
JetScope: Reliable and Interactive Analytics at Cloud Scale

Eric Boutin, Paul Brett, Xiaoyu Chen, Jaliya Ekanayake
Tao Guan, Anna Korsun, Zhicheng Yin, Nan Zhang, Jingren Zhou

Microsoft

ABSTRACT
Interactive, reliable, and rich data analytics at cloud scale is
a key capability to support low latency data exploration and
experimentation over terabytes of data for a wide range of
business scenarios. Besides the challenges in massive scal-
ability and low latency distributed query processing, it is
imperative to achieve all these requirements with effective
fault tolerance and efficient recovery, as failures and fluctu-
ations are the norm in such a distributed environment.

We present a cloud scale interactive query processing sys-
tem, called JetScope, developed at Microsoft. The system
has a SQL-like declarative scripting language and delivers
massive scalability and high performance through advanced
optimizations. In order to achieve low latency, the system
leverages various access methods, optimizes delivering first
rows, and maximizes network and scheduling efficiency. The
system also provides a fine-grained fault tolerance mecha-
nism which is able to efficiently detect and mitigate fail-
ures without significantly impacting the query latency and
user experience. JetScope has been deployed to hundreds
of servers in production at Microsoft, serving a few million
queries every day.

1. INTRODUCTION
An increasing number of organizations rely on the results

of massive data analytics for critical business decisions. As
the data volumes expand dramatically, there is a need to
scale out query processing and support efficient big data
analytics over large clusters of commodity hardware. On
the other hand, failures and fluctuations are the norm in
such cloud scale clusters. It is critical for the system to be
resilient to various system faults and efficiently recover from
them with minimum performance impact. While the scale
and complexity of data processing continues to grow, there is
also an increasing demand to produce results in a real-time
and interactive manner. Such low latency big data systems
with fault tolerance greatly facilitates data exploration and
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fast experimentation, and enables a wide range of real-time
business scenarios.

Parallel database systems have focused on latency opti-
mizations, typically running on expensive high-end servers.
However, when the data volumes to be stored and processed
reach a point where clusters of hundreds or thousands of
servers are required, parallel database solutions become pro-
hibitively expensive. At such scale, many of the underlying
assumptions of parallel database systems (e.g., fault toler-
ance) begin to break down, and the classical solutions are
no longer viable without substantial extensions.

To address the scalability and reliability challenges, sev-
eral batch processing systems were proposed, including Map-
Reduce [8], Dryad [12], Hive [19], Scope [21], Pig [15], Strato-
sphere [3], Impala [13], etc., some of which offer high level
SQL-like programming languages and conceptual data mod-
els. Such systems are designed to achieve great query through-
put over both structured and unstructured datasets with
scalability and fault tolerance. The queries usually process
tens of terabytes of data or more in batch systems and can
take up to hours or days to finish. It is difficult for these sys-
tems to achieve interactive query response times for several
architectural reasons. For instance, the intermediate results
are often materialized to disks, in order to provide fault tol-
erance and allow subsequent tasks to execute independently
for scalability reasons. Such materialization costs are pro-
hibitive for low latency queries. In addition, the underlying
tasks are scheduled in phases, or batches. It is typical to
have seconds of delay to start, track, and shut down tasks.
These design choices are sufficient for batch workload, but
fall short for low latency queries.

In this paper, we describe an interactive low latency query
processing system at cloud scale, called JetScope, devel-
oped at Microsoft. The system has a SQL-like declarative
scripting language with no explicit parallelism, while being
amenable to efficient parallel execution on large clusters.
Rich structural properties and access methods allow sophis-
ticated query optimization and efficient query processing.
An optimizer is responsible for converting scripts into ef-
ficient execution plans for the distributed computation en-
gine. A physical execution plan consists of a directed acyclic
graph (DAG) of tasks. Execution of the plan is orchestrated
by a job manager that schedules tasks on available servers.
In order to achieve low latency, the system utilizes a rich
set of index structures and data structural properties and
optimizes for pipelining results to users, avoiding any block-
ing operations. During execution, effective gang scheduling
strategy is exploited to minimize task startup costs and in-
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termediate results are streamed between tasks without hit-
ting disks to reduce execution latency. The system scales
well to hundreds of servers and is able to process datasets
with terabytes of data in seconds.

Providing fault tolerance and failure recovery efficiently
while maintaining low query latency at scale is particularly
challenging. The approach of rerunning the entire query in
case of failures is expensive and significantly increases the
end-to-end query latency. JetScope implements a novel
lightweight fault tolerance technique, which greatly mini-
mizes wasted work and provides fine-grained failure recov-
ery effectively. Specifically, JetScope tracks task execution
progress continuously and is able to recover failed task with
minimum recomputation. As a result, the overall impact
from failure handling is greatly minimized without sacrific-
ing query latency.

The JetScope system has been deployed to hundreds of
servers in production at Microsoft. The system serves as
the computation platform for various Microsoft services, tar-
geted for large scale interactive data analysis, and executes a
few million queries daily with a rapidly growing popularity.
Experiments show that JetScope outperforms Impala and
Hive by a few times on similar hardware. The system im-
plements a scalable architecture which efficiently serves hun-
dreds of queries with a variety of complexities concurrently.
With fine grained fault tolerance mechanisms, JetScope is
capable of recovering from server or rack failures more effi-
ciently than other systems. Finally, JetScope evolves from
Scope [21, 5], a cloud scale batch production system, which
provides a natural unification between batch and interac-
tive query processing. Albeit with different system tradeoffs
and optimization goals, distributed batch and interactive
query processing share lots of commonalities in declarative
language, optimization, runtime, and scheduling.

The rest of this paper is structured as follows. In Sec-
tion 2 we present the query language and data model in
JetScope. We also describe rich access methods that fa-
cilitate query optimization and processing. In Section 3
we give an overview of the JetScope architecture. We
present details of query compilation, optimization, runtime,
and scheduling in order to achieve low query latency in the
cluster in Section 4. In Section 5, we explain the lightweight
task monitoring mechanism and present an efficient protocol
to recover from failures and minimize latency impact. We
share some interesting production experiences and explain
how to effectively unify both batch and interactive query
processing in Section 6. We present experimental results
to compare JetScope with other systems, demonstrate ef-
ficiency of our novel failure handling strategy, and evaluate
the system scalability in Section 7. Finally, we review re-
lated work in Section 8 and conclude in Section 9.

2. QUERY LANGUAGE & DATA REPRE-
SENTATION

JetScope provides a powerful scripting language based
on SQL. A script consists of a sequence of SQL commands,
each of which takes one or more row sets as input, per-
forms some operation on the data, and outputs a row set.
Like relational databases, every row set has a well-defined
schema that all its rows must adhere to. Users can name
the output of a command using assignment and output can
be consumed by subsequent commands simply by referring

to it by name. Named inputs/outputs enable users to write
scripts in multiple (small) steps, a style preferred by some
programmers. Besides SQL queries, JetScope provides a
seamless integration with C#, which allows users to call C#

functions where needed.

Result =
SELECT COUNT(*) AS count
FROM store_sales,

household_demographics,
time_dim,
store

WHERE ss_sold_time_sk == time_dim.t_time_sk
AND ss_hdemo_sk == household_demographics.hd_demo_sk
AND ss_store_sk == s_store_sk
AND time_dim.t_hour == @Hour
AND time_dim.t_minute >= 30
AND household_demographics.hd_dep_count == @Depcnt
AND store.s_store_name == "ese"

ORDER BY count;

OUTPUT Result TO CONSOLE;

Figure 1: TPC-DS Query 96 in JetScope.

Figure 1 shows TPCDS Query 96 in JetScope to illus-
trate an example. The last command requests the results
to be streamed to the console window. The full description
of JetScope programming language is outside the scope of
this paper.

JetScope also supports a rich set of partitioning schemes
and indexing methods, which enable sophisticated query op-
timization and facilitate query execution.

Partitioning Schemes. In JetScope, tables can be hor-
izontally partitioned into tens of thousands of partitions.
JetScope supports a variety of partitioning schemes, in-
cluding hash and range partitioning on a single or compos-
ite keys. Based on the data volume and distribution, the
system can choose the optimal number of partitions and
their boundaries by means of sampling and calculating dis-
tributed histograms. Data in a partition is typically pro-
cessed together (i.e., a partition represents a computation
unit). A partition is comprised of one or several physical
extents, which is the unit of storage in the underlying dis-
tributed file system. This approach allows the system to
achieve effective replication and fault recovery through ex-
tents while providing computation efficiency through parti-
tions.

Data Affinity. A partition can be processed efficiently
when all its extents are stored close to each other. Unlike
traditional parallel databases, JetScope does not require all
extents of a partition to be stored on a single server which
could lead to unbalanced storage across servers. Instead, the
system attempts to store the extents close together by uti-
lizing store affinity. Store affinity aims to achieve maximum
data locality without sacrificing uniform data distribution.
Every extent has an optional affinity id, and all extents with
the same affinity id belong to an affinity group. The system
treats store affinity as a placement hint and tries to place
all the extents of an affinity group on the same server un-
less the server has already been overloaded. In this case,
the extents are placed in the same rack. If the rack is also
overloaded, the system then tries to place the extents in a
close rack based on the network topology. Each partition
of a table is assigned an affinity id. As extents are created
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within the partition, they get assigned the same affinity id,
so that they are stored close together.

Table References. The store affinity functionality can also
be used to associate/affinitize the partitioning of an output
table with that of a referenced table. This causes the out-
put table to mirror the partitioning choices (i.e., partition-
ing function and number of partitions) of the referenced ta-
ble. Additionally, each partition in the output table uses the
affinity id of the corresponding partition in the referenced
table. Therefore, two tables that are referenced not only are
partitioned in the same way, but partitions are physically
placed close to each other in the cluster. This layout signifi-
cantly improves parallel join performance, as less data need
to be transferred across the network.

Primary and Secondary Indexes. JetScope supports
both primary and secondary indexes. Within each partition,
a primary index is maintained over a single or composite
keys. Optional secondary indexes can be created over a set
of columns, potentially using a different partitioning scheme.
The optimizer considers all the available indexes to generate
the optimal execution plan.

Column Groups. JetScope supports both row and col-
umn store. For the row store, columns in a table are packed
in a way that is similar to PAX [2] in an extent to improve
computation and memory efficiency. To address scenarios
that require processing just a few columns of a wide table,
JetScope supports the notion of column groups, which con-
tain vertical partitions of tables over user-defined subsets of
columns.

3. ARCHITECTURAL OVERVIEW
JetScope is a multi-tenant and scalable interactive sys-

tem delivering low latency query execution over tens of ter-
abytes of data. It employs a scalable architecture, which
scales up query processing over big data while supporting
hundreds of parallel queries with a variety of complexities.
In this section, we describe JetScope architecture and how
a JetScope query is answered, from submission, compila-
tion, optimization to execution and returning the results in
a streaming fashion.

Figure 2 shows an overview of the JetScope system at
scale. JetScope queries are submitted to the cluster por-
tal either from users’ development environment or various
applications via ODBC APIs. Inside the computing cluster,
JetScope comprises of three major layers: (i) front end,
(ii) orchestration, and (iii) back end. The front end layer
authenticates users and compiles the query. It hands the
compiled query to the orchestration layer, which schedules
and dispatches individual tasks to back end servers for ex-
ecution. The data is read from a distributed file system,
storing data across the cluster. Whenever possible, tasks
are dispatched to the servers that are close to the input data
in the network topology to take advantage of data locality.
Once the query starts execution, the results are streamed
back through the front end to the client application as soon
as they are available. In order to support a large number of
concurrent queries, the system automatically shards query
compilation and scheduling among different instances of sys-
tem components and provides efficient load balance among
them. The capacity of the system can be dynamically ad-
justed by adding/removing servers in various functions.

3.1 Front End
The front end layer consists of a group of servers handling

communication between the cluster and the clients. Each
server runs a front end service, which performs authenti-
cation and provides interfaces for both job submission and
cluster management, and a compiler service, which carries
out job compilation and optimization.

A JetScope script goes through a series of transforma-
tions before it is sent for execution in the back end. Ini-
tially, the compiler parses the input script, unfolds views
and macro directives, performs syntax and type checking,
and resolves names. The result of this step is an annotated
abstract syntax tree, which is passed to the query optimizer.

The JetScope optimizer is a cost-based transformation
engine that generates efficient execution plans for input trees.
It leverages existing work on relational query optimization
and performs rich and non-trivial query rewritings that con-
sider the input script in a holistic manner, takes account of
data structural properties and available indexes, etc.

The compiler then generates code for each operator and
combines a series of operators into an execution unit or
task, which can be scheduled separately and executed by
a single server. The system groups distinct types of tasks
into separate stages to simplify job management. All the
tasks in a stage perform the same computation, defined in
the query plan, on a different partition of input data. The
output of the compilation of a script thus consists of (i) a
graph definition file that enumerates all stages and the data
flow relationships among them, and (ii) the assembly itself,
which contains the generated code. This package is sent
to a job manager service (JMS) for execution. Throughout
the execution of the query, the front end service serves as
the gateway, which streams the resulting rows to the client
application as soon as they become available.

3.2 Orchestration
The execution of a JetScope script is orchestrated by

a job manager service (JMS), which is responsible for con-
structing the task graph using the definition sent by the
compiler and scheduling work across available resources in
the cluster. The JMS maintains the task graph and keeps
track of the state and history of each task. To achieve low
latency, the JMS uses special scheduling techniques to dis-
patch tasks in real-time, which is covered in detail in Sec-
tion 4. The JMS also continuously monitors the status for
each task, detects transient failures, and effectively recovers
from them without rerunning the entire query. We discuss
the fault tolerance strategies in Section 5.

To ensure all the servers run normally, a coordinator ser-
vice maintains state information for each server and contin-
uously tracks their health via a heartbeat mechanism. In
case of server failures, the coordinator notifies every JMS
so that no new tasks will be dispatched to the problem-
atic servers. The coordinator also dynamically manages re-
sources for each JMS. When new resources become available,
for instance, new servers are added, each JMS is notified by
the coordinator so that they can utilize their newly allocated
resources for task execution. We discuss resource manage-
ment in detail in Section 4.4.

3.3 Back End
There is a large group of processing servers in the back

end, each of which runs a Process Node service (PN). The
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Figure 2: JetScope Architectural Overview.

PN service on each server is a proxy to manage workers that
are ready to execute any assigned task promptly. At run-
time, the JMS dispatches a task to a worker for execution.
The worker is responsible to set up the required execution
environment, including executing any required I/Os from
the underlying distributed file system. Operators within a
task are processed in a pipelined fashion, similar to a single-
node database engine. As we shall describe in Section 4.2,
the results of a task become immediately available for its
consuming tasks.

4. LOW LATENCY OPTIMIZATIONS
A key aspect of an interactive analytic engine is to mini-

mize query latency and deliver results to end users as soon as
they become available. JetScope achieves low latency user
experience by optimizing every component on the critical
path of the query execution.

First, the compiler service is always ready to accept a new
query and finishes compilation and optimization in a small
fraction of a second. Second, the resulting DAG execution
plan is sent to a long running JMS, which starts to construct
graph and schedule tasks to back end servers immediately.
Third, the system generates code for each operator and com-
piles it into machine code to avoid any interpretation costs at
runtime. Finally, the results of a task are immediately avail-
able for the next task or routed back to end users without
any delay. In addition, we describe several key techniques
to avoid latency overhead in a distributed environment.

4.1 Query Optimization
JetScope has a cost-based query optimizer which lever-

ages database optimization techniques [11] and reasons about
structural properties such as partitioning, grouping and sort-
ing properties; and various access methods holistically. The
detailed description about the optimizer can be found in [22].
Further, to optimize for interactive experience, the query

Hash Join 2
ss_hdemo_sk, hd_demo_sk

Hash Join 3
ss_store_sk, s_store_sk

Read store_sales

18.3TB

Read time_dim
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Global Aggregator

Output
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211KB

stage2
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hd_dep_count

stage4
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532KB

stage3

Filter 3
m_store_name

task6,1

stage6

task4,N

task5,N

Partial Aggregator
COUNT(*)

Figure 3: An Execution Plan for TPC-DS Query 96.

optimizer avoids blocking operators, such as sort-based op-
erations, to favor hash-based operations so that any partial
intermediate results can be pipelined to the next operation,
possibly on a different server, without waiting for the com-
plete results.

Figure 3 shows the final execution plan for TPC-DS Query
96 against a 30TB TPC-DS database by the optimizer in
JetScope. There are 6 stages, some of which contain a
group of tasks so that they can perform the same computa-
tion on a different partition of the input table in parallel. As
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explained earlier, each task represents an execution unit and
contains a series of physical operators, which are executed in
a pipeline fashion. In this example, Query 96 joins the fact
table store sales with a few dimension tables time dim,
household demographics and store. On one side, the fact
table is over 18TB and the plan contains 1000 tasks in stage
4, each processing a small portion of the fact table. On the
other side, the optimizer chooses to push necessary filters
into individual dimension tables and broadcast the small re-
sult to the fact table for joins (in stage 4 and 5), respectively.
Hash joins are chosen to optimize for fast results. Stage 6
aggregates all the partial results together.

To optimize for low latency, the optimizer splits the three
hash joins into two separate stages, which can be executed
on different servers concurrently. Such a plan has several
benefits. First, each hash join needs to build an in-memory
hash table on the corresponding join key. Running them on
different servers allows better utilization of memory. Second,
running them separately allows overlapping their computa-
tion and shorten the overall latency. Finally, the join 1 is
far more expensive than the join 2 and 3 as the first join
reduces the dataset significantly. By separating them into
two separate stages, the plan is more reliable as it would
be cheaper to recover from a server failure: the system only
needs to rerun the affected task and their corresponding join
operations, instead of recomputing all the three joins.

4.2 Network Communication
To minimize latency, JetScope also tries to pipeline in-

termediate results to subsequent tasks via network as much
as possible. Such network communication between servers
are bandwidth intensive and latency sensitive. Establish-
ing a large number of TCP connections suffers from latency
variations and occasional transient failures, especially in a
busy network. In order to avoid re-establishing connections
for every task, and to reduce the total number of TCP con-
nections, a new service, called StreamNet, is used on ev-
ery front end and back end servers to maintain long lived
TCP connections between servers. A connection is shared
by all tasks which need to communicate between a given
server pair, regardless of their query of origin. Each task
writes its intermediate rows to a memory buffer maintained
by StreamNet. Then the rows immediately become avail-
able for other tasks to consume. The producer task doesn’t
wait for the consumer task to read the rows before process-
ing others. Instead, it continues to execute and writes the
result to a buffer, which is asynchronously spilled to disk
when under memory pressure. This is necessary to prevent
deadlocks which could otherwise happen when repartition-
ing data. This buffering is also required for the fault toler-
ance protocol, as described in Section 5.3.

4.3 Gang Scheduling
To further optimize the end-to-end latency, JetScope

gang schedules all the tasks of a query at the same time.
That is, a group of tasks are dispatched to different work-
ers at once, potentially on different servers, so that they
can execute concurrently. The approach has several bene-
fits. First, as described earlier, the producer task always
keeps the recent results in a memory buffer, before asyn-
chronously writing them to disk. If both the producer and
the consumer tasks run concurrently, the consumer task
is able to read data immediately from the memory buffer

when it becomes available, before it is spilled to disk, which
greatly improves the query latency. Second, running both
producer and consumer tasks concurrently enables tasks to
overlap their computation, which effectively increases the
parallelism of the query execution and reduces its overall
latency. Third, unlike batch processing, there is no global
synchronization point when executing the DAG of tasks and
the first row latency can be significantly reduced.

Achieving efficient gang scheduling in a distributed en-
vironment is challenging and important, as any delay con-
tributes to the overall query latency. A naive strategy is
to incrementally acquire resources and hoard them until all
resources are acquired. In our context, given that there are
many JMSs which schedule tasks concurrently and indepen-
dently, this could result in deadlocks. A typical strategy to
resolve deadlocks is for each JMS to release all the hoarded
resources after a timeout, then back off and retry. How-
ever, this strategy could introduce unpredictable latency at
the query startup time. To solve these issues, in JetScope
each JMS maintains and manages a pool of resources and
employs an admission control mechanism based on instan-
taneous resource availability. When a query is received, the
JMS evaluates how much resources are needed for the execu-
tion of the query, based on its execution plan, and if there is
sufficient capacity in the pool, the query is admitted and im-
mediately dispatched for execution, otherwise it is rejected.
This mechanism avoids any deadlocks in resource acquisi-
tion and provides and instant answer to the client whether
the query can be served or not at this moment. The client
can perform additional retries using some strategy such as
exponential backoff. Such user experience is much desirable
in practice. The positive acknowledgment sent on query ad-
mission contains the metadata needed to read the stream of
resulting rows as they become available.

4.4 Resource Management
In order to scale up to process hundreds of interactive

queries concurrently, JetScope utilizes a group of JMSs,
each of which is responsible for handling a group of queries,
with load balanced globally among them. Since each JMS
employs gang scheduling for each query to minimize its query
execution latency, it becomes quite challenging to manage
resources efficiently and effectively among different JMSs.

One approach is to utilize a centralized resource allocator
which holds all the available resources. When a query is
received, the JMS in charge of the query would ask the re-
source allocator for all the required resources. Once granted,
the JMS uses the resource to schedule tasks of the query
and returns the resources back to the coordinator when the
query finishes. However, this approach has a few key draw-
backs. First, the centralized resource allocator could become
the scale-up bottleneck as the number of concurrent query
requests increases. Second, the extra communication be-
tween the resource allocator and individual JMS can add
undesirable overheads to the overall query latency. Finally,
individual JMS no longer has the freedom to judiciously
choose the ideal location for a task, based on data locality
and failure impact considerations. Another approach is to
have a shared-state scheduler [17], but such schedulers are
designed to operate on a time scale too large for interactive
query processing.

To meet all the performance requirements, in JetScope,
the coordinator partitions all the resources so that each JMS
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manages a disjoint portion. Each JMS admits and schedules
queries concurrently and independently at a great speed.
Each JMS also maintains some spare resources to handle
unexpected failures, as described in Section 5. A load bal-
ancer monitors the availability of each JMS continuously
and performs necessary load balancing among them. As de-
scribed in Section 3, the coordinator can dynamically adjust
resource allocations among different JMSs as needed. The
coordinator also monitors server health and notifies individ-
ual JMS promptly of problematic servers in case of failures.

Server1 Server2 Server1 Server2

Vertical Partitioning Horizontal Partitioning

JMS1 JMS2

JMS1

JMS2

Figure 4: Resource Partitioning.

The coordinator supports several policies to distribute re-
sources among different JMSs. One policy is to vertically
partition resources at a server level where different JMSs
are in charge of different set of servers. While this approach
provides excellent performance isolation, it could result in
suboptimal server utilization as each JMS cannot saturate
all the assigned resources due to the short lived nature of
interactive workload. In JetScope, the coordinator hor-
izontally partitions all the resources, also called resource
stripping. As shown in Figure 4, each server divides its own
resources and distribute them among several JMSs. Not ev-
ery JMS can fully utilize its assigned resources at all the
times, therefore, overlapping the resources owned by indi-
vidual JMS helps achieve balanced workload across all the
servers. In practice, we observe the load on each server is
well balanced and each server is decently utilized.

5. FAULT TOLERANCE
Failures and fluctuations are typical in cloud-scale dis-

tributed systems. Detecting failures and providing effective
failure recovery in a timely manner is crucial for low latency
query processing systems. The naive approach of rerunning
queries in case of any failure wastes the existing computa-
tion progress and adds considerable latency as the query
needs to be rerun from scratch. The drawback becomes
even more obvious as the number of tasks and the amount
of required resource for the query execution increase. Specif-
ically, the probability that any of the involved servers fails
during query execution grows significantly as the number of
servers involved increases. As a result, big queries are likely
to suffer from random failures repeatedly before any suc-
cessful execution or, even worse, never succeed. Therefore,
having a finer-grained fault tolerance control with great effi-
ciency is essential. JetScope achieves fault tolerance using
a real-time monitoring mechanism to identify failures and
a novel fine-grained recovery approach which only performs
the necessary recomputations greatly minimizing the latency
impact.

5.1 Tasks and Channels

In JetScope, a task’s I/O are performed through an ab-
straction called a channel, which represents a directed I/O
stream. Before digging further into the fault tolerance pro-
tocol, we cover the channel abstraction in details.

A

B

ID Physical Properties
1 A → B
2 dfs://... → B
3 B → C

(a) Task Graph (b) Mapping Table

Figure 5: A Channel Abstraction Example.

Every task has both input and output channels, corre-
sponding to the input and output I/O streams, respectively.
Each channel has a unique logical ID and physical properties
which describe the implementation of the represented I/O
stream (e.g. how to read from it and write to it). While the
logical ID of a channel is constant throughout a query, the
physical properties of a channel can be changed during the
query execution. The mapping of channel logical ID to phys-
ical properties is maintained by the JMS in a mapping table.
Multiple physical implementations of channels exist. For ex-
ample, a channel can be used to read from a distributed file
system, or from another task through StreamNet.

Data written to channels is required to be deterministic.
Channels can be read at any position. While a channel is
active (i.e. the producing task is still running), any read re-
quest for data that has not yet been generated (e.g, to read
data at a non-existing position) is blocked until the produc-
ing task generates the required data. A channel is finalized
when the producing task completes. Once a channel is final-
ized, any pending read requests for a position that is beyond
the length of the finalized channel will fail.

Figure 5 illustrates a task B and its channels. In the ex-
ample, the task has two input channels. As described in the
mapping table, one input channel connects the task to an
upstream task, while the other input channel connects the
task to a table partition stored in a distributed file system.
The task has one output channel, which is used to send data
to a downstream task. The physical properties of a chan-
nel can be changed while a task is running. For instance,
suppose that task A has another instance, called A′, run-
ning concurrently as a duplicated execution, they produce
the same deterministic results. Depending on the physical
properties of its input channel, task B can read from either
A or A′ with a specific offset, without affecting the correct-
ness of the results. In fact, task B can issue the same request
to both A and A′ and immediately consume the data if one
returns. Such a powerful abstraction also simplifies failure
recovery described next.

5.2 Real-Time Fault Detection
Timely detection of failures in a distributed environment

is challenging, as there are so many factors that may con-
tribute to different kinds of failures. Some failures are espe-
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cially difficult to detect or are only detected after they make
negative latency impact. For instance, network partitions
or power outages, which do not usually result in an immedi-
ately observable query level failures. Instead, they typically
result in low level system events, such as network timeouts
or TCP connection failures, which are only detected after
the query latency was impacted.

JetScope employs two lightweight mechanisms to de-
tect and identify failures promptly for each task. First,
JetScope uses a frequent heartbeat communication between
the JMS and each worker running a task. The JMS keeps
track of the last time it received an update from a task.
When a task missed enough updates, the JMS considers the
task failed and restarts the task in another server. This
mechanism allows the JMS to quickly detect failures affect-
ing running queries and take immediate actions.

Second, the coordinator maintains communication with
each back end server. When the coordinator detects a server
failure due to lost communication, it notifies every JMS,
which then considers all tasks on the server failed and trig-
gers recovery. The coordinator then requests a replacement
back end server in order to avoid a capacity reduction. The
second mechanism notifies each JMS of server failures, even
if some JMS had no task scheduled on the server. It pre-
vents future tasks from being dispatched to the problematic
servers, which would otherwise results in query processing
delays.

ID Physical Properties
1 A → C
2 A → D
3 B → C
4 B → D
5 C → E
6 D → E

(a) Original Task Graph (b) Original Mapping Table

ID Physical Properties
1 A → C
2 A → D′

3 B → C
4 B → D′

5 C → E
6 D′ → E

(c) Task Graph with Failed D (d) Updated Mapping Table

Figure 6: A Failure Recovery Example.

5.3 Fine-Grained Failure Recovery
JetScope streams intermediate results between depen-

dent tasks, allowing downstream tasks to consume rows when
they are available. Although this helps reduce the query
latency, it introduces challenges when failures occur in the
middle of communications. JetScope employs a fine-grained

fault recovery mechanism, which enables recovery with min-
imal latency impact by only recomputing the failed tasks.

Figure 6 illustrates this mechanism. In this example, we
consider a DAG containing 5 tasks, shown in Figure 6(a).
Each arrow between two tasks represents an I/O channel,
annotated with the logical ID of the channel. Figure 6(b)
shows the original mapping table.

Figure 6(c) shows the modified task graph after task D
fails. A new instance of task D, denoted as D′, is started on
a different server. The task D′ inherits its logical channels
(2, 4, and 6) from task D. The mapping table is updated
accordingly, as shown in Figure 6(d). Specifically, channels
2 and 4 are now consumed by D′ and channel 6 is produced
by D′. The updated mapping is then sent to the tasks via
the heartbeat message. Upon receiving this information, the
affected tasks (A, B, and E) update the physical properties
of their input and output channels and resume execution.

Specifically, task D′ restarts its computation from the be-
ginning by consuming outputs from A and B via channels
2 and 4. Task A and B do not need to restart. Instead,
they continue to process and write data into their output
channels, unaffected by the failure, throughout the recov-
ery. The read requests issued by task E on channel 6 will
simply block until D′ catches up and writes at the position
requested. The high-level protocol is described in Algo-
rithm 1.

Algorithm 1: Failure Detection and Recovery

foreach task Ti in the query do
if Ti missed K updates then

// Ti is considered failed,
// start a replacement task
T ′i = StartReplacementTask (Ti);

// Update the mapping table
foreach Cj in InputChannels (Ti) do

// Connect Cj to the new consumer
p = Producer (Cj) ;
UpdateChannelMap (Cj , p → T ′i );

foreach Cj in OutputChannels (Ti) do
// Connect Cj to the new producer
c = Consumer (Cj) ;
UpdateChannelMap (Cj , T ′i → c);

5.4 Reliable Task Scheduling
The JMS in JetScope employs a cost-based scheduler to

improve task scheduling quality and optimize efficiency [5].
The scheduler considers a wide range of factors, such as data
locality, server health, server utilization, etc. in a combined
cost model, which is used to choose the ideal server to sched-
ule a task. For each task, a cost is assigned to a candidate
server, based on the expected execution time of the task if
scheduled to the server, the probability that the server fails
during the query execution, and the cost of the failure (e.g.
the cost of rerunning the task). The scheduler is originally
designed for batch queries but the same scheduling strategy
applies to interactive queries in JetScope. The detailed
description of the scheduler can be found in [5].

An interesting challenge when scheduling interactive queries
is handling the correlated failures and reducing their impact
on the query latency. For instance, assume task tk−1 is a
parent of task tk, that is, tk consumes outputs from tk−1.
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If both tasks are scheduled to the same server or rack, both
tasks would fail if the server or the rack failed. In this case,
the recovery of the query is slowed down, because not only
both tasks need to rerun but also t′k has to wait for t′k−1

to repopulate the output channel. Such correlated failure
are common in practice and could have severe impact on
the system reliability and query latency. JetScope incor-
porates such considerations into the cost model. The cost
of a server failure now needs to consider all the dependent
tasks that get scheduled to the same server. As a result, the
scheduler judiciously considers scheduling two expensive and
dependent tasks in different failure domains to avoid such
correlated failures in a cost-based manner.

6. DISCUSSION
JetScope is designed to be an interactive computing ser-

vice, running 24/7 without any down time. It is important
to handle system deployments and maintenance gracefully
without impacting users. We describe key architectural as-
pects of JetScope that allows online system deployment
and maintenance in Section 6.1. JetScope evolves from
Scope [21], a distributed batch processing system. We dis-
cuss an important unification of batch and interactive query
processing in Section 6.2.

6.1 Online Deployment and Maintenance
JetScope is designed to support multiple versions of the

system to serve queries concurrently. The system can run
different versions of front end services, JMSs and their work-
ers side by side. Upon query submission, the system assigns
the query a version tag, which is used to route the query
to the system of the corresponding version for further pro-
cessing. Such capability is crucial for online deployment,
production flighting, and verification. During those events,
the system temporarily stops routing queries, via load bal-
ancers, to a set of system components of a particular version,
waits for them to drain current computation, and takes them
down for upgrade or deployment before routing new queries
to them. During the process, another version of the system
continues to operate, with minimal impact on users.

Cluster wide maintenance, e.g., to apply OS patches, oc-
cur regularly in data clusters. Similarly, JetScope applies
maintenance progressively to minimize their impact to query
processing. Specifically, the coordinator first receives noti-
fication that certain servers are scheduled for maintenance,
and then notified each JMS to stop sending new tasks to
the affected servers. The system waits for the current tasks
to finish before taking them down for maintenance. Finally,
the coordinator picks new servers to compensate the lost ca-
pacity and notifies JMSs. The rest of the system continue
to function during this process.

6.2 Unification of Batch and Interactive Pro-
cessing

Batch processing systems typically handle massive datasets,
optimize for throughput, and can take hours or days to finish
processing a query, while interactive processing optimizes for
low latency and process queries in seconds or minutes. The
two systems compliment each others and both are valuable
in the big data computation eco-system. It is therefore im-
portant to unify batch and interactive processing effectively
and support both in a shared environment. JetScope and

Scope provide a natural unification, as many system com-
ponents are shared between batch and interactive processing
but optimize different aspects in execution, scheduling, and
fault tolerance. The two systems are deployed to the same
computing clusters with tens of thousands of servers, each
with its own allocated resources. The two systems share the
same underlying distributed file system, storing data across
all the servers in the cluster. Such a design allows users to
leverage both systems for different scenarios without copy-
ing data from one system to the other. In fact, it is typical
to use the batch processing system to process the raw data
and construct tables, which is time-consuming, and then
leverage the interactive processing system for fast analytics
and exploration. In addition, the unification allows users to
write queries using the same declarative language. Perform-
ing automatic selection of the optimal execution strategy,
depending on the data volume, required resources, etc. is
part of our future work.

7. EVALUATION AT SCALE
We perform detailed experiments on JetScope to eval-

uate its performance and scalability under various circum-
stances. More specifically, we focus on answering the fol-
lowing questions: (i) How does JetScope perform in a
real production environment? (Section 7.1) (ii) How does
JetScope perform with complex queries? How does it com-
pare with the performance of other systems? (Section 7.2)
(iii) How do server and rack failures affect the query perfor-
mance with JetScope’s fine-grained fault recovery? How
does it compare with a coarse-grained fault recovery strat-
egy? Does JetScope’s task placement optimization help?
(Section 7.3) (iv) How does JetScope scale? (Section 7.4)

7.1 JetScope in Production
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Figure 7: Query Latency on Production Clusters.

JetScope has been deployed to hundreds of servers in
production at Microsoft, serving millions of queries against
a wide range of big datasets on a daily basis. Figure 7 il-
lustrates the distribution of query latencies observed. 40%
of the queries complete in less than a second. Most of these
queries benefit significantly from effective indexing and are
often generated by reporting tools, built for common ana-
lytical scenarios. The rest of the workload consists of a
wide range of ad-hoc data exploration and interactive ex-
perimentation queries. As the system supports both batch
and interactive processing in a shared environment, users
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run scaled down versions of more complex experiments us-
ing JetScope to validate their assumptions before launch-
ing full scale experiments that could run for many hours in
the batch system.

7.2 Query Performance
JetScope is capable of running various complex SQL

queries with excellent performance. However, it is difficult
to compare the performance numbers among different dis-
tributed computation systems, as the underlying computing
clusters might have different hardware configuration, which
have a profound impact on the system performance. Re-
cent work published detailed performance numbers about
Hive and Impala running on a 1TB TPC-H database, as
well as the hardware configuration used [10]. We configure
a test cluster with a similar hardware configuration so as
to roughly compare JetScope performance numbers with
those for Hive and Impala. In particular, the test cluster
has 21 servers as in the Hive and Impala experiments and
each server has comparable specifications.

Hive &
Impala [10]

JetScope

Server Count 21 21
Server Configuration

OS Ubuntu 12.04 Windows Server 2012
Memory 96GB 128GB
Network 10 gigabit 10 gigabit
CPU Sockets 2 2
CPU Cores 12 16

CPU Specification
Brand Intel Xeon Intel Xeon
Clock 2.2GHz 2.1GHz
Cores/Socket 6 8

I/O System
Disk Count 200 180
Disk RPM 7k 7k

Table 1: Cluster Configuration.

It is worthwhile pointing out the difference in the clus-
ter configuration. For Hive and Impala experiments, each
server has 10 direct-attached hard drives. In JetScope,
each server has 3 direct-attached data drives. To have a
similar configuration, we have data stored in 60 servers with
180 disks in total. This is suboptimal for JetScope as the
data is distributed among different servers and the system
no longer benefits from the data locality. On the other side,
each server in JetScope clusters has slightly more cores
and memory with slightly lower CPU clock speed. Despite
the difference, we believe the cluster configuration is close
enough to provide a rough comparison. To avoid diluting
the performance numbers by caching data in memory, we
disable file cache for JetScope.

Table 2 shows the latency of all 22 TPC-H queries over a
1TB database for Hive-Tez with data in the ORC Snappy
format, Impala with data in the Parquet format, and JetScope
with data stored natively in tables. The Hive and Impala
numbers reported from a previous study [10], each repre-
senting the best performing setup. JetScope performs sig-
nificantly better than Hive and Impala, and completes the
benchmark 4 times faster than Impala, with some queries
running as much as 10 times faster. Both JetScope and
Impala perform faster than Hive. Interestingly, there are

Query Hive-
Tez [10]

Impala [10] JetScope Speedup over
Impala

1 172 25 19 1.28
2 111 29 21 1.41
3 280 122 42 2.92
4 214 135 36 3.72
5 409 189 44 4.27
6 81 6 16 0.37
7 589 179 99 1.81
8 369 140 54 2.61
9 1692 Failed 119 n/a

10 224 59 41 1.44
11 134 22 14 1.56
12 184 38 43 0.88
13 156 123 40 3.04
14 120 13 26 0.5
15 156 21 34 0.62
16 133 44 9 4.85
17 724 385 91 4.23
18 672 185 68 2.7
19 569 703 44 16.07
20 175 195 36 5.39
21 Failed 854 72 11.94
22 130 29 23 1.27

Sum 7294+ 3496+ 871 4.01

Table 2: TPC-H Query Latency over 1TB (seconds).

four queries Q6, Q12, Q14, and Q15 that run faster in Im-
pala. The dominating cost of those queries is to read the
big lineitem table and they could have benefited from the
fact that data is partially in file cache, as done in the Hive
and Impala experiments [10]. JetScope query runs do not
use file cache.

Our investigation shows that JetScope produces better
execution plans and utilizes a more efficient runtime engine
to achieve low latency with scalability. One such example is
Q19, in which JetScope is 16 times faster. Q19 performs
a join between lineitem and part tables and apply a fil-
tering predicate. The JetScope optimizer creates implied
predicates and pushes them down to the table scanner. The
selectivity of these predicates is very low — 2% for lineitem
table and 0.5% for part table, and only a small fraction of
rows reaches the join. Impala, on the other hand, does not
pushdown predicates [10] and thus the join stage processes
much more data.

7.3 Fault Tolerance
We evaluate the effectiveness of Scope fault tolerance

strategy using 495 servers in one production cluster. Specif-
ically, we run TPC-DS Q96 (shown in Section 2) against a
30TB TPC-DS database, manually inject different kinds of
failures, and measure how fast the system recovers and the
impact on the overall query latency.

There are two common types of failures in data clusters:
(i) server level failures, such as disk failures, OS crashes,
etc.; and (ii) infrastructure failure, such as power, cooling
or network failure. The second type of failure is not rare
in cloud-scale data clusters because the power and network
infrastructures are often not redundant at the rack level.
When it happens, all the servers in a rack, typically between
30 and 40 servers, become unavailable.

We first measure the query latency when there are no fail-
ures as the baseline and normalize it to 100. We then rerun
the query, injecting a server or rack failure at a specific tim-
ing (tfault), measure the final end-to-end query latency, and
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calculate their slowdown (in percentage) compared to the
baseline, respectively. Each experiment is repeated 5 times.
We report the average and standard deviation of the query
slowdown in Figure 8. We further compare with a coarse-
grained fault tolerance strategy, where the entire query is
reran in case of failures. Naturally, the coarse grained fault
tolerance strategy has a slowdown which is linear with the
time at which a failure is injected. For instance, if a failure
is injected at tfault = 50, the query will be restarted and
will complete at t = 150, leading to a 50% slowdown.

As shown in Figure 8, each failure does slow down query
execution as it takes time to recover. A rack failure is more
expensive to recover than a single server failure, as it af-
fects a group of tasks and takes more effort to recover.
Single server failures have a big variance because the im-
pact varies depending precisely on which tasks are affected.
JetScope’s fine-grained failure recovery performs signifi-
cantly better than the approach of rerunning the entire query,
regardless of the failure type. For example, in the worst case,
when a rack failure is injected at tfault = 85, the query com-
pletes with 63% slowdown (that is, an end-to-end latency
l = 163), while restarting the query at time tfault = 85
would result in a latency l = 185 (85% slowdown). A sur-
prising case is when a rack failure is injected at tfault = 20,
and no additional slowdown is observed. Upon close inspec-
tion of the data, we observed that the failures were not on
the critical path.

7.4 Scalability
Next, we evaluate the scalability of the JetScope system

by running TPC-H Q1 against a 1TB database with differ-
ent degrees of parallelism. The execution plan is relatively
straightforward. Tasks are assigned different partitions of
the lineitem table and perform local aggregation indepen-
dently. Their results are aggregated by a separate task,
which performs the final global aggregation. By changing
the number of assigned tasks, the degree of parallelism in-
creases, which improves the overall latency. Figure 9 shows
that JetScope achieves a near-ideal speedup from 16 tasks
to 180 tasks for this query.

Finally, we evaluate how JetScope scales as the amount
of the processed data increases. Specifically, we use several
TPC-H queries with increasing complexities and compare
their latency using 20 servers against a 1TB database with
that of using 200 server against a 10TB database. As il-
lustrated in Figure 10, the latency stays almost constant,
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despite the 10x increase in scale. These results demonstrate
the excellent scalability of the system.

8. RELATED WORK
Cloud-scale batch processing systems like Map-Reduce [8],

Scope [21], Pig [15] and Hive [19] are designed for very large
scale data processing where a single job can process a few
petabytes of data. One key design choice for such systems
is to mainly optimize the system throughput. Due to its
massive scale, it becomes critical to deal with various sys-
tem fluctuations and failures. For instance, those systems
typically trade latency for reliability and scalability by ma-
terializing intermediate results to disks.

By contrast, interactive query processing systems pro-
cess gigabytes to tens of terabytes of data and strives to
achieve low latency execution. MapReduce Online [7] is
a data processing system which streams data through op-
erators to leverage pipelining and reduce the materializa-
tion cost. Scuba [1] achieves low latency by storing tem-
poral data in memory and executes queries by aggregating
data through dynamic execution trees. Failures are handled
by approximating results. Dremel [14] executes queries by
leveraging dynamic aggregation trees to read, process, and
aggregate data stored in columnar format. F1 [18] supports
complex communication graphs over a distributed transac-
tional store, and uses coarse-grained fault tolerance. F1 also
supports transactional updates to the data. Spark [6, 4] and
Shark [20] systems achieve low latency by aggressively lever-
aging RDD and provides fault tolerance through lineage re-
computation. Impala [9] is an MPP SQL query engine which
extensively leverages effective code generation, a columnar
data format, and an efficient I/O subsystem which short-
circuits the distributed file system to improve I/O perfor-
mance. JetScope leverages database techniques and sup-
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ports a wide range of complex queries with sophisticated
query optimization. In addition, JetScope has a highly
scalable architecture to process hundreds of queries concur-
rently in a truly multi-tenant cloud environment. Special
techniques in query optimization, network communication,
and scheduling are utilized to further optimize for query la-
tency. The fine-grained fault tolerance mechanism enables
the system to detect and recover from failures promptly and
minimize any latency impact.

High performance scheduling with good quality is essen-
tial when scheduling large scale interactive queries in a cloud
environment. Omega [17] is a shared-state resource man-
ager which allows schedulers to make independent decisions,
and support transactional acquisition of resources. Spar-
row [16] is a scheduler designed for low latency workloads.
It operates using batch sampling of the queue length of
servers and schedule tasks on the servers with minimal queue
length. Locality is implemented as a scheduling constraint.
Apollo [5] is a cost-based scheduler which schedules tasks by
judiciously trading off various factors such as load and lo-
cality to minimize task runtime using an estimation model.
JetScope improves scheduling efficiency further by gang
scheduling tasks to allow full pipelining of the task execu-
tion. It also considers correlated failures and their impact
on the query latency to make the query execution less vul-
nerable to any random system failures.

9. CONCLUSION
We present a cloud scale interactive query processing sys-

tem, called JetScope, developed at Microsoft. The system
combines the benefits of parallel database systems and dis-
tributed low latency query processing engine. Specifically,
it has a SQL-like declarative scripting language and delivers
massive scalability and high performance through advanced
optimizations. In order to achieve low latency in query pro-
cessing, JetScope leverages various access methods, opti-
mizes first rows delivery latency, and maximizes network
and scheduling efficiency. To handle failures that are com-
mon in cloud scale computing clusters, JetScope provides
a fine-grained fault tolerance mechanism which is able to
efficiently detect and mitigate failures by only recomput-
ing part of the query and minimizing any latency impact.
JetScope has been deployed to hundreds of servers in pro-
duction at Microsoft, serving a few million queries with a
variety of complexities daily in interactive speeds.
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