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ABSTRACT 

In this paper, we present a new algorithm for estimating the size 

of equality join of multiple database tables. The proposed 

algorithm, Correlated Sampling, constructs a small space synopsis 

for each table, which can then be used to provide a quick estimate 

of the join size of this table with other tables subject to 

dynamically specified predicate filter conditions, possibly 

specified over multiple columns (attributes) of each table. This 

algorithm makes a single pass over the data and is thus suitable 

for streaming scenarios. We compare this algorithm analytically 

to two other previously known sampling approaches (independent 

Bernoulli Sampling and End-Biased Sampling) and to a novel 

sketch-based approach. We also compare these four algorithms 

experimentally and show that results fully correspond to our 

analytical predictions based on derived expressions for the 

estimator variances, with Correlated Sampling giving the best 

estimates in a large range of situations.  

1. INTRODUCTION 
Accurate cardinality estimation of database queries is the most 

important problem in database query optimization. In 2014, a 

database expert with many decades of experience, Guy Lohman, 

pointed out in a blog post on wp.sigmod.org that the query cost 

model can introduce errors of at most 30%, while the query 

cardinality model can easily introduce errors of many orders of 

magnitude. He also pointed out that the grossest cardinality 

misestimates occur for join queries, but that regrettably little work 

has been done on accurate join size estimation. In this paper we 

contribute to this very important area of investigation. 

In order to estimate the size of a join query very quickly, the 

database optimizer has to use a small synopsis of each table, 

which was constructed ahead of time. In some scenarios, there are 

only a few join graphs that are expected to be used most 

frequently, while the predicate filters that select the rows to be 

joined are specified at run time, uniquely for each query. For 

example, given a table of customer information and a table of 

product sales information with a column of customer ID who 

purchased each product, one may wish to repeatedly join these 

two tables on the customer ID attribute while considering only 

those customers that reside in each major city (i.e., applying a 

filter Customer.City = X).  

Another requirement that we assume in this paper is that the 

synopsis of a table needs to be constructed in one pass. The size of 

database tables is growing very rapidly, and it would be a huge 

waste of resources to use a multi-pass method for constructing a 

synopsis of a table that holds many terabytes or petabytes of data. 

There are also some domains where the input data to joins 

consists of data streams and the synopsis needs to be constructed 

while the data is streaming by, so that it could be queried at any 

time about the latest estimate of the join size of two streams. 

While some researchers did address estimation of join sizes based 

on small-space synopses (as discussed in Section 2), we are not 

aware of any published one-pass methods that can work with filter 

conditions that are specified after the synopses are constructed.  

In this paper, we present two new algorithms capable of solving 

this problem: Correlated Sampling and a novel sketch-based 

approach (whose details are given in Section 3.4.3). Given a join 

graph of interest, the Correlated Sampling algorithm constructs a 

synopsis of each table Ti by including each row from that table 

into the synopsis with probability pi, which depends on the 

number of join attributes in Ti. Random variables that are used to 

make inclusion decisions are shared among the tables, as will be 

explained in Section 3.3. After the samples of all tables have been 

built, an unbiased join size estimate can be computed subject to 

dynamically specified filter conditions, without modifying the 

samples. This is achieved by simply selecting those rows from 

each sample that satisfy the filter condition for that table.  

The rest of the paper is organized as follows. In Section 2 we 

discuss the related work. In Section 3 we present the competing 

algorithms for equijoin size estimation (Bernoulli Sampling, End-

Biased Sampling, Correlated Sampling and a novel sketch-based 

approach) for the case of two tables and derive the variances of 

their estimates. In Section 4, we extend Correlated Sampling to 

multiple tables and complex join conditions. In Section 5, we 

present an experimental comparison of the approaches described 

in Section 3 and show that results fully correspond to our 

analytical predictions based on estimator variances that we 

derived for them. Section 6 concludes the paper.  

2. RELATED WORK 
An early review of existing sampling methods for estimating the 

selectivity of a join is given in [7]. The “cross-product” sampling 

scheme described in that work was shown to give the best 

estimates out of the simple sampling schemes considered. The 

“cross-product” scheme is equivalent to the one described in 

Section 3.1 if the sampling is performed at the level of rows rather 

than blocks.  

The work in [5] refines the cross-product sampling scheme by 

introducing a separate treatment for tuples that have high 
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frequencies versus those that have low frequencies in the original 

tables. The resulting “Bifocal” sampling algorithm for join size 

estimation is proven to estimate the join size within an error factor 

close to 2 with high probability. Unfortunately, this algorithm 

relies on having an index of join attribute values for one of the 

tables in order to estimate the number of tuples in that table that 

join with each low-frequency tuple from the other table. 

The “End-Biased” sampling algorithm [4] extends the work in [5] 

by eliminating the need for having an index of join values on any 

of the tables. It also uses the idea of performing “correlated” 

sampling (using a common hash function) of the tables to be 

joined. However, End-Biased Sampling requires making an extra 

pass through the data in order to compute the frequencies of the 

join attribute values.  

The Correlated Sampling algorithm introduced in this paper 

extends the End-Biased Sampling algorithm by eliminating the 

need for knowing the frequencies of the join attribute values. 

Thus, it is suitable for streaming contexts or for very large 

databases where one-pass processing is required. It is also 

presented and analyzed for the case of multiple tables and 

complex join conditions, while the End-Biased sampling 

algorithm was only presented and analyzed for the case of two 

tables with a single join attribute. 

The phrase “correlated sampling” has also been used as a part of 

the CS2 algorithm in [12], which is designed to estimate the join 

size of multiple tables subject to arbitrary predicate filter 

conditions. Two ways of implementing CS2 are suggested in [12]: 

either requiring multiple passes through the data or requiring an 

unpredictably large amount of space to store the samples. This 

makes CS2 not suitable for the problem we consider. 

A good review of sketch-based methods for join size estimation is 

presented in [10]. That work, however, limited its scope to the 

case of two tables (or data streams), and no filter conditions were 

considered. A sketch-based approach for estimating the join size 

of multiple tables was presented in [3]. Even though, as we show 

in Section 3.4.3, the presence of dynamically specified filter 

conditions can be modeled as addition of special “imaginary” 

tables, the authors in [3] did not make this connection.  

The work in [6] applies the central idea of Bifocal sampling 

(separately treating high-frequency and low-frequency values) to 

the sketching domain. The resulting “skimmed sketches” 

approach can estimate the join size more accurately than the basic 

techniques described in [10]. However, it still requires knowing 

frequencies for the most frequent join attribute values (so that they 

could be “skimmed away” and processed separately). 

An approach to approximate query processing using nonstandard 

multi-dimensional wavelet decomposition has been presented in 

[2], which can estimate join sizes subject to dynamically specified 

predicate filter conditions. Unfortunately, this approach cannot be 

used for streaming data, since access to old data is required for 

constructing the wavelet synopsis. More importantly, this method 

fails to create small-space synopses when the data is very sparse 

in its multi-dimensional representation, since in this case the 

highest-resolution coefficients have the largest magnitude, and 

there are almost as many of them as the original data points. Thus, 

the standard practice of keeping wavelet coefficients with the 

largest magnitude will result in very large synopses. 

3. TWO-TABLE JOINS 

3.1 Independent Bernoulli Sampling 

3.1.1 Algorithm Description 
The simplest join size estimation algorithm is to form independent 

Bernoulli samples �� and ��	(with sampling probabilities �� and ��) of tables �� and ��	that are being joined, compute the join size �′ of the two samples, and then scale it appropriately.  

To derive the required scaling factor, let J be the true join size of 

the two tables. Also, let 	
� be a Bernoulli random variable (r.v.) 

that is equal to 1 if row i from table �� and row j from table �� are 

included in the sample and is equal to 0 otherwise. There will be 

exactly J such r.v.’s for which both rows will have the same join 

attribute value. Then, ���� = � ⋅ ���� because each of the J r.v.’s 

evaluates to 1 with probability ����. Therefore, if the final join 

size estimate is computed as �� = ��/����, then                     ����� = ���/����� = �, and thus 1/���� is the required scaling 

factor that makes the final estimate unbiased.  

3.1.2 Variance Analysis 
As was observed in the previous section, the estimate �� can be 

viewed as a sum of J Bernoulli r.v.’s for which ��1� = ����, ��0� = 1 − ����, with each r.v. being scaled by 1/����. 

Unfortunately, the variance of �� is not equal to the sum of the 

variances of the individual Bernoulli r.v.’s because many of them 

are dependent. For example, 	�� and 	��	are dependent (if row 1 

from table �� is not included, then both of these r.v.’s must be 0).  

Therefore, in order to compute the variance of ��, we need to use 

the fact that the variance of the sum of random variables is equal 

to the sum of their variances plus the sum of all ordered pairwise 

covariances (i.e., counting both ����	,  � and ���� , 	�). Since ����	,  � = �	 � − �	�� �, it follows that ���!	
� ,  "�# =����� − ������� and ���!	
� ,  
"# = ����� − �������. Let $
���	be the frequency with which the join attribute value v 

appears in table �
. For any r.v. 	
� that corresponds to a pair of 

rows with a common join attribute �, there are $���� − 1 other 

r.v.’s of the form 	"� and $���� − 1 other r.v.’s of the form 	
" 

that refer to rows that both have join attribute value equal to �. 

The sum of covariances of all such r.v.’s with 	
� is equal to  �$���� − 1������� − �������� + �$���� − 1������� − ��������, 
and since there are $����$���� r.v.’s that correspond to different 

pairs of rows with a common join attribute value �, and the 

variance of each such r.v. is �����1 − �����, we have: 

 &'(���� =)$����$���������1 − �����* + �$���� − 1������� − �������+ �$���� − 1������� − �������� 
 

where the sum is taken over all join attribute values that occur in 

both tables. Since  �	+ = ��/����, it follows that  &'(!�	+# =,-.�/0��1213�3,	and thus we arrive at: 

 &'(!�	+# =)$����$���� 45 1���� − 16*+ 	�$���� − 1� 5 1�� − 16 + �$���� − 1� 5 1�� − 167 
 

(1) 
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3.1.3 Extension to dynamic filter conditions 
If a filter condition 8
 	is specified for table �
 after the samples 

have been created, then the join size of �� and �� subject to the 

filter conditions can be estimated by first computing the join size �� of the samples �� and �� by joining only those rows from the 

samples that satisfy the corresponding filter conditions and then 

forming the final join size estimate as �� = ��/����. Exactly the 

same variance analysis as presented above still works for this 

case, provided that $
��� is replaced by $
�9:����, which denotes 

the number of rows in table �
 that have a value � for the join 

attribute and that satisfy the predicate filter condition 8
 (which 

can possibly be specified over other attributes in table �
). This 

implies that the variance of Bernoulli sampling decreases as the 

filter condition becomes more selective, since $
�9:���� can only 

decrease in this case. 

3.1.4 Discussion 
The drawback of the Bernoulli Sampling approach is that the 

probability of an infrequent join attribute value being included in 

both samples is very small when individual sampling probabilities �
 are small. Thus, if such infrequent values dominate the two 

tables, then the variance of the join size estimate will be very 

high. This intuitive argument is made formal by equation (1) 

above, which shows that for small $���� and $����, the variance 

of the join size estimate is dominated by 1/���� . 

3.2 End-Biased Sampling 

3.2.1 Algorithm Description 
The End-Biased Sampling algorithm [4] addresses the 

shortcoming of the Bernoulli Sampling algorithm discussed in 

Section 3.1.4. This algorithm has a tunable parameter ;
 for each 

table �
. This parameter controls the trade-off between estimation 

accuracy and the sample size, and should be set through manual 

experimentation, according to the authors. The parameter ;
 is 

used to compute the sampling probability �* for each join 

attribute value �, which is given by �* = $
���/;
. Values for 

which $
��� > ;
 are included in the sample with probability 1. In 

order to better account for infrequent join attribute values 

appearing in both tables, the sampling process is performed in a 

coordinated fashion between the two tables. This is achieved by 

selecting a hash function ℎ(), which maps the domain of the join 

attribute uniformly into the range [0,1]. Then, a row with a join 

attribute value � is included into the sample only if ℎ��� ≤ �*.  

The End-Biased Sampling algorithm estimates the join size as �� = ∑ 8*,*  where for each join attribute value � that occurs in both 

tables: 

8* =
@AB
AC$����$���� if	$���� ≥ ;�	and	$���� ≥ ;�;�$���� if	$���� < ;�	and	$���� ≥ ;�$����;� if	$���� ≥ ;�	and	$���� < ;�$����$���� ⋅max� M2N2�*� , M3N3�*�� if	$���� < ;�	and	$���� < ;�

O  
3.2.2 Variance Analysis 
It is proven in [4] that the join size estimate ��	computed using the 

above method is unbiased. It is also shown that  
																																											&'(!��# = ∑ Δ**                                        (2)	
where 

Δ* =

=
@AA
B
AAC
0 if	$1��� ≥ ;1	and	$2��� ≥ ;25 ;1$1��� − 16$12���$22��� if	$1��� < ;1	and	$2��� ≥ ;2
5 ;2$2��� − 16$12���$22��� if	$1��� ≥ ;1	and	$2��� < ;2
�max 5 ;1$1��� , ;2$2���6 − 1�$12���$22��� if	$1��� < ;1	and	$2��� < ;2

O 

3.2.3 Extension to dynamic filter conditions 
The End-Biased Sampling can be extended to handle the case 

when a filter condition 8
 is specified for the table �
 after the 

samples have been created. In this case, the following value of 8* 

would be used when computing the join size estimate �� = ∑ 8** : 8* =
=
@A
B
AC$�

92���$�93��� if	$���� ≥ ;�	and	$���� ≥ ;�;�$�93��� if	$���� < ;�	and	$���� ≥ ;�$�92���;� if	$���� ≥ ;�	and	$���� < ;�$�92���$�93��� ⋅ max 5 ;�$���� , ;�$����6 if	$���� < ;�	and	$���� < ;�
O 

3.2.4 Discussion 
The drawback of the End-Biased Sampling algorithm is that its 

computation of the join size estimate requires the prior knowledge 

of the frequencies of all join attribute values, making this method 

unsuitable for the streaming context. Also, it is not possible to set 

the parameter ;
 ahead of time so as limit the sample size to a 

certain value, which is often required in real-world contexts. 

3.3 Correlated Sampling 

3.3.1 Algorithm Description 
In this section we present a novel Correlated Sampling algorithm, 

which addresses the shortcomings of End-Biased Sampling. We 

first present this algorithm for the simple case of two tables and a 

single equijoin condition between them: R�� = R��, where the 

first attribute in table �� is supposed to be equal to the first 

attribute in table ��. Then, in Section 4, we present an extension 

of this algorithm to the case of multiple tables and arbitrary join 

conditions. 

Let S� be the desired sample size for table ��	and S� be the 

desired sample size for table ��. Such sample sizes can be 

achieved, in expectation, if each row from table �
 is selected with 

probability �
 = S
/|�
| , where |�
| denotes the size of table �
. 
The selection of rows is performed by first selecting a hash 

function ℎ(), which maps the domain of the join attribute 

uniformly into the range [0,1]. A row r in table �
 in which the 

join attribute R
�	takes the value �	is then included in the sample �
 if ℎ��� < �
. Alternatively, this process can be viewed as 

generating for each attribute value � a uniform random number 

between 0 and 1, with the seed of the random generator being set 

to �. If the generated random number is less than �
, then row r is 

included in the sample �
.  
Let �U
V = min���, ���. The Correlated Sampling algorithm first 

computes the join size �� of samples ��	and �� and then divides 

the result by �U
V	in order to arrive at the final estimate             �	+ = ��/�WXY	of the join size of �� and ��. 
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To prove that �	+ is an unbiased estimate of the join size, notice that 

rows where the join attribute (R
�	or R
�) is equal to � will appear 

in both samples if and only if ℎ��� < �U
V. Viewing ℎ��� as a 

uniform random variable (as was previously suggested), this will 

happen with probability �U
V. Then, a value � that appears in both 

tables is expected to contribute �U
V$����$����	to the expected 

join size computed over the samples ��	and ��. Overall, the 

expected size of this join is equal to ∑ �U
V$����$����Z . Thus, if 

the join size of samples ��	and �� is divided by �U
V, then in 

expectation the result will be equal to ∑ $����$����Z , which is 

exactly the true join size of ��	and ��. 

3.3.2 Variance Analysis 
The join size estimate computed above is a summation over all 

join attribute values � of Bernoulli random variables (for which ��1� = �U
V, ��0� = 1 − �U
V), each of which is scaled by $����$����/	�U
V. The variance of each such random variable is 

equal to �U
V�1 − �U
V��$����$����/	�U
V�� and they are 

independent. Thus, the variance of the final estimate �	+is given by 

 &'(!��# = 5 1�WXY − 16)$�����$�����*  

 

(3) 

where the sum is taken over the values v that occur in both tables. 

3.3.3 Extension to dynamic specified filter conditions 
Let’s say that we are only interested in joining those rows in table �
 that satisfy a predicate filter condition 8
. As before, each join 

attribute value � will appear in both samples with probability �U
V, and if selected, it will contribute $��92����$��93���� to the 

join size computed over samples ��	and ��. Thus, the expected 

contribution of � to this join size is �U
V$��92����$��93����, and 

hence the expected overall join size is ∑ �U
V$��92����$��93����* , 

which when divided by �U
V gives the desired join size subject to 

the specified predicate filter condition.  

The variance of Correlated Sampling subject to a filter condition 8
 for table �
 can be derived in exactly the same way as before, 

where $
��� is replaced by $
�9:����. Thus, the variance of the 

estimate is reduced as the filter condition becomes more strict. 

3.3.4 Discussion 
The Correlated Sampling algorithm presented above can be 

summarized in the following steps: 

1.  Choose randomly a hash function h() from a strongly 

universal family of hash functions that map the domain of the 

join attribute into [0,1). There are many well-known 

algorithms for constructing such a hash function – see [9] 

and references therein. The most well-known and robust one 

is ℎ��� = !�'� + [�	mod	�#/p, where ', [∈1, p� are 

randomly chosen integers and � is a large prime number. 

2.  Scan the table ��, observe the value v taken by the join 

attribute in each row, and then select that row into the sample �� if ℎ��� < � (where p can be set to 0.01 or something 

smaller if a smaller sample is desired). Do the same for table ��, constructing the sample ��. 

3.  Estimate the join size of �� and ��	as  �	+ = ��� ⋈ ���/�  

The Correlated Sampling algorithm addresses the major problem 

that independent Bernoulli sampling has with join attribute values 

that repeat infrequently in both tables. Such values are sampled in 

a correlated fashion and their contribution to the variance of the 

estimator scales as 
�WXY	�12,13�, which is much smaller than 

�1213	 
scaling factor of Bernoulli sampling if both �� and �� are small.  

The Correlated Sampling algorithm also addresses all the 

shortcomings of the End-Biased Sampling algorithm presented in 

Section 3.2: it does not require the prior knowledge of the 

frequencies of join attribute values and it does not have any 

parameters that need to be set through manual experimentation. 

This makes Correlated Sampling suitable for the streaming 

context or for processing very large tables, where only single-pass 

processing is feasible.  

Both End-Biased and Correlated Sampling reduce the join size 

estimation variance relative to Bernoulli sampling when the tables 

are dominated by infrequent values. However, a careful 

comparison of the variances (which we perform in Section 5.4) 

shows that join attribute values that occur frequently in both tables 

make a larger contribution to the variance of Correlated Sampling 

than to that of Bernoulli Sampling (especially if the sampling 

probabilities are large). This suggests that the Correlated 

Sampling algorithm can be improved if such values are detected 

ahead of time, their frequencies are accurately estimated, and their 

contribution to the join size is computed directly using the 

estimated frequencies, as is done in [4] and [5].  

The best algorithm we found so far (according to our separate 

tests not included in this paper due to space constraints) for 

detecting the most frequent values in a data stream is the Filtered 

Space-Saving (FSS) algorithm [8]. This algorithm makes a single 

pass over the data (performing O(1) operations for each tuple) and 

can thus be ran in parallel with the sampling phase of Correlated 

Sampling. The FSS algorithm creates a list of suggested most 

frequent values, and for each value it also gives its estimated 

frequency and the maximum estimation error. The values that 

appear in the candidate lists for both �� and �� and have the 

maximum percentage frequency estimation error less than a 

certain threshold can be considered to be “frequent values” and 

their contribution to the join size of  �� and �� can be computed 

by a direct multiplication of their estimated frequencies. By 

choosing the percentage error threshold to be small enough, one 

can incur a small bias in the join size estimate (since FSS, by 

design, overestimates the frequencies) but not incur the large 

variance, since the most frequent values will be absent from the 

summation in equation (3). The remaining “non-frequent” values 

in the samples �� and �� can then be joined together, and if the 

resulting join size is divided by �U
V, then one will obtain an 

unbiased contribution of all non-frequent values to the join size of �� and �� (because the expected contribution to the join size of �� 

and �� of each “non-frequent value” v appearing in both tables is �U
V$����$����). 
3.4 A Novel Sketch-based Approach 

3.4.1 Algorithm Description 
The first sketch-based approach to join size estimation was 

presented in [1], and the sketch structure proposed in that paper 

later received an acronym AGMS sketch, composed of the first 

letters of the last names of the authors of [1]. Consider a data 

stream _ = {��, �a, ��, �a, �b, �c, ��, … }, which might be the 
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output of a dynamically computed complex SQL query, which 

then needs to be joined with another similar stream as a part of a 

yet more complex query. Alternatively, _ can represent the 

sequence of join attribute values of sequential rows read from a 

large database table, which is so large that it can only be 

processed using a one-pass method, as a stream. The atomic 

AGMS sketch corresponding to the stream _ is constructed as fg�_� = h� + ha + h� + ha + hb + hc + h� +⋯, 

where h
 are 2-wise independent random variables that are  equal 

to -1 or +1 with equal probability (for which ��h
h�� = 0 if j ≠ l). 
That is, whenever the value �
 is observed in the stream, the value 

of h
 is added to the AGMS sketch. 

We will now show that the product �� of atomic AGMS sketches fg���� and fg���� for two tables �� and �� is an unbiased 

estimate of the true join size of �� and ��: ����� = �fg���� ∙fg����� = |�� ⋈ ��|. The expected contribution to ����� of each 

row with an attribute value � in table �� is: 

� n) h*h

∈�2 p = � q)h*h

r* s + � q)h*h

t* s = � q)h*h

r* s = $����, 
where we have used the fact that �h*h
� = 0	if	j ≠ �, while �h*h*� = 1.	 Since there are $���� rows in table �� that have join 

attribute value equal to �, the total contribution to ����� of each 

value � is $����$����, which implies that  ����� = ∑ $����$���� =* |_ ⋈ v|. 
3.4.2 Variance Analysis 
Since �� = fg���� ∙ fg���� is an unbiased estimate of the true join 

size, the variance of �� can be reduced if k independent copies of 

this estimator are averaged. It was shown in [1] that in this case: 

 &'(!��# = 1g wx)$�����* yx)$�����* y + x)$����$����* y�

−)$�����$�����*
z 

 

 

(4) 

where the above sums are taken over all attribute values that occur 

in at least one of the tables. We will use this convention in the 

next section as well. 

3.4.3 Extension to dynamic filter conditions 
While the sketch-based approach for join size estimation 

described above has been widely cited in the literature, we have 

not seen any attempts to extend it to the case of dynamically 

specified predicate filters. We present such an extension below. 

The basic idea is to view each filter condition on attribute j in 

table i (which we denote by R
�) as an “imaginary” table 

containing a single column of all attribute values for R
� that 

satisfy this condition (not all of these values might appear in table 

i). When a query with a particular predicate filter condition is 

submitted, an imaginary table is constructed and its sketch is 

computed, which when multiplied with the sketches of original 

tables (constructed offline based on the expected join graph) gives 

an unbiased join size estimate.  

For illustrative purposes, we present a simple case where the 

predicate filter condition 8
 is specified over the second attribute R
� in table �
 and is of the form R
� ∈ {
, where {
 is some range 

(or more generally, is a union of disjoint ranges). Let fg|:3�{
� be 

AGMS sketch of {
 (i.e., of the table containing a single column 

of all possible values of R
� ∈ {
) constructed with a family }
 of 

random variables (of the type described in Section 3.4.1) by 

adding }~
  to the sketch whenever a row r from �
 is observed for 

which R
� = �. Let fg|:2|:3��
� denote a “dual” AGMS sketch of �
 constructed by adding h*}~
  to the sketch whenever a row r 

from �
 is observed for which R
� = � and R
� = �, where h is a 

family of random variables that corresponds to the join attribute. 

Then, using a similar analysis to the one conducted in Section 

3.4.1, it is not difficult to show that ��fg|23�{��	⋅fg|22|23����⋅fg|32|33����⋅fg|33�{��	� 
gives us precisely the join size of �� and �� subject to the filter 

conditions described above. Informally, this is so because fg|:3�{
�	⋅fg|:2|:3��
� is a sum of products of the form h*}~
}�
 , 
for which ��h*}~
}�
 � = 1 only if � = �, and is equal to 0 

otherwise. For any particular join attribute value �, there will be $
�9:���� products that involve h*  and that have an expected value 

of 1. Thus, each join attribute value � will contribute, in 

expectation, $�92���	$�93��� to the join size estimate, which when 

summed up over all join attribute values gives us precisely the 

join size of �� and �� subject to the filter conditions described 

above. 

Following a similar procedure to the one used in the proof of 

Lemma 4.4 in [1], it is possible to show that: 
 

 &'(�fg|23�{��⋅fg|22|23����⋅fg|32|33����⋅fg|33�{���
≤ 2)w|{�|)$����, ����*23

+ �$��92���	���z*
×)w|{�|)$����, ���� + �$��93���	���*33

z*  

 

 

(5) 

where |{
| is the number of rows in �
  that satisfy condition 8
, $
��, �
�� is the number of rows in table �
  for which the value of 

the join attribute is equal to � and the value of the other attribute R
� (over which the filter condition is specified) is equal to �
�, 

and $
�9:���� is the number of rows in table �
  with the value of the 

join attribute being equal to � that satisfy the filter condition 8
:	R
� ∈ {
. 
It is instructive to compare the variance bound in equation (5) 

with the one in equation (4), when a single pair of atomic sketches 

is used (i.e.: g = 1�. We can bound the variance in equation (4) as 

follows: 

&'(!��# ≤ x)$�����* yx)$�����* y + x)$����$����* y�. 
The second term on the right is less than or equal to the first term 

by Cauchy-Schwarz, and thus: 

 &'(!��# ≤ 2x)$�����* yx)$�����* y.  

(6) 
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Comparing equation (6) with equation (5) we see that introduction 

of predicate filter conditions on tables �� and �� resulted in $
���� 
being changed into |{
| ∑ $
���, �
��*:3 + �$j�8j�	����2. Let’s 

consider two extreme cases:  
 

1. Almost all values of the attribute R
� pass the filter 

condition 8
 	 
2. Only a single value �
�9:  of the attribute R
� passes the filter 

condition 8
.  
 

The Cauchy-Schwarz inequality implies that $
���� ≤|R
�| ∑ $
���, �
��*:3 , where |R
�|	is the number of different values 

that the attribute R
� can take in table �
. Therefore, in case 1, $
�9:���� ≈ $j��� and |{
|∑ $
���, �
��*:3 ≈ |R
�| ∑ $
���, �
��*:3 ≥$
����, implying that &'(!��# will increase at least by a factor of 4. 

If very few different values of R
�	are present for each distinct 

value of the join attribute, then &'(!��# can increase by much 

more than a factor of 4 because the term |{
| will dominate. This 

runs in a stark contrast to the sampling methods presented in 

Section 3.1 – 3.3, for which the introduction of a predicate filter 

condition reduces the variance of the join size estimate. 

In case 2, we need to compare $
���� vs. ∑ $
���, �
��*:3 +$
�!�, �
�9:#. If many different values of R
�	are present for each 

distinct value of the join attribute, then the former will be larger 

than the latter. However, if only a single value of R
�	is present for 

each distinct value of the join attribute, then ∑ $
���, �
�� =*:3$
�!�, �
�9:# = $
����, implying that &'(!��# can increase by a 

factor of 4. 

Join size estimation, in general, involves estimating the selectivity 

of a natural join from a cross product of all tables involved in the 

join. Therefore, it is not surprising that the absolute value of the 

estimator variance will increase proportionally to the size of this 

cross product (as shown in [1]). In the case of sketch estimators, 

the introduction of filter predicates is equivalent to introducing a 

new table into the join. This will increase the cross product by a 

factor of the size of the filtering range, which can potentially 

increase the variance by a very large factor. 

3.4.4 Discussion 
The sketch-based approach presented above is well-suited for the 

streaming context, since it works directly on the data stream (it 

simply increments a single counter per atomic sketch of a table �
). Once a sketch of the data streams of interest is computed over 

the attributes of interest, this approach allows for estimating the 

join sizes over different join attributes and different predicate 

conditions (specified independently for each attribute) without 

having to access the data again. 

In order to reduce the variance of the join size estimate using this 

approach, many atomic sketches are required per table, as was 

explained in Section 3.4.2. It may seem that the space requirement 

of such an approach with N atomic sketches per table (which 

requires storage of N floating point numbers) is the same as the 

one for a sampling approach that uses a sample of size N (which 

requires the storage of N sampled join attribute values). This is not 

the case, however, because in order to dynamically generate the 2-

wise independent random variables h
	for each atomic sketch, one 

would need to store the seeds for such a generator. The required 

seed space is not large – it is logarithmic in the number of distinct 

values that we expect the join attribute can have in the stream 

[11]. If predicate filter conditions are expected on attributes R
�, … R
U, then a sampling-based approach would need to store � − 1 additional values per sampling point (the values of the 

attributes R
�, … R
U), while a sketch-based approach would need 

to store �− 1 additional atomic sketches, corresponding to the � − 1 conditional ranges for the attributes R
�, … R
U. 

The main drawback of the sketch-based join size estimator 

presented in this section is its very large variance in the case when 

filter condition with a large range |{
| is specified or when the 

number of different values of R
�	that are present for each distinct 

value of the join attribute is small. Another drawback is a large 

increase in the time required to compute the sketch of the 

conditional range {
 if |{
| is large. If {
 	is a contiguous range, 

then it can be sketched quickly using range-summable random 

variables [11]. However, if the filter condition 8
 	is complex and 

requires evaluation of each possible value of R
�, then a large 

sketching time cannot be avoided. Yet another drawback of this 

sketch-based approach relative to Correlated Sampling is that the 

latter method can be used with predicated filters over multiple 

columns, such as R
" < R�� , while the sketch-based approach 

cannot handle such predicate conditions. 

4. CORRELATED SAMPLING FOR 

MULTIPLE TABLES 
In order to analyze Correlated Sampling for the case of multiple 

tables and complex join conditions, we need to introduce the 

notion of equivalence classes. For two tables �
 and �� and join 

attributes R
" , R�� , we denote R
"~R��  whenever the join condition R
" = R��  is present. For any attribute R
", we denote by }�R
"� 
its equivalence class under the relation ~, which includes all other 

attributes that have to be equal to R
" under the considered join 

query. We will assume that the complex query has K equivalence 

classes: Ψ�, … , ΨM. 

For example, consider tables ��, �� and �a with join attributes R�� 

and R�� in ��, R�� in ��, and Ra� and Ra� in �a. Then, the set of 

join conditions {R�� = Ra�,	R�� = Ra�,	R�� = R��} implies two 

equivalence classes: Ψ� in which R��~R��~Ra� and Ψ� in which R��~Ra�. Pictorially, these equivalence classes are strings of 

connected edges on the join graph.  

For each equivalence class Ψ", we define a uniform hash function ℎ" from the attribute domain to 0,1�. We require, for ℎ" ≠ ℎ� , the 

hash values of these two functions be completely independent, 

even on correlated inputs. We also define the function �: R
� ↦ g 

to map an attribute to its equivalence class index g (that is, the 

value of g so that }!R
�# = Ψ"). 

Let �
 be the set of all join attributes for table �
 and let |�
| 
denote the size of this set (the number of join attributes in table 
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�
).  For any join attribute R
� ∈ �
 and the value �
� it takes, 

consider the following event: 

 ℎ�!|:�#!�
�# < ��
� �|�:|  

(7) 

We will refer to this as the inclusion condition for R
�. A given 

row r will be included in the sample �
 if the inclusion condition 

is satisfied for all join attributes R
� in that row. For a truly 

random hash function, the probability that each one of the 

inclusion conditions for that row is satisfied is simply ��
� 2��:�. 
Since the chosen hash functions generate independent uniform 

random variables (regardless of correlations among the inputs), 

the event that any given attribute in row ( satisfies its inclusion 

condition is independent of all the other attributes satisfying the 

inclusion condition. Mathematically, this can be expressed as:  

� �ℎ��|:2���
�� < ��
� �|�:| ∧ …	∧ ℎ��|:��:��!�
|�:|# < ��
� �|�:|� = 

= � �ℎ��|:2���
�� < ��
� �|�:|�… 	� �ℎ��|:��:��!�
|�:|# < ��
� �|�:|�
= ���
� �|�:|�|�:| = �
 

This allows us to ignore correlations among the attributes of each 

table when performing sampling and when determining the 

sampling probability �
. 
Now assume that we have a complex join query that includes 

equijoin conditions for tables ��, … , ��. Consider a particular row (�|� from the output of that join and let’s break it up into rows (�, … , (� from the individual tables that were joined in order to 

create that output row. Recall that the probability of a row (
 being 

included into the sample �
 	is �
 and let’s compute �XY�, the 

probability that all rows (�, … , (� get included into the 

corresponding samples, which is also the probability that the row (�|� appears in the output of the join. Using the definition of 

inclusion condition in equation (7) and the notion of equivalence 

classes we introduced earlier, this probability can be expressed as: 

 �XY� = �w��ℎ�!|:�#!�
�# < ��
� �|�:|
|�:|
�r�

�

r� z

= �w� � ℎ�!|:�#!�
�# < ��
� �|�:||:�∈��

M
"r� z 

 

 

 
 

(8) 

where we have used the fact that each attribute appears in exactly 

one equivalence class. Recall the two following facts, which are 

true by construction:  

–  For every attribute R
� ∈ Ψ", we know �!R
�# = g 

– Any two attributes R
� and R"� in Ψ" satisfy the join condition R
� = R"�. In particular, this means that �
� = �"�.  
This allows us to define a single attribute value, call it �", for the 

attributes in Ψ", so that for any attribute R
� ∈ Ψ" it must be the 

case that �
� = �". With these two notes, we can re-write the 

expression in (8) as: 

 �XY� = �w� � ℎ�!|:�#!�
�# < ��
� �|�:||:�∈��

M
"r� z

= �w� � ℎ"��"� < ��
� �|�:||:�∈��

M
"r� z

= � x�ℎ"��"� < min
∈�� ���
� �|�:|�M
"r� y 

 

 

 

 

 

 

(9) 

where we have used the fact that ℎ"��"� < ��
� 2��:� for all R
� ∈ Ψ" if and only if this is true for the smallest value of ��
� 2��:�. 
For the sake of simplicity, we have also used a slight abuse of 

notation in equation (9) above, with min
∈�� denoting a minimum 

taken over all tables that appear in the equivalence class k. 

Noting that the hash functions ℎ" produce independent uniform 

random variables, we have: 

 �XY� = � x�ℎ"��"� < min
∈�� ���
� �|�:|�M
"r� y

=���ℎ"��"� < min
∈�� ���
� �|�:|��M
"r� =�min
∈�� ���
� �|�:|�M

"r�  

 

 

 

(10) 

This is a quantity which can be readily computed. It is the same 

for all rows that appear in the output of the join, implying a very 

simple way of estimating the cardinality of the join: compute the 

join size over samples ��, … , �� and divide it by the inclusion 

probability �XY� computed above.  

In order to prove that the above estimation procedure is unbiased, 

denote by �  the vector of join attributes that define a particular 

row in the output of the join. The true join size J can now be 

expressed as: � = ∑ $�¡ �Z¢¢  , where $�¡ � is the number of rows in 

the output of the join that have a combination of join attributes 

specified by ¡ . Let £�¡ � be the indicator variable which is equal to 1 if and only if the row with attributes specified by ¡  is included 

into the join output. Let �� be the join size of the samples, so that: 

 ���� = � q)$�¡ �£�¡ �Z¢¢  s =)�£�¡��$�¡ �Z¢¢  							
= �XY�)$�¡ �Z¢¢  = �XY� ⋅ �																													 

 

 
(11) 

Therefore, � = ����/�XY�, as was previously claimed. For the 

variance of this estimator, we use a similar technique: 
 Var��� = )Var£�¡ ��$��¡ �Z¢¢  = �XY��1 − �XY��)$��¡ �Z¢¢   

 

(12) 

 
  

Since the final estimate of the join size is �� = ��/�XY�, we have: 

 Var!��# = 5 1�XY� − 16)$��¡ �Z¢¢   

 

(13) 

which agrees with the result that was derived in Section 3.3 for 

the case of two-table joins. If a predicate filter condition 8
 is used 

for table �
, then equations (11), (12) and (13) still hold with $
9:��� used instead of $
�¡�. 
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4.1 Choosing Sampling Probabilities 
The choice of sampling probabilities is a very practical concern, 

since they determine the variance of the join size estimate through 

equation (13). Given a particular join graph and sampling 

probability for any one table, one can use equation (10) in order to 

determine the optimal sampling probability for all other tables. 

Assume that �� is given and that tables �� and �� both appear in 

the same equivalence class Ψ. Consider the possibility that 

��2|�2| > ��2|�3|: in this case, the multiplicative factor in �XY� due to Ψ 

will be at most ��2|�3|. In other words, one could have taken a 

smaller sampling probability �� and still have obtained the same 

accuracy. A symmetric argument can be applied to the case of 

��2|�2| < ��2|�3|, implying that the most efficient sampling probability 

(i.e.: the choice that does not “waste” any of the resulting sample) 

occurs when �� = ��|�3||�2|. Note that this is true for any other 

sampling probability �
 where j ∈ Ψ. This reasoning defines a 

method for determining the sampling probability for all the tables 

in the join graph, since every table is connected to another via 

some join condition (i.e.: equivalence class). Starting with the 

sampling probability for a single table in the join graph, one can 

traverse the join graph in the manner described, determining the 

sampling probabilities for all the tables in the join graph from a 

single parameter. 

5. EXPERIMENTAL COMPARISON  

5.1 Dataset Description 

In order to confirm the theoretical analysis performed in Sections 

3 and 4, we have implemented Bernoulli, Correlated and End-

Biased sampling, as well as AGMS sketches. These techniques 

were then used to estimate join sizes on a schema containing one 

fact table (a collection of sales records) and two dimension tables 

(one with customer data and the other with product data). The fact 

(sales) table contained 92052 entries, with 7059 distinct values of 

customer_id and 72 distinct values of product_id). The most 

common value of customer_id occurs 41 times in the table fact 

table, while the most common value of product_id occurs 2911 

times. The table of customer data contained 11052 rows, each 

with a distinct customer_id. The products table contained exactly 

72, each with a unique product_id.  

Experiments in Sections 5.2 – 5.6 focus on joining the sales table 

with the customer table along the customer_id column while 

making different types of modifications to each table. In section 

5.7, we present the results from joining all three tables together. 

For all of the experiments conducted, the sampling probability 

shown refers to the sampling probability of the fact (sales) table. 

For the dimension tables, the technique described in Section 4.1 

was used to determine the sampling probabilities. When 

performing Bernoulli sampling, the same sampling probabilities 

were used for each one of the tables as in Correlated Sampling. 

For End-Biased Sampling, threshold values were chosen such that 

the resulting samples contained the same number of elements as 

the Bernoulli and Correlated samples. For sketches, the sampling 

probabilities were first used to compute the number of samples 

that would have been taken by a sampling method, and this 

number was then divided by the number of tables in the join 

graph, resulting in the number of atomic sketches produced for 

each table. As a result, both sketches and sampling methods used 

a similar amount of final data based on which the join size 

estimates were computed. 

5.2 Basic Experiments: Two Tables, no Filters 

Figure 1 shows frequency histograms of the join size estimates 

produced by each technique, over multiple trials, when joining the 

fact (sales) table with the customer data table along the 

customer_id column without using any predicate filter conditions. 

A sampling probability of 0.01 was used. 

The observed estimator variances (largest for Bernoulli sampling 

and smallest for sketches) fully correspond with variance formulas 

derived in Section 3. To see this, notice that since each record in 

the customer table has a unique customer_id, it follows that $���� = 1 for all v in this experiment. In this case, assuming �� = �� = � ≪ 1, the variance of Bernoulli sampling is  

approximately given by  

&'(§¨.!�	+# ≈ 1��)$����	* + 1�	)$�����	*  

while the variance of Correlated Sampling becomes &'(©�..!��# = 1�	)$�����*  

 

 

This shows that Bernoulli sampling will always have a larger 

variance than Correlated Sampling if $���� = 1. For End-Biased 

Sampling (assuming that the sampling probabilities are small 

enough that all attribute values are sampled probabilistically) the 

variance becomes:  

&'(ªV«!��# = 	 �K� − 1�)$�����*  

If, in one of the tables, all attribute values occur with the same 

frequency, then in order for the expected sizes of the End-Biased 

and Correlated samples to be equal, we must have the sampling 

threshold K equal to 1/�. If the frequencies of some values are 

increased and of others are decreased while the total number of 

rows in a table is kept unchanged, then the expected End-Biased 

sample size will increase, as more frequent values will be sampled 

Figure 1. Frequency histograms of join size estimates. 
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with a larger probability. Thus, in order for the expected sizes of 

End-Biased and Correlated samples to be the same, we must have ; > 1/�, and in this case the equations derived above show that 

the variance of End-Biased sampling will be larger than that of 

Correlated Sampling. This fact can be observed in Figure 1.  

Extending equation (6) to k atomic sketches, we get the following 

upper bound for the sketch-based estimator when $���� = 1: 

&'(!��# ≤ 2�g x)$�����* y 

where � is the number of distinct join attribute values that appear 

in table ��. If 2�/g < 1/�, then the variance of the sketch-based 

estimator will be smaller than that of Correlated Sampling, which 

is what we observe in Figure 1. An opposite case is shown in 

Figure 4, which we will describe later. 

It is interesting to examine closer the histogram for Bernoulli 

sampling. Even though the estimate is unbiased, it takes discrete 

values. Each discrete step corresponds to the simultaneous 

inclusion of a pair of rows from both tables with the same 

customer_id. Since the event of sampling a row is not dependent 

on the value of the join attribute in that row, the contribution to 

the join size estimate will be 1/���� for every such matching pair 

of rows included (as was shown in Section 3.1.2). With the 

sampling probability of 0.01 for both tables, each additional 

matching pair of rows will increase the join size estimate by 1/0.01� = 10000. This is exactly the size of the smallest discrete 

steps observed along the x-axis, confirming our theoretical 

analysis. The similar discrete step behavior was seen in all the 

experiments performed with Bernoulli sampling. 

For Correlated Sampling, contributions to the join size happen at 

the level of join attribute values that appear in both tables (rather 

than individual rows, as in Bernoulli Sampling), and each such 

value contributes �U
V$����$���� to the join size. Therefore, 

unlike in the case of Bernoulli sampling, the join size estimate 

obtained by Correlated Sampling is not restricted to multiples of 

any specific value and thus can potentially to be more accurate.  

5.3 Dependence on Memory Usage 
The next experiment computed the relative errors (defined as 

observed standard deviation of the estimator divided by the true 

join size) after 500 trials of each technique as a function of the 

memory usage (sampling probability). The results are displayed in 

Figure 2 and follow the theoretical analysis performed in the 

previous section for the case when $���� = 1.  

Furthermore, we can observe how each method’s variance 

changes with �: ®	&'(§¨.!�	+#®	� ≈ −x 2�a)$����	* + 1��)$�����	* y 

®	&'(©�..!��#®	� ≈ − 1��)$�����*  

In particular, this implies: 

¯®	&'(©�..!��#®	� ¯ < ¯®	&'(§¨.!�	+#®	� ¯ 

 

 

which shows that the variance for the Bernoulli estimate has a 

stronger dependence on the sampling probability, especially 

forsmall values of �. This matches the behavior in Figure 2, which 

shows a much steeper reduction of the relative error for Bernoulli 

sampling than for the other techniques as � increases. 

5.4 Dependence on Data Replication 
To illustrate how each estimator’s variance changes depending on 

the distribution of the data in the dimension tables, the 

experiments in the previous section were repeated using the 

following modified versions of the customer table (Table 2): 

Version 1: each row in the table was replicated a uniformly 

random number of times (between 0 and 100). 

Version 2: for each customer_id already in the original table, 

another 15 distinct ones were added that do not appear in the 

sales table. Thus, this version contained 176832 distinct 

customer_id’s. 

The relative errors of the considered techniques for version 1 of 

the modified customer table are shown in Figure 3.  

 

 

 

As before, we observe that the accuracy of Bernoulli sampling has 

a stronger dependence on the sampling probability than the other 

techniques. In this case, however, Bernoulli sampling is able to 

outperform Correlated Sampling for large sampling percentages.  

 

Figure 2. Relative errors for F
2
(v) = 1. 

Figure 3. Relative errors when F
2
(v) is a uniform 

random variable between 1 and 100 
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To understand this, note that the variance of Bernoulli sampling 

given in equation (1) can approximated as follows: 

&'(§¨.!�	+# ≈)x1�	$�����$���� + 1�� $����$���� + 1�	$����$�����y*  

while the variance of Correlated Sampling as: 

&'(©�..!��# ≈ 	)1�$�����$�����*  

As $����	 and $���� both start to increase, the term 
�1$�����$����� 

in the above expression begins to dominate every term in the 

expression for &'(§¨.!�	+#. If this happens for a sufficiently large 

fraction of join attribute values, the variance of the Correlated 

Sampling estimate can increase beyond that of Bernoulli 

sampling, unless � is so small that the term 
�13 $����$���� in the 

expression for &'(§¨.!�	+# dominates all other terms. This 

behavior is captured in Figure 3, which shows that the variance of 

Bernoulli sampling is smaller than that of Correlated Sampling for 

the case when $���� is, on average, equal to 50 and � > 0.001.  

It is also interesting to note that Correlated Sampling outperforms 

End-Biased sampling in this experiment. To understand this, 

observe that when the sampling threshold K in End-Biased 

sampling is large and all values are sampled probabilistically:	&'(ªV«!��# = 5max 5 ;�$���� , ;�$����6 − 16 $�����$����� 
In the above formula, the term of the form $�����$����� will 

always be multiplied by the maximum of 
M2N2�*� and 

M3N3�*�. Thus, 

when $���� and $���� vary independently (as is the case in this 

experiment), this factor will not work efficiently to reduce the 

variance of the join size estimate. Quite on the contrary: in this 

case, the multiplicative factor will (on average) be slightly greater 

than 1/� (as was noted in Section 5.2), explaining the poor 

performance of End-Biased sampling. In fact, this suggests that 

End-Biased sampling will only perform better than Correlated 

sampling when both tables being joined have similar frequency 

distributions $
���. We have observed this experimentally: the 

only situation in which End-Biased sampling outperformed 

Correlated Sampling for small sampling probabilities was for self-

joins of tables with non-constant frequency distributions. 

The results of joining the sales table with version 2 of the 

customer table are presented in Figure 4.  

 

 

 

These results show that while the accuracy of Correlated 

Sampling has not changed relative to the “base case” in Figure 2, 

the accuracy of the sketch-based approach has noticeably 

decreased. This can be explained by noting that in equation (4), 

the sums extend over all attribute values in each of the tables. By 

increasing the number of unique entries in the customer table by a 

factor of 16, many more terms were added into this sum. 

However, for Correlated Sampling, as seen in equation (13), the 

sum runs only over attribute values which appear in both tables 

being joined. Since the additional customer_id’s introduced were 

not added to the sales table in this experiment, the variance of the 

Correlated Sampling estimator was not affected. This experiment 

shows that the variance of sketches depends on the data which 

does not appear in the join, while sampling methods are robust to 

such changes. 

5.5 Dependence on Data Skew 
In this experiment, we estimated join size of customer table with 

two modified versions of the sales table (Table 1): 

1. No skew: all duplicate versions of customer id were 

removed in this version, so that each of the 7059  distinct 

customer_id values has exactly one transaction. 

2.  High skew: one particular value of cust_id was set to be 

very popular. This version still contains 92052 entries with 

7059 distinct customer_id’s, but with the most common 

value occurring 9205 times. 

The relative errors (observed standard deviations divided by the 

true join size) for all considered techniques when estimating the 

join size of the modified versions of the sales table with the 

customer table are shown in Figure 5. We refer to the original 

sales table as the “medium-skew” dataset. 

\ 

 

As can be seen in Figure 5, the presence of skew affects all 

methods negatively. This is due to the presence of terms of the 

form ∑ '*$�����*  for a set of constants '* in all of the variance 

expressions that were derived earlier. A high value of $���� for 

any � generates a term that dominates all other terms, thereby 

quickly increasing the variance. For Correlated Sampling in 

particular, the sharp variance increase for the high-skew case can 

be explained as follows. Since the decision to include a row is 

based on the value of the join attribute in that row, the join size 

estimate begins to depend heavily on whether or not the highly 

popular value of � is included in the sample. This creates a binary 

decision, with a relatively low probability, which has a large 

effect on the estimator’s result, thereby increasing the variance. 

Figure 5. Relative errors as a function of skew in the sales 

table 

Figure 4. Relative errors for 16X larger customer table 
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The variance of Correlated Sampling, however, can be reduced if 

the values that occur frequently in both tables are treated 

separately, as was discussed in Section 3.3.4.  

5.6 Dependence on Filter Conditions 
Finally, we examine how the presence of filter conditions can 

affect the variance of each method. The first experiment involves 

filtering the value of the customer_city_id attribute, requiring that 

it is less than some limit °. A sampling probability of 0.01 was 

used in all experiments. The relative errors of the considered 

techniques are presented in Figure 6 as a function of °. 

 

 

 

A similar experiment was conducted with the value of 

customer_credit_limit being filtered, and its results are shown in 

Figure 7. 

 

 

 

Note that as the filter becomes less selective (covers a larger data 

range), the variance of the sketch-based estimator increases, as 

was shown in equation (5). However, the true join size also 

increases in this case, and thus the relative error of the estimator 

(ratio of estimator’s standard deviation to the true join size) can 

either increase or decrease, as is the case in Figure 8. The relative 

error of the sampling-based methods has a similar behavior, since 

the variance of these methods decreases as the filter becomes 

more selective (as was pointed out in Sections 3.1.3 and 3.3.3), 

but the true join size also decreases. The fact that the relative 

errors of Correlated and End-Biased sampling are very similar in 

these experiments is due to the sampling probability of 0.01 being 

used, for which these methods just happen to give similar results 

when joining customer and sales tables, as was shown in Figure 2 

(with End-Biased sampling becoming noticeably worse as the 

sampling probability decreases). 

Table 1 shows the measured standard deviation for the sketch-

based method with and without additional predicate filters.  

 

Table 1. Standard deviation of the sketch-based method 

no filters city_ID < 52000 filter credit_limit < 10000 filter 

7558 99460 158997 

 

The data in Table 1 conforms to the theoretical expectation that 

the sketch variance increases by at least a factor of 4 when filter 

conditions are added. 

While the above experiment consisted of filtering only one 

attribute in the sales table (either city_ID or credit_limit), we have 

also tried filtering these two attributes simultaneously. The result 

was a complete deterioration of the accuracy for the sketch-based 

estimator, with the variance exceeding 50 times the true join size 

estimate value. This highlights the main strength of the sampling 

methods when compared to sketch-based methods, since the 

variances of the former methods actually decrease when filter 

conditions are introduced. 

5.7 Three-Table Joins 
In order to confirm that the two novel join size estimation 

methods presented in this paper (Correlated Sampling and the 

sketch-based approach suitable for dynamic filter conditions) can 

be applied to more than two tables, below we present experiments 

for three-table joins. As a demonstration, a natural join was 

performed between the sales (fact) table and the two dimension 

(customer and product) tables. The End-Biased sampling method 

was not included in this experiment because it was designed to 

work only for two tables and its extension to a larger number of 

tables is not obvious. The results are shown in Figure 8.  

 

 

 

We have also performed this same experiment using filter 

conditions on the customer_credit_limit attribute (see Figure 9). 

This caused the variance of the sketch-based method to increase 

many-fold, just as was observed in Section 5.6 

 

Figure 8. Relative errors of 3-table join size estimates 

Figure 6. Relative errors as a function of filter 

selectivity on customer_city_id 

Figure 7. Relative errors as a function of filter 

selectivity on customer_credit_limit 
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6. CONCLUSIONS 
In this paper we presented a novel Correlated Sampling algorithm 

for performing one-pass join size estimation, which is applicable 

to very large database tables and to streaming scenarios. We 

performed detailed analytical and experimental comparisons 

between Correlated Sampling and the competing techniques of 

End-Biased Sampling, Bernoulli Sampling and a method based on 

AGMS sketches.  

Our analysis showed that if dynamically specified filter conditions 

are allowed, then the variance of the sketch-based estimator 

greatly increases, while that of the sampling-based methods 

decreases. Also, as the number of attribute values that do not 

appear in all tables increases, the variance of the sketch-based 

estimator increases while that of the sampling methods remains 

unchanged. Thus, while the sketch-based method satisfies the one-

pass requirement, its large variance in many situations makes it 

impractical as a general purpose join size estimation method. 

We also showed that the Correlated Sampling and independent 

Bernoulli sampling methods are suitable for one-pass scenarios 

with predicate filter conditions, but the End-Biased sampling 

method is not suitable as it requires the prior knowledge of 

frequencies of all join attribute values.  

Our analysis showed that Correlated Sampling will in most cases 

have a smaller estimation variance than Bernoulli Sampling, but it 

might have a larger variance if there are many join attribute values 

that occur with a large frequency in all tables to be joined. Thus, 

Correlated Sampling and independent Bernoulli Sampling can be 

viewed as complementary join size estimation methods, each with 

its own set of conditions when it performs the best. In practice, as 

was suggested in Section 3.3.4, one can run a frequency 

estimation algorithm such as FSS [8] to identify the values that 

frequently occur in both tables and then treat them separately. As 

a result, the variance of Correlated Sampling can become 

acceptable even for highly skewed data distributions, making it 

the preferred method to use if one desires to use a single sample to 

estimate join sizes of different queries that have the same join 

graph but different filter conditions. If, however, one expects join 

queries with different join graphs, then independent Bernoulli 

Sampling is the only technique out of the ones considered in this 

paper that will provide unbiased estimates with a single sample 

constructed ahead of time. 
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