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ABSTRACT
While there has been significant focus on collecting and man-
aging data feeds, it is only now that attention is turning to
their quality. In this paper, we propose a principled ap-
proach to online data quality monitoring in a dynamic feed
environment. Our goal is to alert quickly when feed behavior
deviates from expectations.

We make contributions in two distinct directions. First,
we propose novel enhancements to permit a publish-
subscribe approach to incorporate data quality modules into
the DFMS architecture. Second, we propose novel temporal
extensions to standard statistical techniques to adapt them
to online feed monitoring for outlier detection and alert gen-
eration at multiple scales along three dimensions: aggrega-
tion at multiple time intervals to detect at varying levels of
sensitivity; multiple lengths of data history for varying the
speed at which models adapt to change; and multiple levels
of monitoring delay to address lagged data arrival.

FIT, or Feed Inspection Tool, is the result of a successful
implementation of our approach. We present several case
studies outlining the effective deployment of FIT in real ap-
plications along with user testimonials.

1. INTRODUCTION
Data are being collected and analyzed today at an un-

precedented scale, and organizations routinely make impor-
tant decisions based on data stored in their databases. How-
ever, with the huge volume of generated data, the fast veloc-
ity of arriving data, and the large variety of heterogeneous
data, the veracity (or quality) of data in databases is far from
perfect [20, 14]. Data errors (or glitches) in many domains,
such as medicine, finance, law enforcement, and telecommu-
nications, can have severe consequences. This highlights the
pressing need to develop data quality management systems
to effectively detect and correct glitches in the data, thereby
adding veracity and value to business processes.

Data errors can arise throughout the data lifecycle, from
data entry, through storage, data integration, analysis, and
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decision making [10]. Much of the data quality effort in
the database research community has focused on detecting
and correcting errors in data once the data has been col-
lected in a database [5, 14], or during the data integration
process [13]. While commercial tools provide capabilities to
perform record-level data quality checks and data cleans-
ing during a batch ETL (extract, transform, load) process
(see, e.g., [2, 1, 4, 3]), there has been little attention paid to
data quality in the context of continuous feeds that are so
critical in today’s data management systems. This is sur-
prising since data entry time offers the first opportunity to
detect and correct errors [8]. We address this problem in our
paper, describe principled techniques for online data qual-
ity monitoring in a dynamic feed environment, and present
case studies based on the deployment of FIT (Feed Inspec-
tion Tool) in real applications.

Data feed management systems (DFMSs) have recently
emerged to provide reliable, continuous data delivery to
databases and data intensive applications that need to per-
form real-time correlation and analysis [21, 17]. In particu-
lar, in prior work we have presented the Bistro DFMS [21],
which is currently deployed at AT&T Labs and is respon-
sible for the real-time delivery of over 100 different raw
feeds, distributing data to several large-scale stream ware-
houses. Bistro uses a publish-subscribe architecture to effi-
ciently process incoming data (real-time streams, periodic
and ad hoc data) from a large number of data publish-
ers, identify logical data feeds (based on a flexible specifica-
tion language), and reliably distribute these feeds to remote
subscribers. FIT naturally fits into this DFMS architec-
ture, both as a subscriber of data and metadata feeds, and
as a publisher of learned statistical models and identified
outliers. However, the FIT system architecture is DFMS-
agnostic and can be used in conjunction with any DFMS as
long as it implements a basic publish-subscribe interface.

FIT performs continuous, passive monitoring of the feeds,
so as to not introduce any delays in real-time applications
that correlate and analyze the data. However, early detec-
tion of errors by FIT enables data administrators to quickly
remedy any problems with the incoming feeds, and inform
data analysts of any potential issues with the newly arrived
data. FIT’s online feed monitoring can naturally detect er-
rors from two distinct perspectives: (i) errors in the data
feed processes (e.g., missing or delayed delivery of files in
a feed), and (ii) significant changes in distributions in the
data records present in the feeds (e.g., erroneously switch-
ing from packets/second to bytes/second in a measurement
feed). The former is achieved by continuously analyzing the
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Figure 1: Monitoring feeds at multiple temporal scales enables us to control sensitivity (aggregation interval),
adaptability (amount of history) and stability (monitoring delay) of the feed monitoring process.

DFMS metadata feed, while the latter is achieved by con-
tinuously analyzing the contents of the data feeds.

For reasons of scalability and interpretability, FIT builds
simple, non-parametric statistical models over the most re-
cently seen data (identified by a sliding window) to predict
future trends and identify outliers as significant deviations
from the predictions. To ensure statistical robustness, these
models are built over time-interval aggregated data rather
than point-wise data. While useful, these standard outlier
detection techniques from the statistics community needed
to be made considerably more flexible to account for the
variability in data feeds during normal operation, so as to
avoid raising unnecessary alerts and incorporate user pro-
vided feedback on the raised alerts. For this purpose, FIT
detects outliers at multi-scale, in three different dimensions,
as illustrated in Figure 1.

The first dimension is the aggregation time interval, which
determines the granularity at which errors can be detected.
A short time interval allows for detection of fine-granularity
errors, but introduces considerable noise (i.e., variance) into
the process. A long aggregation time interval allows for ro-
bust predictions, but may mask compensating errors (e.g.,
fewer files in one time unit and more files in the next time
unit, within the same time interval). Detecting outliers us-
ing multiple aggregation time intervals enables FIT to effec-
tively deal with this issue.

The second dimension is the sliding window length, which
determines the extent of history used to build the predictive
model. A long window would not allow FIT to quickly iden-
tify new errors, while a short window could lead to normal
fluctuations being detected as outliers. Detecting outliers
using multiple sliding window lengths enables FIT to effec-
tively deal with this issue.

The third dimension is the monitoring time delay, which
is used to address lagged data arrival. A short monitor-

ing time delay allows FIT to quickly compare the model
prediction with the (aggregated) observation, but does not
account for normal variability in feed delivery schedules. A
long monitoring time delay ensures that late feed arrivals are
accounted for, but may sometimes be too late for an admin-
istrator to take remedial actions. Detecting outliers using
multiple monitoring time delays enables FIT to effectively
deal with this issue.

Enabling FIT to effectively monitor multiple feeds con-
tinuously and detect outliers at multiple scales necessitates
the sampling of data feeds, especially voluminous, high ve-
locity feeds. While traditional sampling is performed at the
record level, this cannot be efficiently done on data feeds,
since it would require parsing the content of all the files in
the feed into records to extract the sampled records. For
efficiency, FIT samples files from a data feed, then parses
and analyzes all the records in the sampled files. We empir-
ically show that this procedure provides similar robustness
to record level sampling in practice. To support this func-
tionality, we enhanced the DFMS to be able to efficiently
create derived feeds with sampled files, based on file level
metadata.

The rest of the paper is organized as follows. Section 2
presents related work. The infrastructure for monitoring
feed quality is described in Section 3. Section 4 discusses
the architecture and novel statistical modules in FIT. Sec-
tions 5, 6 and 7 present a variety of case studies, based on
the deployment of FIT in real applications, to demonstrate
the flexibility and effectiveness of the FIT approach to on-
line data quality monitoring of dynamic feeds. Note that
no personally identifiable information (PII) was gathered or
used in conducting these studies. To the extent any data
was analyzed, it was anonymous and/or aggregated data.
Finally, Section 8 concludes with a summary of the findings
discussed in the paper.
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2. RELATED WORK
Data feed management systems (DFMSs) have recently

emerged as a way for organizations to manage reliable, real-
time distribution of high-volume data feeds to interested ap-
plications for correlation and analysis [21, 17]. The Aster-
ixDB Big Data Management System (BDMS) [17] contains a
feed management subsystem responsible for data ingestion.
The focus of the AsterixDB feed manager is on scalable data
ingestion using partitioned parallelism and fault-tolerance
in the presence of input failures. The Bistro DFMS [21]
developed at AT&T Labs-Research focuses on several as-
pects of feed management, such as efficient processing of
source data feeds, mapping of source data feeds to logical
consumer feeds using a flexible specification language, and
efficient real-time file delivery to intermittently connected
remote subscribers. Bistro also provides limited support for
detecting feed changes, new feeds, dropped feeds and lost
data in already defined feeds. FIT greatly expands on these
capabilities by moving the data quality analysis into a sep-
arate system.

Data quality has been an active area of investigation from
different perspectives, including definition and detection of
data glitches, metrics for measuring them, and methods for
cleaning. The database community is typically focused on
semantic and domain specific integrity expressed in the form
of logical constraints, whereas the statistical community has
developed a body of work that focuses on capturing the sta-
tistical properties of the data and investigating departures
from expected statistical distributions.

Recent work, such as [15], relies on constraint specifica-
tion to identify potentially problematic data, and [16] in-
vestigates subsets or “pattern tableaux” that meet or fail
constraints [16]. Statistical approaches to data quality, par-
ticularly metrics, include the masking index [6] and statisti-
cal distortion [11]. Data cleaning and repairs have also been
the focus, e.g., in [23] which addresses continuous cleaning
of dynamic data by focusing on data semantics, integrity
constraints, and the history of repairs simultaneously. Re-
cently, there has been an interest in going beyond detec-
tion and repairs, to explain glitches in order to reduce the
amount of cleaning-induced distortion in the data [12]. Fi-
nally, statistical approaches to data quality have frequently
been adapted from process control methods. While we use
a relatively simple approach in our models, there has been
considerable work in the area of nonparametric methods for
process control, summarized nicely in [7].

Many commercial data integration systems such Informat-
ica PowerCenter [2], IBM InfoSphere DataStage [1], SAP
BusinessObjects Data Services [4] and Oracle Data Integra-
tor [3] include ETL (Extract, Transform, Load) tools with
capabilities to perform record-level data quality checks and
data cleansing on data that is about to enter an integrated
data warehouse. These tools work in a batch mode for peri-
odic refreshes of data warehouses and do not include support
for performing ETL operations in a streaming fashion. In
comparison, our focus with FIT is on monitoring of highly
dynamic continuous data feeds and detecting errors before
they have a chance to propagate to data warehouses or other
applications.

The importance of early detection and correction of data
errors has long been recognized by the research and indus-
trial communities with a lot of effort put into design of user-
interface tools that minimize the possibility of invalid data

entry. Examples include defining integrity constraints on
individual field values and rejecting data forms that violate
these constraints; restricting invalid data entry through us-
age of check-boxes, radio-boxes and combo-boxes; and auto-
completion of field values using a variety of prediction meth-
ods. The Usher system [8] uses a probabilistic model of
previous form submissions to optimize form design, dynam-
ically adapt data entry and perform after-entry verification
to increase the quality of user-entered data. The FIT system
shares the focus of early error detection but is primarily con-
cerned with data quality issues in software-generated con-
tinuous feeds. Additionally, we do not focus on record-level
quality checks but rather on detecting significant changes
and anomalies in data distributions in data feeds.

3. FEED QUALITY INFRASTRUCTURE
Data Feed Management Systems (DFMSs) provide a scal-

able platform for the reliable delivery of continuous data
feeds to a variety of data intensive applications, such as
databases and streaming data warehouses. In prior work,
we described the architecture of the Bistro DFMS [21], de-
ployed at AT&T Labs, that is responsible for the real-time
delivery of about 100 different feeds. Since then, we have
deployed a second DFMS called the Data Router, which
differs from Bistro in its low-level system architecture but
which shares a very similar publish-subscribe interface.

FIT can be used with either of these systems, because we
chose to design an independent feed quality monitoring tool
rather than embedding it within either DFMS. This passive
approach has a number of advantages:

• FIT can work with various DFMSs as long as they
implement the basic publish-subscribe interface.

• FIT does not require changes in the DFMS to sup-
port feed quality monitoring, which simplifies its op-
erational deployment.

• FIT does not introduce processing delays into real-
time feed delivery, even if the data quality analysis is
computationally expensive.

In this section we describe the high-level architecture of
these DFMSs and show how the FIT system slots naturally
into that architecture.

3.1 DFMS Architecture
At a very high level, a Data Feed Management System

is a publish-subscribe system responsible for routing source
data streams generated by feed producers to distributed feed
subscribers. Publishers deliver source data feeds as a stream
of raw files. Many of these data feeds involve multiple sub-
feeds, are highly aggregate and complex, and are not directly
usable by subscribers in their source form. In those cases,
the DFMS administrator uses a flexible feed definition lan-
guage to disaggregate the source feeds into their constituent
files and create logical consumer feeds that better match the
needs of subscribers.

In Figure 2 we show a high-level picture of how data feeds
flow through the DFMS. Publishers deliver data feed files to
the DFMS with each file explicitly labeled as belonging to
one source feed. Upon the receipt of a new file, the DFMS
File Classifier matches it to one of the logical consumer feeds
and stages it for delivery to all interested subscribers. Files
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Figure 2: The DQ feed manager may reorganize incoming files in the process of moving them from a source
feed to a consumer feed. The nested boxes represent files within feeds.

that do not match any of the defined logical consumer feeds
are placed in a special Unmatched Feed that can also be
subscribed to. Traditional subscribers are typically not in-
terested in the Unmatched Feed, but FIT makes use of it to
identify feed anomalies as described in Section 6.

The interpretation of data feeds can be very difficult in the
absence of file metadata such as file formats, data schemas,
timestamps, etc., and many feeds are poorly documented
despite the general trend towards self-documenting data for-
mats. Bistro and the Data Router support file metadata as a
first class citizen and allow cooperating producers to attach
metadata to all the files posted to source data feeds. Even
when metadata has not been attached, the name of the file
often contains useful information, and we have implemented
an automated extraction mechanism that extracts file name
metadata. Both explicit and automatically extracted meta-
data are posted into the Metadata Feed which can be con-
sumed both by regular subscribers, to add to their under-
standing of the incoming files, and by data quality tools like
FIT to perform outlier detection.

The DFMS Feed Delivery Subsystem is responsible for the
final step in data feed processing – the scalable delivery
of logical consumer feeds to subscribers using a variety of
supported protocols, such as SCP, SFTP and HTTP. Sub-
scribers can choose to receive every file in a logical consumer
feed or a configurable sample of those files in case the full
feed rate provides more files than the subscriber can han-
dle. Our configuration language is flexible enough to define
samples in two ways: (a) a random sample based on a hash
of the metadata fields, or (b) a longitudinal (panel) sample
created by hashing on selected file metadata fields. FIT can
take advantage of either sampling strategy to reduce the cost
of file content analysis while still maintaining reasonable ac-
curacy. We discuss the accuracy of data quality analysis on
sampled feed data in Section 7.

3.2 DFMS-FIT Integration
As previously mentioned, the FIT data quality monitor

fits naturally into the DFMS architecture and utilizes the
publish-subscribe interface to interact with the rest of the
system. FIT acts like a regular subscriber to receive the
Metadata Feed and any other selected feeds, either in their
entirety or sampled. Moreover, FIT can also act in the role
of publisher. Rather than providing an interface for ap-
plications to query feed quality information, FIT posts the
results of data quality analysis back into the DFMS using
predefined data quality feeds. This approach allows us to
layer a variety of different data quality applications such as
visualizers, alerting applications, data cleaners and others
on top of the output produced by FIT; it also allows us to
share FIT output with other subscribers who might want to
design their own plots or alerts.

For each logical consumer data feed F registered in the
DFMS, we define a number of special data feeds that carry
data quality information. In this section we describe all data
quality feeds that we maintain for this purpose.

1. Multi-scale temporal aggregates, A(F ): FIT generates
temporal aggregates for multiple aggregation intervals.
This allows FIT to monitor feeds at several scales to
detect problems that might only show up at one par-
ticular level of aggregation. A(F ) contains summary
statistics and signatures that could be useful to other
subscribers for generating feed reports.

2. Multi-scale FIT model parameters, M(F ): FIT builds
models M(F ) at multiple scales by using historical
data of aggregates A(F ) in sliding windows of different
lengths. We discuss models generated by FIT in more
detail in Section 4.3.

3. Multi-scale FIT outliers, E(F ): FIT tests the most
recent set of aggregates A(F ) against the appropriate
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model parameters in M(F ) and generates data out-
liers E(F ) when the feed behavior deviates from the
expected behavior. The outliers are generated for dif-
ferent monitoring time delays to allow for minor vari-
ations in data arrival.

4. DQ metrics, DQ(F ): FIT uses the outliers E(F ) as
the basis for DQ metrics related to missing or incom-
plete data, the number of alerts and their severity, and
the proportion of alerts out of the number tested.

In Figure 3 at left, we show the flow of data feeds and
associated quality feeds between publishers and subscribers
via the DFMS.

4. FEED INSPECTION TOOL
As mentioned in Section 1, FIT’s objective is to detect

anomalous data from two distinct perspectives: anomalies
in data gathering detected from feed metadata and anoma-
lies in data measurement based on file contents. FIT uses
summaries of metadata, e.g., file counts, average file size
and average inter-arrival times, and also descriptive statis-
tics of file content, e.g., trimmed mean or median of vari-
ous attributes, to build models of feed behavior and detect
anomalies. By focusing on aggregates, FIT ensures speed as
well as robustness of models and results. We describe FIT
in detail in this section.

FIT is implemented in the R language [19] to take advan-
tage of R’s rich library of statistical functions.

4.1 FIT Architecture
The FIT architecture is illustrated in Figure 3 (right).

In the Data Module, FIT acquires data, formats and ag-
gregates it at one or more temporal scales; FIT’s Analysis
Module reads aggregated data and generates model statis-
tics and outliers for each level of aggregation. The role of
the Alerting Module is to combine the output of the models
with user requirements to prepare human-readable reports.

FIT is customarily run in partnership with a DFMS as
described in Section 3.2, but it is also possible to run it
independently. The Data Module always has to be tailored
in some ways to the data to be processed, and part of that
tailoring includes defining the method by which the data is
acquired. The results produced by the Data Module and
the Analysis Module can either be published to a DFMS
or stored locally (or both); in either case, they are readily
accessible to the Alerting Module, Visualizer, and Email
Alerter. We now describe each module in more detail.

4.2 Data Module: Multi-scale Aggregation
The first step in FIT’s data pipeline is to acquire the data.

It may have subscribed to the data in a Data Feed Manager,
in which case it is delivered to FIT, or it may pull it from a
web site or other source at regular intervals. The data may
consist solely of feed metadata or it may include some or all
of the data files that comprise the stream.

In either case, FIT identifies two sets of variables: the
group-by variables (categorical variables to be used for
grouping, such as a time interval, source, and record type)
and the test variables to be summarized and tested for
anomalies (such as number of files, file size, and inter-arrival
time). These variables may be present in the data or derived
from the data, and could be of different types including nu-
meric, string and timestamps.

While handling of numerical attributes is obvious, there
are several approaches to handling other types of variables
as well. One approach to handling string variables is to es-
timate the distribution of the lengths of the variable and
identify unexpected string lengths. This method is com-
monly used when the string has fixed length such as a US
telephone number. For more varied string lengths, lexico-
graphic distributions of string variables are used to identify
strings that are far from frequently occurring values. For
example, if a file is typically named

FEEDNAME : FILENAME : OTHERNAME : TIMESTAMP.TYPE

then departures from this convention are identified by com-
puting the lexicographic permutation distance of the file
name attribute. Common data quality issues include an
undocumented appending of a single character at the end
of the filename or feedname that could potentially lead to
mismatched configurations, resulting in dropped files. Sim-
ilarly, timestamps could be converted to time intervals and
analyzed for unexpected values such as data arriving from
the future (negative duration) or files timestamped prior to
the existence of the physical process that created the data.

FIT’s Data Module aggregates data based on different ag-
gregation intervals, computing statistical summaries (mea-
sures of centrality such as mean, trimmed mean and median;
measures of dispersion such as standard deviation and MAD
(Median Absolute Deviation); quantiles) for the quantitative
variables for each combination of group-by variables.

The granularity of aggregation often determines the sensi-
tivity of statistical models and outlier detection. Multi-scale
aggregation is important because applications have individ-
ual needs. Some focus on transient but potentially catas-
trophic outliers that can be captured only at finer levels
of temporal aggregation, e.g., 5 minutes, while others are
interested in systematic issues that persist even after aggre-
gation over longer intervals such as hours and days. FIT
subscribers have typically found aggregation intervals be-
tween 30 minutes to 3 hours to be most useful. We will
discuss this aspect in detail in Section 6.

The Data Module is the publisher of the multi-scale tem-
poral aggregates, A(F ). These aggregates are the key input
to the next stage, but they are independently interesting.
FIT subscribers can use them in reports, to generate feed
signatures, or to create plots (see, e.g., Figure 5).

4.3 Analysis Module: Multi-scale History
The Analysis Module takes as input the aggregates A(F )

created by the Data Module, builds models and identifies
data outliers. The models are unsupervised and built based
on different amounts of historical data (sliding window sizes)
in order to capture outliers at multiple scales–longer history
implies models evolve more slowly while shorter histories
capture local movement and detect outliers with respect to
the most recent behavior of the data. In the absence of
historical data, it is possible to specify the initial FIT models
based on domain knowledge or other a priori specification.

Note that FIT creates a model for each combination
of: (i) monitoring delay, (ii) level of temporal aggregation,
(iii) historical window size, and (iv) values of group-by vari-
ables, effectively creating a temporal stream of models and
corresponding outliers. By building and publishing multiple
models at each update, FIT permits the subscriber to dy-
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Figure 3: (a) A DFMS with multiple publishers and subscribers. Note that FIT can serve in both roles. The
boxes in dark blue represent specialized subscribers like the visualizer or email alerts generator that focus
on DQ tasks. (b) The FIT pipeline starts by ingesting data from the DFMS, performs analysis and alerting,
and publishes results.

namically select the model that is most pertinent to their
application at any point in time.

The Analysis Module performs the following two tasks.
First, it builds baseline models M(F ) using a sliding window
of history. The amount of history used, i.e., sliding window
length, determines the ability to adapt. Too little history
makes the models variable and noisy while too much makes
the models slow to adapt to changes in statistical properties
of the feed. We will see a specific example of the importance
of multi-scale sliding windows in Section 5 in reacting to
significant structural changes in feeds. FIT models rely on
statistical summaries of centrality (mean, median, trimmed
mean) and dispersion (variance, median absolute deviation)
among other types of statistics. Variable transformations
are a part of the model building task as well.

FIT models are adapted from well-known moving average
and time decay models, for example see [18], but extended in
novel ways to incorporate monitoring data feeds at multiple
temporal scales. The models Mt(F ) at time t are typically
of the form

E(T (At(F ))) =
X
g∈G

[βg(Mt−1(F )) + εt] ∗ Ig(At(F ))

where the model is the expected value of some functional
statistic T estimated from the parameters βg of the model
at the previous time t. The indicator function Ig identifies
the group to which a particular value of the aggregate At(F )
belongs. The parameters depend on the group g (e.g., time-
of-day, day-of-week, feed, source) and the sliding window, in
addition to the level of aggregation. The error εt depends
on the sampling distribution of the statistic T but could
also depend on g even though we do not explicitly denote
it. When the sampling distribution of T is not known, FIT
uses bootstrap methods to compute the error distribution.

Second, the Analysis Module tests the statistical char-
acteristics of the data in the current aggregation interval
against the most recently computed baseline models and

identifies data outliers, E(F ) that are statistically different
from model values.

The Analysis Module is the publisher of the models M(F )
and outliers E(F ) to be used by the Alerting Module or to
be subscribed to by other applications. The Visualizer is
one of the subscribers of E(F ), and uses it to generate time
series plots (e.g., Figure 4).

4.4 Alerting Module: Multi-scale Monitoring
FIT’s Alerting Module is the creator and publisher of the

data quality feed, DQ(F ). The outliers E(F ) generated by
the Analysis Module are data and model driven, and not
necessarily of interest to all subscribers. The Alerting Mod-
ule permits the publication of alerts at different scales so
that subscribers can customize logical data quality feeds to
alerts in order to derive a variety of data quality metrics
for monitoring the health of the data. For instance, in Sec-
tion 5, missing and incomplete data alerts are published by
an Email Alerter via email along with interpretive text for
the use of the data manager.

Another obvious data quality metric is the proportion of
outliers, e.g. in Figure 8, right. The spike in outliers corre-
sponds to the erratic behavior in the underlying data shown
in the Figure 6.

In addition, FIT permits monitoring at multiple scales,
to account for minor delays in data arrival. Delayed data
result in immediate alerts (too little data) which disappear
once the data arrives and fills in the gaps. Some users might
want to act on these immediately while others might wait for
the alerts to stabilize. Monitoring feeds at multiple scales
of time delay is one way of addressing this issue. Alerts
computed with different scales of time delay can be simul-
taneously posted to DQ(F ) with exact time delay encoded
as file metadata. Subscribers can then define logical alert
feeds within the DFMS to select only those alerts computed
with desired time delay. These logical alert feeds config-
ured within the DFMS can change over time as application
requirements evolve. For example, subscribers in the case
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study in Section 5 switched to a longer monitoring delay be-
cause they expected a small portion of the data to be lagged
by around half an hour.

4.5 Efficiency
FIT was deployed in a production Bistro environment re-

sponsible for managing about 100 feeds, delivering 50,000
files per day with a total volume of 120 GB/day. FIT was
able to execute the entire data quality pipeline for the feed
metadata with four different aggregation levels using just
one processor core. Considering that the FIT pipeline is
easily parallelizable by partitioning incoming data and meta-
data feeds, FIT’s architecture is fully capable of handling a
significantly higher number of feeds and data volumes.

5. CASE STUDY: RESEARCH DATA LAKE
The research data lake consists of a variety of high vol-

ume, high velocity feeds that arrive in real time. Before FIT
was deployed, data managers would monitor their arrival by
casually “eyeballing” daily aggregates of file counts, often
only after a problem had been reported. Because several
days might have passed by then, it was often too late to
ask publishers to retransmit data. If the data could still be
acquired, analyses and reports would have to be re-run to
include delayed data or at least account for incompleteness.
All these problems increase cost and cycle times.

The data managers welcomed FIT and provided useful
feedback that enabled FIT to trivially create custom DQ(F )
feeds to incorporate their needs. In the following discussion,
we have taken care to avoid revealing proprietary informa-
tion; for example, we present anonymized versions of the
data and omit axis labels in the figures.

5.1 FIT Deployment
FIT monitors feed metadata published by the data lake

feed manager system, the Data Router. The metadata per-
tain to files that have been published (pub events) to a land-
ing directory and files that have been delivered (del events)
to a subscriber. Successful deliveries have a 2XX HTTP
code (e.g., 204), while unsuccessful delivery attempts have
non-2XX code (e.g., 503 or 100). Other metadata include
feed identifier, file size, file delivery time, and a unique “pub-
lish ID”. The FIT models are based on a sliding window of
112 days i.e., 16 weeks (necessary to capture day-of-week
and time-of-day effects), at an hourly level of aggregation.
The subscriber settled on a 45 minute monitoring time de-
lay to ensure that the data for the prior hour is complete
before processing. FIT created the following DQ(F ) feeds
of outliers and alerts for the subscriber in two ways.

First, email alerts like the one below are sent when needed.
They include interpretive text indicating the severity of the
alert (critical, major, warning, status).
Subject: 2 critical alerts, 2 status alerts

CRITICAL: FEED1; Expected N del files, received 2%

CRITICAL: FEED1; Expected M pub files, received 2%

STATUS: FEED2; Expected del mean size X MB; received 85%

This alerts the data manager that FEED 1 had two crit-
ical alerts (too few files were delivered and too few were
published) and that FEED 2 may also merit investigation
due to the reduced average file size.

Second, graphics in which outliers are highlighted in time
series plots were made available on the web (see in Figure 4).
The normal feed behavior is exemplified by the figure on the
left, where the dashed lines (green for “pub” and purple for
“del”) in the top panel indicate the expected behavior of
the feed and the dots represent the observed behavior. The
bottom panel contains the counts of different types of HTTP
error codes. In this particular plot, feed behavior is captured
through a 10% trimmed mean of the file size averaged over
the files in the aggregation interval of one hour. The weekly
and hourly cyclical variations are apparent in the peaks and
troughs. Each outlier (i.e., unexpected mean file size) is
represented by a dot attached by a line to the corresponding
expected value. There are only a handful of outliers.

Recently, there was a structural change in the way files
were delivered. Each file delivered is now orders of magni-
tude larger than it has been, and there are correspondingly
fewer files. However, FIT relies on the ability to meaning-
fully compare new data with historical data. Because FIT
used multi-scale sliding windows, the subscriber could adapt
quickly by switching from a logical feed with sliding window
of 112 days to that with 7 days. As a result, FIT’s sub-
scribers reacted quickly and started using appropriate mod-
els and alerts as seen in the plot on the right in Figure 4.
Their new model now has much flatter peaks and troughs,
which reflects the intention of the change in feed delivery,
namely to even out the file sizes, thus distributing the load
on the DFMS more uniformly.

5.2 Data Manager Testimonial
As an Operations Support Tool for feed ingestion, FIT is

a useful tool for determining the health of the source data
feeds we rely on. The graphical display provides a succinct
status at a glance for key operating metrics so it is easier
to see when something is abnormal. This would otherwise
require complex manual queries and analysis of thousands
of records. The Status Alert messages sent to our Ops mail-
ing list have also alerted us to serious conditions during off
hours. The tool’s core software can be quickly configured and
customized.

6. CASE STUDY: UNMATCHED FEED
Bistro receives and publishes hundreds of feeds which are

the foundation for critical network applications. FIT in-
gests this data several times a day, and updates a web page
with plots similar to the one in Figure 4. Recently there
was an interest in FIT’s DQ(F ) feeds associated with the
Unmatched Feed described in Section 3.1.

6.1 Unmatched Feed
As previously described, Bistro uses pattern matching to

classify files into user-defined feeds. Many files remain un-
classified and are assigned to the Unmatched Feed, as Fig-
ure 5 shows. This row of plots represents a week, and each
individual panel, a day. The bar plot for each day shows the
distribution of DFMS actions. The dark green bar (I:Match)
corresponds to files that were successfully assigned to feeds.
At the other extreme, the dark red bar (E:NoMatch) corre-
sponds to files that could not be matched. The other bars
represent other types of DFMS actions. Even on Tuesday
or Wednesday, when the feeds were relatively well-behaved,
the percentage of unmatched files is at least 30%.
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Figure 4: Online visualization of FIT’s DQ(F ) feed of alerts; axes are unlabeled for proprietary reasons. The
dashed lines (green for “pub” and purple for “del”) in the top panel indicate FIT model values M(F ), the
expected behavior of an aggregate attribute of the feed (e.g., average file size or number of files), and the dots
represent the observed behavior as summarized by FIT’s aggregate feed A(F ). The bottom panel contains the
counts of different types of HTTP error codes, also a part of FIT’s aggregate feed. The weekly and hourly
cyclical variations are apparent in the peaks and troughs. FIT’s output DQ(F ) contains outliers, each (e.g.,
unexpected mean file size) represented by a dot attached by a line to the corresponding expected value. The
figure on the left represents a normal period, while the one on the right reflects FIT models rapidly adapting
to a significant level shift in the attribute distribution.

The Unmatched Feed is important for two reasons:
(i) known files could be labeled “unmatched”, resulting in
incomplete data that could bias downstream analytics and
produce incorrect results; and (ii) it could contain impor-
tant files hitherto unknown to subscribers. The filename
matching process could fail for a variety of reasons. There
could be a glitch in the pattern matching as a result of a
very small change to the name of a file, such as a change
in the formatting of an embedded time stamp; alternatively,
there could be a transient system problem. Whatever be the
reason, unmatched files merit further analysis. We present
two interesting examples below.

Sun Mon Tue Wed Thu Fri Sat

2014−
05−

10

Action

C
ou

nt

Action

I:Match

I:PerScan

I:ScanDir

I:DelFile

I:DelDir

W:Dup

E:BadCmd

E:NoMatch

Figure 5: The row of plots represents a week, and
each individual panel, a day. Bar chart for each day
shows the distribution of the DFMS actions. The
dark green bar (I:Match) corresponds to files that
were successfully assigned to feeds. At the other
extreme, the dark red bar (E:NoMatch) corresponds
to files that could not be matched.

6.1.1 Incompatible Configuration Files
While investigating FIT’s DQ(F ) feed during a retro-

spective analysis, we discovered an interesting phenomenon.
In Figure 5, we noticed an unusually large prevalence of
E:BadCmd (the orange bar) and a corresponding increase
in the proportion of E:NoMatch actions—almost as many
as Matched, whose number had fallen as well. That is, files
that normally would have been assigned to customary feeds
were instead part of the Unmatched Feed. This obviously
resulted in losses or gaps to the feed they would normally
have been assigned to and would give a false picture of ac-
tivity in those feeds.

Upon further analysis, it was found that the feed had been
switched to a different server which had an older configura-
tion file. As a result, some of the filename patterns could
not be processed. The gaps in the data were noticed only
much later. Through a careful monitoring of FIT’s DQ(F )
feeds associated with Bistro metadata feed, such problems
can be addressed in a timely manner.

6.1.2 Classifying Unmatched Files
The metadata feed for the files in the Unmatched Feed

contains useful information that can help assign them to
feeds, such as filename, size, and arrival time. FIT’s output
DQ(F ) includes a stream of unmatched files labeled by the
known feeds that they are most similar to. FIT does the
labeling in the following manner. It groups the unmatched
files based on filename patterns and runs clustering algo-
rithms based on metadata such as file counts, file sizes and
inter-arrival durations, and compares the results for the un-
matched clusters with the results for matched files.

This particular information helped the subscribers iden-
tify an important feed that they thought had redundant
information but in reality contained critical alerts that were
being overlooked.
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6.2 Analyst Testimonial
FIT provides a virtualized view of the feed health in a real

time manner. We can capture feed quality issues faster and
more efficiently. The FIT alerting system not only monitors
the files counts, but also the file sizes and inter-arrival times.
For example, we will see similar trends in all of the feeds
when there is system or network issue, without needing to
dig into each feed.
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Figure 6: FIT’s aggregate feed A(F ): A specific at-
tribute (e.g., aggregate traffic volumes) of a specific
feed. The first two cycles and the last (the three
spikes) show peak behavior. The third and fourth
cycles show with off-peak behavior. The first off-
peak cycle is distorted due to abnormal file arrivals
rather than problems with the content of files.

7. CASE STUDY: DQ OF FILE CONTENTS
Given the volume and velocity of data feeds, it is not fea-

sible to analyze all the contents of each individual file, only
judiciously chosen samples. FIT subscribes to the DFMS to
receive the sampled feeds in order to keep up with the data
arrival, and uses it to build statistical models and signatures
of individual attributes.

A traditional sampling approach entails selecting a sample
of records from each file, but this is inefficient in the presence
of this much data. Instead, the DFMS samples files and
includes the files in their entirety in the feed of file content.

In this section, we run experiments to investigate the effect
of sampling on FIT’s model parameters and alerts. This
will enable FIT to subscribe to the DFMS feed with the
suitable level of sampling. File-level samples can be chosen
in two ways: a panel approach, where a selected set of feeds
is sampled completely; and a random sampling approach
where files are selected at random. Bistro can implement
either sampling strategy, as described in Section 3.1. We
compare the effects on FIT of sampling files versus records
in Section 7.5.

A longitudinal sample or panel approach is useful when
the user knows ahead of time which feeds are of the great-
est interest. The advantage of this strategy is that it pro-
vides assurance that nothing will be missed in the analysis
of those feeds. The drawback, of course, is the complete
lack of information about the remaining feeds. The panel

approach cannot capture correlations with non-panel feeds,
nor can it accommodate new feeds. A random sample on
the other hand, provides glimpses of all the feeds and could
potentially capture correlations, but might require a larger
sample to yield the desired level of robustness and accuracy.
In this case, the panel consisted of 7 feeds that account for
roughly 20% of the files handled by the DFMS. The random
sample for the experiment consisted of 20% of files arriving
during any given day, selected at random. The experiment
was performed over a period of 30 days.

We created subsamples from the panel and random sam-
ples to study the effect of sampling on FIT’s output, the
model feeds, M(F ), and alert feeds, DQ(F ). Our stud-
ies include the following parameters: (1) aggregation inter-
val, (2) sampling proportion, (3) sliding window length and
(4) statistical threshold. We tested multiple combinations
of these parameters, and present some of our results below.

7.1 Feed Behavior
For the purpose of illustration, we focus our discussion on

one attribute in one feed of the DFMS. The methodology
generalizes trivially to multiple feeds and attributes. Each
file contains hundreds of thousands of records every hour.
Figure 6 shows the behavior of the hourly aggregates A(F )
for a variable with a clear cyclic pattern. The first two cy-
cles, and the last, show distinct troughs and peaks, while
the third and fourth cycles have less range: they show off-
peak behavior. The first off-peak cycle looks jagged and dis-
torted: Further investigation showed that the distortion was
caused by a disruption in data gathering – i.e., the arrival
of files – rather than data measurement, the file contents.

7.2 Temporal Aggregation
As previously described, the FIT Analysis Module (Sec-

tion 4.3) uses the aggregate feed, A(F ), which has been ag-
gregated at multiple temporal scales. The aggregation in-
terval will naturally influence the analyses and results. This
is evident in Figure 7 which shows the expected value of
the example attribute over time for one day at five levels
of aggregation for both the random sample and the panel
sample. The pair of hourly curves is the most detailed as
well as variable. It shows the difference between the panel
and the random samples. The curve for the random sam-
ple fails to show the highest peak seen in the panel sample.
At longer aggregation intervals, the aggregates are smoother
and the estimates based on the random sample increasingly
resemble the panel until the daily aggregates (orange dots)
are identical for both.

In the rest of the paper, we discuss analyses based on 3
hour aggregation intervals since it captures enough structure
to see the general shape even though some details are lost.

7.3 Sampling
In this section, we present an empirical argument for

choosing a sample size for FIT to subscribe to from the
DFMS’s feeds of files of various sampling proportions. There
is no easy theoretical answer to the question given the com-
plex nature of the data and estimates, but see [9] for a
general discussion on sampling. While the discussion be-
low compares three subsampling proportions, we studied all
subsampling proportions from 10% to 100% in increments
of 10%. Our procedure was to subsample from both of our
original samples. A 50% random subsample of the panel
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Figure 7: Temporal aggregation: FIT’s model values, M(F ), for a given DFMS feed, for a given attribute (e.g.,
aggregate traffic volumes), for the two samples, panel and random, at different levels of temporal aggregation.
Models based on hourly aggregates are most volatile and exhibit the greatest difference between the panel
(all the data for a given feed) and the 20% random sample. The random sample estimates miss an important
peak. Estimates for the two types of sample resemble each other increasingly as the level of aggregation
grows coarser, until the estimates based on the daily aggregates are almost identical.

sample results in a 50% sample of the files in the panel, be-
cause the panel sample contains all files for a set of feeds.
However, a 50% subsample of the random sample (a 20%
sample) is equivalent to a 10% sample of the original data.

Figure 8 shows the effect of three subsampling proportions
(20%, 50% and 80%) based on 100 replications each for the
random sample and the panel sample. In effect, for the
given feed and attribute in the figure, the subsample sizes
are effectively 20%, 50% and 80% for the panel sample, and
4%, 10% and 16% for the random sample.

Each colored dot represents the expected value of the av-
erage trimmed mean of the attribute in a given aggregation
interval, for a given replication of the sample. There are 100
such dots corresponding to 100 replications for each subsam-
pling proportion, for each sample type.

The trimmed mean is one of the FIT model parameters.
It is a nice way of summarizing an attribute value because
it is a stable estimate that measures the general behavior
of the feed. It is more robust than the mean and more
efficient than the median. The argument holds in general
for any other statistical estimate. For each replication of
the subsample, FIT’s Analysis module created the model
stream M(F ) of the expected value based on the trimmed
mean using the aggregates of the trimmed mean A(F ) from
the Analysis module, at a scale of 21 day sliding window
history as illustrated in Figure 1. Computing the confidence
interval for the trimmed mean is difficult as explained in [22],
but FIT’s Analysis Module uses Student’s t-statistic because
the number of files is small.

The solid lines in the plots represent the expected value
of the average of trimmed means, while the dashed lines
represent the 10% confidence intervals and the dotted lines

represent the 5% confidence intervals. In the panel sample
plots, the lines are model values based on the ground truth
since they use all the data, while the lines in the random
sample are based on the original 20% random sample.

If the expected model values for a subsample fall within
the confidence intervals of the “ground truth” expected val-
ues, then the subsample size is acceptable. The smallest
subsample size that meets this criterion is the ideal size.

Recall that the panel samples include all files, and this is
reflected in the tighter confidence bands in the plots in the
left column, as well as in the tighter clustering of the sample
estimates. This is expected since our samples are 20%, 50%
and 80%.

Now consider the random sample in Figure 8, left. Ran-
dom subsample sizes of 40% to 50% of the original 20%
sample appear adequate. That is, for this particular at-
tribute, a random sample of 8% to 10% gets us close to the
results obtained from a 20% random sample. We observed
the same pattern for other attributes and feeds leading us to
believe that an empirical approach to choosing sample size
would work well. Since FIT is a general tool agnostic to the
specifics of an application, it is not possible to develop more
specialized sampling strategies without additional context.

7.4 Tuning FIT Models
Given an aggregation interval and sampling proportion,

FIT models and alerts are influenced by two tunable mod-
eling choices. One is the length of the sliding window which
contains the history for building models. The second is the
choice of statistical threshold for generating data alerts. We
run experiments to study the behavior of FIT’s models and
alerts next.
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Figure 8: Left: FIT’s models M(F ) based on subsamples: Each colored dot represents FIT’s model value for a
given attribute (e.g., aggregate traffic volumes) in a temporal partition for a given replication of the sample.
There are 100 such dots corresponding to 100 FIT replications for each subsampling proportion, for each
sample type. The solid lines represent the ground truth FIT model value, while the dashed line represents
the 10% confidence intervals and the dotted line represents the 5% confidence intervals. These intervals are
based on Student’s t-statistic since the number of files in each partition is quite small. Right: FIT’s DQ(F )
feed, in this case the proportion of alerts. Note the spike corresponding to a disruption in data feeds.

7.4.1 Window Size and Alerting Threshold
The length of the sliding window determines the ability of

FIT’s models to adapt. Longer windows dampen the effect
of immediate events but also take longer to reflect changes,
as shown in Section 5. We studied window sizes of 7, 14 and
21 days, and we tested 3 different alerting thresholds, de-
pending on the test, to see how they influence FIT’s output
feeds, particularly DQ(F ), the feed of data quality alerts.
The rightmost plot in Figure 8 shows the proportion of alerts
generated by FIT as a part of its DQ(F ) output feed, for
the example attribute over a 3-day period that includes the
abnormality observed in Figure 6. The error proportion rep-
resents the number of replications that generated an alert
out of the total 100, at a 3-hour temporal aggregation for
a 50% sampling rate (that is, a 10% random sample and a
50% panel sample). Each panel represents a different com-
bination of window size and threshold for one of the two
sampling methods. Lower thresholds generate more alerts
but the window size seems to have little or no influence.

Each plot of the alerts based on the random sample shows
a spike corresponding to the abnormality in Figure 6, as in-
dicated by a vertical dashed black line. However, note that
panel sample plots do not have a black dashed line, indicat-
ing that analyses based on the whole data did not generate
an alert! We investigated further and discovered that panel
sample data generated alerts at an aggregation interval of
one hour, but not at higher levels of aggregation where the
test just missed the threshold. However, all the sampling
proportions, including the 50% panel sample shown in the
figure, alerted in a high proportion of replications.

This example shows the importance of multi scale alerting,
where a blip might be masked at higher level of aggregation,
or simply not be reported, i.e., a false negative, due to the
statistical power of the test being less than 1.

7.5 File Sampling vs. Record Sampling
FIT models rely on DFMSs that sample entire files to

avoid the overhead of parsing and reading. We ran experi-
ments on a single feed to compare FIT’s results based on file
sampling versus record sampling. We noticed no significant
difference as evidenced by Figure 9 which shows a three day
period that corresponds to the first three days in Figure 6.
The solid red line is taken from FIT’s model feed M(F ),
in this case the expected value of a given attribute derived
from the the full panel sample, and the grey dots from FIT
models based on a 40% sample created by sampling entire
files. The black dots represent FIT models based on a 40%
sample created by sampling records from the files. The val-
ues of FIT’s output stream M(F ) from file samples versus
record samples resemble each other quite closely.

The conclusion is no surprise, for two reasons. First, the
files are fairly big hence quite representative of the popu-
lation. Second, there are no known a priori correlations
within records of the same file other than perhaps temporal
adjacency. Therefore, it is quite reasonable to sample at the
file level.

8. CONCLUSION
In this paper, we have proposed and demonstrated a new

approach to monitoring data feeds. Our contributions are
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Figure 9: Sampling files versus records: The solid
red line represents FIT’s model feed, M(F ), in this
case the expected value of a given attribute (e.g.,
aggregate traffic volumes) derived from the the full
panel sample, and the grey dots from 100 replica-
tions of FIT models based on 40% samples created
by sampling entire files. The black dots represent
estimates from FIT’s models M(F ) created from a
40% sample created by sampling records from the
files. The model values of FIT under different sam-
pling schemes (files vs records) resemble each other
quite closely. This is to be expected since our files
are quite large and are representative of the feed.

two-fold. We proposed enhancements to DFMSs, such as de-
rived sample feeds, to permit a publish-subscribe approach
to incorporate data quality modules into the DFMS architec-
ture. In addition, we have demonstrated a unique temporal
approach to outlier detection and alert generation that takes
into account (a) multiple scales of temporal aggregation,
(b) multiple scales of historical data, and (c) multiple scales
of monitoring delay, to account for boundary conditions and
small variations in data arrival. Such an approach enables
us to associate greater confidence, adapt quickly, and avoid
alerting on transient outliers caused by minor variations in
arrival patterns.

We discussed three real case studies where FIT was ef-
fectively deployed, and shared user testimonials. FIT was
able to identify outliers in data gathering, detected from feed
metadata, as well as outliers in data measurement, detected
from the contents of the sampled feed data. We demon-
strated that FIT’s file-level sampling strategy is efficient and
effective for outlier detection over big data feeds.

There are many interesting directions of future work.
First, when deploying FIT over a much larger set of data
feeds, it would be useful to automatically identify correlated
outliers across multiple data feeds that indicate systematic
errors. Second, semantic errors in the content of data feeds

are often detected by subscribers during the process of data
analysis. We plan to enhance our DFMS architecture to
support each data feed subscriber to act as a data quality
feed publisher to provide data quality feedback; this would
require a standard format to represent subscribers’ feedback
and a way for FIT to automatically incorporate such feed-
back into its feed quality analysis.
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