
Association Rules with Graph Patterns

Wenfei Fan1,2 Xin Wang3 Yinghui Wu4 Jingbo Xu1,2

1Univ. of Edinburgh 2Beihang Univ. 3Southwest Jiaotong Univ. 4Washington State Univ.

{wenfei@inf, jingbo.xu@}.ed.ac.uk, xinwang@swjtu.cn, yinghui@eecs.wsu.edu

ABSTRACT
We propose graph-pattern association rules (GPARs) for so-
cial media marketing. Extending association rules for item-
sets, GPARs help us discover regularities between entities in
social graphs, and identify potential customers by exploring
social influence. We study the problem of discovering top-
k diversified GPARs. While this problem is NP-hard, we
develop a parallel algorithm with accuracy bound. We also
study the problem of identifying potential customers with
GPARs. While it is also NP-hard, we provide a parallel scal-
able algorithm that guarantees a polynomial speedup over
sequential algorithms with the increase of processors. Using
real-life and synthetic graphs, we experimentally verify the
scalability and effectiveness of the algorithms.

1. INTRODUCTION
Association rules have been well studied for discovering

regularities between items in relational data, for promotional
pricing and product placements [4, 45]. They have a tradi-
tional form X ⇒ Y , where X and Y are disjoint itemsets.

There have been recent interests in studying associations
between entities in social graphs. Such associations are use-
ful in social media marketing; indeed, “90% of customers
trust peer recommendations versus 14% who trust advertis-
ing” [2], and “60% of users said Twitter plays an important
role in their shopping” [43]. Nonetheless, association rules
for social graphs are more involved than rules for itemsets.

Example 1: (1) Association rules for social graphs are de-
fined on graphs rather on itemsets. Below is an example.

◦ If (a) x and x′ are friends living in the same city c, (b)
there are at least 3 French restaurants in c that x and
x′ both like, and if (c) x′ visits a newly opened French
restaurant y in c, then x may also visit y.

The antecedent of the rule can be represented as a graph
pattern Q1 (with solid edges) shown in Fig. 1(a), and the
consequent is indicated by a dotted edge visit(x, y). A suc-
cinct presentation of Q1 associates integer 3 with “French

This work is licensed under the Creative Commons Attribution-
NonCommercial-NoDerivs 3.0 Unported License. To view a copy of this li-
cense, visit http://creativecommons.org/licenses/by-nc-nd/3.0/. Obtain per-
mission prior to any use beyond those covered by the license. Contact
copyright holder by emailing info@vldb.org. Articles from this volume
were invited to present their results at the 41st International Conference on
Very Large Data Bases, August 31st - September 4th 2015, Kohala Coast,
Hawaii.
Proceedings of the VLDB Endowment, Vol. 8, No. 12
Copyright 2015 VLDB Endowment 2150-8097/15/08.

Ecuador
Q2(b)

xx1

x2

Shakira
album

y

fake
x' x

is_ais_aacct acct

kblog blog blog

keyword

y

Q4(d)

y1 y
2

Q3(c)

cust cust
xx'

CC
Tesco

ZIP
"44"

y

Q1(a)

cust

y

cust
xx'

city 3French
restaurant

French
restaurant

live_in like

in

visit visit

friend friend

live_in

live_in

like

visit

in

post

contains

like

live_in

friend

like

in

visit

is_a

post

contains

Figure 1: Associations as graph patterns

Restaurant” to indicate its 3 copies. As opposed to conven-
tional association rules, Q1 specifies conditions as topolog-
ical constraints: edges between customers (the friend rela-
tion), customers and restaurants (like, visit), city and restau-
rants (in), and between city and customers (live in).

In a social graph G, for x and y satisfying the antecedent
Q1 via graph pattern matching, we can recommend y to x.

(2) As opposed to rules for itemsets, association rules for
social graphs may target social groups with multiple entities:

◦ If (a) x, x1 and x2 are friends, (b) they all live in
Ecuador, and (c) if x1, x2 both like Shakira’s album y
(a Colombian singer), then x may also like y.

This rule is depicted in Fig. 1(b), in which a graph pattern
Q2 (excluding the dotted edge) specifies conditions for (x, y)
as antecedent, and dotted edge like(x, y) indicates its conse-
quent. We can use the rule to identify potential customers
x of y, characterized by a social group of three members.

(3) Association rules with graph patterns conveniently ex-
tend data dependencies such as conditional functional de-
pendencies (CFDs) [14] in the context of social networks.

◦ If the addresses of x and x′ have the same country code
“44” and same zip code, and if x′ shops at a Tesco
store y with the same zip, then x may also shop at y.

Such a rule (Fig. 1(c)) embeds a corresponding CFD in
its pattern Q3, stating that if x and x′ live in the UK with
the same zip code, then they live on the same street. The
rule is valid in the UK where zip code determines street.

1502

(4) The applications of association rules are not limited to
marketing activities. They also help us detect scams. As an
example, the rule below is used to identify fake accounts [9].

◦ If (a) account x′ is confirmed fake, (b) both x and x′

like blogs P1, . . . , Pk, (c) x posts blog y1, (d) x′ posts
y2, and (e) if y1 and y2 contain the same particular
content (keyword), then x is likely a fake account.

As depicted in Fig. 1(d), its antecedent is given by graph
pattern Q4 (excluding the dotted edge), and its consequent
is the dotted edge is a(x, fake). In a social graph G, the
rule is to identify suspects for fake accounts, i.e., accounts
x that satisfy the structural constraints of pattern Q4. ✷

The need for graph-pattern association rules (GPARs) is
evident in social media marketing, community structure
analysis, social recommendation, knowledge extraction and
link prediction [33]. Such rules, however, depart from asso-
ciation rules for itemsets, and introduce several challenges.
(1) Conventional support and confidence metrics no longer
work for GPARs. (2) Mining algorithms for traditional rules
and frequent graph patterns cannot be used to discover prac-
tical diversified GPARs. (3) A major application of GPARs
is to identify potential customers in social graphs. This is
costly: graph pattern matching by subgraph isomorphism is
intractable. Worse still, real-life social graphs are often big,
e.g., Facebook has 13.1 billion nodes and 1 trillion links [21].

Contributions. This paper proposes GPARs, and provide
effective algorithms for discovering and applying GPARs.

(1) We introduce graph-pattern association rules (GPARs)
for social media marketing (Section 2). GPARs differ from
conventional rules for itemsets in both syntax and semantics.
A GPAR defines its antecedent as a graph pattern, which
specifies associations between entities in a social graph, and
explores social links, influence and recommendations. It en-
forces conditions via both value bindings (e.g., “44”) and
topological constraints by subgraph isomorphism.

(2) We define topological support and confidence metrics
for GPARs (Section 3). Conventional support for itemsets is
no longer anti-monotonic for GPARs. We define support in
terms of distinct “potential customers” by revising a mea-
sure proposed by [7]. We propose a confidence measure for
GPARs by revising Bayes Factor [31] to incorporate the lo-
cal closed world assumption [11,17]. This allows us to cope
with (incomplete) social graphs, and to identify interesting
GPARs with correlated antecedent and consequent.

(3) We study a new mining problem, referred to as the diver-
sified mining problem and denoted by DMP (Section 4). It is
a bi-criteria optimization problem to discover top-k GPARs.
While useful, DMP is NP-hard. Nonetheless, we develop a
parallel approximation algorithm with a constant accuracy
bound. We also provide optimization methods to filter re-
dundant or non-promising rules as early as possible.

(4) We also study how to identify potential customers by ap-
plying GPARs, referred to as the entity identification problem
and denoted by EIP (Section 5). Given a social graph G and
a set Σ of GPARs pertaining to an event p(x, y), we iden-
tify potential customers x of y in G with confidence above
a given bound η, by using GPARs in Σ. We show that it is
NP-hard even to decide whether such x exists.
Despite this, we develop a parallel scalable algorithm for

EIP such that its response time is in O(t(|G|, |Σ|)/n), a poly-

nomial reduction in the running time t(|G|, |Σ|) of sequential
algorithms, by using n processors. Hence given a big graph,
we can identify potential customers in it by increasing n.

(5) Using real-life and synthetic graphs, we experimentally
verify the scalability and effectiveness of our algorithms
(Section 6). We find the following. (a) Our algorithms for
DMP and EIP scale well with the increase of processors (n):
they are on average 3.2 and 3.53 times faster on real-world
social networks, respectively, when n increases from 4 to 20.
(b) They work reasonably well on large graphs: the one for
DMP takes less than 9 minutes (533.2 seconds) on graphs
with 30 million nodes and edges, and the one for EIP takes
45 seconds on graphs with 150 million nodes and edges for
24 GPARs, with 20 processors. (c) The DMP algorithm finds
interesting GPARs from real-life social graphs. (d) Our opti-
mization methods are effective: they speed up DMP and EIP

processing by 1.52 and 1.27 times, respectively, on real-life
graphs. Hence, despite their complexity, applying and dis-
covering GPARs are feasible in practice via parallelization.

Related Work. We categorize related work as follows.

Association rules. Introduced in [4], association rules are de-
fined on relations of transaction data. Prior work on associa-
tion rules for social networks [41] and RDF knowledge bases
resorts to mining conventional rules and Horn rules (as con-
junctive binary predicates) [17] over tuples with extracted
attributes from social graphs, instead of exploiting graph
patterns. While [6] studies time-dependent rules via graph
patterns, it focuses on evolving graphs and hence adopts
different semantics for support and confidence.

GPARs extend association rules from relations to graphs.
(a) It demands topological support and confidence met-
rics. Moreover, incomplete information is common in social
graphs [11, 17] and has to be incorporated into the metrics.
(b) GPARs are interpreted with isomorphic functions and
hence, cannot be expressed as conjunctive queries, which do
not support negation or inequality needed for functions. (c)
Applying GPARs becomes an intractable problem of multi-
pattern-query processing in big graphs. (d) Mining (diver-
sified) GPARs is beyond rule mining from itemsets [46].

Graph pattern mining. There have been algorithms for pat-
tern mining in graph databases [22,24] (see [25] for a survey).
Large-scale mining techniques are also studied in a single
graph [13], notably top-k algorithms [16, 27, 42, 44]. To re-
duce the cost, scalable subgraph isomorphism algorithms,
e.g., [38], can be adopted to generate pattern candidates.
Diversity of graph patterns is not studied there.

However, (a) pattern mining over graph databases [24,27]
cannot be used to mine GPARs, as their anti-monotonic
property does not hold in a single graph [25]. (b) While min-
ing single graphs is based only on isomorphic counting [13],
DMP is bi-criteria optimization problem for confidence and
diversity of GPARs, apart from [16,44]. We are not aware of
prior work on discovering diversified graph patterns.

Graph pattern matching. Several parallel algorithms have
been developed for subgraph isomorphism, e.g., [28, 37, 38],
and for multi-pattern optimization, e.g., [23, 32]. Our algo-
rithms for EIP differ from the prior work in the following. (a)
Instead of enumerating isomorphic matches, EIP identifies a
potential customer once one match is found, and moreover,
computes its associated confidence. That is, EIP is beyond
conventional subgraph isomorphism. (b) We provide paral-

1503

lel scalable algorithms for multi-pattern matching. To the
best of our knowledge, these are among the first algorithms
on big graphs that guarantee a polynomial speedup over se-
quential algorithms with the increase of processors [30]. (c)
We propose optimization strategies that are not studied by
previous work. This said, prior optimization techniques can
be incorporated into GPAR-based entity identification; e.g.,
the methods of [32] to extract common sub-patterns.

2. ASSOCIATION VIA GRAPH PATTERNS
In this section we define graph-pattern association rules.

2.1 Graphs, Patterns, and Pattern Matching
We start with notions of graphs and graph patterns.

Graphs. A graph is defined as G = (V,E, L), where (1) V is
a finite set of nodes; (2) E ⊆ V ×V is a set of edges, in which
(v, v′) denotes an edge from node v to v′; (3) each node v
in V (resp. edge e) carries L(v) (resp. L(e)), indicating its
label or content e.g., cust, French restaurant, 44 (resp. post,
like), as found in social networks and property graphs.

Example 2: Two graphs G1 and G2 are shown in Fig. 2.
(1) GraphG1 depicts a restaurant recommendation network.
For instance, cust1 and cust2 (labeled cust) live in New York;
they share common interests in 3 French restaurants (marked
with superscript 3 for simplicity); and they both visit a
newly opened French restaurant “Le Bernadin” in New York.
(2) Graph G2 shows activities of social accounts. It contains
(a) accounts acct1, . . . , acct4 (labeled acct), (b) blogs p1,
. . . , p7; and (c) edges from accounts to blogs. For example,
edge post(acct1, p1) means that account acct1 posts blog p1,
which contains keyword w1 “claim a prize”. ✷

Patterns. A pattern query Q is a graph (Vp, Ep, f, C), in
which Vp and Ep are the set of pattern nodes and edges,
respectively; each node up in Vp (resp. edge ep in Ep) has
a label f(up) (resp. f(ep)) specifying a search condition,
e.g., city, or “44” for value binding (Q3 of Example 1). For
succinct representation, a node up can be labeled with an
integer C(up) = k, indicating k copies of up with the same
label and associated links in the common neighborhood.

Graph pattern matching. We first review two notions
of subgraphs. (1) A graph G′ = (V ′, E′, L′) is a subgraph
of G = (V,E, L), denoted by G′ ⊆ G, if V ′ ⊆ V , E′ ⊆ E,
and moreover, for each edge e ∈ E′, L′(e) = L(e), and for
each v ∈ V ′, L′(v) = L(v). (2) We say that G′ is a subgraph
induced by a set V ′ of nodes if G′ ⊆ G and E′ consists of all
those edges in G whose endpoints are both in V ′.

We adopt subgraph isomorphism for pattern matching. A
match of pattern Q in graph G is a bijective function h from
the nodes of Q to the nodes of a subgraph G′ of G such that
(a) for each node u ∈ Vp, f(u) = L(h(u)), and (b) (u, u′)
is an edge in Q if and only if (h(u), h(u′)) is an edge in G′,
and f(u, u′) = L(h(u), h(u′)). We say that G′ matches Q.
Note that similarity predicates can be used instead of

equality “=” with no impact on our algorithms.

We denote by Q(G) the set of all matches of Q in G. For
each pattern node u, we use Q(u,G) to denote the set of all
matches of u in Q(G), i.e., Q(u,G) consists of nodes v in G
such that there exists a function h under which a subgraph
G′ ∈ Q(G) is isomorphic to Q, v ∈ G′ and h(u) = v.

Example 3: For Q1 of Fig. 1 and G1 of Fig. 2, a match
in Q1(G) is x 7→ cust1, x

′ 7→ cust2, city 7→ New York, y 7→

Asian
restaurant

fakeG2

post

1cust 2cust 3cust 4cust 5cust

G1 French
restaurant

Le Bernardin

French
restaurant

Per se

French
restaurant

Patina

New York
(city)

French
restaurant

3 French
restaurant

3 French
restaurant

3 LA
(city)

1acct 2acct 3acct 4acct

p
1

(blog)
p

2

(blog)
p

3

(blog)
p 4

(blog)
p

5

(blog)
p

6

(blog)
p

7

(blog)

k :"claim a prize"1

(keyword) (keyword)
k :"lottery rules"2

Asian
restaurant

6cust

restaurant
French

live_in
friend

like
in

visit

like
is_a

post
contains

live_in live_in

friendinin

in in in in

likelike like like

visit visit
visit

visitvisit
like

like
post like

is_a is_a
is_a

Figure 2: Labeled social graphs

Le Bernardin, and French restaurant3 to 3 French restaurants.
Here Q1(x,G1) includes cust1–cust3 and cust5. ✷

A pattern Q′ = (V ′

p , E
′

p, f
′, C′) is subsumed by another

pattern Q = (Vp, Ep, f, C), denoted by Q′ ⊑ Q, if (V ′

p , E
′

p)
is a subgraph of (Vp, Ep), and functions f ′ and C′ are re-
strictions of f and C in V , respectively. Observe that if
Q′ ⊑ Q, then for any graph G′ that matches Q, there exists
a subgraph G′′ of G′ such that G′′ matches Q′.

We will use the following notations. (1) For a pattern Q
and a node x in Q, the radius of Q at x, denoted by r(Q, x),
is the longest distance from x to all nodes in Q when Q is
treated as an undirected graph. (2) Pattern Q is connected if
for each pair of nodes in Q, there exists an undirected path
in Q between them. (3) For a node vx in a graph G and a
positive integer r, Nr(vx) denotes the set of all nodes in G
within radius r of vx. (4) The size |G| of G is |V |+ |E|, the
number of nodes and edges in G. (5) Node v′ is a descendant
of v if there is a directed path from v to v′ in G.

2.2 Graph Pattern Association Rules
We now define graph-pattern association rules.

GPARs. A graph-pattern association rule (GPAR) R(x, y)
is defined as Q(x, y) ⇒ q(x, y), where Q(x, y) is a graph
pattern in which x and y are two designated nodes, and
q(x, y) is an edge labeled q from x to y, on which the same
search conditions as in Q are imposed. We refer to Q and q
as the antecedent and consequent of R, respectively.

The rule states that for all nodes vx and vy in a (social)
graph G, if there exists a match h ∈ Q(G) such that h(x) =
vx and h(y) = vy, i.e., vx and vy match the designated nodes
x and y in Q, respectively, then the consequent q(vx, vy) will
likely hold. Intuitively, vx is a potential customer of vy.

We model R(x, y) as a graph pattern PR, by extending Q
with a (dotted) edge q(x, y). We refer to pattern PR as R
when it is clear from the context. We treat q(x, y) as pattern
Pq, and q(x,G) as the set of matches of x in G by Pq.

We consider practical and nontrivial GPARs by requiring
that (1) PR is connected; (2) Q is nonempty, i.e., it has at
least one edge; and (3) q(x, y) does not appear in Q.

Example 4: Recall the first association rule described
in Example 1. It can be expressed as a GPAR R1(x, y):

1504

Q1(x, y) ⇒ visit(x, y), where its antecedent is the pattern
Q1 given in Example 1, and its consequent is visit(x, y). The
GPAR can be depicted as the graph pattern of Fig. 1(a), by
extending Q1(x, y) with a dotted edge for visit(x, y).
The last rule of Example 1 is written as R4(x, y): Q4(x, y)

⇒ is a(x, y), where in Q4, y = fake is a value binding. The
GPAR is depicted as the pattern of Fig. 1(d). In is a(x, y),
the same search condition y = fake is imposed. ✷

Remark. (1) To simplify the discussion, we define the con-
sequent of GPAR with a single predicate q(x, y) following [4].
However, a consequent can be readily extended to multiple
predicates and even to a graph pattern. (2) Conventional
association rules [4] and a range of predication and classifi-
cation rules [39] are a special case of GPARs, since their an-
tecedents can be modeled as a graph pattern in which nodes
denote items. Conditional functional dependencies [14] can
also be represented by GPARs (see Q3 of Fig. 1(c)).

3. SUPPORT AND CONFIDENCE
We next define support and confidence for GPARs.

Support. The support of a graph pattern Q in a graph G,
denoted by supp(Q,G), indicates how often Q is applicable.
As for association rules for itemsets, the support measure
should be anti-monotonic, i.e., for patterns Q and Q′, if
Q′ ⊑ Q, then in any graph G, supp(Q′, G) ≥ supp(Q,G).

One may want to define supp(Q,G) as the number ||Q(G)||
of matches of Q in Q(G), following its counterpart for item-
sets [46]. However, as observed in [7, 13, 25], this conven-
tional notion is not anti-monotonic. For example, consider
pattern Q′ with a single node labeled cust, and Q with a
single edge like(cust,French restaurant). When posed on G1,
||Q(G)|| = 18 > ||Q′(G)|| = 6 (since French restaurant3 de-
notes 3 nodes labeled French restaurant), although Q′ ⊑ Q.

To cope with this, we revise the support measure proposed
in [7]. We define the support of the designated node x of
Q as ||Q(x,G)||, i.e., the number of distinct matches of x in
Q(G). We define the support of Q in G as

supp(Q,G) = ||Q(x,G)||.

One can verify that this support measure is anti-monotonic.
For a GPAR R(x, y): Q(x, y) ⇒ q(x, y), we define

supp(R,G) = ||PR(x,G)||,

by treating R as pattern PR(x, y) with designated nodes x, y.

Example 5: For GPAR R1(x, y): Q1(x, y) ⇒ visit(x, y) of
Example 4 and graph G1 of Fig 2, (1) ||Q1(x,G1)|| = 4 (see
Example 3); hence supp(Q1, G1) is 4; and (2) supp(R1, G1)
= ||PR1

(x,G1)|| = 3, where x has 3 matches cust1–cust3.

Similarly, consider R4(x, y): Q4(x, y) ⇒ is a(x, y) of Ex-
ample 4 and graph G2 in Fig 2, where y = fake. When
k=2, supp(R4, G2) = supp(Q4, G2) = ||Q4(x,G2)|| = 3, with
matches acct1–acct3 for the designated node x in Q4. ✷

Confidence. To find how likely q(x, y) holds when x and y
satisfy the constraints of Q(x, y), we study the confidence of
R(x, y) in G, denoted as conf(R,G). One may want to adopt
the conventional confidence for association rules, and define

conf(R,G) as supp(R,G)
supp(Q,G)

. That is, every match x in Q but

not in R is considered as negative example for R. However,
as observed in [11, 17], the standard confidence is blind to
the distinction between “negative” and “unknown”. This is
particularly an overkill when G is incomplete [11,34].

Example 6: Consider patternQ2 in Fig. 1(b). LetQ2(x,G)
contain three matches v1, v2, v3 of x1, x2, x3 in a social
graph G, all living in Ecuador, where (1) v1 has an edge
like to Shakira album, (2) v2 has only a single edge like to
MJ′s album, and (3) v3 has no edge of type like. Conven-
tional confidence treats v2 and v3 both as negative exam-
ples, with conf(R2, G) = 1

3
. However, G may be incomplete:

v3 has not entered any albums she likes. Thus we should
treat v3 as “unknown”, not as a counterexample to R2. ✷

Indeed, closed world assumption may not hold for social
network [34]. To distinguish “unknown” cases from true
negative for GPAR mining in incomplete social networks, we
adopt the local closed world assumption [11, 17], as com-
monly used in mining incomplete knowledge bases.

Local closed world assumption (LCWA). Given a predicate

q(x, y), we introduce the following notations.
(1) supp(q,G) = ||Pq(x,G)||, the number of matches of x;
(2) supp(q̄, G), the number of nodes u in G that (a) have

the same label as x, (b) have at least one edge of type
q, but (c) u 6∈ Pq(x,G); and

(3) supp(Qq̄,G), the number of nodes that satisfy condi-
tions (a) to (c) of (2), and are also in Q(x,G).

Given an (incomplete) social network G and a predicate
q(x, y), the local closed world assumption (LCWA) distin-
guishes the following three cases for a node u.
(1) “positive” case, if u ∈ Pq(x,G);
(2) “negative” case, for every u counted in supp(q̄, G); and
(3) “unknown” case, for every u that satisfies the search

condition of x but has no edge labeled as q.
That is, G is assumed “locally complete”: it either gives all
correct local information of u in connection with predicate q,
or knows nothing about q at node u (hence unknown cases).

Based on LCWA, we define conf (R, G) by revising Bayes
Factor (BF) of association rules [31] as follows:

conf(R,G) =
supp(R,G) ∗ supp(q̄, G)

supp(Qq̄,G) ∗ supp(q,G)
.

Intuitively, conf(R,G) measures the product of complete-
ness and discriminant. A GPAR R(x, y) has a better com-
pleteness if it holds on more matches x of Q(x, y), and is
more discriminant if it is less likely to hold on more nodes
from Qq̄. In addition, BF-based conf(R,G) is better jus-
tified than conventional confidence. As verified in [26, 31],
BF satisfies a set of principles for reasonable interestingness
measures, including fixed under independence (conf(R,G)
= 1 if Q and q are statistically independent), fixed under
incompatibility (conf(R,G)=0 if supp(R,G)=0), and mono-
tonicity (increases monotonically with supp(R,G) when
supp(q̄, G), supp(Q,G) and supp(q,G) are fixed). Hence we
adapt BF by incorporating LCWA and topological support.

Example 7: Consider GPAR R2 and Q2(x,G) described in
Example 6. Under the LCWA, match v1 accounts for “posi-
tive” for R2, while v2 and v3 are “negative” and “unknown”,
respectively. Indeed, assuming that G provides complete lo-
cal information for v2, then v2 is a counter-example to peo-
ple who live in Ecuador but do not like Shakira album; in
contrast, G knows nothing about what albums v3 likes.

One can see that supp(R2, G) = 1 (match v1), supp(q̄, G)
= 1 (match v2), supp(Qq̄,G) = 1 (match v2), and supp(q,G)
= 1 (match v1). The BF-based confidence conf(R2, G) is 1,
larger than its conventional counterpart (1

3
) as the LCWA

removes the impact of the unknown case v3. ✷

1505

symbols notations
Q(x,G) the set of distinct nodes that match x in Q(G)
R(x, y) GPAR Q(x, y) ⇒ q(x, y), represented as pattern PR

r(Q, x) the radius of Q at node x
Nr(vx) the set of nodes within radius r of vx

supp(Q,G) the number ||Q(x,G)|| of distinct matches of x in Q(G)
conf(Q,G) (supp(R,G) ∗ supp(q̄, G))/(supp(Qq̄,G) ∗ supp(q,G))
Σ(x,G, η) {vx | vx ∈ Q(x,G), Q ⇒ q ∈ Σ, conf(R,G) ≥ η}

Table 1: Notations: graphs, queries and rules

There are other alternatives to define support and confi-
dence for GPARs. (1) Following minimum image-based sup-
port [7], supp(R,G) can be defined as the the maximum
number of matches for x in non-overlap matches (i.e., no
shared nodes and edges) of R. However, this excludes po-
tential customers from matches that share even a single node
(e.g., only one of the three matches cust1-cust3 of Fig. 2 is
counted), and thus underestimates the significance. (2) Sim-
ilar to PCA confidence [17], conf(R,G) can be computed as
supp(R,G)
supp(Qq̄,G)

under LCWA. However, this only considers the

“coverage” of R instead of its interestingness in terms of
completeness and discriminant [26,31] (see Section 6).

Remark. We identify the following two “trivial” cases when
conf(R,G) = ∞: (1) supp(Qq̄,G) is 0, which interprets R as
a logic rule that holds on the entire G, i.e., “if v is in Q(x,G)
then v is a match in Pq(x,G) (hence PR(x,G))”; and (2)
supp(q,G) = 0, which means that q(x, y) in R specifies no
user in G; hence R should be discarded as uninteresting case.
These two cases can be easily detected and distinguished in
the GPAR discovery process (see Section 4).
The notations of this paper are summarized in Table 1.

4. DIVERSIFIED RULE DISCOVERY
We now study how to discover useful GPARs.

4.1 The Diversified Mining Problem
We are interested in GPARs for a particular event q(x, y).

However, this often generates an excessive number of rules,
which often pertain to the same or similar people [5, 44].
This motivates us to study a diversified mining problem,

to discover GPARs that are both interesting and diverse.

Objective function. To formalize the problem, we first
define a function diff(,) to measure the difference of GPARs.
Given two GPARs R1 and R2, diff(R1, R2) is defined as

diff(R1, R2) = 1−
|PR1

(x,G) ∩ PR2
(x,G)|

|PR1
(x,G) ∪ PR2

(x,G)|

in terms of the Jaccard distance of their match set (as social
groups). Such diversification has been adopted to battle
against over-concentration in social recommender systems
when the items recommended are too “homogeneous” [5].
Given a set Lk of k GPARs that pertain to the same predi-

cate q(x, y), we define the objective function F (Lk) again by
following the practice of social recommender systems [19]:

(1− λ)
∑

Ri∈S

conf(Ri)

N
+

2λ

k − 1

∑

Ri,Ri∈S,i<j

diff(Ri, Rj).

This, known as max-sum diversification, aims to strike a
balance between interestingness (measured by revised Bayes
Factor) and diversity (by distance diff(,)) with a parameter
λ controlled by users. We consider nontrivial GPARs (Sec-
tion 3) with conf(R,G) ∈ [0, supp(R,G) ∗ supp(q̄, G)], and
normalize (1) the confidence metric with N = supp(q,G) ∗

R5 R6 R7 R8

cust

y

cust
x

French

x'

city 2

restaurant

French
restaurant

like

visit

friend
cust

y

cust
x

Asian

x'

city
restaurant

French
restaurant

like

visit

friend
cust

y

cust
x

French

x'

city 2

restaurant

French
restaurant

live_in like

in

visit visit

friend
cust

y

cust
x

Asian

x'

city
restaurant

French
restaurant

live_in like

in

visit

friend

Figure 3: Diversified GPARs

supp(q̄, G) (a constant for fixed q(x, y)), and (2) the diver-

sity metric with 2λ
k−1

, since there are k(k−1)
2

numbers for the
difference sum, while only k numbers for the confidence sum.

Example 8: Consider GPARs R1 of Fig. 1, and R7 and R8

shown in Fig. 3, all pertaining to visits(x, French restaurant).
Then in graph G1 (Fig. 2), (1) supp(q,G1) = 5 (cust1-
cust4, cust6), supp(q̄, G1) = 1 (cust5); (2) R1(x,G1) =
R7(x,G1)= {cust1, cust2, cust3}, R8(x,G1) = {cust6}; (3)
conf(R1, G1) = conf(R7, G1) = 0.6, conf(R8, G1) = 0.2; and
(4) diff(R1, R7) = 0, diff(R1, R8) = diff(R7, R8) = 1.

For λ = 0.5, a top-2 diversified set of these GPARs

is {R7, R8} with F (R7, R8) = 0.5* 0.8
5
+1*1 = 1.08 (simi-

larly for {R1, R8}). Indeed, R7 and R8 find two disjoint
customer groups sharing interests in French restaurant and
Asian restaurant, respectively, with their friends. ✷

Problem. Based on the objective function, the diversified
GPAR mining problem (DMP) is stated as follows.

◦ Input: A graph G, a predicate q(x, y), a support bound
σ and positive integers k and d.

◦ Output: A set Lk of k nontrivial GPARs pertaining to
q(x, y) such that (a) F (Lk) is maximized; and (b) for
each GPAR R ∈ Lk, supp(R,G) ≥ σ and r(PR, x) ≤ d.

DMP is a bi-criteria optimization problem to discover GPARs
for a particular event q(x, y) with high support, bounded ra-
dius, and a balanced confidence and diversity. In practice,
users can freely specify q(x, y) of interests, while proper pa-
rameters (e.g., support, confidence, diversity) can be esti-
mated from query logs or recommended by domain experts.

The problem is nontrivial. Consider its decision problem
to decide whether there exists a set Lk of k GPARs with
F (Lk) ≥ B for a given bound B. One can show the following
by reduction from the dispersion problem (cf. [19]).

Proposition 1: The DMP decision problem is NP-hard. ✷

4.2 Discovery Algorithm
One might want to follow a “discover and diversify” ap-

proach that (1) first finds all GPARs pertaining to q(x, y)
by frequent graph pattern mining [35], and then (2) selects
top-k GPARs via result diversification [19]. However, this is
costly: (a) an excessive number of GPARs are generated; and
(b) for all GPARs R generated, it has to compute conf(R,G)
and their pairwise distances, and moreover, pick a top-k set
based on F (); the latter is an intractable process itself.

One can do it more efficiently, with accuracy guarantees.

Theorem 2: There exists a parallel algorithm for DMP that
finds a set Lk of top-k diversified GPARs such that (a) Lk

has approximation ratio 2, and (b) Lk is discovered in d
rounds by using n processors, and each round takes at most
t(|G|/n, k, |Σ|) time, where Σ is the set of GPARs R(x, y)
such that supp(R,G) ≥ σ and r(PR, x) ≤ d. ✷

1506

Here t(|G|/n, k, |Σ|) is a function that takes |G|/n, k and
|Σ| as parameters, rather than the size |G| of the entire G.

As a proof, we give such an algorithm, denoted as DMine

and shown in Fig. 4. It designates one processor as coordi-
nator Sc and the rest as workers Si. It works as follows.

(1) It divides G into n−1 fragments (F1, . . . , Fn−1) such that
(a) for each “candidate” vx that satisfies the search condition
on x in q(x, y), its d-neighbor Gd(vx), i.e., the subgraph
of G induced by Nd(vx), is in some fragment; and (b) the
fragments have roughly even size. These are possible since
98% of real-life patterns have radius 1, 1.8% have radius 2
[18], and the average node degree is 14.3 in social graphs [8];
thus Gd(vx) is typically small compared with fragment size.
Fragment Fi is stored at worker Si, for i ∈ [1, n− 1].

(2) DMine discovers GPARs in parallel by following bulk syn-
chronous processing, in d rounds. The coordinator Sc main-
tains a list Lk of diversified top-k GPARs, initially empty. In
each round, (a) Sc posts a set M of GPARs to all workers,
initially q(x, y) only; (b) each worker Si generates GPARs lo-
cally at Fi in parallel, by extending those in M with new
edges if possible; (c) these GPARs are collected and assem-
bled by Sc in the barrier synchronization phase; moreover,
Sc incrementally updates Lk: it filters GPARs that have low
support or cannot make top-k as early as possible, and pre-
pares a set M of GPARs for expansion in the next round.

As opposed to the “discover and diversify” method, DMine

(a) combines diversifying into discovering to terminate the
expansion of non-promising rules early, rather than to con-
duct diversifying after discovering; and (b) it incrementally
computes top-k diversified matches, rather than recomput-
ing the diversification function F () starting from scratch.
We next present the details of algorithm DMine.

Auxiliary structures. Algorithm DMine maintains the
following: (a) at the coordinator Sc, a set Lk to store top k
GPARs, and a set Σ to keep track of generated GPARs; and
(b) at each worker Si, a set Ci of candidates vx for x at Fi.

Messages. In each round, coordinator Sc and workers Si

communicate via messages. (1) Each worker Si generates
a set Mi of messages. Each message is a triple <R, conf,
flag>, where (a) R is a GPAR generated at Si, (b) conf

includes, e.g., supp(R(x, y), Fi) and supp(Qq̄(x, y), Fi), and
(c) a Boolean flag to indicate whether R can be extended at
Si. (2) After receivingMi, Sc generates a setM of messages,
which are GPARs to be extended in the next round.

Algorithm. DMine initializes Lk and Σ as empty, and M
as {q(x, y)} (line 1). For r from 1 to d, it improves Lk

by incorporating GPARs of radius r (lines 2-11), following a
levelwise approach. In each round, it invokes localMine with
M at all workers (line 4). Below we present the details.

Parallel GPARs generation (line 13). In the first round, pro-
cedure localMine receives q(x, y) from Sc, and computes
the following: (a) three sets: Ci, nodes vx that satisfy
the search condition of x in discovered GPARs, Pq(x, Fi),
matches of x in q(x, y), and q̄(x, Fi), nodes v in Fi that
account for supp(q̄, Fi) (Section 2.2); and (b) supp(q, Fi) =
||Pq(x, Fi)||, supp(q̄, Fi) = ||Pq̄(x, Fi)||. Note that supp(q, Fi)
and supp(q̄, Fi) never change and hence are derived once for
all. Each match vx ∈ q(x, Fi) is referred to as a center node.
In round r, upon receiving M from Sc, localMine does the

following. For each GPAR R(x, y) : Q(x, y) ⇒ q(x, y) in M ,

Algorithm DMine

Input: A graph G, q(x, y), bound σ, and positive integers k and d.
Output: A set Lk of top-k diversified GPARs.

/* executed at coordinator */
1. Lk := ∅; Σ := ∅; r : = 1; M := {q(x, y)};
2. while r ≤ d do
3. r := r + 1;
4. post M to all workers and invoke localMine (M) in parallel;
5. collect in ∆E candidate GPARs in Mi from all workers;
6. check automorphism and assemble confidence for these GPARs;
7. ∆E includes R with supp(R,G) ≥ σ; Σ := Σ ∪∆E; M := ∅;
8. for each GPAR R ∈ ∆E do
9. incDiv (Lk, R,Σ); /* incrementally update Lk, prune Σ,∆E */
10. if R is “extendable”
11. then M := M ∪ {R}; /* next round */
12. return Lk;

/* executed at each worker Si in parallel, upon receiving M */
13. Σi := localMine (M);
14. construct message set Mi from Σi;
15. send Mi to the coordinator;

Figure 4: Algorithm DMine

and each center node vx, it expands Q by including at least
one new edge that is at hop r from vx, for all such edges.

Message construction (lines 14–15). For each GPAR R(x, y):
Q(x, y) ⇒ q(x, y), its local confidence conf is computed: (1)
supp(R,Fi) and supp(Q,Fi) count nodes in Pq(x, Fi) and Ci

that match x in R(x, y) and Q(x, y), respectively; and (2)
supp(Qq̄, Fi) = ||Q(x, Fi) ∩ Pq̄(x, Fi)||. Then conf contains
supp(R,Fi), supp(Qq̄, Fi), supp(q, Fi) and supp(q̄(x, Fi));
where supp(q, Fi) and supp(q̄, Fi) values are from the first
round. A Boolean flag is also set to indicate whether R can
be extended by checking whether there exists a center node
vx that has edges at r+1 hops from vx. Message Mi includes
<R, conf, flag> for each R, and is sent to Sc.

Message assembling (lines 4-7). Upon receiving Mi from
each Si, coordinator Sc does the following. (1) It groups au-
tomorphic GPARs from all Mi. (2) For each group of mi =
<R, confi, flagi> that refers to the same (automorphic) R, it
assembles conf(R) into a single m = <R, conf(R,G), flag>,

where (a) conf(R,G)=
∑

supp(R,Fi)
∑

supp(q̄,Fi)∑
supp(Qq̄,Fi)

∑
supp(q,Fi)

; and (b) flag

is the disjunction of all flagi, for i ∈ [1, n− 1]. This suffices
since by the partitioning of graph G, nodes accounted for lo-
cal support in Fi are disjoint from those in Fj if i 6= j; hence
conf(R) can be directly assembled from local conf from Fi.
Similarly, supp(R,G) =

∑
i∈[1,n−1] supp(R,Fi). For each

GPAR R, if supp(R,G) ≥ σ, it is added to ∆E and Σ.

Incremental diversification (lines 8-9). Next, DMine incre-
mentally updates Lk by invoking procedure incDiv. It uses
a max priority Queue of size ⌈ k

2
⌉, where (1) each element in

Queue is a pair of GPARs, and (2) all GPAR pairs in Queue

are pairwise disjoint. In round r, starting from Queue of
top-k diversified GPARs with radius at most r − 1, DMine

improves Queue by incorporating pairs of GPARs from ∆E,
with radius r. (1) If Queue contains less than ⌈ k

2
⌉ GPARs

pairs, incDiv iteratively selects two distinct GPARs R and R′

from ∆E that maximize a revised diversification function:

F ′(R,R′) =
1− λ

N(k − 1)
(conf(R)+conf(R′))+

2λ

k − 1
diff(R,R′).

and insert (R,R′) into Queue, until |Queue| = ⌈ k
2
⌉. It book-

keeps each pair (R,R′) and F ′(R,R′). (2) If |Queue|=⌈ k
2
⌉,

for each new GPAR R ∈ ∆E (not in any pair of Queue)

1507

and R′ ∈ Σ, it incrementally computes and adds a new pair
(R,R′) ∈ ∆E×Σ that maximizes F ′(R,R′) to Queue. This
ensures that a pair (R1, R2) with minimum F ′(R1, R2) is
replaced by (R,R′), if F ′(R1, R2) < F ′(R,R′).
After all GPAR pairs are processed, incDiv inserts R and

R′ into Lk, for each GPARs pairs (R,R′) ∈ Queue.

Message generation at Sc (lines 10-11). DMine next selects
promising GPARs for further parallel extension at the work-
ers. These include R ∈ ∆E that satisfy two conditions: (1)
supp(R,G) ≥ σ, since by the anti-monotonic property of
support, if supp(R,G) < σ, then any extension of R cannot
have support no less than σ; and (2) R is “Extendable”,
i.e., flag = true in <R, conf, flag>. It includes such R in
M , and posts M to all workers in the next round.

Example 9: Suppose that graph G1 in Fig. 2 is distributed
to two workers S1 and S2, where S1 (resp. S2) contains sub-
graphs induced by cust1-cust3 (resp. cust4-cust6) and their
2-hop neighborhoods in G1. Let predicate q be visits(x,
French restaurant), λ=0.5, d=2 and k=2. We demonstrate
algorithm DMine using example GPARs R5-R8 (Fig. 3).

(1) Coordinator Sc sends q to all workers, and computes
supp(q,G1) = 5 (cust1-cust4, cust6), supp(q̄, G1) = 1 (cust5).

(2) In round 1, R5 (among others) is generated at S1 from 1-
hop neighbors of cust1-cust3, which are matches in q(x,G1)
(Fig. 3). At S2, R5 and R6 are generated by expanding cust4
and cust6. Local messages Mi from Si include the following:

site message GPAR R(x,G1) Qq̄(x, y) flag

S1 M1 R5 cust1-cust3 ∅ T

S2 M2

R5 cust4 cust5 T
R6 cust4,cust6 cust5 T

Sc
M R5 cust1-cust4 cust5 T
M R6 cust4,cust6 cust5 T

(3) Coordinator Sc assembles M1 and M2, and builds ∆E
including {R5, R6}. It computes conf(R5) = 0.8, conf(R6)
= 0.4, diff(R5, R6) = 0.8. It updates Lk = {R5, R6}, with
F ′(R5, R6) = 0.5∗ 1.2

5
+1∗0.8 = 0.92. It includes R5 and R6

in message M (the table above), and posts it to S1 and S2.

(4) In round 2, R5 is extended to R7 and R1 at S1 and S2,
and R6 to R8 at S2 (Fig. 3); the messages include:

site message GPAR R(x,G1) Qq̄(x, y) flag

S1 M1 R7, R1 cust1-cust3 ∅ F

S2 M2

R7 ∅ cust5 F
R8 cust6 cust5 F

(5) Given these, coordinator Sc assembles the messages and
computes conf(R7)=0.6, conf(R8)=0.2 and diff(R7, R8)=1.
DMine computes F ′(R7, R8) = 0.5 ∗ 0.8

5
+1 ∗ 1=1.08 >

F ′(R5, R6)=0.92. Hence, it replaces (R5, R6) with (R7, R8)
and updates Lk to be {R7, R8}. As R7 and R8 are marked
as “not extendable” at radius 2 (since d=2), DMine returns
{R7, R8} as top-2 diversified GPARs, in total 2 rounds. ✷

Message reduction. By maintaining additional informa-
tion, DMine reduces the sizes of Σ, M and Mi. The idea is
to test whether an upper bound of marginal benefit for any
GPAR pairs can improve the minimum F ′-value of Lk.

In each round r, incDiv filters non-promising GPARs from
Σ and ∆E that cannot make top-k even after new GPARs are
discovered. It keeps track of (1) a value F ′

m=minF ′(R1, R2)
for all pairs (R1, R2) in Lk, (2) for each GPAR Rj in ∆E, an
estimated maximum confidence Uconf+(Rj , G) for all the
possible GPARs extended from Rj , and (3) conf(R,G) for

each GPAR R in Σ. Here Uconf+(Rj , G) is estimated as fol-
lows. (a) Each Si computes Usuppi(Rj , Fi) as the number
of matches of x in Rj(x, Fi) that connect to a center node
in Fi at hop r + 1 (r ≤ d − 1). (b) Then Uconf+(Rj) is

assembled at Sc as
∑

Usuppi(Rj ,Fi)supp(q̄,G)

1∗supp(q,G)
. Denote the maxi-

mum Uconf+(Rj , G) for Rj ∈ ∆E as maxUconf+(∆E), and
the maximum conf(R,G) for R ∈ Σ as max conf(Σ). Then
incDiv reduces Σ and M based on the reduction rules below.

Lemma 3: [Reduction rules]: (1) A GPAR R ∈ Σ cannot
contribute to Lk if 1−λ

N(k−1)
(conf(R,G)+maxUconf+(∆E))+

2λ
k−1

≤ F ′

m. (2) Extending a GPAR Rj ∈ ∆E does not

contribute to Lk if either (a) Rj is not extendable, or (b)
1−λ

N(k−1)
(Uconf+(Rj , G) + max conf(Σ)) + 2λ

k−1
≤ F ′

m. ✷

For the correctness of the rules, observe the following. (1)
For each R ∈ Σ, conf(R)+maxUconf+(∆E)+1 is an upper
bound for its maximum possible increment to the F ′-value
of Lk; similarly for any Rj from ∆E. (2) If GPAR R does
not contribute to Lk, then any GPARs extended from R do
not contribute to Lk. Indeed, (a) upper bounds Uconf(R),
Usuppi(R), and Uconf+(R) are anti-monotonic with any R′

expanded of R, and (b) maxUconf+(∆E) and max conf(Σ)
are monotonically decreasing, while F ′

m is monotonically in-
creasing with the increase of rounds. Hence R can be safely
removed from Σ, ∆E or Mi. Note that the removal of
GPARs from Σ benefit the reduction of ∆E with smaller
max conf(Σ)), and vice versa. DMine repeatedly applies the
rules until no GPARs can be reduced from Σ and ∆E.

Automorphism checking. To reduce redundant GPARs,
DMine checks whether GPARs in ∆E are automorphic at
coordinator Sc (line 6) and locally at each Si (localMine).
It is costly to conduct pairwise automorphism tests on all
GPARs in ∆E, since it is equivalent to graph isomorphism.

To reduce the cost, we use bisimulation [12]. A graph pat-
tern PR1

is bisimilar to PR2
if there exists a binary relation

Ob on nodes of PR1
and PR2

such that (a) for all nodes u1

in PR1
, there exists a node u2 in PR2

with the same label
such that (u1, u2) ∈ Ob, and vice versa for all nodes in PR2

;
and (b) for all edges (u1, u

′

1) in PR1
, there exists an edge

(u2, u
′

2) in PR2
with the same label such that (u′

1, u
′

2) ∈ Ob;
and vice versa for all edges in PR2

. The connection between
bisimulation and automorphism is stated as follows.

Lemma 4: If graph pattern PR1
is not bisimilar to PR2

,
then R1 is not an automorphism of R2, ✷

Hence, for a pair R1 and R2 of GPARs, DMine first checks
whether PR1

is bisimilar to PR2
. It checks automorphism

between R1 and R2 only if so. It takes O(|∆E|2) time to
check pairwise bisimilarity Ob for all GPARs in ∆E [12].
Moreover, Ob can be incrementally maintained when new
GPARs are added [40]. These allow us to use efficient (incre-
mental) bisimulation tests instead of automorphism tests.

Trivial GPARs. DMine detects trivial GPARs R(x, y):
Q(x, y) ⇒ q(x, y) at Sc as follows: (1) if supp(q,G) is 0,
it returns ∅ to indicate that no interesting GPARs exist; and
(2) if an extension leads to supp(Qq̄) = 0, i.e., no match in
Q(x,G) violates q(x, y), Sc removes R from ∆E and Σ.

Analyses. DMine returns a set Lk of k diversified GPARs

with approximation ratio 2 (line 12), for the following rea-
sons. (1) Parallel generation of GPARs finds all candidate
GPARs within radius d. This is due to the data locality of

1508

subgraph isomorphism: for any node vx in G, vx ∈ PR(x,G)
iff vx ∈ PR(x,Gd(vx)) for any GPAR R of radius at most d
at x. That is, we can decide whether vx matches x via R
by checking the d-neighbor of vx locally at a fragment Fi.
(2) Procedure incDiv updates Lk following the greedy strat-
egy of [19], with approximation ratio 2. This is verified by
approximation-preserving reduction to the max-sum disper-
sion problem, which maximizes the sum of pairwise distance
for a set of data points and has approximation ratio 2 [19].
The reduction maps each GPAR to a data point, and sets
the distance between two GPARs R and R′ as F ′(R,R′).

For time complexity, observe that in each round, the cost
consists of (a) local parallel generation time T1 of candidate
GPARs, determined by |Fi|, M and Mi; and (b) total as-
sembling and incremental maintenance cost T2 of Lk at Sc,
dominated by |Σ|, k and |Mi|. The cost of message reduction
(by applying Lemma 3) takes in total O(d|Σ|) time, where
in each round, it takes a linear scan of ∆E and Σ to identify
redundant GPARs. Note that

∑
i∈[1,n−1] |Mi| ≤ |∆E| ≤ |Σ|,

|M | ≤ |Σ|, and |Fi| is roughly |G|/n by our partitioning
strategy. Hence T1 and T2 are functions of |G|/n, k and |Σ|.
This completes the proof of Theorem 2.

Remarks. Algorithm DMine can be easily adapted to the
following two cases. (1) When a set of predicates instead of a
single q(x, y) is given, it groups the predicates and iteratively
mines GPARs for each distinct q(x, y). (2) When no specific
q(x, y) is given, it first collects a set of predicates of interests
(e.g., most frequent edges, or with user specified label q),
and then mines GPARs for the predicate set as in (1).

5. IDENTIFYING CUSTOMERS
We study how to identify potential customers with GPARs.

5.1 The Entity Identification Problem
Consider a set Σ of GPARs pertaining to the same q(x, y),

i.e., their consequents are the same event q(x, y). We define
the set of entities identified by Σ in a (social) graph G with
confidence η, denoted by Σ(x,G, η), as follows:

{vx | vx ∈ Q(x,G), Q(x, y) ⇒ q(x, y) ∈ Σ, conf(R,G) ≥ η}

Problem. We study the entity identification problem (EIP):

◦ Input: A set Σ of GPARs pertaining to the same q(x, y),
a confidence bound η > 0, and a graph G.

◦ Output: Σ(x,G, η).
It is to find potential customers x of y in G identified by at
least one GPAR in Σ, with confidence of at least η.

Intractability. The decision problem of EIP is to deter-
mine, given Σ, G and η, whether Σ(x,G, η) 6= ∅. It is equiv-
alent to decide whether there exists a GPAR R ∈ Σ such that
conf(R,G) ≥ η. The problem is nontrivial, as it embeds the
subgraph isomorphism problem, which is NP-hard.

Proposition 5: The decision problem for EIP is NP-hard,
even when Σ consists of a single GPAR. ✷

A naive way to compute Σ(x,G, η) is as follows. For
each R(x, y) : Q(x, y) ⇒ q(x, y) in Σ, (a) enumerate all
matches of Qq̄ and PR in G by using an algorithm for sub-
graph isomorphism, e.g., VF2 [10]; (b) compute supp(q,G)
and supp(q̄, G) once in G; then based on the findings, (c)
identify those R with conf(R,G) ≥ η, and return matches
of x by these GPARs. This is cost-prohibitive (e.g., takes

O(|G|!|G||Σ|) time using VF2 [10]) in real-life social graphs
G, which often have billions of nodes and edges [21]. It is
thus not practical to simply apply graph pattern matching
algorithms to EIP over large G.

One might think that parallelization would solve the prob-
lem. However, parallelization is not always effective.

Parallel scalability. To characterize the effectiveness of
parallelization, we formalize parallel scalability following
[30]. Consider a problem A posed on a graph G. We de-
note by t(|A|, |G|) the worst-case running time of a sequen-
tial algorithm for solving A on G. For a parallel algorithm,
we denote by T (|A|, |G|, n) the time taken by the algorithm
for solving A on G by using n processors. Here we assume
n ≪ |G|, i.e., the number of processors does not exceed the
size of the graph; this typically holds in practice since G has
billions of nodes and edges, much larger than n.

We say that the algorithm is parallel scalable if

T (|A|, |G|, n) = O(t(|A|, |G|)/n) + (n|A|)O(1).

That is, the parallel algorithm achieves a polynomial reduc-
tion in sequential running time, plus a “bookkeeping” cost
O((n|A|)l) for a constant l that is independent of |G|.

Obviously, if the algorithm is parallel scalable, then for a
given G, it guarantees that the more processors are used, the
less time it takes to solve A on G. It allows us to process big
graphs by adding processors when needed. If an algorithm
is not parallel scalable, we may not get reasonable response
time no matter how many processors are used.

We say that problem A is parallel scalable if there exists
a parallel scalable algorithm for it. Unfortunately, parallel
scalability is not warranted for all problems, e.g., it is beyond
reach for graph simulation [15]. The good news is as follows.

Theorem 6: EIP is parallel scalable. ✷

As a proof, we outline a parallel algorithm for EIP, de-
noted by Matchc. Given Σ, G = (V,E, L), η and a positive
integer n, it computes Σ(x,G, η) by using n processors. Note
that Matchc is exact: it computes precisely Σ(x,G, η).

To present Matchc, we use the following notations. (a)
We use d to denote the maximum radius of R(x, y) at node
x, for all GPARs R in Σ. (b) For a node vx ∈ V , Gd(vx) is
the d-neighbor of vx in G (see Section 4.2). (c) We denote
by L the set of all candidates vx of x, i.e., nodes in G that
satisfy the search condition of x in q(x, y).

Algorithm. Matchc capitalizes on the data locality of sub-
graph isomorphism (see Section 4.2). It works as follows.

(1) Partitioning. It divides G into n fragments F =
(F1, . . . , Fn) in the same way as algorithm DMine (Sec-
tion 4.2), such that Fi’s have roughly even size, and Gd(vx)
is contained in one Fi for each vx ∈ L. This is done in par-
allel. In particular, Gd(vx) can be constructed in parallel by
revising BFS (breadth-first search), within d hopes from vx.
Each fragment Fi is assigned to a processor Si for i ∈ [1, n].

(2) Matching. All processors Si compute local matches in
Fi in parallel. For each candidate vx ∈ L that resides in
Fi, and for each GPAR R(x, y) : Q(x, y) ⇒ q(x, y) in Σ, Si

checks whether vx is in PR(x,Gd(vx)), PQ(x,Gd(vx)) and
Pq(x,Gd(vx)), and whether vx has an outlink labeled q.

(3) Assembling. Compute conf(R,G) for each R in Σ by as-
sembling the partial results of (2) above. This is also done
in parallel: first partition L into n fragments; then each
processor operates on a fragment and computes partial sup-

1509

port. These partial results are then collected to compute
conf(R,G). Finally, output those vx when there exists a
GPAR R such that vx ∈ PR(x,G) and conf(R,G) ≥ η.

Analysis. To show that Matchc is parallel scalable, observe
the following. (1) Step 1 is in O(|L||Gm

d |/n) time, since BFS

is in O(|Gm
d |) time, where Gm

d is the largest d-neighbor for
all vx ∈ L. (2) Step 2 takes O(t(|Gm

d |, |Σ|)|L|/n) time, where
t(|Gm

d |, |Σ|) is the worst-case sequential time for processing
a candidate vx. (3) Step 3 takes O(|L||Σ|/n) time. (4) By
|L| ≤ |V |, steps 1 and 2 take much less time than t(|G|, |Σ|),
since t(,) is an exponential function by Proposition 5, unless
P = NP. (5) In practice, t(|Gm

d |, |Σ|)|L| ≪ t(|G|, |Σ|) since
t(,) is exponential and Gm

d is much smaller than G. Indeed,
(a) in the real world, graph patterns in GPARs are typically
small, and hence so is the radius d; as argued in Section 4.2,
Gd(vx) is thus often small. Putting these together, we have
that the parallel cost T (|G|, |Σ|, n) < O(t(|G|, |Σ|)/n), and
better still, the larger n is, the smaller T (|G|, |Σ|, n) is.

Remark. Algorithm DMine (Section 4.2) takes t(|A|/n, k)
time and is parallel scalable if the problem size |A| is mea-
sured as |G|+|Q|+|Σ| [29]. Indeed, if one wants all candidate
GPARs R with supp(R,G) ≥ σ, then |Σ| is the size of the
output, and |Σ| is not large (due to small d and large σ).

5.2 Optimization Strategies
Algorithm Matchc just aims to show the parallel scalabil-

ity of EIP. Its cost is dominated by step 2 for matching via
subgraph isomorphism. To reduce the cost, we develop algo-
rithm Match that improves Matchc by incorporating the fol-
lowing optimization techniques. To simplify the discussion,
we start with a single GPAR R(x, y) : Q(x, y) ⇒ q(x, y).

Early termination. For each candidate vx ∈ L that re-
sides in fragment Fi, we check whether there exists a match
Gx of PR in which vx matches x. As soon as one Gx is
verified a match of PR, we include vx in PR(x, Fi), without
enumerating all matches of PR at vx. This is done locally at
Fi: by our partitioning strategy, Gd(vx) is contained in Fi.

Guided search. To identify Gx at vx, Match starts with
pair (x, vx) as a partial match m, and iteratively grows m
with new pairs (u, v) for u ∈ PR and v ∈ Gd(vx) until a
complete match is identified, i.e., m covers all the nodes in
PR. A complete m induces a subgraph Gx. It is in PTIME

to verify whether m is an isomorphism from PR to Gx.
To grow m, Match performs guided search based on k-hop

neighborhood sketch. For each node v in G, a k-hop sketch
K(v) is a list {(1, D1), . . . , (k,Dk)}, where Di denotes the
distribution of the node labels and their frequency at i hop
of v. Given a pair (u, v) newly added to m and a pattern
edge (u, u′) in Q, Match picks “the best neighbor” v′ of v
such that the pair (u′, v′) has a high possibility to make
a match. This is decided by assigning a score f(u′, v′) as∑

i∈[1,k](Di − D′

i), where D′

i ∈ K(u′), Di ∈ K(v′), and

Di−D′

i is the total frequency difference for each label in Di.
Indeed, (1) v′ does not match u′ if for some i, Di − D′

i <
0; and (2) the larger the difference is, the more likely v′

matches u′. If (u′, v′) does not lead to a complete m, Match

backtracks and picks v′′ with the next best score r(u′, v′′).

Example 10: Consider GPAR R1 of Fig. 1. For its desig-
nated node x, the 2-hop neighborhood sketch L2(x) in PR1

contains pair (1, D1={(city,1), (cust,1), (French Restaurant,
4)}) and (2, D2={(city,1),(cust,1),(French Restaurant, 4)}).

Given R1 and G1 of Fig. 2, Match identifies PR1
(x,G1)

as follows. (1) It finds Pq1(x,G)={cust1-cust4, cust6}, while
cust5 accounts for supp(q̄1, G1). (2) It computes PR1

(x,G1)
by verifying candidates vx from Pq(x,G1), and calculates
f(x, vx) in G1, e.g., L2(cust2) = {(1, D1 = {(city, 1), (cust,
2), (French Restaurant, 8)}), (2, D2={(city, 1), (cust, 2),
(French Restaurant, 8)})}. Hence f(x, cust2) = 5 + 5 = 10.
Match then ranks candidates cust2, cust1, cust3, cust4, where
cust6 is filtered due to mismatched sketches. (2) At cust2,
Match starts from (x, cust2), and extends to (x′, cust3) since
f(x′, cust3) is the highest. It continues to add pairs (city,
NewYork), (French Restaurant, LeBernardin) and three pairs
for French Restaurant3. This completes the match, and cust2
is verified a match. (3) Similarly, Match verifies cust1 and
cust3, and finds PR1

(x,G1) = {cust1, cust2, cust3}.
Given PR1

(x,G1), Match only needs to verify cust5 for Q1

in R1; it finds Q1(x,G1) = PR1
(x,G1) ∪ {cust5}. It also

finds supp(q,G1) = 5 (cust1–cust4, cust6), supp(q̄, G1) = 1
(cust5), and computes conf(R1) =

3∗1
1∗5

= 0.6. ✷

Algorithm Match. Given a set Σ of GPARs, Match revises
step (2) of Matchc by checking whether vx matches x via
guided search and early termination; it reduces redundant
computation for multiple GPARs by extracting common sub-
patterns of GPARs in Σ [32]. It remains parallel scalable
following the same complexity analysis for Matchc.

6. EXPERIMENTAL STUDY
Using real-life and synthetic graphs, we conducted three

sets of experiments to evaluate (1) the scalability of algo-
rithm DMine, (2) the effectiveness of DMine for discover-
ing interesting GPARs, and (3) the scalability of algorithm
Match for identifying potential customers in large graphs.

Experimental setting. We used two real-life graphs: (a)
Pokec [3], a social network with 1.63 million nodes of 269
different types, and 30.6 million edges of 11 types, such as
follow, like; and (b) Google+ [20], a social graph with 4
million entities of 5 types and 53.5 million links of 5 types.

We also designed a generator for synthetic graphs G =
(V,E, L), controlled by the numbers of nodes |V | (up to 50
million) and edges |E| (up to 100 million), with L drawn
from an alphabet L of 100 labels.

Pattern generator. To evaluate Match, we generated GPARs

R controlled by the numbers |Vp| and |Ep| of nodes and edges
in PR, respectively. (1) We found 48 meaningful GPARs on
each of Pokec and Google+, with labels drawn from their
data (domain, social groups). (2) For synthetic graphs, we
also generated 24 GPARs with labels drawn from L. We
denote the size of a GPAR R as |R|= (|Vp|, |Ep|).

Algorithms. We implemented the following, all in Java. (1)
Algorithm DMine, compared with (a) DMineno, its coun-
terpart without optimization (incremental, reductions and
bisimilarity checking), and (b) GRAMI [13], an open source
frequent subgraph mining tool [1]. Since GRAMI uses a sin-
gle machine [1], we only compared the interestingness of pat-
terns found by GRAMI with GPARs discovered by DMine. (2)
Algorithm Match, compared with (a) Matchc (Section 5.1),
(b) disVF2, a parallel implementation of VF2 for EIP, and (c)
Matchs, Match by using the method of [38] instead of VF2.

Fragmentation and distribution. We revised the algorithm
of [36] to evenly partition graph G into n fragments (see
Section 4.2). We find that the gap between maximum and

1510

 100

 200

 300

 400

 500

 600

 700

 800

 900

 1000

4 8 12 16 20

T
im

e
(s

ec
on

d)

DMine
DMineno

(a) DMine: Varying n (Pokec)

 400

 600

 800

 1000

 1200

4 8 12 16 20

T
im

e
(s

ec
on

d)

DMine
DMineno

(b) DMine: Varying n (Google+)

 300

 350

 400

 450

 500

 550

3k 4k 5k 6k 7k

T
im

e
(s

ec
on

d)

DMine
DMineno

(c) DMine: Varying σ (Pokec)

 780

 800

 820

 840

 860

 880

 900

0.7k 0.8k 0.9k 1k 1.1k

T
im

e
(s

ec
on

d)

DMine
DMineno

(d) DMine: Varying σ (Google+)

 400

 600

 800

 1000

 1200

 1400

 1600

 1800

 2000

4 8 12 16 20

T
im

e
(s

ec
on

d)

DMine
DMineno

(e) DMine: Varying n (Synthetic)

 600

 800

 1000

 1200

 1400

 1600

 1800

 2000

(10M,20M) (20M, 40M) (30M, 60M) (40M, 80M)(50M, 100M)

T
im

e
(s

ec
on

d)

DMine
DMineno

(f) DMine: Varying |G| (Synthetic)

user

x

y
Disco

user 1

user 2

par ty
l isten
to music

hobby hobby

follow

like_m usic like_m usic

x’
user

x
user

follow

pr ofession
development

per sonal
development

like_book

x’
user

x
user

follow

M icr osoftCM U

school

y
Computer Science

m ajor m ajor

em ployer

R9 R10 R11

(g) real-life GPARs: case study

 0

 50

 100

 150

 200

4 8 12 16 20

T
im

e
(s

ec
on

d)

Match
Matchc
disVF2

(h) Match: Varying n (Pokec)

 0

 50

 100

 150

 200

 250

 300

 350

4 8 12 16 20

T
im

e
(s

ec
on

d)

Match
Matchc
disVF2

(i) Match: Varying n (Google+)

 0

 50

 100

 150

 200

 250

8 16 24 32 40 48

T
im

e
(s

ec
on

d)

Match
Matchc
disVF2

(j) Match: Varying ||Σ|| (Pokec)

 0

 50

 100

 150

 200

 250

 300

 350

 400

8 16 24 32 40 48

T
im

e
(s

ec
on

d)

Match
Matchc
disVF2

(k) Match: Varying ||Σ|| (Google+)

 100

1 2 3 4 5

T
im

e
(s

ec
on

d)

Match
Matchc
disVF2

(l) Match: Varying d (Pokec)

 100

1 2 3 4 5

T
im

e
(s

ec
on

d)

Match
Matchc
disVF2

(m) Match: Varying d (Google+)

 0

 200

 400

 600

 800

 1000

4 8 12 16 20

T
im

e
(s

ec
on

d)

Match
Matchc
disVF2

(n) Match: Varying n (Synthetic)

 0

 200

 400

 600

 800

 1000

(10M,20M) (20M,40M) (30M,60M) (40M,80M) (50M,100M)

T
im

e
(s

ec
on

d)

Match
Matchc
disVF2

(o) Match: Varying |G| (Synthetic)

Figure 5: Performance evaluation

minimum time spent on different fragments by DMine is at
most 14.4% (resp. 8.8%) of the time for processing fragments
of Pokec (resp. Google+), and at most 6.0% (resp. 5.2%) of
the time for identifying matches by Match. These indicate
that the impact of skew from partitioning is fairly small.
We deployed the algorithms and n fragments on n ∈ [4, 20]

Amazon EC2 M3 instances, each has 2.6GHz 2vcpu with
7.5G memory, and 32GB SSD storage. Each experiment
was run 5 times and the average is reported here.

Experimental results. We next report our findings. We
fixed parameter λ = 0.5 for diversification in Exp-1.

Exp-1: Scalability of DMine. We first evaluated the scala-
bility of DMine vs. DMineno. We used k = 10, and found that
different k had little impact. We found that GPARs mined
in real-life graphs with infrequent edge labels usually denote
unrelated facts. Hence we used 20 most frequent edge pat-
terns, i.e., graph patterns consisting of a single edge (with
both node and edge labels), to grow GPARs in Pokec. We
used all 5 types of edges in Google+.

Varying n. Fixing radius d = 2 and support σ = 5000 (500
for Google+), we varied the number n of processors from
4 to 20. The algorithms generated up to 300 patterns to

be verified. As shown in Fig. 5(a) (resp. Fig. 5(b)), (1)
DMine scales well with the increase of processors: the im-
provement is 3.7 (resp. 2.69) times when n increases from
4 to 20; and (2) it is on average 1.67 (1.37) times faster
than DMineno; this verifies that our optimization strategies
effectively reduce confidence checking time, which is a ma-
jor bottleneck in DMineno. With 20 processors, DMine takes
168.3 (resp. 379) seconds on Pokec (resp. Google+).

Varying σ. Fixing d = 2 and n = 4, we varied σ from 3K
to 7K (resp. 700 to 1100) on Pokec (resp. Google+). Fig-
ures 5(c) and 5(d) tell us the following. (1) All algorithms
takes longer with smaller σ, because more patterns satisfy
the support constraint and are checked. (2) DMine outper-
forms DMineno in all cases. Moreover, it is less sensitive to
the increment of σ. This is because DMine checks much less
patterns than DMineno due to its filtering strategy.

Using large synthetic graphs of size up to (50M, 100M),
we evaluated the impact of n, the size of G and radius d.

Varying n (Synthetic). Fixing |G| = (10M , 20M), d = 2 and

σ = 100, we varied n from 4 to 20. The results (Fig. 5(e))
are consistent with Figures 5(a) and 5(b). DMine takes 533.2
seconds over synthetic G with 20 processors.

1511

Varying |G| (Synthetic). Fixing n = 16, d = 2 and σ =

100, we varied |G| from (10M, 20M) to (50M, 100M). As
shown in Fig. 5(f), (1) both algorithms take longer on larger
graphs; and (2) DMine outperforms DMineno by 1.76 times,
verifying the effectiveness of our optimization methods.

Varying d. Fixing n = 16, |G| = (50M, 100M) and σ = 100,
we varied d from 1 to 3. We find that DMine and DMineno
take longer over larger d (not shown), as expected. However,
DMine is less sensitive to d, since its optimization strategies
reduces GPAR candidates and checking time.

Exp-2: Effectiveness of DMine. We manually examined
GPARs discovered by DMine from Pokec and Google+. Three
GPARs are shown in Fig. 5(g), with support above 100:

(1) R9 (Pokec): if x follows user1, user1 follows user2, user2
follows x, user1 and user2 share the hobby to listen to music,
x and user1 share the hobby of party, and if user2 likes Disco

music, then x likes Disco. This suggests regularity between
types of music people like and their friends’ hobbies.

(2) R10 (Pokec): if x and x′ follow each other and both like
books of profession development, and if x′ likes books about
personal development, then so does x. This suggests that
potential customers x favor books liked by their friends.

(3) R11 (Google+): if x follows x′, both x and x′ went to
CMU, both x and x′ are employees of Microsoft, and if x′

was majored in CS, then x was also likely majored in CS.
This indicates a social pattern between Microsoft employees
and CMU computer science students.

We also found that most patterns mined by GRAMI are
cycles of users. These patterns, although quite frequent,
reveals little insight about entity associations.

GPARs with different metrics. We also evaluated different
confidence metrics for GPARs (Section 3). Given a GPAR

R, we define its (1) PCA confidence [17] PCAconf(R,G)

as supp(R,G)
supp(Qq̄,G)

, and (2) image-based Iconf(R,G) by replacing

supp(·, G) in conf(R,G) with the image-based support [7].
We evaluated prediction precision of these metrics for so-

cial networks following [17]. We partitioned Pokec into two
fragments F1 (as training data) and F2 (for cross validation),
and selected 5 predicates as in Exp-1 from F1. We set λ
= 0 to focus on the relevance of GPARs, and mined top 10,
30 and 60 GPARs from F1 with highest conf, PCAconf and
Iconf, respectively. We evaluate the precision for each GPAR

R as prec(R)= supp(R,F2)
supp(Q,F2)

, indicating correctly predicted cus-

tomers in F2, constrained by GPARs mined from F1.
top 10 top 30 top 60

PCAconf 0.276 0.280 0.277
Iconf 0.267 0.273 0.265
conf 0.423 0.388 0.381

As shown in the table above, (1) DMine is able to identify
GPARs that “predict” predicates with average precision up
to 42.3%, and (2) GPARs ranked by our conf metric provides
better prediction precision than PCAconf and Iconf.

Exp-3: Scalability of Match. Finally, we evaluated (1)
the scalability of Match with the number n of processors,
and the impacts of (2) the number ||Σ|| of GPARs in Σ, (3)
the maximum radius d of GPARs in Σ, and (4) the size |G| of
graphs. We started with real-life graphs and fixed η = 1.5.

Varying n. Fixing ||Σ|| = 24, |R| = (5, 8) and d = 2, we var-
ied n from 4 to 20. Figures 5(h) and 5(i) report the results on
Pokec and Google+, respectively, which tell us the following.

(1) Match, Matchc and Matchs allow a high degree of paral-
lelism. For instance, Match is 3.52 (resp. 3.54) times faster
when n increases from 4 to 20 on Pokec (resp. Google+).
This is consistent with Theorem 6. The algorithms are
efficient. In particular, Match takes 9.1 seconds on social
graph Pokec with 20 processors, and it scales better than
Matchc and disVF2. We find that Matchs and Match have
very similar performance, and thus we report Match only.

(2) Our optimization strategies are effective. (a) Compared
to disVF2, Matchc and Match are 4.79 and 6.24 times faster
on average, since for each GPAR R : Q ⇒ q, disVF2 invokes
two isomorphic checks at each candidate vx (one for PR and
one for Qq̄) vs. one by Matchc and Match; this justifies the
need for new algorithms for EIP instead of applying conven-
tional pattern matching algorithms. (b) Match is 1.2 and
1.35 times times faster than Matchc on Pokec and Google+,
respectively, demonstrating the effectiveness of early termi-
nation and guided search, without enumerating all matches.

Varying ||Σ||. Fixing n = 8 and d = 2, we varied ||Σ|| from 8

to 48. As shown in Figures 5(j) and 5(k), (1) all algorithms
take longer time with larger ||Σ||, as expected; (2) Match is
less sensitive to ||Σ|| than Matchc and disVF2; (3) the im-
provement of Match over the others is greater on larger Σ.
These are because optimization by early termination and
guided search works better for more GPARs in Σ.

Varying d. Fixing n = 8 and ||Σ|| = 20, we varied d from 1 to
5. As shown in Figures 5(l) and 5(m) (in logarithmic scale),
all algorithms take longer time with larger d, since more
nodes in the d-neighbors of candidates need to be visited.
Nonetheless, Match and Matchc are less sensitive to d than
disVF2 due to their optimization techniques (data locality
leveraged by Matchc, and early termination by Match).

Synthetic graphs. Using larger synthetic graphs, we evalu-
ated the impact of n. Fixing |G| = (50M, 100M), d = 2,
η = 1.5 and ||Σ|| = 24, we varied n from 4 to 20. As shown
in Fig. 5(n), the result is consistent with its counterparts on
real-life graphs (Figures. 5(h) and 5(i)). The improvement
for Match is 3.65 times when n increases from 4 to 20.

Fixing n = 4, ||Σ|| = 24, η = 1.5 and d = 2, we varied |G|
from (10M, 20M) to (50M, 100M). As shown in Fig. 5(o),
(1) all the algorithms take longer on larger |G|, as expected;
(2) Match performs the best, and is less sensitive to |G| than
the others; and (3) despite Proposition 5, Match is reason-
ably efficient: when |G| = (50M, 100M), Match takes 163
seconds with 4 processors, while disVF2 takes 922 seconds.

Summary. We find the following. (1) It is not very ex-
pensive to mine diversified top-k GPARs in large social net-
works. For instance, DMine takes 533.2 seconds on graphs
with |G| = (10M,20M) by using 20 processors, when k = 10,
σ = 100 and d = 2. (2) The number of candidate GPARs

is not very large (up to 300), and hence DMine is “paral-
lel scalable” (Section 5.1): it is 3.2 times faster on average
when n increases from 4 to 20, on real-world social networks.
(3) Moreover, discovered GPARs based on our conf metric
predict more precise potential customers in social networks
than its PCA and image-based counterparts. (4) Match is
parallel scalable: it is 3.53 times faster on average when n
increases from 4 to 20 over real-life social networks. (5) It is
practical to apply GPARs to large graphs: on graphs with |G|
= (50M, 100M) and a set Σ of 24 GPARs, Match takes less
than 45 seconds with 20 processors. (6) Our optimization

1512

strategies are effective: DMine outperforms DMineno by 1.52
times, and Match is 1.27 and 6.24 times faster than Matchc
and disVF2, respectively, on real-life graphs, on average.

7. CONCLUSION
We have proposed association rules with graph patterns

(GPARs), from syntax, semantics to support and confidence
metrics. We have studied DMP and EIP, for mining GPARs

and for identifying potential customers with GPARs, respec-
tively, from complexity to parallel (scalable) algorithms.
Our experimental study has verified that while DMP and
EIP are hard, it is feasible to discover and make practical
use of GPARs. We contend that GPARs provide a promising
tool for social media marketing, among other applications.
We are currently exploring real-life social graphs to experi-

ment with. Another topic for future work is to extend GPARs

by supporting graph patterns as consequent, and by allow-
ing other matching semantics such as graph simulation.

Acknowledgments. Fan and Xu are supported in part
by 973 Program 2014CB340302. Fan is supported in part
by NSFC 61133002, 973 Program 2012CB316200, ERC-2014-

AdG 652976, EPSRC EP/J015377/1 and EP/M025268/1, NSF

III 1302212, and a Google Faculty Research Award. Fan
and Wu are also supported in part by Shenzhen Peacock
Program 1105100030834361 and Guangdong Innovative Re-
search Team Program 2011D005. Wang is supported in part
by NSFC 61402383 and 71490722, Sichuan Provincial Science
and Technology Project 2014JY0207, and Fundamental Re-
search Funds for the Central Universities, China.

8. REFERENCES
[1] GraMi. https://github.com/ehab-abdelhamid/GraMi.
[2] Nielsen global online consumer survey.

http://www.nielsen.com/content/dam/corporate/us/en/
newswire/uploads/2009/07/pr global-study 07709.pdf.

[3] Pokec social network.
http://snap.stanford.edu/data/soc-pokec.html.

[4] R. Agrawal, T. Imieliński, and A. Swami. Mining
association rules between sets of items in large databases.
SIGMOD Record, 22(2):207–216, 1993.

[5] S. Amer-Yahia, L. V. Lakshmanan, S. Vassilvitskii, and
C. Yu. Battling predictability and overconcentration in
recommender systems. IEEE Data Eng. Bull., 32(4), 2009.

[6] M. Berlingerio, F. Bonchi, B. Bringmann, and A. Gionis.
Mining graph evolution rules. In Machine learning and
knowledge discovery in databases, pages 115–130. 2009.

[7] B. Bringmann and S. Nijssen. What is frequent in a single
graph? In PAKDD, 2008.

[8] P. Burkhardt and C. Waring. An NSA big graph
experiment. Technical Report NSA-RD-2013-056002v1,
U.S. National Security Agency, 2013.

[9] Q. Cao, M. Sirivianos, X. Yang, and T. Pregueiro. Aiding
the detection of fake accounts in large scale social online
services. In NSDI, pages 197–210, 2012.

[10] L. P. Cordella, P. Foggia, C. Sansone, and M. Vento. A
(sub) graph isomorphism algorithm for matching large
graphs. TPAMI, 26(10):1367–1372, 2004.

[11] X. Dong et al. Knowledge vault: A web-scale approach to
probabilistic knowledge fusion. In KDD, 2014.

[12] A. Dovier, C. Piazza, and A. Policriti. A fast bisimulation
algorithm. In CAV, pages 79–90, 2001.

[13] M. Elseidy, E. Abdelhamid, S. Skiadopoulos, and P. Kalnis.
GRAMI: frequent subgraph and pattern mining in a single
large graph. PVLDB, 7(7):517–528, 2014.

[14] W. Fan, F. Geerts, X. Jia, and A. Kementsietsidis.
Conditional functional dependencies for capturing data
inconsistencies. TODS, 33(1), 2008.

[15] W. Fan, X. Wang, and Y. Wu. Distributed graph
simulation: Impossibility and possibility. PVLDB, 2014.

[16] P. Fournier-Viger and V. S. Tseng. Mining top-k
non-redundant association rules. In ISMIS. 2012.

[17] L. A. Galárraga, C. Teflioudi, K. Hose, and F. Suchanek.
AMIE: association rule mining under incomplete evidence
in ontological knowledge bases. In WWW, 2013.

[18] M. A. Gallego, J. D. Fernández, M. A. Mart́ınez-Prieto,
and P. de la Fuente. An empirical study of real-world
SPARQL queries. In USEWOD workshop, 2011.

[19] S. Gollapudi and A. Sharma. An axiomatic approach for
result diversification. In WWW, 2009.

[20] N. Z. Gong et al. Evolution of social-attribute networks:
measurements, modeling, and implications using google+.
In IMC, 2012.

[21] I. Grujic, S. Bogdanovic-Dinic, and L. Stoimenov.
Collecting and analyzing data from e-government facebook
pages. In ICT Innovations, 2014.

[22] L. B. Holder, D. J. Cook, S. Djoko, et al. Substucture
discovery in the subdue system. In KDD workshop, 1994.

[23] J. Huang, K. Venkatraman, and D. J. Abadi. Query
optimization of distributed pattern matching. In ICDE,
2014.

[24] A. Inokuchi, T. Washio, and H. Motoda. An apriori-based
algorithm for mining frequent substructures from graph
data. In Principles of Data Mining and Knowledge
Discovery. 2000.

[25] C. Jiang, F. Coenen, and M. Zito. A survey of frequent
subgraph mining algorithms. Knowledge Eng. Review,
28(01):75–105, 2013.

[26] M. Kamber and R. Shinghal. Evaluating the interestingness
of characteristic rules. In KDD, pages 263–266, 1996.

[27] Y. Ke, J. Cheng, and J. X. Yu. Efficient discovery of
frequent correlated subgraph pairs. In ICDM, 2009.

[28] S.-H. Kim, K.-H. Lee, H. Choi, and Y.-J. Lee. Parallel
processing of multiple graph queries using MapReduce. In
DBKDA, 2013.

[29] P. Koutris and D. Suciu. Parallel evaluation of conjunctive
queries. In PODS, 2011.

[30] C. P. Kruskal, L. Rudolph, and M. Snir. A complexity
theory of efficient parallel algorithms. TCS, 71(1), 1990.

[31] S. Lallich, O. Teytaud, and E. Prudhomme. Association
rule interestingness: Measure and statistical validation. In
Quality measures in data mining, pages 251–275. 2007.

[32] W. Le, A. Kementsietsidis, S. Duan, and F. Li. Scalable
multi-query optimization for SPARQL. In ICDE, 2012.

[33] L. Lü and T. Zhou. Link prediction in complex networks: A
survey. Physica A: Statistical Mechanics and its
Applications, 390(6):1150–1170, 2011.

[34] S. A. Myers, C. Zhu, and J. Leskovec. Information diffusion
and external influence in networks. In KDD, 2012.

[35] J. Pei and J. Han. Constrained frequent pattern mining: a
pattern-growth view. SIGKDD Explorations, 4(1), 2002.

[36] F. Rahimian, A. H. Payberah, S. Girdzijauskas, M. Jelasity,
and S. Haridi. Ja-be-ja: A distributed algorithm for
balanced graph partitioning. In SASO, 2013.

[37] R. Raman, O. van Rest, S. Hong, Z. Wu, H. Chafi, and
J. Banerjee. PGX.ISO: Parallel and efficient in-memory
engine for subgraph isomorphism. GRADES, 2014.

[38] X. Ren and J. Wang. Exploiting vertex relationships in
speeding up subgraph isomorphism over large graphs.
PVLDB, 8(5):617–628, 2015.

[39] C. Romero, S. Ventura, and P. De Bra. Knowledge
discovery with genetic programming for providing feedback
to courseware authors. UMUAI, 14(5):425–464, 2004.

[40] D. Saha. An incremental bisimulation algorithm. In
FSTTCS, 2007.

[41] C. Schmitz, A. Hotho, R. Jäschke, and G. Stumme. Mining
association rules in folksonomies. In Data Science and
Classification, pages 261–270. 2006.

[42] P. Shelokar, A. Quirin, and Ó. Cordón. Three-objective
subgraph mining using multiobjective evolutionary
programming. JCSS, 80(1):16–26, 2014.

[43] C. Smith. Twitter users say they use the site to influence
their shopping decisions. Business Insider Intelligence, 2013.

[44] D. Xin, H. Cheng, X. Yan, and J. Han. Extracting
redundancy-aware top-k patterns. In KDD, 2006.

[45] W.-S. Yang, J.-B. Dia, H.-C. Cheng, and H.-T. Lin. Mining
social networks for targeted advertising. In HICSS, 2006.

[46] C. Zhang and S. Zhang. Association rule mining: models
and algorithms. 2002.

1513

