
Keys for Graphs

Wenfei Fan1,2 Zhe Fan3 Chao Tian1,2 Xin Luna Dong4

1University of Edinburgh 2Beihang University 3Hong Kong Baptist University 4Google Inc.

{wenfei@inf., chao.tian@}ed.ac.uk, zfan@comp.hkbu.edu.hk, lunadong@google.com

ABSTRACT
Keys for graphs aim to uniquely identify entities represented
by vertices in a graph. We propose a class of keys that are
recursively defined in terms of graph patterns, and are inter-
preted with subgraph isomorphism. Extending conventional
keys for relations and XML, these keys find applications in
object identification, knowledge fusion and social network
reconciliation. As an application, we study the entity match-
ing problem that, given a graph G and a set Σ of keys, is
to find all pairs of entities (vertices) in G that are identi-
fied by keys in Σ. We show that the problem is intractable,
and cannot be parallelized in logarithmic rounds. Nonethe-
less, we provide two parallel scalable algorithms for entity
matching, in MapReduce and a vertex-centric asynchronous
model. Using real-life and synthetic data, we experimentally
verify the effectiveness and scalability of the algorithms.

1. INTRODUCTION
Keys provide an invariant connection between a real-world

entity and its representation in a database. They are fun-
damental to relational databases: data models, conceptual
design, and prevention of update anomalies. They are found
in almost every database textbook. Keys have also been ex-
tensively studied for XML and are part of XML Schema.

For all the reasons that keys are essential to relations and
XML, keys are also needed for graphs. The need is evident
when relations are represented as graphs [6, 8, 32, 36], and
for citations of “digital objects” of graph structures [11].
They are also important to emerging applications such as
knowledge fusion and knowledge base expansion [15,16,34],
to deduplicate entities and to fuse information from differ-
ent sources that refers to the same entity. Another appli-
cation is social network reconciliation, to reconcile user ac-
counts across multiple social networks [28]. However, keys
for graphs are more challenging than conventional keys.

Example 1: We illustrate keys for graphs by using exam-
ples taken from various domains in knowledge bases.

This work is licensed under the Creative Commons Attribution­
NonCommercial­NoDerivs 3.0 Unported License. To view a copy of this li­
cense, visit http://creativecommons.org/licenses/by­nc­nd/3.0/. Obtain per­
mission prior to any use beyond those covered by the license. Contact
copyright holder by emailing info@vldb.org. Articles from this volume
were invited to present their results at the 41st International Conference on
Very Large Data Bases, August 31st ­ September 4th 2015, Kohala Coast,
Hawaii.
Proceedings of the VLDB Endowment, Vol. 8, No. 12
Copyright 2015 VLDB Endowment 2150­8097/15/08.

x

name∗

release year

x

artist

recorded by

(album) (album) x

album

(artist)

x (company)

company

Q1(x) Q2(x) Q3(x)

Q4(x)

x (company)

Q5(x)

x

“UK”

nation of

code∗

zip code

(street)

Q6(x)

name of

name∗ year∗

name of name of recorded by

name∗

parent of

name of
company

name∗

name∗company

company

parent ofparent of

name of

name of

parent of

name of

Figure 1: Keys for graphs as graph patterns

Music. Consider a knowledge base G1 consisting of triples
(s, p, o), indicating subject, predicate and object, respec-
tively; e.g., (album, recorded by, artist) says that an album
is recorded by an artist. It is modeled as a graph in which s
and o are nodes, connected by an edge from s to o labeled p.

One might think that name is a key for album. However,
this is not the case. For instance, there are different albums
recorded by the Beatles and John Farnham with the same
name “Anthology 2” in Freebase. Indeed, the name of an al-
bum x uniquely identifies x only among all albums recorded
by the same artist1. Alternatively, an album can be identi-
fied by its name and its year of initial release. These yield
two keys for albums: An album can be uniquely identified by

Q1: its name and its primary recording artist, or

Q2: its name and its year of initial release.

For the same reason, an artist may not be identified by its
name. Indeed, there are 6 artists or bands named “Everest”.
Nonetheless, a key for artist can be given by incorporating
one of the albums that the artist recorded.

Q3: An artist can be identified by the name, and the album
he or she recorded.

These keys are depicted as graph patterns Q1(x), Q2(x)
and Q3(x) in Fig. 1, respectively, where x denotes an entity
of a particular type to be identified. Intuitively, Q1(x) says
that if two album entities x1 and x2 have the same name and
are recorded by the same artist, then x1 and x2 must be the
same album; similarly for Q2(x) and Q3(x).

In contrast to keys for relations and XML, keys for graph-
s specify topological constraints with a graph pattern. Such
keys (a) may consider not only value equality based on val-
ue bindings of properties, e.g., name in Q1, but also node

1We require exact match in the examples for simplicity; nonethe-
less, we can easily relax the constraints to similarity match.

1590

identity, e.g., the identity of artist node in Q1; and (b) can
be recursively defined, e.g., to identify an album entity x, we
may need to identify its primary artist y, while to identify
an artist entity y, we need to identify one of its albums x.

Business. As another example, consider the domain for busi-
nesses. Typically we can identify a company in the US by
its name and head-quarter location. However, there is of-
ten business merging and splitting, and very commonly the
child company may carry the same name of the parent com-
pany without moving the head-quarter (e.g.,AT&T and SBC
merged in 2005 and the new company carried the name of
AT&T). To distinguish the parent company and the child
company in this case, we need to encode the parent-child
relationship in the key. That leads to the following two keys
to identify companies in a knowledge base G2, the former
for the case of merging and the latter for splitting.

Q4: A company merged from a parent company of the same
name can be identified by the company name and the
other parent company.

Q5: A company split from a parent company of the same
name can be identified by the company name and an-
other child company after splitting.

These keys demonstrate another departure from traditional
keys: (a) Q4 and Q5 are directed acyclic graphs (DAG), as
shown in Fig. 1; and (b) they include properties of different
entities, e.g., Q4(x) for company incorporates both the name
of the company and the name of its parent company.

Address. To identify a street in the UK, one can use:

Q6: A street in the UK can be identified by its zip code.

This key does not hold for streets in, e.g., the US. As shown
in Fig. 1, Q6 is specified with a constant as a condition. This
is another departure from conventional keys. 2

Keys for graphs are a departure from conventional keys.
To make practical use of such keys, several questions have
to be answered. How should we define keys for graphs, from
syntax to semantics? What is the complexity of identify-
ing entities with keys? Is there any scalable algorithm to
identify entities with keys in big graphs?

Contributions. This paper studies keys for graphs, from
specifications and semantics to applications.

(1) We propose a class of keys for graphs (Section 2). We
define keys in terms of graph patterns, to specify topological
constraints and value bindings needed for identifying enti-
ties. Moreover, keys may be recursively defined: to identify
a pair of entities, we may need to decide whether some other
entities can be identified, as shown by Q1, Q3–Q5 of Exam-
ple 1. We interpret keys by means of graph pattern match-
ing via subgraph isomorphism. These make such keys more
expressive than our familiar keys for relations and XML.

(2) We study entity matching, an application of keys for
graphs (Section 3). Given a graph G and a set Σ of keys
for graphs, entity matching is to find all pairs of entities
(vertices) in G that can be identified by keys in Σ. We
formalize the problem by revising the chase [3] studied in
the classical dependency theory. While entity matching is
in PTIME (polynomial time) for relations and XML with
traditional keys, we show that its decision problem is NP-
complete for graphs. Worse still, recursively defined keys
pose new challenges. We show that entity matching does not

have the polynomial-fringe property (PFP) [4], and cannot
be solved in logarithmic parallel computation rounds.

Nonetheless, we show that entity matching is within reach
in practice, by providing parallel scalable algorithms.

(3) We develop a MapReduce algorithm for entity match-
ing (Section 4). As opposed to subgraph isomorphism, en-
tity matching with recursively defined keys requires a fix-
point computation, and in each round, multiple isomorphis-
m checking for each entity pair. We show that the algorith-
m is parallel scalable, i.e., its worst-case time complexity is
O(t(|G|, |Σ|)/p), where t(,) is a function in |G| and |Σ|, and
p is the number of processors used. It guarantees to take
proportionally less time with the increase of p, which is not
warranted by many parallel algorithms. We also develop
optimization methods to process recursively defined keys.

(4) We give another algorithm in the vertex-centric asyn-
chronous model of [31] (Section 5). This algorithm not only
checks different entity pairs in parallel, but also inspects d-
ifferent mappings in parallel when checking each entity pair,
via asynchronous message passing. It reduces unnecessary
costs inherent to the I/O bound and the synchronization
policy (“blocking” of stragglers) of MapReduce. We show
that the algorithm is also parallel scalable. Moreover, we
propose optimization techniques to reduce message passing.

(5) Using real-life and synthetic data, we experimentally e-
valuate our algorithms (Section 6). Despite the intractabil-
ity and the hardness of parallelization, we find that our
MapReduce and vertex-centric algorithms are indeed par-
allel scalable: they are 4.8 and 4.9 times faster on average,
respectively, when the number of processors increases from
4 to 20. They are reasonably efficient: they take 27 and
1.5 seconds on average with 20 processors, respectively, on
graphs with 600 million nodes and edges, for 500 recursively
defined keys. Moreover, our optimization techniques for the
two are effective, and improve the performance by 200% and
50%, respectively. We also find that the vertex-centric one
reduces inherent costs of MapReduce, and performs better.

We contend that these keys provide an analogy of tradi-
tional keys for graph-structured data. Like relational and
XML keys, they specify the semantics of the data and re-
main invariant regardless of changes to the data. They are
important to not only traditional use of keys but also several
emerging applications. Moreover, entity matching permits
parallel scalable algorithms and is feasible in big graphs.

We focus on definition and application of keys in this pa-
per, and defer the study of key discovery by, e.g., path-
identification [29] or communication theory [23], to another
publication. All proofs of the results of the paper are in [2].

Related work. We characterize related work as follows.

Keys. Relational keys are defined over a relation schema in
terms of a set of attributes [3]. XML keys are specified in
terms of path expressions in the absence of schema [10].

In contrast to traditional keys, keys for graphs (a) are
defined in terms of graph patterns, specifying constraints on
both topological structure and value bindings, in the absence
of schema; (b) they are interpreted based on graph pattern
matching, with both value equality and node identity; and
(c) they can be recursively defined. These keys are useful in
emerging applications besides their traditional use.

To the best of our knowledge, the only prior work on keys

1591

for graphs is [33], which specifies keys for RDF data in terms
of a combination of object properties and data properties
defined over OWL ontology. Such keys differ from keys of
this work in that they (a) cannot be recursively defined,
(b) do not enforce topological constraints imposed by graph
patterns, and (c) adopt the unique name assumption via
URIs, which is often too strong for entity matching.

Entity resolution. Entity resolution (a.k.a. entity match-
ing, record linkage, etc.) is to identify records that refer to
the same real-world entity. There has been a host of work on
the topic, following iterative clustering [7,32], learning-based
[27,36], rule-based methods [6, 17] (see [12,20] for surveys).

Keys for graphs yield a declarative and deterministic
method to provide an invariant connection between vertices
and the real-world entities they represent, and fall in the
rule-based approach. Prior rule-based methods mostly focus
on relational data; this work is to define a primary form of
constraints for graphs, namely, keys. The quality of match-
es identified by keys highly depends on keys discovered and
used, although keys help us reduce false positives. We de-
fer the topic of key discovery to another paper, and focus
primarily on the efficiency of applying such constraints.
One branch of entity resolution, called collective entity

resolution [8, 14, 36], is to jointly determine entities for co-
occurring references and propagate similarities of entities.
Analogous to datalog rules [6], keys for graphs extend this
approach by providing recursively defined rules, based on
graph pattern matching. This work addresses some of the
emerging challenges highlighted in [20], by targeting graphs
when data is “more linked”, and by providing parallel scal-
able algorithms for “larger datasets”.

Finally, we remark that entity resolution is just one of
the applications for keys for graphs, besides, e.g., digital
citations [11] and knowledge base expansion [15].

Parallel algorithms. Parallel algorithms have been develope-
d for subgraph isomorphism [22, 26, 35, 38], and for entity
resolution [7,25,27,32,36]. As remarked earlier, [7,27,32,36]
target record matching in relations; [25] deals with graphs
but adopts relational record matching methods.

Our algorithms differ from previous ones in the follow-
ing. (a) Entity matching is far more intriguing than con-
ventional subgraph isomorphism, and the prior algorithm-
s [22, 26, 35, 38] cannot be applied to entity matching. (b)
For the same reasons, entity matching is more involved than
record matching of [7,27,32,36] to identify tuples in relation-
s, and than the task of [25] that does not enforce topological
constraints in the matching process. (c) We propose opti-
mization strategies that have not been studied before.

Related to this work are also parallel algorithms for eval-
uating datalog [4, 37]. However, entity matching with keys
requires to identify bijective functions for subgraph isomor-
phism, which are more challenging to compute. Worse still,
we show that entity linking does not have PFP [4], and is
harder to be parallelized than, e.g., transitive closures.

2. SPECIFYING KEYS WITH GRAPH PAT­
TERNS

In this section, we formally define keys for graphs.

2.1 Graphs and Graph Pattern Matching
We start with graphs, patterns and pattern matching.

“Anthology 2”“1996”

release year

recorded by

alb1

name of

“The Beatles” “John Farnham”

G1: G2:

“AT&T” “SBC”

“1997”

parent of

name of

alb2 alb3

art1 art2 art3

com0

com1

com4

com2 com3

com5

Figure 2: Fragments of two knowledge graphs

Graphs. Assume a set E of entities, a set D of values, a set
P of predicates (labels), and a set Θ of types. Each entity
e in E has a unique ID and a type in Θ.

A graph G is a set of triples t = (s, p, o), where subject s
is an entity in E , p is a predicate in P, and object o is either
an entity in E or a value d in D. It can be represented as a
directed edge-labeled graph (V,E), also denoted by G, such
that (a) V is the set of nodes consisting of s and o for each
triple t = (s, p, o); and (b) there is an edge in E from s to o
labeled p for each triple t = (s, p, o).

We consider two types of equality:

(a) node identity on E : e1 ⇔ e2, if entities e1 and e2 have
the same ID, i.e., they refer to the same entity; and

(b) value equality on D: d1 = d2 if they are the same value.

In G, e1 and e2 are represented as the same node if e1 ⇔ e2;
similarly for values d1 and d2 if d1 = d2.

Example 2: Two graphs G1 and G2 are shown in Fig. 2.
(1) Graph G1 represents a fragment of a knowledge base
consisting of artists and their albums. For instance, in triple
(art1, name of, “The Beatles”), subject art1 is an entity of
type artist, and object “The Beatles” is a value; in G1, both
are represented as nodes, and the triple is presented as an
edge labeled name of from art1 to “The Beatles”.

(2) Graph G2 depicts a set of triples for companies. It tells
us that, e.g., “AT&T” (com4 of type company) has parent
companies “AT&T” (com1) and “SBC” (com3). 2

Graph patterns. A graph pattern Q(x) is a set of triples
(sQ, pQ, oQ), where sQ is a variable z, oQ is either a value d
or a variable z, and pQ is a predicate in P. Here z has one
of three forms: (a) entity variable y, to map to an entity, (b)
value variable y∗, to map to a value, and (c) wildcard y, to
map to an entity. Here sQ can be either y or y, while oQ can
be y, y∗ or y. Entity variables and wildcard carry a type,
denoting the type of entities they represent. In particular,
x is a designated variable in Q(x), denoting an entity.

As will be seen shortly when we define keys, we enforce
node identity (⇔) on variables y, and value equality (=) on
y∗; for a wildcard y, we just require the existence of an
entity with the type of y without checking its node ID or
value. Value d in Q(x) indicates a value binding condition.

A graph pattern can also be represented as a graph such
that two variables are represented as the same node if they
have the same name of y, y∗ or y; similarly for values d.
We assume w.l.o.g. that Q(x) is connected, i.e., there exists
an undirected path between x and each node in Q(x).

Example 3: Six graph patterns are depicted in Fig. 1.
For instance, Q4(x) represents triples (x, name of, name∗),
(company, name of, name∗), (company, parent of, x) and
(company, parent of, x). Here x is the designated variable

1592

d

y

x

y

y∗

Q(x) d – value
y – entity variable (recursive)
x – designated variable

y – wildcard
y∗ – value variable

d er e1 ep d′ d′ eq e2 er d

S1 S2

=

⇔

⇔

Figure 3: The semantics of keys for graphs

(type company), name∗ is a value variable, company is an
entity variable and company is a wildcard for company. In
Q6, “UK” is a constant value (i.e., d) as a condition. 2

A valuation of Q(x) in a set S of triples is a mapping ν
from Q(x) to S that preserves values in D and predicates in
P, and maps variables y and y to entities of the same type.
More specifically, for each triple (sQ, pQ, oQ) in Q(x), there
exists (s, p, o) in S, written as (sQ, pQ, oQ) 7→ν (s, p, o) or
simply (sQ, pQ, oQ) 7→ (s, p, o), where

(a) ν(sQ) = s, p = pQ, ν(oQ) = o;

(b) o is an entity if oQ is a variable y or y; it is a value if
oQ is y∗, and o = d if oQ is a value d; and

(c) entities s and sQ have the same type; similarly for
entities o and oQ if oQ is y or y.

We say that ν is a bijection if ν is one-to-one and onto.

Graph pattern matching. Consider a graph G and an
entity e in G. We say that G matches Q(x) at e if there
exist a set S of triples in G and a valuation ν of Q(x) in S
such that ν(x) = e, and ν is a bijection between Q(x) and
S. We refer to S as a match of Q(x) in G at e under ν.

Intuitively, ν is an isomorphism fromQ(x) to S whenQ(x)
and S are depicted as graphs. That is, we adopt subgraph
isomorphism for the semantics of graph pattern matching.

Example 4: Consider Q4(x) of Fig. 1, G2 of Fig. 2,
and a set S1 of triples in G2: {(com1, name of, “AT&T”),
(com4, name of, “AT&T”), (com1, parent of, com4), (com3,
parent of, com4)}. Then S1 is a match of Q4(x) in G2 at
com4, which maps variable x to com4, name∗ to “AT&T”,
wildcard company to com1, and company to com3. 2

2.2 Keys for Graphs
Based on graph patterns, we next define keys for graphs.

Keys. A key for entities of type τ is a graph pattern Q(x),
where x is a designated entity variable of type τ .

Intuitively, it says that in a graph G, for entities e of type
τ , the conditions specified in Q(x) uniquely identify e. For
example, Q1 and Q2 of Example 1 are keys for album, Q3 is
a key for artist, and Q4 and Q5 are keys for company.

To give the semantics of keys, we use the following no-
tion. Consider matches S1 and S2 of Q(x) at e1 and e2
in G under ν1 and ν2, respectively. We say that S1 coin-
cides with S2, denoted by S1(e1) ∼=Q S2(e2), if a bijection
µ between S1 and S2 can be derived from ν1 and ν2, pre-
serving node identity and value equality. That is, for each
(sQ, pQ, oQ) in Q(x) such that (sQ, pQ, oQ) 7→ν1 (s1, p1, o1)
and (sQ, pQ, oQ) 7→ν2 (s2, p2, o2), it satisfies conditions:

(a) if sQ is a variable y that is distinct from x, then
s1 ⇔ s2; similarly for oQ; and

(b) if oQ is a variable y∗, then o1 = o2.

Symbols Notations
E, P, D entities, predicates and data values, respectively
G, Q(x) graph and graph pattern, respectively
e1 ⇔ e2 node identity
d1 = d2 value equality
y, y∗, y variables for entities, values and wildcards, resp.
7→ν , 7→ mapping from (sQ, pQ, oQ) to (s, p, o)

S1(e1) ∼=Q S2(e2) match S1 at e1 coincides with S2 at e2
G |= Q(x) G satisfies key Q(x)

(G,Σ) |= (e1, e2) entities e1 and e2 are identified by keys in Σ
|G|, |Q(x)| the size of graph G and Q(x)
d(Q, x) the radius of Q(x)

Table 1: Notations

When sQ is a wildcard y, we do not require that s1 ⇔ s2,
i.e., s1 and s2 may be distinct entities; similarly for oQ.

We say that G satisfies key Q(x), denoted by G |= Q(x),
if for all entities e1 and e2 in G, if there exist matches S1

and S2 of Q(x) such that S1(e1) ∼=Q S2(e2), then e1 ⇔ e2.

As shown in Fig. 3, the key says that if there exist S1 and
S2 verifying that e1 and e2 satisfy the conditions of Q(x),
respectively, and if S1(e1) ∼=Q S2(e2), then e1 and e2 must
have the same ID, i.e., they are the same entity.

Example 5: Continuing with Example 4, one can see that
G2 ̸|= Q4(x). Consider S1 of Example 4, and a match S2 of
Q4(x) at com5: {(com2, name of, “AT&T”), (com5, name of,
“AT&T”), (com2, parent of, com5), (com3, parent of, com5)}.
Then S1(com4) ∼=Q4 S2(com5) but com4 and com5 are dis-
tinct entities in G2. Thus either com4 or com5 is a duplicate.

Similarly in G1, either alb1 or alb2 is a duplicate (viola-
tion of Q2), and either art1 or art2 is a duplicate (by Q3).
However, these are not very obvious since keys for album
and artist are defined by mutual recursion. 2

We say that a key Q(x) is recursively-defined if it contains
some variables y other than x, and is value-based otherwise.
Intuitively, when Q(x) is recursive, e1 ⇔ e2 depends on
whether e ⇔ e′ for some other entities e and e′ can be
identified by variable y, which involves node identity that
is determined by using (possibly other) keys. In contrast,
when Q(x) is value-based, it decides whether e1 ⇔ e2 simply
based on value equality on relevant triples in S1 and S2.

Example 6: Keys Q1, Q3, Q4 and Q5 depicted in Fig. 1
are all recursive, while Q2 and Q6 are value-based. 2

Remark. (1) For simplicity, we focus on keys defined in
terms of value equality and node identity. Nonetheless, the
results of this paper remain intact when similarity predicates
are used along the same lines as value equality. (2) Rela-
tional keys [3] and XML keys [10] can be readily expressed
as value-based keys with patterns of a form of trees.

We will also use the following notations: (1) |G| (resp.
|Q|) denotes the number of triples in G (resp. Q(x)); (2) for
a set Σ of keys, |Σ| =

∑
Q(x)∈Σ |Q| and ||Σ|| is its cardinality;

and (3) the radius of Q(x), denoted by d(Q, x), is the longest
distance between x and any node in Q(x) when Q(x) is
treated as an undirected graph, ignoring the edge direction.

The notations of this paper are summarized in Table 1.

3. THE ENTITY MATCHING PROBLEM
In the rest of the paper we focus on entity matching,

an important application of keys. We formalize the prob-
lem (Section 3.1) and establish its complexity (Section 3.2).
Moreover, we show that in the presence of recursively defined
keys, entity matching is hard to be parallelized (Section 3.3).

1593

3.1 Entity Matching with Keys
Example 5 shows that G2 ̸|= Q4(x), since S1(com4) ∼=Q4

S2(com5) but com4 and com5 are distinct. However, key
Q4(x) tells us that com4 and com5 refer to the same entity
and should be identified. To formalize this, we revise the
classical chase [3] by using keys as rules for entities in graphs.

Chase revisited. Consider a set Σ of keys and a graph
G. We use Eq to denote the equivalence relation of a set of
pairs (e, e′) of entities in G of the same type that have been
identified by keys in Σ, i.e., Eq is reflexive, symmetric and
transitive. We denote by Eq0 the node identity relation ⇔,
i.e., the set of pairs (e, e) for all entities e in G.

Consider a key Q(x) ∈ Σ and matches S1 and S2 of Q(x)
at e1 and e2 in G under valuations ν1 and ν2, respectively.
We define S1(e1) ∼=Eq

Q S2(e2) by using Eq instead of rela-
tion ⇔ in the definition of S1(e1) ∼=Q S2(e2). More specif-
ically, for each triple (sQ, pQ, oQ) in Q, if (sQ, pQ, oQ) 7→ν1

(s1, p1, o1) and (sQ, pQ, oQ) 7→ν2 (s2, p2, o2), then

(a) if sQ is a variable y distinct from x, then (s1, s2) ∈ Eq
(instead of s1 ⇔ s2); similarly for oQ; and

(b) if oQ is a variable y∗, then o1 = o2.

We define a chase step of G by Σ at Eq as

Eq ⇒(e1,e2) Eq
′,

where (e1, e2) is a pair of entities in G such that (a) (e1, e2) ̸∈
Eq, (b) there exist a key Q(x) in Σ and matches S1 and S2 of

Q(x) at e1 and e2, respectively, such that S1(e1) ∼=Eq
Q S2(e2);

and (c) Eq′ is the equivalence relation of Eq ∪ {(e1, e2)}.
Intuitively, when e1 and e2 are identified by using a key in

Σ, Eq is expanded to Eq′ by including (e1, e2). For instance,
in G1, Eq0 ⇒(alb1,alb2) Eq1, where Eq1 is the extension of
node identity relation ⇔ in G1 by including (alb1, alb2).

A chasing sequence of G by Σ is a sequence

Eq0,Eq1, . . . ,Eqk,

such that for all i ∈ [0, k − 1], there exists a pair (e1, e2)
of entities in G, where Eqi ⇒(e1,e2) Eqi+1. The sequence is
terminal if no chase step by Σ is defined at Eqk. We refer
to Eqk as the result of the chasing sequence.

Chasing of keys has the Church-Rosser property:

Proposition 1: For any set Σ of keys and graph G, all
terminal chasing sequences of G by Σ are finite and have
the same result, regardless of how the keys are applied. 2

We denote by chase(G,Σ) the result of a terminal chasing
sequence of G by Σ. By Proposition 1, this notion is well-
defined. We say that entities e1 and e2 in G are identified
by Σ, denoted by (G,Σ) |= (e1, e2), if (e1, e2) ∈ chase(G,Σ).

Example 7: Let Σ1 = {Q1(x), Q2(x), Q3(x)} from Fig. 1,
and Σ2 = {Q4(x), Q5(x)}. Then in G1 of Fig. 2, (G1,Σ1) |=
(alb1, alb2) by applying Q2(x), since alb1 and alb2 have the
same name “Anthology 2” and were initially released in
“1996”. This is followed by (G1,Σ1) |= (art1, art2) by ap-
plying Q3(x) to entities {art1, alb1} and {art2, alb2}. Note
that art1 and art2 are identified after we identify alb1 and
alb2. This is because in contrast to Q2(x), Q3(x) is recur-
sively defined: it has an entity variable album. That is,
recursively defined keys impose dependency on entities.

In G2 of Fig. 2, from the discussion above it follows that
(G2,Σ2) |= (com4, com5) by Q4(x). Similarly, (G2,Σ2) |=
(com1, com2) by applying Q5(x) to {com1, com0, com3} and

{com2, com0, com3}. Note that com4 and com5 can be iden-
tified before we identify com1 and com2, since the wildcard
company in Q4(x) does not require com1 ⇔ com2. This is
why we separate entity variable y from wildcard y. 2

Problem. The entity matching problem is stated as follows.

• Input: A set Σ of keys, and a graph G.

• Output: chase(G,Σ).

3.2 The Complexity of Entity Matching
Given a set of keys on a relation R, it is in PTIME to

find all pairs of tuples in R that are identified by the keys.
In contrast, the entity matching problem is nontrivial. To
see this, consider its decision problem, also referred to as
entity matching, which is to determine, given Σ, G and a
pair (e1, e2) of entities in G, whether (G,Σ) |= (e1, e2).

Theorem 2: Entity matching is NP-complete. 2

One might think that non-recursive keys would make our
lives easier. Unfortunately, this simple case already embeds
the subgraph isomorphism problem, which is NP-complete
(cf. [19]) and can be reduced to the simple case.

Lemma 3: The entity matching problem remains NP-hard
even when Σ consists of a single value-based key Q(x), and
when graph G is a DAG (directed acyclic graph). 2

Proof sketch of Theorem 2: The lower bound of The-
orem 2 follows from Lemma 3. Its upper bound is much
harder to prove. Given a set Σ of (possibly recursively-
defined) keys and a (possibly cyclic) graph G, checking
(G,Σ) |= (e1, e2) needs a fixpoint computation in which each
step involves two calls for checking subgraph isomorphism.

To show the upper bound, we introduce a notion of proof
graphs that are “witnesses” of proving (G,Σ) |= (e1, e2).
We show that (G,Σ) |= (e1, e2) iff there exists a proof graph
that is a DAG with at most N2 nodes and can be checked in
PTIME in |G| and |Σ|, where N is the number of entities in
G. Based on this property, we give an NP algorithm: guess
a DAG Gf with at most N2 nodes, and check whether Gf is
a proof graph of (G,Σ) |= (e1, e2) in PTIME. 2

3.3 Recursion and Parallelization
Recursively defined keys introduce challenges beyond sub-

graph isomorphism. As a result, it is hard to find an efficient
parallel algorithm for entity matching. To see this, recall
that a datalog program has the polynomial fringe property
(PFP) if all true facts have a proof tree such that the num-
ber of its leaves is polynomial in the data size (cf. [4]). It is
known that datalog programs with PFP can be processed in
polylog parallel computation rounds via recursive doubling,
i.e., in logkN rounds for a constant k, where N is the size
of the input data. We say that a problem has PFP if it
has an algorithm with PFP. It is also known that transitive
closure (TC), for instance, has PFP. As a result, TC can be
computed in logarithmic MapReduce rounds.

Unfortunately, entity matching is harder than TC. Re-
cursively defined keys impose dependency on the order of
entities to be processed. This leads to chains C of depen-
dent entity pairs such that to identify a pair (e1, e2) in C,
we have to either wait for pairs preceding (e1, e2) in C to be
identified, or incur exponentially many possible matches. In
contrast, TC can be computed “partially” in PTIME.

1594

Theorem 4: Entity matching (1) has no PFP, and (2) can-
not be parallelized in logarithmic rounds, even on trees. 2

Proof: To prove (1), we show that there exist a tree Gc

with (4N + 3) entities and a set Σc consisting of three keys
such that to identify a specific entity pair in Gc, there exists
a unique proof tree in which the number of leaves is expo-
nential in N . Hence entity matching does not have PFP.

We prove (2) by reduction from the Monotone Circuit
Value problem [5]. Given a Boolean circuit as a DAG with
INPUT, AND and OR gates, the latter problem is to decide
whether the output of the circuit is true. Given a Boolean
circuit C, we construct a tree G in logarithmic space in the
size of C, and define a set Σ′

c of four keys. We show that
the output value of a gate l is true iff (G,Σ′

c) |= (el, e
′
l),

where (el, e
′
l) is a pair of entities uniquely identified by l.

Since the monotone circuit value problem cannot be solved
in logarithmic rounds [5], neither can entity matching. 2

When G is a tree, entity matching is tractable , as opposed
to Lemma 3. However, it remains hard to be parallelized,
as we have shown in Theorem 4.

Proposition 5: On trees, entity matching is in PTIME. 2

Parallel scalability. Not all is lost. Despite Theorems 2
and 4, we will show that there are effective parallel algo-
rithms for entity matching. To assess the effectiveness of
parallel algorithms, we introduce a simple notion.
We say that an algorithm A for entity matching is parallel

scalable if its worst-case time complexity is O(t(|G|, |Σ|)/p),
where p is the number of processors used by A, and t is a
function in |G| and |Σ|, the size of the input. We assume
w.l.o.g. that p ≪ |G| as commonly found in practice.
This suffices. For if A is parallel scalable, then for given

G and Σ, the more processors are used (i.e., the larger p
is), the less time A takes. Indeed, t(,) is independent of
p. Hence entity matching is feasible in big G by increasing
p. Many parallel algorithms do not have provable guarantee
for speedup no matter how many processors are added.

4. A MAPREDUCE ALGORITHM
We show that entity matching is feasible in big graphs.

Theorem 6: There exist parallel scalable algorithms in
MapReduce for entity matching. 2

As a proof, we present a parallel scalable algorithm in Sec-
tion 4.1, followed by optimization strategies in Section 4.2.

4.1 Algorithm and Parallel Scalability
The algorithm, referred to as EMMR and shown in Fig. 4,

takes as input a graph G and a set Σ of keys. It returns
chase(G,Σ), the set of all pairs (e1, e2) if (G,Σ) |= (e1, e2).
As opposed to subgraph isomorphism algorithms, EMMR

has to compute the transitive closure (TC) of relation Eq, in
which each step involves two subgraph isomorphism checks.
By Theorem 4, this cannot be done in logarithmic rounds.
Nonetheless, EMMR combines isomorphism checking and TC
computation into the same MapReduce process. It ensures
parallel scalability. Better still, it checks whether (G,Σ) |=
(e1, e2) without enumerating all isomorphic mappings.
EMMR starts with a set Eq consisting of (e, e) for all enti-

ties e in G, and a set L of candidates, i.e., all entity pairs
(e1, e2) having the same type on which at least one key in
Σ is defined. We say that a key Q(x) is defined on e if x

Driver: DriverMR

Input: Graph G and a set Σ of keys.
Output: chase(G,Σ).

1. construct candidate set L and d-neighbor Gd for each e in L;
2. initialize a set Eq := {(e, e) | e ∈ G};
3. repeat
4. call MapEM; ReduceEM;
5. until Eq no longer changes;
6. return Eq;

Mapper: MapEM

Input: A key/value pair ((e1, e2), (Flag)).
Output: Intermediate key/value pairs.

1. if Flag = True or (Gd
1 ∪Gd

2,Eq,Σ) |= (e1, e2) then
2. emit ((e1), (e1, e2,True)); emit ((e2), (e1, e2,True));
3. else emit ((e1), (e1, e2,False));

Reducer: ReduceEM

Input: A list of key/value pairs ((e), ([v1, v2, · · ·])).
Output: Key/value pairs ((e1, e2), (Flag)).

1. initialize Eq(e) and L(e) with ∅;
2. for each vi in [v1, v2, · · ·] do
3. if vi = (e1, e2,True) then Eq(e) := Eq(e) ∪ {(e1, e2)};
4. if vi = (e1, e2,False) then L(e) := L(e) ∪ {(e1, e2)};
5. Eq := Eq ∪ Eq(e);
6. for each (e1, e2) by joining pairs in Eq(e) and Eq, (e1, e2) ̸∈ Eq
7. emit ((e1, e2), (True)); Eq := Eq ∪ {(e1, e2)};
8. for each (e1, e2) ∈ L(e) and (e1, e2) ̸∈ Eq do
9. emit ((e1, e2), (False));

Figure 4: Algorithm EMMR

and e have the same type. For all (e1, e2) ∈ L, it checks
whether (e1, e2) is in Eq, or (G,Σ) |= (e1, e2), in parallel. If
so, it adds (e1, e2) to Eq, and incrementally extends the TC
of Eq. Note that (G,Σ) |= (e1, e2) once (e1, e2) can be iden-
tified by one key in Σ, no matter how many keys are defined
on it. The process iterates until Eq no longer grows, i.e.,
chase(G,Σ) = Eq. It takes at most |Eq| rounds of iterations.

EMMR capitalizes on the following notions.

(1) The d-neighbor Gd of entity e. Let d be the maximum
radius of those keys Q(x) in Σ that are defined on e, and Vd

be the set of nodes in G that are within d-hops of e. The
d-neighbor of e is the subgraph of G induced by Vd.

To check (G,Σ) |= (e1, e2), EMMR inspects the d-neighbors
(Gd

1, G
d
2) of (e1, e2), not the entire G. Indeed, one can verify

the data locality: (G,Σ) |= (e1, e2) iff (Gd
1∪Gd

2,Σ) |= (e1, e2).
We check (Gd

1∪Gd
2,Σ) |= (e1, e2) by using Eq computed so

far (see Section 3), denoted by (Gd
1 ∪Gd

2,Eq,Σ) |= (e1, e2).

(2) Transitivity closure (TC). EMMR computes the TC of Eq
with the following rule: if (e1, e

′
1), (e2, e

′
2) and (e′1, e

′
2) are

in Eq, then so is (e1, e2); similarly for (e′1, e1) and (e′2, e2).

Algorithm. We now present the details of EMMR. It is con-
trolled by a non-MapReduce driver DriverMR. DriverMR first
identifies candidate set L (line 1). For each entity e appear-
ing in L, it constructs d-neighbors Gd also in MapReduce,
by revising breadth-first search starting from e, with bound
d. To avoid the cost of shipping invariant input data in
MapReduce, these d-neighbors Gd and keys Σ are cached
physically in the disk of processors, along the same lines as
Haloop [9]. In addition, it stores a “global variable” Eq in
HDFS, to keep track of entity pairs identified by Σ (line 2).

It then triggers MapEM with key/value pairs ((e1, e2),
(False)) for all (e1, e2) ∈ L (line 4), with (e1, e2) as its key.
MapReduce functions MapEM and ReduceEM then iterate to
expand Eq. DriverMR terminates the process when there is no

1595

change to Eq (line 5), and return Eq as chase(G,Σ) (line 6).

Mapper. Given a key/value pair ((e1, e2), (Flag)), MapEM
first checks whether Flag = True (i.e., (e1, e2) ∈ Eq) or
(Gd

1 ∪ Gd
2, Eq, Σ) |= (e1, e2) (line 1) by invoking a proce-

dure EvalMR (to be presented shortly). If so, MapEM emits
value (e1, e2,True) with keys e1 and e2, for computing TC
(line 2). Otherwise, it emits value (e1, e2,False) with key e1
only (line 3), indicating the result of checking in this round.

Reducer. The input to ReduceEM is (e, list), where list
includes all newly identified and un-identified pairs, and
are collected in Eq(e) and L(e), respectively (lines 1-4).
ReduceEM then adds Eq(e) to Eq (line 5) and joins pairs
in Eq(e) and Eq (line 6), to compute TC following the rule
we have seen earlier. For those newly joined pairs (e1, e2)
not in Eq, ReduceEM emits ((e1, e2),True) to expand TC
in the next round, and Eq is updated by including (e1, e2)
(line 7). For each (e1, e2) in L(e) but not in Eq (line 8-9),
((e1, e2), (False)) is emitted for checking in the next round.
Note that for each pair (e1, e2) ∈ Eq, if (e1, e2) is not newly
identified in this round, (e1, e2) is no longer in the process.
One can verify the following by induction on the length

of chasing sequences for (G,Σ) |= (e1, e2) (see Section 3).

Proposition 7: If (G,Σ) |= (e1, e2), then (e1, e2) is identi-
fied by EMMR following the shortest chasing sequence. 2

Example 8: Algorithm EMMR works on G1 and Σ1 of
Example 7 as follows. DriverMR triggers MapEM with
((albi, albj), (False)) and ((arti, artj), (False)), where i, j ∈
[1, 3], i < j. Note that d = 1 for Q1, Q2 and Q3 of Fig. 1.

Round 1. MapEM identifies alb1 and alb2 with key Q2(x)
by procedure EvalMR. ReduceEM adds (alb1, alb2) to Eq, and
joins it with Eq. They emit key/value pairs as follows.

MapEM Emitted pairs ReduceEM Emitted pairs

(alb1, alb2) ((alb1), (alb1, alb2, T))
((alb2), (alb1, alb2, T))

alb1 ((alb1, alb3), (F))

(alb1, alb3) ((alb1), (alb1, alb3, F)) alb2 ((alb2, alb3), (F))
(alb2, alb3) ((alb2), (alb2, alb3, F))
(art1, art2) ((art1), (art1, art2, F)) art1 ((art1, art2), (F))

((art1, art3), (F))
(art1, art3) ((art1), (art1, art3, F)) art2 ((art2, art3), (F))
(art2, art3) ((art2), (art2, art3, F))

Round 2. MapEM identifies (art1, art2) by key Q3(x), and
ReduceEM updates Eq. Note that no key/value pair for
(alb1, alb2) is in this round since it is in Eq already.

MapEM Emitted pairs ReduceEM Emitted pairs

(alb1, alb3) ((alb1), (alb1, alb3, F)) alb1 ((alb1, alb3), (F))
(alb2, alb3) ((alb2), (alb2, alb3, F)) alb2 ((alb2, alb3), (F))
(art1, art2) ((art1), (art1, art2, T))

((art2), (art1, art2, T))
art1 ((art1, art3), (F))

(art1, art3) ((art1), (art1, art3, F)) art2 ((art2, art3), (F))
(art2, art3) ((art2), (art2, art3, F))

Round 3. There is no newly identified entity pair, and Eq
is not updated; DriverMR thus terminates the process, and
returns chase(G1,Σ1) with (alb1, alb2) and (art1, art2). 2

Procedure EvalMR. We next show how to check (Gd
1 ∪

Gd
2,Eq,Σ) |= (e1, e2) with a key Q(x) in Σ, in MapEM. A

naive method is to first enumerate all matches of Q(x) at
e1 in Gd

1 and e2 in Gd
2 by using a subgraph isomorphism

algorithm (e.g., VF2 [13], TurboIso [24]), and then check
whether any those matches coincide (see Section 2). This
involves two calls for a subgraph isomorphism algorithm,
each of exponential cost. In other words, it is not practical
to conduct the checking by using any existing algorithm.

To reduce the cost, we propose algorithm EvalMR that
combines the two processes of computing (isomorphic) map-
pings into a single process, and allows early termination,
i.e., EvalMR terminates as soon as (e1, e2) is identified.

EvalMR conducts search guided by Q(x), to instantiate n-
odes in Q(x) with candidate pairs (s1, s2) in (Gd

1, G
d
2). We

use a vector m to record the instantiation, combining map-
pings ν1 and ν2 from variables or values of Q(x) to entities
or values in Gd

1 and Gd
2, respectively, and mapping µ for co-

inciding the two (see Section 2). For each node sQ in Q(x),
(a) either m[sQ] = (s1, s2) when s1 = ν1(sQ), s2 = ν2(sQ),
and s1 = µ(s2); (b) or m[sQ] = ⊥ if sQ has no match yet.

(1) Initialization. More specifically, EvalMR initializes m
with m[x] = (e1, e2) and m[sQ] = ⊥ for all the rest. It
then instantiates nodes of m one by one, as follows.

(2) Feasibility checking. To extend m with m[sQ] = (s1, s2),
it checks the following feasibility conditions.

(1) Injective: s1 and s2 do not appear in m already.

(2) Equality: (a) if sQ is y, then (s1, s2) ∈ Eq; (b) if sQ
is y∗, then s1 = s2 (values); (c) if sQ is y, then s1
and s2 are entities of the same type; and (d) if sQ is
d, then s1 = s2 = d (values).

(3) Guided expansion: for all triples (sQ, pQ, oQ) ∈ Q(x),
if oQ is already instantiated, i.e., m[oQ] = (o1, o2),
then (s1, pQ, o1) ∈ Gd

1 and (s2, pQ, o2) ∈ Gd
2; similarly

for all triples (s′Q, pQ, sQ) in Q(x).

EvalMR sets m[sQ] = (s1, s2) if all feasibility conditions
are satisfied. Otherwise, it backtracks with other instantia-
tion. Intuitively, m encodes a partial injective mapping from
nodes in Q(x) to candidate pairs in (Gd

1, G
d
2).

(3) Verification. When m is fully instantiated, i.e., it con-
tains no ⊥, EvalMR concludes that (Gd

1 ∪Gd
2,Eq, {Q(x)}) |=

(e1, e2) and returns True. Otherwise, False.

Lemma 8: (G, {Q(x)}) |= (e1, e2) if and only if m can be
fully instantiated by EvalMR, using key Q(x). 2

When Σ contains multiple keys, EvalMR identifies common
sub-structures of keys along the same lines as [30]. It termi-
nates once there exists a key Q(x) that identifies (e1, e2).

Example 9: Continuing with Example 8, EvalMR identifies
art1 and art2 with Q3(x) in round 2, after alb1 and alb2
are identified by Q2(x) in round 1. It initializes m[x] =
(art1, art2), and extends m with m[name∗] = (“The Beatles”,
“The Beatles”), and m[album] = (alb1, alb2) after feasibility
check. As m is fully instantiated, EvalMR returns True. 2

Parallel scalability. To complete the proof of Theo-
rem 6, we show that EMMR is parallel scalable. Let Gd

m

be the largest d-neighbor of all entities in G, and p be
the number of processors used. Then for each round of
EMMR, MapEM takes at most O(t(|Gd

m|, |Σ|)|L|/p) time, and
ReduceEM takes O(|Eq|2/p) time, where t(|Gd

m|, |Σ|) is the
cost of EvalMR. Moreover, at most O(|Eq|) rounds are needed
since in each round, at least one pair is identified. Further-
more, DriverMR constructs all Gd’s in O((|Gd

m||L| + |Σ|)/p)
time. Putting these together, EMMR is parallel scalable.

4.2 Optimization Strategies
From the analysis above, we can see that the cost of algo-

rithm EMMR is dominated by (a) the length of L, (b) the size

1596

of d-neighbors, and (c) redundant MapReduce computation.
Below we study optimization strategies to reduce the cost.

Reducing L. Each (e1, e2) ∈ L involves (repeated) isomor-
phism checking. Thus we filter those pairs that cannot be
identified as follows. Given a key Q(x), we say that (e1, e2)
can be paired by Q(x) if there exists a ternary relation PQ

on nodes of (Gd
1, G

d
2, Q(x)) such that (1) (e1, e2, x) ∈ PQ,

(2) for each triple (s1, s2, sQ) ∈ PQ, (a) s1 and s2 are en-
tities with same type if sQ is y or y, s1 = s2 if sQ is y∗,
or s1 = s2 = d if sQ = d; and (b) for each (sQ, pQ, oQ) ∈
Q(x), there exist (s1, pQ, o1) in Gd

1 and (s2, pQ, o2) in Gd
2

such that (sQ, pQ, oQ) 7→ (s1, pQ, o1), (sQ, pQ, oQ) 7→ (s2,
pQ, o2), and (o1, o2, oQ) ∈ PQ; similarly for (s′Q, pQ, sQ) ∈
Q(x). We refer to PQ as a pairing relation of Q at (e1, e2).
One can verify that pairing is a necessary condition for

(e1, e2) to be identified by key Q(x). Hence we include in L
only those pairs that are paired by some key Q(x) ∈ Σ.

Proposition 9: For any pair (e1, e2), (a) if e1 and e2 can-
not be paired by any key in Σ, then (G,Σ) ̸|= (e1, e2); and
(b) if (e1, e2) can be paired by a key Q(x), then there exists
a unique maximum pairing relation PQ of Q(x) at (e1, e2),
and PQ can be computed in O(|Q||Gd

1||Gd
2|) time. 2

Reducing (Gd
1, G

d
2). For each (e1, e2) ∈ L, we reduce

(Gd
1, G

d
2) such that they are subgraphs induced by those n-

odes that are in the maximum pairing relation PQ at (e1, e2)
by some key Q(x) of Σ. Extending Proposition 9, one can
verify that (G,Σ) |= (e1, e2) if and only if (e1, e2) can be
identified by keys in (Gd

1, G
d
2) constructed in this way.

Reducing redundant MapReduce computation. We de-
velop two optimization strategies by leveraging the depen-
dency imposed by recursively defined keys. We say that
a pair (e1, e2) depends on (e′1, e

′
2) if (e′1, e

′
2) is (a) in d-

neighbors of (e1, e2); and (b) has the same type as y, where
y is a variable in a recursive key in Σ defined on (e1, e2).

Entity dependency. DriverMR collects a set L0 with pairs
(e1, e2) ∈ L, such that only value-based keys in Σ are de-
fined on. DriverMR triggers MapEM with pairs in L0 only,
instead of the entire L. In each MapReduce round, a new
pair (e′1, e

′
2) is emitted only when (e′1, e

′
2) depends on (e1, e2),

and if (e1, e2) has been already proceeded.

Incremental checking. We revise MapEM such that (Gd
1 ∪

Gd
2,Eq,Σ) |= (e1, e2) is checked only in the first round or

when some pairs (e′1, e
′
2) on which (e1, e2) depends are iden-

tified in the last round, to reduce the expensive checking.
This is done by adding a flag Changed to the pairs in Eq.

5. A VERTEX­CENTRIC ALGORITHM
The performance of algorithm EMMR is hampered by (1)

the maintenance of global variable Eq; and (2) stragglers in
each round that may hold up the process of a chain of enti-
ty pairs on which dependencies are imposed by recursively
defined keys. Such costs are inherent to the I/O bound
property and the synchronization policy of MapReduce.
To reduce the costs, we develop an algorithm for entity

matching in the vertex-centric model of [31]. As opposed
to MapReduce, [31] is based on a vertex program that is
executed in parallel on each vertex, and interacts with the
neighbors of the vertex via asynchronous message passing.
There is no need for a global variable Eq, or for synchronizing
the computation into rounds. We show the following.

Theorem 10: There exist parallel scalable algorithms in the
vertex-centric model of [31] for entity matching. 2

As a proof, we present such an algorithm (Section 5.1),
and develop optimization strategies (Section 5.2).

5.1 Algorithm and Parallel Scalability
The algorithm, referred to as EMVC, computes chase(G,Σ)

when given a graph G and a set Σ of keys. For all (e1, e2) ∈
L, it checks whether (G,Σ) |= (e1, e2). Similar to EMMR,
EMVC adds (e1, e2) to Eq once it is identified by any key in
Σ. In contrast to EMMR, EMVC follows asynchronous message
passing [31]. To determine whether (G,Σ) |= (e1, e2), it
checks different instantiations of nodes in a key in parallel
with multiple messages, for all keys defined on (e1, e2).

When (G,Σ) |= (e1, e2) is confirmed, EMVC notifies those
pairs (s1, s2) ∈ L that depend on (e1, e2) by sending mes-
sages, so that (G,Σ) |= (s1, s2) is checked “incrementally”.
The transitive closure (TC) of Eq is computed by message
propagation at the same time. The process proceeds until
no messages are active and Eq can no longer be changed.

The key ideas behind EMVC include guided search for ver-
ifying (G,Σ) |= (e1, e2) and expansion of TC based on the
dependency of entities, both via asynchronous message pass-
ing. To facilitate message passing, EMVC uses the following.

Product graph. Given G and Σ, EMVC constructs a prod-
uct graph Gp = (Vp, Ep), where each node in Vp is either
(a) a pair (o1, o2) of entities or values that can be paired
(see Proposition 9); or (b) a pair (e, e) of entities only if e is
paired with another entity in Vp. There is an edge ((s1, s2),
p, (o1, o2)) in Ep from node (s1, s2) to (o1, o2) if (a) (s1, p, o1)
and (s2, p, o2) are both in G; (b) (o1, o2) depends on (s1, s2)
(see Section 4.2); here p is a special label dep; or (c) o1 ⇔ o2,
and o1 ⇔ s1 or o1 ⇔ s2; p is labeled as tc in this case.

Intuitively, Gp encodes the topology of G, the dependency
on entities w.r.t. Σ via dep edges, and the transitive closure
of Eq via tc edges. We do not include (e, e) in Gp if e is not
in L. In our experiments, we find that |Gp| = 2.7 ∗ |G| on
average, much smaller than |G|2.

For each (e1, e2) in Gp, a Boolean Flag(e1, e2) is used to
indicate whether (e1, e2) ∈ Eq, initially False unless e1 ⇔ e2.

Traversal order. For each key Q(x) in Σ, EMVC defines
a sorted list PQ of triples in Q(x) such that (a) all nodes
in Q(x) appear in some triples in PQ, and (b) it encodes a
“tour” of nodes in Q(x), starting from x and ending at x.

Intuitively, EMVC propagates messages guided by PQ. To-
gether with feasibility checking to be seen shortly, a com-
plete tour that starts from (e1, e2) guided by PQ guarantees
that (e1, e2) can be identified by Q(x). There are multiple
orders for a tour of Q(x). However, finding an optimum or-
der with a shortest tour is NP-complete, by reduction from
Chinese Postman Problem (cf. [19]). In light of this, EMVC

uses a greedy algorithm to decide PQ.

Algorithm. EMVC first constructs Gp as above. Then at
each node (e1, e2) in Vp, if a value-based key in Σ is defined
on it, it triggers procedure EvalVC for subgraph isomorphism
checking, propagates messages to activate other nodes in Vp

guided by traversal order, and computes the TC of Eq. EMVC

terminates when no messages are active, and it returns Eq
of all pairs (e1, e2) with Flag(e1, e2) = True, as chase(G,Σ).

Procedure EvalVC. At each node (s1, s2) in Gp, the actions
of EMVC are summarized in EvalVC, shown in Fig. 5.

1597

Algorithm EvalVC /* Executed at each node (s1, s2) */

(1) Initial messages at (s1, s2)

1. for each key Q(x) ∈ Σ defined on (s1, s2) do
2. create an initial message mQ(s1, s2);
3. propagate mQ(s1, s2) guided by order PQ;

(2) Upon receiving a message mQ(e1, e2) following (sQ, pQ, oQ)

1. if Flag(e1, e2) = True then
2. stop propagating mQ(e1, e2); return;
3. if mQ(e1, e2) is fully instantiated and (e1, e2) = (s1, s2) then
4. Flag(e1, e2) := True; compute dependency and TC; return;
5. if either mQ(e1, e2)[sQ] or mQ(e1, e2)[oQ] is ⊥ then
6. if mQ(e1, e2) satisfies all feasibility conditions at (s1, s2) then
7. extend mQ(e1, e2) by instantiating a node with (s1, s2);
8. else drop mQ(e1, e2); return;
9. propagate mQ(e1, e2) guided by order PQ;

(3) Compute dependency and TC when Flag(e1, e2) becomes True
1. if ((e1, e2), dep, (s1, s2)) ∈ Gp, and Flag(s1, s2) = False then
2. propagate increment message mQ′ (s1, s2) for each Q′(x) of Σ;
3. if ((e1, e2), tc, (s1, s2)) ∈ Gp then
4. compute transitive closure of Eq;

Figure 5: Algorithm EvalVC

(1) Initial message. When EvalVC is activated at a node
(s1, s2) in Gp, for each key Q(x) ∈ Σ defined on (s1, s2), an
initial message mQ(s1, s2) is created (lines 1-2, (1), Fig. 5),
with mQ(s1, s2)[x] = (s1, s2) and mQ(s1, s2)[sQ] = ⊥ for all
other nodes in Q(x). The message is a vector that encodes
a partial injective mapping from nodes in Q(x) to nodes in
Gp, similar to those used by procedure EvalMR (Section 4.1).
Then guided by the first triple (x, pQ, oQ) (or (sQ, pQ, x))

of PQ, a copy of mQ(e1, e2) is “forked” to propagate to
each neighbor (o1, o2) of (s1, s2), following edge ((s1, s2), pQ,
(o1, o2)) in Gp (line 3), for feasibility check (see (4) below).

(2) Early cancellation. Upon receiving a message mQ(e1, e2)
at (s1, s2), (s1, s2) first checks whether Flag(e1, e2) is True,
by sending a message to (e1, e2), whose ID is in mQ(e1, e2).
If so, EvalVC stops the propagation of mQ(e1, e2) (lines 1-2,
(2), Fig. 5), since (e1, e2) is already identified.

(3) Verification. If Flag(e1, e2) is False, but mQ(e1, e2) is ful-
ly instantiated, i.e., it does not contain ⊥, and moreover, if
(e1, e2) is (s1, s2), i.e., mQ(e1, e2) has completed its propa-
gation and is sent back to (e1, e2), guaranteed by the guided
order PQ, then we can conclude that (G, {Q(x)}) |= (e1, e2)
(see Lemma 11 below). Hence Flag(e1, e2) is set True, (e1, e2)
notifies nodes that depend on (e1, e2) following edges labeled
dep, and activates those nodes following edges labeled tc, to
compute the TC of Eq (lines 3-4, see (6) and (7) below).

(4) Feasibility checking. Otherwise, assume that mQ(e1, e2)
is sent to (s1, s2) following triple (sQ, pQ, oQ) in PQ. If
mQ(e1, e2)[sQ] = ⊥ (similarly for mQ(e1, e2)[oQ] = ⊥),
EvalVC checks whether mQ(e1, e2)[sQ] can be instantiated
with (s1, s2) (lines 5-6) based on the same feasibility con-
ditions of EvalMR (injective, equality and guided expansion;
Section 4.1), except that when sQ is a variable y, it requires
Flag(s1, s2) = True. If it does not pass the check, mQ(e1, e2)
is dropped (line 8), as mQ(e1, e2) cannot be expanded. Oth-
erwise EvalVC sets mQ(e1, e2)[sQ] = (s1, s2) (line 7).

(5) Guided propagation. Now, both mQ(e1, e2)[sQ] and
mQ(e1, e2)[oQ] are instantiated. Then (s1, s2) propagates
message mQ(e1, e2) guided by the next triple (s′Q, p

′
Q, o

′
Q) in

PQ, i.e., the successor of (sQ, pQ, oQ) in PQ (line 9). As-
suming that mQ(e1, e2)[s

′
Q] = (s1, s2) (the case is similar if

mQ(e1, e2)[o
′
Q] = (s1, s2)), EvalVC does the following.

year∗

x

name∗

(album)

Q2(x)

(alb1, alb2)

(“A2”, “A2”) (“1996”, “1996”)

(art1, art2)

dep

Gp1

1

2 3

4

tc

(alb1, alb1)

t1

t2 t3

t4

“A2” for “Anthology 2”

(alb1, alb3)
tc

(alb2, alb2)

tc

Figure 6: Message propagation in EvalVC

(a) If mQ(e1, e2)[o
′
Q] = (o1, o2), i.e., message mQ(e1, e2)

has already been instantiated with (o1, o2), then
mQ(e1, e2) is sent “back” to (o1, o2) directly.

(b) If mQ(e1, e2)[o
′
Q] = ⊥, a copy of mQ(e1, e2) is prop-

agated to each neighbor (o1, o2) of (s1, s2), following
edge ((s1, s2), pQ, (o1, o2)) in Gp. If no such neighbor
exists, mQ(e1, e2) is dropped.

One can verify that mQ(e1, e2) is propagated only within
the d-neighbor of (e1, e2) in Gp as it is guided by PQ.

(6) Dependency. When Flag(e1, e2) is set True, EvalVC no-
tifies all nodes (s1, s2) that depend on (e1, e2), by follow-
ing edge ((e1, e2), dep, (s1, s2)) (see (3) above). Then EvalVC
is activated at (s1, s2). It checks whether Flag(s1, s2) is
False (line 1, (3), Fig. 5). If so, EvalVC triggers incremen-
t messages mQ′(s1, s2) for each Q′(x) defined on (s1, s2),
with mQ′(s1, s2)[x] = (s1, s2), mQ′(s1, s2)[y] = (e1, e2) and
mQ′(s1, s2)[zQ] = ⊥ for other nodes in Q′(x), where y is
a variable in Q′(x) with the same type of (e1, e2) (line 2).
These messages are propagated in the same way as above.

(7) Transitive closure. When Flag(e1, e2) is True, (s1, s2) is
notified if ((e1, e2), tc, (s1, s2)) ∈ Gp. Assume w.l.o.g. that
(s1, s2) = (e1, e1). Then at (e1, e1), (e1, e2) is joined with
(e1, e), when either (a) e ⇔ e1 or (b) ((e1, e), tc, (e1, e1)) ∈
Gp and Flag(e1, e) = True; it sets Flag(e2, e) = True. The
newly identified nodes conduct the same process following
tc edges, to further compute the TC (lines 3-4, (3), Fig. 5).

The correctness of EvalVC is warranted by the following.

Lemma 11: (G, {Q(x)}) |= (e1, e2) if and only if there
exists a message mQ(e1, e2) that can be fully instantiated by
EvalVC; the message is propagated at most 2|Q| times. 2

Example 10: We show how EMVC works on G1 and Σ1 of
Example 7. A (partial) product graph Gp1 of G1 is shown
in Fig. 6, where (art1, art2) depends on (alb1, alb2).

For Q2, the order PQ2 is [t1, t2, t3, t4], where t1 and t2 are

(x, name of, name∗)+/−, and t3 and t4 are (x, release year,

year∗)+/−, respectively; here + and − indicate forward and
backward traversal, respectively. At (alb1, alb2), EvalVC con-
structs initial message mQ2 for Q2(x), where mQ2 [x] =
(alb1, alb2), and ⊥ for the other nodes. As shown in Fig. 6,
it propagates m as follows, guided by PQ2 .

Node (mQ2 visits) Feasibility checking PQ2

(“A2”, “A2”) mQ2
[name∗] = (“A2”, “A2”) t2

(alb1, alb2) mQ2 [x] is instantiated t3
(“1996”, “1996”) mQ2

[year∗] = (“1996”, “1996”) t4
(alb1, alb2) Flag(alb1, alb2) = True

When mQ2 is sent back to (alb1, alb2), it is fully instan-
tiated, and Flag(alb1, alb2) is set True. EvalVC then notifies
node (art1, art2) via edge labeled dep, triggers an increment
message mQ3 for Q3(x) there, and identifies (art1, art2) a-
long the same lines. While some other nodes are notified by
following tc edges for computing TC, no new entity pairs are
derived. At this point, no message is in transit, and EMVC

returns all entity pairs with Flag = True. 2

1598

Parallel scalability. We show that algorithm EMVC is par-
allel scalable. The total amount of computation by EMVC is
at most O(t(|Gd

p|, |Σ|)|L||Eq|), where Gd
p is the maximum d-

neighbor of entity pairs in Gp and O(t(|Gd
p|, |Σ|)) is the time

for checking (G,Σ) |= (e1, e2) via message passing. Each
pair may be checked |Eq| times in the worst case. Assume
that the work is distributed evenly across p processors, i.e.,
the resources of an idle node are re-allocated to process oth-
er nodes as conducted in the vertex-centric model [31], and
that p ≪ |G|. Then EMVC is in O(t(|Gd

p|, |Σ|)|L||Eq|/p) time.
From this and Lemma 11, Theorem 10 follows.

5.2 Optimization Strategies
EvalVC may fork excessive messages and incur redundant

computation. To reduce the cost, we adopt prior optimiza-
tions [30] to extract common sub-structures of keys in Σ.
Moreover, we present another two strategies to reduce it.

Bounded messages. To check (G, {Q(x)}) |= (s1, s2),
EvalVC generates at most k messages, for a (user-defined)
constant k. To do this, we revise EvalVC as follows.

(1) When EvalVC is activated at (s1, s2), a variable
KQ(s1, s2) is defined to keep track of the number of copies of
mQ(s1, s2) that are active, initially 1 for the initial message.

(2) Suppose that mQ(e1, e2)[sQ] is instantiated with (s1, s2)
(while mQ(e1, e2)[oQ] = ⊥). EvalVC propagates mQ(e1, e2)
guided by a triple (sQ, pQ, oQ) in PQ as follows.

• If KQ(e1, e2) < k, for each edge ((s1, s2), pQ, (o1, o2))
in Gp that is yet unmarked with (sQ, pQ, oQ) for
mQ(e1, e2), a new copy of mQ(e1, e2) is propagated
to (o1, o2), and KQ(e1, e2) is increased by 1, until
KQ(e1, e2) = k or all unmarked edges are covered.

• Otherwise (if there is no budget for new copies),
mQ(e1, e2) is propagated following an unmarked edge
((s1, s2), pQ, (o1, o2)), without forking new copies.

Those edges ((s1, s2), pQ, (o1, o2)) that message mQ(e1, e2)
follows are marked with (sQ, pQ, oQ) for mQ(e1, e2), to avoid
repeated checking. The process is similar ifmQ(e1, e2)[oQ] =
(s1, s2) and mQ(e1, e2)[sQ] = ⊥.

(3) When there are no nodes to propagate, or the feasibili-
ty conditions are not satisfied, mQ(e1, e2) will backtrack to
check other instantiation, instead of being dropped.

In this way, to check whether (G,Σ) |= (e1, e2), at most
O(k||Σ|||Eq|) messages are generated and propagated.

Prioritized propagation. When EvalVC picks an un-
marked edge to propagate message mQ(e1, e2) from (s1, s2),
it selects an edge with the highest potential that can make
mQ(e1, e2) fully instantiated. This is estimated based on the
number of neighbors of (o1, o2) that have the same types and
values as those variables in mQ(e1, e2) to be instantiated.
Such information is collected when constructing Gp.

6. EXPERIMENTAL STUDY
Using real-life and synthetic graphs, we conducted three

sets of experiments on EMMR and EMVC to evaluate the im-
pacts of (1) the number p of processors used; (2) the size of
graph G; and (3) the complexity of keys Σ (see below). The
results verify that the algorithms are parallel scalable and
can efficiently identify entities in reasonably large graphs.

Experimental setting. We used two real-life graphs: (a)
Google+ [21] (Google in short), a social network with 2.6

x

company artist

cover artist

(book)
name of

name∗

employer of

publisher

x

person company

parent company

(company)
name of

name1∗

CEO

name2∗

name of

name3∗

name of

x

date∗ location

birth place

(artist)
name of

name1∗

birth date

name2∗

name of

Figure 7: Keys defined on DBpedia

million nodes and 17.5 million edges (relationships such as
friend), where 30 types of entities are determined by its node
attributes, e.g., major, university, place and employer; and
(b) DBpedia [1], a knowledge base with 4.3 million nodes
and 40.3 million links, including 495 types of entities.

We also developed a generator to produce synthetic graphs
G, controlled by the number of entities E and data values
D. Predicates P and entity types Θ were drawn from an
alphabet L of 6000 labels. The size of G is up to 95 million
entities (100 million nodes) and 500 million edges.

Key generator. We generated keys Σ controlled by the max-
imum radius d and the length c of longest dependency chains
from recursively defined keys in Σ. (1) We constructed 30
and 100 keys for Google and DBpedia, respectively, with at-
tributes and predicates from the data graphs. Some keys for
DBpedia are shown in Fig. 7. (2) For synthetic graphs, we
randomly generated 500 keys for different types of entities
in Θ, with values from D and predicates from P.

Algorithms. We implemented the following algorithms: (1)
MapReduce algorithms on Hadoop 1.2.1: (a) EMMR of Sec-
tion 4.1, (b) EMVF2

MR , which replaces EvalMR of EMMR with
VF2 [13] by enumerating all matches without early termi-

nation; (c) EMOpt
MR , a revision of EMMR by supporting the

optimization strategies of Section 4.2. (2) Vertex-centric al-
gorithms on GraphLab [31]: (a) EMVC of Section 5.1, and (b)

EMOpt
VC , which optimizes EMVC by using k = 4 messages and

prioritized message propagation strategy (Section 5.2). Con-
ventional algorithms for subgraph isomorphism algorithms
and entity resolution do not work on entity matching and
graphs, respectively, and hence, cannot be compared with.

Distributed sites. We deployed the graphs, keys and algo-
rithms on p ∈ [4, 20] machines of Amazon EC2 Compute-
Optimized Instance c4.4xlarge. Each experiment was run 3
times and the average is reported here.

Experimental results. We next report our findings. In all
the experiments, we used 30, 100 and 500 keys for Google,
DBpedia and Synthetic respectively.

Exp-1: Varying p. Fixing c = 2 and d = 2, we first
evaluated the parallel scalability of these algorithms by
varying p from 4 to 20. The results are reported in Fig-
ures 8(a), 8(e) and 8(i), for Google, DBpedia and Synthetic
(fixing G = (100M , 500M)), respectively, in which we use
logarithmic scale for the y-axis. We find the following.

Parallel scalability. On a given graph, these algorithms took
less time proportional to the increase of processors. For
instance, EMOpt

VC (resp. EMOpt
MR) are 4.8, 4.7 and 5 times faster

(resp. 4.6, 4.7 and 4.8) when p increases from 4 to 20 on
Google, DBpedia and Synthetic, respectively. We find that
EMOpt

VC scales the best among all the algorithms: it takes 2.4
seconds to identify all entities in Google with 20 processors.

We also experimented with p up to 32. The results are
consistent with Figures 8(a), 8(e) and 8(i): the algorithms
are 1.5 times faster than the setting with p = 20 on average.

1599

EM
VF2

MR
EMMR EM

OPT

MR
EMVC EM

OPT

VC

 1

 10

 100

 1000

4 8 12 16 20

T
im

e
(s

ec
)

(a) Varying p (Google)

 1

 10

 100

 1000

0.2 0.4 0.6 0.8 1.0

T
im

e
(s

ec
)

(b) Varying |G| (Google)

 1

 10

 100

 1000

 10000

1 2 3 4 5

T
im

e
(s

ec
)

(c) Varying c (Google)

 1

 10

 100

 1000

 10000

1 2 3 4 5

T
im

e
(s

ec
)

(d) Varying d (Google)

 1

 10

 100

 1000

4 8 12 16 20

T
im

e
(s

ec
)

(e) Varying p (DBpedia)

 1

 10

 100

 1000

0.2 0.4 0.6 0.8 1.0

T
im

e
(s

ec
)

(f) Varying |G| (DBpedia)

 1

 10

 100

 1000

 10000

1 2 3 4 5

T
im

e
(s

ec
)

(g) Varying c (DBpedia)

 1

 10

 100

 1000

 10000

1 2 3 4 5

T
im

e
(s

ec
)

(h) Varying d (DBpedia)

 1

 10

 100

 1000

4 8 12 16 20

T
im

e
(s

ec
)

(i) Varying p (Synthetic)

 1

 10

 100

 1000

0.2 0.4 0.6 0.8 1.0

T
im

e
(s

ec
)

(j) Varying |G| (Synthetic)

 1

 10

 100

 1000

 10000

1 2 3 4 5
T

im
e

(s
ec

)

(k) Varying c (Synthetic)

 1

 10

 100

 1000

 10000

1 2 3 4 5

T
im

e
(s

ec
)

(l) Varying d (Synthetic)

Figure 8: Performance evaluation

These experimentally verify Theorems 6 and 10.

MapReduce vs. vertex-centric. Algorithm EMVC outperform-

s all the MapReduce algorithms, even EMOpt
MR . It is at least

12.1, 10.9 and 13.5 times faster on Google, DBpedia and
Synthetic, respectively. For instance, it takes 5.8 seconds on
Google when p = 12, while EMOpt

MR takes 70 seconds. This ver-
ifies that EMVC reduces the inherent costs of the I/O bound
and the synchronization policy of MapReduce.
We developed and evaluated EMOpt

MR and EMMR because of
the prevalent use of the MapReduce framework. Moreover,
EMOpt

MR may be advantageous to EMVC when EMVC requires a
product graph much larger thanG (see Section 5 and below).

Effectiveness of optimization. (1) EMMR is 1.5, 1.9 and 1.4

times faster than EMVF2
MR on average on Google, DBpedia and

Synthetic, respectively. This verifies the effectiveness of pro-
cedure EvalMR (Section 4.1) that employs guided expansion
and early termination for subgraph isomorphism checking.

(2) Compared with EMMR, EM
Opt
MR is at least 3.2, 2.9 and 3

times faster on Google, DBpedia and Synthetic, respectively.
These verify the effectiveness of our optimization strategies:
on average, (a) L is reduced 52%, 38% and 45%, (b) Gd is
2.5, 1.7 and 2.1 times smaller; and (c) it reduces 23%, 15%
and 20% of redundant subgraph isomorphism checking in
each MapReduce round by leveraging dependency and incre-
mental checking, on the three datasets, respectively.

(3) Compared with EMVC, EM
Opt
VC is 1.5 times faster on aver-

age when k = 4 on Google; similarly for DBpedia and Syn-
thetic. These verify the effectiveness of bounded messages
and prioritized message propagation (Section 5.2).

Table 2 shows the numbers of candidate and confirmed
matches checked by EMOpt

VC and EMOpt
MR in the three datasets.

Datasets
Candidate Matches

Confirmed Matches
EMOpt

VC EMOpt
MR

Google 24500 11760 1620
DBpedia 22615 15380 1357
Synthetic 20000 11000 1000

Table 2: Candidate matches vs. confirmed matches

Exp-2: Varying |G|. Fixing p = 4, c = 2 and d = 2, we
varied |G| with scale factors from 0.2 to 1 for Google, DBpe-
dia and Synthetic. As shown in Figures 8(b), 8(f) and 8(j),
(1) all the algorithms take longer on larger |G|, as expected;
(2) EMOpt

VC performs the best among all of them, and EMOpt
MR

outperforms the other MapReduce algorithms; these are con-
sistent with the results of Exp-1; (3) for product graphs Gp

used by EMVC and EMOpt
VC , |Gp| = 2.7∗ |G| on average, which

is much smaller than |G|2; and (4) EMOpt
MR and EMOpt

VC are
reasonably efficient: when G = (40M, 200M) for Synthetic,
they take 68 and 3.6 seconds respectively, with 4 processors;
the results are similar on Google and DBpedia.

Exp-3: Varying Σ. Finally, we evaluated the impact of Σ,
by varying the longest chain c and maximum radius d in Σ.

Varying c. Fixing p = 4 and d = 2, we varied c from 1 to 5.
As shown in Figures 8(c), 8(g) and 8(k) for Google, DBpedia
and Synthetic (|G| = (100M, 500M)), respectively, (1) all
the algorithms take longer on larger c, (2) the number of
MapReduce rounds increases from 2 to 9, for all MapReduce
algorithms; and (3) EMVC and EMOpt

VC are less sensitive to
c; this is because by asynchronous message passing, these
algorithms do not separate computation into “rounds” and
avoid the “blocking” of stragglers in each MapReduce round.

Varying d. Fixing p = 4 and c = 2, we varied d from 1 to 5.
As reported in Figures 8(d), 8(h) and 8(l) for Google, DBpe-
dia and Synthetic (|G| = (100M, 500M)), respectively, (1) d

1600

is a major factor for the costs: all the algorithms take longer
on larger d; and (2) the pairing strategy is effective as the

d-neighbors of EMOpt
MR are 60%, 42%, 53% smaller than those

of EMMR, and it makes EMOpt
MR 4.8, 3.7 and 4.2 times faster

than EMMR on average, when d = 3, on the three graphs,
respectively. We find that keys often have a small radius
in real life. This is analogous to real-life SPARQL queries:
98% of them have radius 1, and 1.8% have radius 2 [18].

Summary. We find the following. (1) Our algorithms scale

well with the increase of processors: EMMR, EMVC, EMOpt
MR

and EMOpt
VC are 4.8, 4.8, 4.7 and 4.9 times faster on average

when p increases from 4 to 20. (2) Our algorithms perform
well on large graphs and complex Σ: on graphs with G =
(100M, 500M), Σ with 500 keys, c = 2, d = 2, EMOpt

MR and

EMOpt
VC take 27 and 1.5 seconds on average with 20 processors,

respectively. (3) Our optimization techniques are effective:

EMOpt
MR and EMOpt

VC are 3 and 1.5 times faster than EMMR and

EMVC on average, and EMOpt
MR is 4.8 times faster than EMVF2

MR .

(4) EMVC and EMOpt
VC perform better than EMMR and EMOpt

MR

by reducing unnecessary costs inherent to MapReduce.

7. CONCLUSIONS
We have proposed a class of keys for graphs. We have

shown that entity matching with keys is NP-complete and
hard to parallelize. Despite these, we have provided two
parallel scalable algorithms, and our experimental results
have verified that entity matching is feasible in practice.
One topic for future work is to develop efficient algorithms

for discovering keys. Another topic is to adapt keys to vari-
ous applications with different pattern matching semantics.

Acknowledgments. Fan is supported in part by NSFC

61133002, 973 Program 2012CB316200 and 2014CB340302,
ERC-2014-AdG 652976, Guangdong Innovative Research
Team Program 2011D005, Shenzhen Peacock Program
1105100030834361, EPSRC EP/J015377/1 and EP/M025268/1,
NSF III 1302212, and a Google Faculty Research Award.

8. REFERENCES
[1] Dbpedia. http://wiki.dbpedia.org/Downloads2014.
[2] Full version.

http://homepages.inf.ed.ac.uk/s1368930/keys.pdf.
[3] S. Abiteboul, R. Hull, and V. Vianu. Foundations of

Databases. Addison-Wesley, 1995.
[4] F. N. Afrati, V. R. Borkar, M. J. Carey, N. Polyzotis, and

J. D. Ullman. Map-reduce extensions and recursive queries.
In EDBT, 2011.

[5] F. N. Afrati and C. H. Papadimitriou. The parallel
complexity of simple logic programs. J. ACM, 40(4), 1993.

[6] A. Arasu, C. Ré, and D. Suciu. Large-scale deduplication
with constraints using Dedupalog. In ICDE, 2009.

[7] O. Benjelloun, H. Garcia-Molina, H. Gong, H. Kawai,
T. Larson, D. Menestrina, and S. Thavisomboon.
D-swoosh: A family of algorithms for generic, distributed
entity resolution. In ICDCS, 2007.

[8] I. Bhattacharya and L. Getoor. Collective entity resolution
in relational data. TKDD, 1(1), 2007.

[9] Y. Bu, B. Howe, M. Balazinska, and M. D. Ernst. Haloop:
Efficient iterative data processing on large clusters.
PVLDB, 2010.

[10] P. Buneman, S. Davidson, W. Fan, C. Hara, and W.-C.
Tan. Keys for XML. In WWW, 2001.

[11] P. Buneman and G. Silvello. A Rule-Based Citation System
for Structured and Evolving Datasets. IEEE Data Eng.
Bull., 33(3):33–41, 2010.

[12] P. Christen. A survey of indexing techniques for scalable
record linkage and deduplication. TKDE, 24, 2012.

[13] L. P. Cordella, P. Foggia, C. Sansone, and M. Vento. A
(sub) graph isomorphism algorithm for matching large
graphs. TPAMI, 26(10):1367–1372, 2004.

[14] X. Dong, A. Halevy, and J. Madhavan. Reference
reconciliation in complex information spaces. SIGMOD,
2005.

[15] X. L. Dong, E. Gabrilovich, G. Heitz, W. Horn, K. Murphy,
S. Sun, and W. Zhang. From data fusion to knowledge
fusion. PVLDB, 2014.

[16] X. L. Dong, K. Murphy, E. Gabrilovich, G. Heitz, W. Horn,
N. Lao, T. Strohmann, S. Sun, and W. Zhang. Knowledge
vault: A web-scale approach to probabilistic knowledge
fusion. In KDD, 2014.

[17] W. Fan, H. Gao, X. Jia, J. Li, and S. Ma. Dynamic
constraints for record matching. VLDBJ, 2011.

[18] M. A. Gallego, J. D. Fernández, M. A. Mart́ınez-Prieto,
and P. de la Fuente. An empirical study of real-world
SPARQL queries. In USEWOD workshop, 2011.

[19] M. Garey and D. Johnson. Computers and Intractability:
A Guide to the Theory of NP-Completeness. W. H.
Freeman and Company, 1979.

[20] L. Getoor and A. Machanavajjhala. Entity resolution:
Theory, practice & open challenges. PVLDB, 5(12), 2012.

[21] N. Z. Gong, W. Xu, L. Huang, P. Mittal, E. Stefanov,
V. Sekar, and D. Song. Evolution of social-attribute
networks: Measurements, modeling, and implications using
google+. IMC ’12, 2012.

[22] E. L. Goodman and D. Grunwald. Using vertex-centric
programming platforms to implement SPARQL queries on
large graphs. IA3, pages 25–32, 2014.

[23] R. V. Guha. Communicating and resolving entity
references. http://arxiv.org/abs/1406.6973.

[24] W.-S. Han, J. Lee, and J.-H. Lee. Turboiso: Towards
ultrafast and robust subgraph isomorphism search in large
graph databases. In SIGMOD, pages 337–348, 2013.

[25] M. Herschel, F. Naumann, S. Szott, and M. Taubert.
Scalable iterative graph duplicate detection. TKDE, 2012.

[26] S.-H. Kim, K.-H. Lee, H. Choi, and Y.-J. Lee. Parallel
processing of multiple graph queries using MapReduce. In
DBKDA, pages 33–38, 2013.

[27] L. Kolb, A. Thor, and E. Rahm. Dedoop: Efficient
deduplication with hadoop. PVLDB, 2012.

[28] N. Korula and S. Lattanzi. An efficient reconciliation
algorithm for social networks. PVLDB, 7(5), 2014.

[29] N. Lao, T. Mitchell, and W. W. Cohen. Random walk
inference and learning in a large scale knowledge base. In
EMNLP, 2011.

[30] W. Le, A. Kementsietsidis, S. Duan, and F. Li. Scalable
multi-query optimization for SPARQL. In ICDE, 2012.

[31] Y. Low, J. Gonzalez, A. Kyrola, D. Bickson, C. Guestrin,
and J. M. Hellerstein. Distributed graphlab: A framework
for machine learning in the cloud. PVLDB, 5(8), 2012.

[32] P. Malhotra, P. Agarwal, and G. Shroff. Graph-parallel
entity resolution using LSH & IMM. In EDBT/ICDT
Workshops, 2014.

[33] N. Pernelle, F. Säıs, and D. Symeonidou. An automatic key
discovery approach for data linking. J. Web Sem., 23, 2013.

[34] N. Preda, G. Kasneci, F. M. Suchanek, T. Neumann,
W. Yuan, and G. Weikum. Active knowledge: dynamically
enriching RDF knowledge bases by web services. In
SIGMOD, 2010.

[35] R. Raman, O. van Rest, S. Hong, Z. Wu, H. Chafi, and
J. Banerjee. PGX.ISO: Parallel and efficient in-memory
engine for subgraph isomorphism. GRADES, 2014.

[36] V. Rastogi, N. Dalvi, and M. Garofalakis. Large-scale
collective entity matching. PVLDB, 2011.

[37] J. Seo, J. Park, J. Shin, and M. S. Lam. Distributed
socialite: A datalog-based language for large-scale graph
analysis. PVLDB, 2013.

[38] Z. Sun, H. Wang, H. Wang, B. Shao, and J. Li. Efficient
subgraph matching on billion node graphs. PVLDB, 2012.

1601

