
Building a Replicated Logging System with Apache Kafka

Guozhang Wang1, Joel Koshy1, Sriram Subramanian1, Kartik Paramasivam1

Mammad Zadeh1, Neha Narkhede2, Jun Rao2, Jay Kreps2, Joe Stein3

1LinkedIn Corporation, 2Confluent Inc., 3Big Data Open Source Security LLC

ABSTRACT
Apache Kafka is a scalable publish-subscribe messaging sys-
tem with its core architecture as a distributed commit log.
It was originally built at LinkedIn as its centralized event
pipelining platform for online data integration tasks. Over
the past years developing and operating Kafka, we extend
its log-structured architecture as a replicated logging back-
bone for much wider application scopes in the distributed
environment. In this abstract, we will talk about our design
and engineering experience to replicate Kafka logs for vari-
ous distributed data-driven systems at LinkedIn, including
source-of-truth data storage and stream processing.

1. INTRODUCTION
Kafka was first developed to solve a general problem of

delivering extreme high volume event data to diverse sub-
scribers. As the largest professional social network on the
Internet, today LinkedIn generates billions of log entries and
events that capture its over-300 million members’ activities
every day and feeds them to its products. Examples of these
products include derived information and news feeds such as
“Who’s Viewed My Profile?”; machine learning backed so-
cial and content recommendation such as “People You May
Know”; and many other backend monitoring and reporting
platforms such as site health auditing and account fraud de-
tection. It is hence very critical to be able to deliver this
high-volume activity data in real time to both our user-
facing products as well as these backend systems.

With this goal in mind, in 2010 we implemented Kafka as
LinkedIn’s centralized online data pipelining system. Kafka
organizes messages as a partitioned write-ahead commit log
on persistent storage and provides a pull-based messaging
abstraction to allow both real-time subscribers such as on-
line services and offline subscribers such as Hadoop and data
warehouse to read these messages at arbitrary pace. Since
Oct. 2012, Kafka has become a top-level Apache open source
software and be widely adopted outside LinkedIn as well [1].

This work is licensed under the Creative Commons Attribution-
NonCommercial-NoDerivs 3.0 Unported License. To view a copy of this li-
cense, visit http://creativecommons.org/licenses/by-nc-nd/3.0/. Obtain per-
mission prior to any use beyond those covered by the license. Contact
copyright holder by emailing info@vldb.org. Articles from this volume
were invited to present their results at the 41st International Conference on
Very Large Data Bases, August 31st - September 4th 2015, Kohala Coast,
Hawaii.
Proceedings of the VLDB Endowment, Vol. 8, No. 12
Copyright 2015 VLDB Endowment 2150-8097/15/08.

Recently, there has been much renewed interest in us-
ing log-centric architectures to build distributed systems
that provides efficient durability and availability [3, 5, 6,
7]. In this approach, a collection of distributed servers can
maintain a consistent system state via a replicated log that
records state changes in sequential order. When some of
the servers fail and come back, their states can be determin-
istically reconstructed by replaying this log upon recovery.
At LinkedIn, the idea of using a reliable and highly available
log structure as the underlying data flow to scale distributed
systems has also been well envisioned and exercised over the
past years. Given its log-structured architecture, we realize
Kafka could be a good fit for this vision and have extended
its design as a replicated logging system. In this abstract, we
present our experience in building such a system with Kafka,
and describe a few use cases at LinkedIn of this replicated
log.

2. BUILDING A REPLICATED LOG
We identify two major requirements while extending Kafka

into a replicated logging system and present our solutions
to them as follows:

(1) A Log Consensus Protocol is required to keep the
replicated log consistent among servers, i.e. we need to en-
sure that every replica of the log eventually contains the
same entries in the same order even when some servers fail.
There are two common strategies for keeping replicas in
sync: primary-backup replication and quorum-based repli-
cation.In both cases, one replica is designated as the leader
and the rest are followers. All log appends go through the
leader and then propagate to the followers. In primary-
backup replication, the leader waits until the append is com-
pleted on all the replicas before acknowledging the client,
whereas in quorum-based replication it only waits until the
append is completed on a majority of the replicas. As a re-
sult, the primary-backup approach could employ fewer repli-
cas (F +1) to tolerate the same number of failures (F ) than
the quorum approach (2F + 1), while the quorum approach
usually achieves better latency as it only requires any F + 1
replicas out of 2F + 1 for committing log appends.

Since Kafka is typically deployed in the same data center
where the variance of network latency is low, the benefit of
using less replicas outweighs the potential slight increase in
latency. We designed and implemented Kafka message log
replication in Kafka 0.8.0, with the key idea of separating the
key elements of a consensus protocol such as leader election
and membership changes from log replication itself. Each
log partition can be replicated on different servers, with one

1654



replica as the leader and others as followers. Each server
can act as the leader for some of the partitions and follower
for some other partitions at the same time. We rely on
the quorum-based Apache Zookeeper service [4] for making
consensus decisions such as leader election and storing crit-
ical partition metadata such as replica lists, while using a
primary-backup approach for replicating logs from leader to
followers. The log format is much simpler with such separa-
tion since it does not need to maintain any leader election
related information, and the replication factor for the log
is decoupled from the number of parties required for the
quorum to proceed (e.g., in Kafka we can choose a repli-
cation factor of two for the log while using an ensemble of
five Zookeeper nodes). Producer clients can specify different
replication criterion for acknowledging their sent messages;
for example, they can choose to wait for acknowledgement
until the messages have been replicated to all in-sync repli-
cas, or only the leader. On the other hand, consumer clients
only fetch messages that have been replicated to all in-sync
replicas. We will present more details about committing, in-
sync replica membership management, partition assignment
and leader elections, etc in the talk.

(2) A Log Truncation Mechanism is required to avoid
the log from growing indefinitely.Kafka originally supports
only window-based data retention policies where the win-
dow can be defined based on time or space: for example,
users can indicate servers to clean up oldest log segments
after some time has passed or some amount of bytes have
cumulated on the log. Such retention policies do not suit
for cases where log entries are organized by keys, and the
system only cares about the most recent data value of each
key but not necessarily every change to it.

We introduced a key-based log compaction mechanism in
Kafka 0.8.1 where stale log information can be cleaned up
to reduce log size.Each message is formulated as a key-value
pair, and applications can use the message key to organize
log entries whose precedence is then naturally defined as
append ordering. When log compaction is enabled, Kafka
servers asynchronously scan log segments of each partition,
purge old events if there is a newer message with the same
key in order to construct compacted log segments. The com-
pacted logs can then be atomically swapped in with the old
logs, with the wrapped out logs deleted afterwards. This
process is done without interfering concurrent client requests
to append or fetch log entries at the same time.

3. USE CASES
We describe two use cases at LinkedIn that make use of

this replicated logging system:

(1) Change Log Replication. One example usage of
replicated Kafka logs is to store data changes of a distributed
data store. For instance, Espresso is a scalable document
store built at LinkedIn to serve as its online data storage
platform [8]. It depends on the underlying storage engine
for its data replication (e.g. MySQL storage node replica-
tion), which results in high operating and maintenance costs.
To resolve this problem, we are replacing Espresso’s replica-
tion layer by using Kafka to capture its data change updates
as a commit log. This log will then be applied to support
both intra and inter data center replication. To be more
concrete, we create a Kafka topic for each Espresso table,
which is partitioned accordingly to the shards of the table.

Each Espresso instance embeds a Kafka producer to publish
its change logs to the local Kafka cluster. Other Espresso
instances who host the slave shards of the corresponding
partitions can then consume these Kafka streams and ap-
ply update events. By doing this, we migrate Espresso
into a partition-level replication mechanism which largely
increased load balance and system operability.

(2) Resilient Stream Processing. Historically, the term
“stream processing” refers to the scenario where data tuples
are streaming in continuously but can only be queried once.
However, when data streams are backed by persistent stor-
age, you can (re-)process these streams from long time ago as
long as it is still retained in the source. In this case, stream
processing can be treated just as a generalization of batch-
oriented processing that produces low-latency outputs from
a sequence of input data without blocking on the input data
set to be fully complete. To achieve this goal, we have de-
veloped Samza, an Apache open source distributed stream
processing framework which uses Kafka as its underlying
streaming layer [2]. Each Samza job can read one or more
upstream logs generated by other jobs or some data stream
firehose, and write output to downstream logs or other sys-
tems (e.g. materialized views in databases); a group of such
jobs connected by their input and output streams can then
form a dynamically modifiable stream processing topology
with much simpler processor failure and back-pressure han-
dling thanks to the underlying durable and highly available
Kafka stream. Samza has been used at LinkedIn for various
low-latency data processing tasks such as service monitor-
ing, real-time data standardization, online machine learning,
etc.

4. CONCLUSION
Log structures have been the heart of database and dis-

tributed system design for many years. At LinkedIn we
demonstrate via Apache Kafka that a replicated log can also
be a very powerful abstraction in practice for scaling a wide
scope of distributed systems.

5. REFERENCES
[1] Apache Kafka. http://kafka.apache.org.

[2] Apache Samza. http://samza.apache.org.

[3] M. Balakrishnan, D. Malkhi, J. D. Davis,
V. Prabhakaran, M. Wei, and T. Wobber. CORFU: A
distributed shared log. ACM Trans. Comput. Syst.,
31(4):10, 2013.

[4] P. Hunt, M. Konar, F. P. Junqueira, and B. Reed.
Zookeeper: Wait-free coordination for internet-scale
systems. In USENIX ATC, 2010.

[5] W. Lin, M. Yang, L. Zhang, and L. Zhou. PacificA:
Replication in log-based distributed storage systems.
Technical Report MSR-TR-2008-25, Microsoft
Research.

[6] D. Ongaro and J. K. Ousterhout. In search of an
understandable consensus algorithm. In USENIX ATC,
pages 305–319, 2014.

[7] J. K. Ousterhout et al. The case for ramclouds:
scalable high-performance storage entirely in DRAM.
Operating Systems Review, 43(4):92–105, 2009.

[8] L. Qiao et al. On brewing fresh Espresso: Linkedin’s
distributed data serving platform. In SIGMOD, pages
1135–1146, 2013.

1655


