditions. It
also shows the maximum memory (in GBs) that is used by
both the cons cells and the vector cells. It can be observed
that although the maximum memory used by the cons cells
ranges only between 10-30% of the total memory footprint,
the percentage of L3 misses caused by the cons cells trigger-
ing the garbage collector is 50-70% of the total number of
L3 misses across all the data analysis workloads.

To understand the reasons for this behavior, one needs to
look into how R adjusts these thresholds. R uses a primitive
model to increment or decrement the thresholds based on
the current amount of heap memory that is allocated. The
model for incrementing the thresholds is shown below. A
very similar model is used to decrement the thresholds.

if(CurrentAllocatedcons > Threshcons * GROWFRACcons)
Threshcons += GROWMINcons + GROWINCFRACcons * Threshcons

SizeNeededvec = CurrentAllocatedvec + RequestSizevec
if(SizeNeededvec > Threshvec)

Threshvec = SizeNeededvec
if(SizeNeededvec > Threshvec * GROWFRACvec)

Threshvec += GROWMINvec + GROWINCFRACvec * Threshvec

The CAPITALIZED variables in the above model are con-
stants used by the garbage collector to control the values of
the thresholds. For both the cons and the vector cells, when
the currently allocated number of cells crosses a certain frac-
tion of the current threshold, the threshold is incremented
by a fixed value and a fraction of the current threshold. Note
that Threshvec is also adjusted based on the allocation size
requested when the garbage collector gets triggered. These

●

●

●

●

●

●

0 1 2 3 4 5 6 7

0
10

20
30

40
50

60

Dataset size (in GBs)

M
em

or
y

fo
ot

pr
in

t (
in

 G
B

s)

● Decision Tree
Linear Regression
KMeans

Figure 8: Memory footprint vs dataset size. The X
mark indicates that the workload begins to swap.

thresholds provide a space vs speed tradeoff within the R ker-
nel. The higher the thresholds, the less frequently the GC
is triggered, but available memory decreases more rapidly,
and vice-versa.

For our workloads, the GROWINCFRACcons is set to a very
low value compared to what is needed to deal with the
rate at which cons cells are allocated. This setting causes
Threshcons to get incremented slowly, and hence the GC
is triggered frequently, thereby increasing the number of L3
cache misses for the cons cells. Setting this variable to higher
values would have reduced the number of L3 misses due
to cons cells1. Although the R kernel provides options to
change the values of these constants, it is cumbersome for
a data scientist to determine how to choose these values.
Wrong values can lead to increased memory consumption
and hence cause the R program to swap quickly to disk, or
increased computation time due to frequent garbage collec-
tion. Hence, an interesting direction for future work is to use
a more robust model to tune the values of these constants
automatically based on factors such as the available amount
of main memory, the current allocated heap size, and the
rate of memory allocation for the current workload.

We also conducted a sensitivity analysis of the GROWINCFRAC
parameters – see [29] for more details.

Impact of temporary objects

Figure 8 shows the maximum memory footprint as the size of
the dataset increases for the data analysis workloads. Note
that the size of the dataset indicates the number of bytes
occupied by the columns of the data frame (required for the
computation) that are loaded in memory. As can be seen
in the figure, R begins to swap for very small dataset sizes
compared to the size of the DRAM. For example, the linear
regression workload analyzes less than 2 GB of data before
beginning to swap on our machine with 64 GB of RAM! This
behavior is due to the large amount of memory allocated for
temporary objects that are created during the evaluation

1Increasing the GROWINCFRACcons parameter for linear re-
gression (to the exact value required by the algorithm) reduced
the number of L3 misses due to cons cells to less than 1% of the
total number of L3 misses. Decreasing it (to a small value) in-
creased the number of L3 misses due to cons cells to 82% of the
total number of L3 misses, and the computation time increased
by 138%.

180

Workload
of
temp
objects

Total
malloc’ed
(in GBs)

Total
free’d
(in GBs)

Decision Tree 235 247 226
Linear Regression 156 114 77
KMeans 93 92 66

Table 5: Number of temporary objects (>1MB) cre-
ated, total memory allocated, and deallocated (in
GB) in the data analysis workloads.

of the data analysis workloads. Table 5 shows the number
of temporary objects (of size greater than 1 MB) that are
created, the total amount of memory that is allocated, and
the total amount of memory that is deallocated during the
evaluation of the data analysis workloads. The total mem-
ory allocated is higher than the DRAM size because the
garbage collector controls the maximum memory footprint
that is in use at any point in time. Also, the total memory
deallocated is during the evaluation of the workload; some
objects may get deallocated during the next garbage col-
lection cycle. Analyzing why R creates so many temporary
objects revealed to us that while a few of them were nec-
essary for running the R script, a majority of them were
either unnecessary or duplicates of existing objects. Below,
we present a classification of such temporary objects created
in the R kernel during the evaluation of our workloads.

1. Duplicates of existing objects. The primary reason for
creating duplicate objects stem from R’s functional pro-
gramming paradigm where each function is supposed to be
side-effect free. Being side-effect free means that the func-
tions do not modify the state of the objects passed as ar-
guments; instead, they create a duplicate copy of those ob-
jects (immutable objects). In some places, the R kernel
does not properly decrement the reference count of an ob-
ject when necessary. In such cases, duplicates get created
due to the copy-on-write semantics. These duplicate ob-
jects get garbage collected later. Though immutability is
a desired property for reasoning about the state of the ob-
jects, it incurs considerable overhead in terms of memory
and processor utilization both for the copy and the garbage
collection components. This behavior only gets worse as the
size of the object increases. Our investigation shows that it
is certainly possible to modify some of these objects in-place
without affecting the correctness of the R script.

2. Attributes that may not be required. An example of this
category is setting the row.names attribute on a data frame
(A data frame is the equivalent of a SQL table in R). The
row.names attribute provides a name to all the rows in a
data frame (usually using the sequence from 1 to the number
of rows). R creates such attributes by default even if these
attributes may not be required by the user. Making such
attributes optional can reduce the memory pressure.

3. Intermediate objects during arithmetic operations. An
example of this aspect has been discussed in [33].

Example: d <- sqrt((x-xs)^2+(y-ys)^2)

We repeat part of their example as shown above. Here x

and y are vectors, xs and ys are real values, ^2 finds the
square of each element of the vector and returns a vector,
sqrt finds the square root of each element of the vector
and returns a vector. Based on the REPL explained in

Section 2.2, R creates intermediate objects for each of the
following five expressions: x-xs, y-ys, (x-xs)^2, (y-ys)^2
and (x-xs)^2+(y-ys)^2. If unnecessary intermediate vec-
tors could be overwritten, then the number of intermediate
vectors could be brought down to one in this case (i.e, y-ys
can be overwritten with (y-ys)^2, and x-xs can be over-
written with (x-xs)^2, followed by (x-xs)^2+(y-ys)^2, fol-
lowed by the sqrt of that vector).

4. Inefficient implementation. An example of inefficient im-
plementation occurs when some of our workloads check for
missing values (NAs) in the input data frame. The goal of
this step is to remove those rows that contain an NA. To do
so, these scripts call an R function which does the following:

(a) First, it creates a logical vector (where each element is
TRUE or FALSE) for each column in the data frame
indicating whether the corresponding row in the col-
umn contains an NA.

(b) Second, it does a binary OR of these vectors, two at a
time, to get the vector which indicates which rows in
the data frame contain an NA value.

(c) Finally, it does a unary NOT of this vector to get the
final vector that indicates which rows should be kept
in the data frame.

This processing is inefficient as each operation creates multi-
ple temporary objects, each of them the size of the number of
rows in the data frame. An efficient implementation (which
actually exists in R in the stats package, but not in the main
kernel) is to check the whole data frame at once to find the
rows that should be kept.

Another example of inefficient implementation is found when
subsetting a data frame in R [9]. We explain this aspect us-
ing the following R script:

A <- data.frame(c(1,2,3), c(4,5,6))
B <- c(TRUE,FALSE,TRUE)
result <- A[B,]

The script creates a data frame (A), creates a logical vector
(B), and subsets the data frame A using B. The first argument
for subsetting indicates required rows (specified using the
logical vector B) and the second argument indicates required
columns (empty indicates all columns). During subsetting,
the R kernel first creates an intermediate vector containing
the required indices of the corresponding column based on
the logical vector. It then uses these indices to create the
vector that contains the actual values from the column. This
step is repeated for every column in the example above, thus
creating multiple intermediate vectors. Instead, it would
be far more efficient to combine these two operations, thus
avoiding the intermediate vectors.

Given this behavior of R, it is not surprising that R runs
out of memory and begins to thrash quickly for datasets that
are far smaller than the available main memory. This obser-
vation indicates that if R is to be used for large-scale data
analytics, reducing the number of temporary/unnecessary
objects should be a key area of focus going forward. How-
ever, the challenge lies in doing this in a user-transparent
manner without affecting much of the ease-of-use of R.

5.2.2 Stalls in the Linear Algebra Workload:
As seen in figure 5, the L3 stalls dominate the matrix

multiplication workload taking up more than 99% of the

181

2.5%	

85.7%	

11.2%	
0.6%	

Matrix	 Mul*plica*on	 -‐	 Row	 Cached	

L1	 D-‐Stalls	
L2	 Stalls	
L3	 Stalls	
DTLB	 Stalls	

Figure 9: Memory stalls breakdown for the matrix
multiplication workload where a row size fits into
the L3 cache.

memory stall time. The matrix multiplication workload is
compute-bound and does not trigger the garbage collector;
thus, pointer-chasing is not the problem here. To under-
stand the reasons for the stalls, one needs to look at the im-
plementation of matrix multiplication in the R kernel. The
C-pseudocode for multiplying two matrices X and Y, where
NRX is the number of rows of X, NCX is the number of columns
of X and NCY is the number of columns of Y, is shown below.

for (i = 0; i < NRX; i++)
for (k = 0; k < NCY; k++) {

sum = 0.0;
for (j = 0; j < NCX; j++) {

sum += X[i + j * NRX] * Y[j + k * NRY];
}
result[i + k * NRX] = (double) sum;

}

Column-Oriented Storage Layout in R: Internally, a ma-
trix in R is represented using an SEXP whose metadata con-
tains an attribute named “class” with the value “matrix”.
The elements of a matrix are stored in a VECSEXP after the
header in a column-oriented layout contiguously in-memory.
The data access pattern of the above algorithm is as follows:
To calculate one row of result, the algorithm traverses one
row of X and the entire matrix Y in a column-oriented man-
ner. Hence, for the whole matrix multiplication, the entire
matrices result and X are traversed in a row-oriented man-
ner once. Whereas, the entire matrix Y is traversed in a
column-oriented manner, NRX times.

When the processor caches cannot hold an entire row of
the matrix X, each element accessed in X may result in an L3
cache miss. Also, when the entire matrix Y cannot be held
in the cache, each cacheline (64 bytes) access of Y could miss
in the L3 cache. In our workload, the number of elements in
a row of matrix X is 222, and each element is 8 bytes. Hence,
the row size is 32MB, which is greater than the L3 cache size
(24MB) of our Xeon processor. Thus, accessing the matrix
X in a row-oriented manner results in memory stalls due to
L3 cache misses. However, each cacheline access of Y may
not result in an L3 cache miss. This is due to the hardware
prefetchers in the Xeon processor that can look at the ac-
cess patterns of the load and store instructions and prefetch
the required data. The Xeon processor contains a Streamer
hardware prefetcher that monitors read, write and prefetch
requests from the L1-D and L1-I cache, and when a forward

or backward stream of requests is detected, it prefetches the
required cachelines [3]. To investigate this aspect, we also
ran the matrix multiplication workload where a row size
(and not the entire matrix) fits into the L3 cache (i.e, row
size = 512KB, matrix size = 128MB). Figure 9 demonstrates
the memory stall breakdown of this workload. Here, matrix
multiplication becomes L3-bound indicating that most of
the cachelines get prefetched into the L3 cache. However,
they could also get prefetched into the L2 cache when the L2
cache is not heavily loaded with missing demand requests. In
that case, the matrix multiplication workload would become
L2-bound. This observation indicates that, if the matrix X

was stored row-wise, then it would also get prefetched by the
hardware prefetchers, and hence could reduce the number of
L3 cache misses.

More broadly, providing alternate storage layouts for the
users to choose from (or have a compiler choose it automati-
cally), like a row-oriented storage layout, can help minimize
stalls due to L3 misses for linear algebra operations that op-
erate row-wise. Similar observations have been made before
(e.g. [14]), but in a different setting of traditional analytic
query processing. Also well-known techniques like block-
ing [23] could be used to speed up the implementation of
the matrix operations in the R kernel.

5.3 Branch Misprediction and Frontend Stalls
Frontend stalls are infrequent and contribute 4-8% to the

total execution time across all the workloads. The frontend
can be stalled because of latencies in fetching or decoding the
instructions, thus being unable to deliver the maximum ca-
pable number of four µops to the backend per cycle. For all
our workloads, TITLB and TL1I are an order of magnitude
smaller than the other memory stall components, indicating
that instruction fetching is not a bottleneck. Also, as dis-
cussed in Section 5.2, the number of instruction fetches that
miss in the L2 cache is insignificant, probably because of
the powerful instruction prefetching and branch prediction
hardware units in modern hardware platforms that minimize
the frontend stalls. The low ITLB misses are probably due
to the smaller number of pages that are required to fit the
instructions of the workloads.

Branch misprediction stalls are also low, ranging from 2-
12% for all the workloads. This behavior is probably because
the R kernel inlines most of its code with macros and inline
functions, which reduces the number of branch predictions
that are required. In addition, sophisticated hardware mech-
anisms are built into contemporary processors to reduce the
cost of a branch misprediction, which further minimizes the
branch misprediction stalls. In our Xeon processor, instruc-
tions and µops of incorrectly predicted paths are flushed as
soon as a branch misprediction is detected. This method
frees up resources in the backend so that the frontend can
immediately start delivering µops of the correct branch, thus
minimizing instruction starvation due to branch mispredic-
tion [31].

Since both these stalls depend upon the hardware and the
compiler generating the sequence of instructions, the scope
to optimize these stalls from within the R kernel is limited.

6. TOWARDS A MORE EFFICIENT R
In this section, we discuss ways to improve the processor

and memory utilization of R. An obvious way is to improve
the R kernel itself. Nevertheless, alternate ways to improve

182

0	

200	

400	

600	

800	

1000	

1200	

1400	

1600	

1800	

2000	

Op*mized	 R-‐kernel	 Current	 R-‐kernel	

To
ta
l	 e
xe
cu
*o

n	
*m

e	
(in

	 se
c)
	

0	

10	

20	

30	

40	

50	

60	

Op*mized	 R-‐kernel	 Current	 R-‐kernel	
M
ax
im

um
	 m

em
or
y	
fo
ot
pr
in
t	 	
(in

	 G
Bs
)	

6.7X

2.6X

Figure 10: Left: Computation time comparison for
the linear regression R-script in the optimized R
kernel and the current R kernel. Right: Memory
footprint comparison for the same.

at least the processor utilization are to provision R servers
judiciously, and to consider (micro-) architectural changes.
We discuss each of these aspects in this section.

6.1 Improving R: Research opportunities
Improving the R kernel not only improves the processor

utilization but also the memory utilization of R, thus en-
abling analysis of larger datasets with the available main
memory. Based on our study, we present the following re-
search opportunities to enhance R.

1. The Create-Copy-GC loop is the major reason for R run-
ning out of main memory quickly for large datasets. Hence,
compiler techniques to reduce the number of temporary
objects can help bring down the memory pressure, and
speed up the execution time for large datasets.

2. Triggering the garbage collector frequently is a major rea-
son for the alarmingly high memory stalls in R. This
behavior is because of the use of a primitive model for
adjusting the thresholds responsible for triggering the
garbage collector. Hence, applying ideas developed in
the optimization and machine learning communities to
adjust the thresholds dynamically using a more robust
model can improve the performance of R programs.

3. Pointer-chasing during garbage collection is a major source
of L3 cache misses in R. Ideas from the programming
languages community (e.g. [17]) to place the garbage col-
lection data structures in a cache-conscious layout could
help minimize these L3 stalls.

4. R only provides a column-oriented storage layout for its
matrices. Linear algebra operations, like matrix multipli-
cation, that access them in a row-oriented manner suffer
from memory stalls. Hence, ideas from the database and
architecture communities to optimize the matrix storage
layout, and using methods like blocked matrix operations
could help minimize these stalls.

We hand-optimized the R kernel to not create unneces-
sary/duplicate temporary objects and tuned the thresholds
to not fire the garbage collector frequently for the linear
regression R script. Figure 10 shows the performance im-
provement achieved with these two optimizations in the R
kernel for the linear regression R script. As can be seen,
we were able to achieve a 6.7X decrease in the computation

time and 2.6X decrease in the memory footprint with these
optimizations. However, the real challenge lies in realizing
this potential automatically for all R scripts, and is a key
goal for future work.

6.2 Provisioning R Servers: Deployment Op-
timizations

Processor utilization of the current R kernel can be im-
proved by provisioning R servers in a judicious manner.
Based on our experiments, we emphasize the following.

1. Minimize the number of cores. The R kernel is single-
threaded and hence will only run on one core. Also, min-
imizing the number of cores reduces the complexity of
cache coherency checks, and hence can reduce the access
latencies to the processor caches.

2. Maximize CPU clock cycles. Improving the CPU fre-
quency can speed up the serial execution. Again since
the R kernel is single-threaded, this choice directly im-
pacts the computation time.

3. Minimize DRAM access latency. Our experiments show
that the L3 cache stalls dominate the memory stall time
for most of the workloads. Hence, minimizing the DRAM
access latency by using DDR memories with higher clock
rate can bring down the stall time, and/or choosing con-
figurations with larger L3 caches.

6.3 Hardware Enhancements: Research Op-
portunities

The R kernel, due to its Lisp origins, essentially operates
on linked lists. Linked list traversal is a pointer-chasing op-
eration that has a random access pattern with no spatial
locality. Hence, each access can potentially lead to a cache
miss. Existing prefetchers can only prefetch strided or se-
quential access patterns, and hence are not useful in this
case. Pointer prefetchers are well studied in the computer
architecture community to overcome this specific problem.
However, they are not available in commercial hardware to-
day. Proposals include to either use hardware only pointer
prefetchers [18, 28], or to use hardware pointer prefetchers
assisted by the software [16]. Examining some of these tech-
niques for R can potentially minimize the number of cache
misses due to pointer-chasing.

7. RELATED WORK
To the best of our knowledge, this is the first work to

characterize the execution time breakdown of different al-
gorithms in R on a contemporary processor. Much of the
related work has focused on scaling R to larger datasets by
making R work in out-of-memory scenarios (using DBMS,
Hadoop, or simple files), or porting R to existing data pro-
cessing environments.

The RIOT [33, 34] system optimizes I/O inefficiencies in
R by implementing an optimization engine and a storage
manager in an external R package. RIOT defines its own
data structures that are complementary to R’s built-in vec-
tors, matrices and arrays. Ricardo [19] and RHIPE [20]
integrate R with Hadoop. Ricardo decomposes data analy-
sis algorithms into parts that are executed by R, and parts
that are executed by Hadoop. An R-Jaql bridge is used to
communicate between R and Hadoop. RHIPE uses divide-
and-recombine methods for statistical algorithms to paral-
lelize large data computations in Hadoop. In all these cases,

183

existing algorithms have to be rewritten within the new en-
vironment. Also, Ricardo and RHIPE require setting up a
Hadoop cluster which can be cumbersome, as opposed to
using R as a standalone main memory program. Never-
theless, these out-of-memory implementations are aimed at
extremely large datasets that do not fit in main memory.
Our work is orthogonal to these as it focuses on identify-
ing bottlenecks within the R kernel that limit the amount
of data that can be analyzed in main memory. This main
memory setting is common in many existing data science
environments.

R has also been widely adopted in the enterprise. Revolu-
tion Analytics [6] offers a commercial distribution of R, and
also incorporates parallel external memory implementations
of popular data analysis algorithms that can scale and be
distributed across nodes in a cluster. Similarly, pbdR [27]
also offers external CRAN packages that enables higher lev-
els of data parallelism across many nodes. Note that both
Revolution and pbdR propose using R with multiple cores.
Our work here is complementary to that work as it focuses
on the single-threaded R kernel. Large enterprise database
vendors like Oracle, IBM, Tibco, Pivotal, SAP and Tera-
data have incorporated R into their environments for large
scale data analytics. Oracle R Enterprise (ORE) [4] inte-
grates R with the Oracle database to provide in-database
analytic capabilities for R and Oracle users. Teradata and
IBM have partnered with Revolution Analytics to enable
analytic algorithms to be run on their platforms. Tibco [10]
has built an enterprise R runtime called TERR, which they
claim provides better memory management capabilities than
open-source R. Pivotal [12], like Oracle supports in-database
analytics on their database, Greenplum. SAP has integrated
R with their in-memory database [8], HANA, to allow using
R for specific statistical functions. Vertica uses Presto [32]
as it’s R package. Our work complements these methods
as efforts to improve the core R kernel carry over to these
environments.

There is a growing list of CRAN packages that tackle the
memory limitation of R [2]. Some notable packages are big-
memory [21], biglm [25] and ff [11]. These packages store
data in plain files on disk and provide efficient data anal-
ysis algorithm implementations by chunking the data, and
swapping the required data in and out of memory. Although
these packages do not require setting up a DBMS or Hadoop,
their usage is limited to the algorithm that are implemented
on these packages. They also have a disk storage layout that
is different from R’s internal data structure representation,
and hence are not interoperable with most CRAN packages.

The concept of Reference Classes (RC) [5] in R was intro-
duced recently. This concept enables an R user to control
when to copy and/or modify objects in-place. However, the
onus is now on the user to reason about the state of an ob-
ject. Also, RC is not widely used, and the vast majority
of the CRAN packages are still based on the (traditional)
functional programming semantics in R.

8. CONCLUSIONS AND FUTURE WORK
This paper presents a dissection of R programs catego-

rizing where time is spent when running these programs.
We have identified interesting opportunities for future work
including considering exporting and adapting database stor-
age methods to R, presenting opportunities for architects to
consider micro-architectural features that target improving

the performance of R programs, and opportunities for the
programming languages community to enhance the R lan-
guage for better performance. Our results indicate that the
gap between the “bare metal performance” of the hardware
today and what is exploited by R programs is large, present-
ing many opportunities for future research.

9. ACKNOWLEDGMENTS
This research was supported in part by a grant from the

Microsoft Jim Gray Systems Lab, and by the National Sci-
ence Foundation under grants IIS-1250886 and III-0963993.

10. REFERENCES
[1] Airline Ontime Dataset. http://stat-computing.org/dataexpo/2009/.

[2] High Performance Task View Page.
http://cran.r-project.org/web/views/HighPerformanceComputing.html.

[3] Intel Performance Manual. http://www.intel.com/content/dam/www/public/us/en/

documents/manuals/64-ia-32-architectures-optimization-manual.pdf.

[4] Oracle R Enterprise. http://www.oracle.com/technetwork/database/

database-technologies/r/r-enterprise/overview/index.html.

[5] R Reference Classes. http://www.inside-r.org/r-doc/methods/ReferenceClasses.

[6] Revolution Analytics. http://www.revolutionanalytics.com/.

[7] Rexer Analytics Data Miner Survey 2013.
http://www.rexeranalytics.com/Data-Miner-Survey-Results-2013.html.

[8] SAP HANA R Integration Guide.
https://help.sap.com/hana/SAP_HANA_R_Integration_Guide_en.pdf.

[9] Subsetting a data frame in R.
http://stat.ethz.ch/R-manual/R-patched/library/base/html/Extract.data.frame.html.

[10] Tibco TERR. http://spotfire.tibco.com/discover-spotfire/what-does-spotfire-do/

predictive-analytics/tibco-enterprise-runtime-for-r-terr.

[11] D. Adler, C. Glser, O. Nenadic, J. Oehlschlgel, and W. Zucchini. ff:
memory-efficient storage of large data on disk and fast access functions, 2013. R
package version 2.2-12.

[12] P. A. T. at Pivotal Inc. and with contributions from Data Scientist
Team at Pivotal Inc. PivotalR: R front-end to PostgreSQL and Pivotal
(Greenplum) database, wrapper for MADlib, 2014. R package version 0.1.15.1.

[13] H. G. Baker. The treadmill: real-time garbage collection without motion
sickness. ACM Sigplan Notices, 27(3):66–70, 1992.

[14] P. A. Boncz, S. Manegold, and M. L. Kersten. Database architecture
optimized for the new bottleneck: Memory access. In VLDB, volume 99,
pages 54–65, 1999.

[15] S. Browne, J. Dongarra, N. Garner, G. Ho, and P. Mucci. A portable
programming interface for performance evaluation on modern processors.
International Journal of High Performance Computing Applications, 14(3):189–204,
2000.

[16] I. Burcea, L. Soares, and A. Moshovos. Pointy: a hybrid pointer prefetcher
for managed runtime systems. In Proceedings of the 21st international conference
on Parallel architectures and compilation techniques, pages 97–106. ACM, 2012.

[17] T. M. Chilimbi, M. D. Hill, and J. R. Larus. Making pointer-based data
structures cache conscious. Computer, 33(12):67–74, 2000.

[18] J. Collins, S. Sair, B. Calder, and D. M. Tullsen. Pointer cache assisted
prefetching. In Proceedings of the 35th annual ACM/IEEE international symposium
on Microarchitecture, pages 62–73. IEEE Computer Society Press, 2002.

[19] S. Das, Y. Sismanis, K. S. Beyer, R. Gemulla, P. J. Haas, and
J. McPherson. Ricardo: integrating r and hadoop. In Proceedings of the 2010
ACM SIGMOD International Conference on Management of data, pages 987–998.
ACM, 2010.

[20] S. Guha, R. Hafen, J. Rounds, J. Xia, J. Li, B. Xi, and W. S. Cleveland.
Large complex data: divide and recombine (d&r) with rhipe. Stat,
1(1):53–67, 2012.

[21] M. J. Kane, J. Emerson, and S. Weston. Scalable strategies for computing
with massive data. Journal of Statistical Software, 55(14):1–19, 2013.

[22] J. King and R. Magoulas. 2013 Data Science Salary Survey. O’Reilly, 1005
Gravenstein Highway North, Sebastopol, CA, 2014.

[23] M. D. Lam, E. E. Rothberg, and M. E. Wolf. The cache performance and
optimizations of blocked algorithms. ACM SIGOPS Operating Systems Review,
25(Special Issue):63–74, 1991.

[24] C. L. Lawson, R. J. Hanson, D. R. Kincaid, and F. T. Krogh. Basic linear
algebra subprograms for fortran usage. ACM Transactions on Mathematical
Software (TOMS), 5(3):308–323, 1979.

[25] T. Lumley. biglm: bounded memory linear and generalized linear models, 2013. R
package version 0.9-1.

[26] J. C. McCallum. Memory prices (1957-2013).
http://www.jcmit.com/memoryprice.htm.

[27] G. Ostrouchov, W.-C. Chen, D. Schmidt, and P. Patel. Programming with
big data in r, 2012.

[28] A. Roth, A. Moshovos, and G. S. Sohi. Dependence based prefetching for
linked data structures. In ACM SIGOPS Operating Systems Review, volume 32,
pages 115–126. ACM, 1998.

[29] S. Sridharan and J. M. Patel. Profiling R on a contemporary processor
(Supplementary material).
http://quickstep.cs.wisc.edu/pubs/dissecting-R-ext.pdf.

[30] T. Therneau, B. Atkinson, and B. Ripley. rpart: Recursive Partitioning, 2013.
R package version 4.1-3.

[31] M. E. Thomadakis. The architecture of the nehalem processor and
nehalem-ep smp platforms. Resource, 3:2, 2011.

[32] S. Venkataraman, E. Bodzsar, I. Roy, A. AuYoung, and R. S. Schreiber.
Presto: distributed machine learning and graph processing with sparse
matrices. In EuroSys, pages 197–210, 2013.

[33] Y. Zhang, H. Herodotou, and J. Yang. Riot: I/o-efficient numerical
computing without sql. arXiv preprint arXiv:0909.1766, 2009.

[34] Y. Zhang, W. Zhang, and J. Yang. I/o-efficient statistical computing with
riot. In Data Engineering (ICDE), 2010 IEEE 26th International Conference on,
pages 1157–1160. IEEE, 2010.

184

