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ABSTRACT
The configuration of a distributed storage system typically
includes, among other parameters, the set of servers and
their roles in the replication protocol. Although mecha-
nisms for changing the configuration at runtime exist, it
is usually left to system administrators to manually de-
termine the “best” configuration and periodically reconfig-
ure the system, often by trial and error. This paper de-
scribes a new workload-driven optimization framework that
dynamically determines the optimal configuration at run-
time. We focus on optimizing leader and quorum based
replication schemes and divide the framework into three
optimization tiers, dynamically optimizing different config-
uration aspects: 1) leader placement, 2) roles of different
servers in the replication protocol, and 3) replica locations.
We showcase our optimization framework by applying it to
a large-scale distributed storage system used internally in
Google and demonstrate that most client applications signif-
icantly benefit from using our framework, reducing average
operation latency by up to 94%.

1. INTRODUCTION
Storage is changing from being mostly in-house and local

to become a fully globally-distributed service. Cloud storage
services such as Amazon S3, Microsoft Azure, and Google
Cloud Storage, form the underpinnings of many Internet
services with clients distributed all over the world. Typi-
cally, applications need continuous availability and reason-
ably good data access latency, which translates into storing
multiple data replicas in different geographic locations.

Distributed storage systems usually provide consistency
across replicas of data (or metadata) using serialization or
conflict resolution protocols. Distributed atomic commit or
consensus-based protocols are often used when strong con-
sistency is required, while simpler protocols suffice when
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replicas need only preserve weak or eventual consistency.
Such protocols typically define multiple possible roles for
the replicas, such as a leader or master replica coordinating
updates, and appoint some of the replicas to participate in
the commit protocol. The performance of such a system de-
pends on the configuration: how many replicas, where they
are located, and which roles they serve; for optimal perfor-
mance, the configuration must be tuned to the workloads.

Different applications using the same storage service may
have completely different workloads, for example a logging
system may use the storage mostly for writes and have rela-
tively few clients, while an application responsible for access
control may be read heavy. The workloads can be extremely
variable, both in the short term — for example, load may
come from different parts of the world at different times of
the day for a social application — and in the long term
— the administrators of the service may reconfigure their
servers periodically, causing different load patterns. Long
term workload variation could also be due to organic changes
in the demands on the Internet service itself; for example,
if a shopping service becomes more popular in a region, its
demands on the underlying storage system may shift.

The cloud storage service must adapt to these changes
seamlessly. In fact, elasticity is an integral part of cloud
computing and one of its most attractive premises. Recon-
figuring a distributed storage system at run-time while pre-
serving its consistency and availability is a very challenging
problem and misconfigurations have been cited as a primary
cause for production failures [29]. Due to its practical sig-
nificance the problem has received abundant attention in
recent years both in academia and in the industry (see Sec-
tion 7), focusing mainly on the design and implementation of
efficient and non-disruptive mechanisms for reconfiguration.
Yet, little insight exists on how to set policies and use re-
configuration mechanisms in order to improve system perfor-
mance. For example, dynamic reconfiguration APIs have re-
cently been added to the Apache ZooKeeper distributed co-
ordination system [25, 19] and users have since been asking
for automatic workload-based configuration management,
e.g. [6]. At Google, site reliability engineers (SREs) are
masters in the black art of determining deployment poli-
cies and tuning system parameters. However, hand-tuning
a cloud storage system that supports hundreds of distinct
workloads is difficult and prone to misconfigurations.

We describe the design and implementation of a workload-
driven framework for automatically and dynamically opti-
mizing the replication policy of distributed storage systems.
We showcase our framework by optimizing a large-scale dis-
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tributed storage system used internally in Google. In this
work we focus on operation latency as the main optimiza-
tion objective. We assume that the various aspects of load
distribution and balancing are addressed by the underlying
storage system, as is the case for our storage system and for
many other massively scalable systems.

Section 2 contains an overview of our storage model. In
short, users define databases which are then partitioned and
replicated [1, 10, 14, 15, 16, 17, 26]. The replication pol-
icy is defined by the database administrator, usually an
SRE responsible for a specific client application. For ex-
ample, if most writers are expected to reside in western
Europe, the administrator will likely place replicas in Eu-
ropean locations, and make some of them voters so that a
quorum required to commit state changes can be collected in
Europe without using expensive cross-continental network
links. One of the voters (elected dynamically) acts as a
leader and coordinates the replication.

Since leaders are involved in many of the operations, their
location significantly affects latency. Section 3 describes the
first tier of our optimization framework, which, given replica
locations and roles, optimizes leader placement. Our algo-
rithm uses a detailed characterization of the relevant oper-
ations supported by the storage system. Unlike many of
the previously proposed methods, such as placing the leader
close to the writers (previously suggested, for example, in
the context of Google Megastore or Yahoo! PNUTS), which
may work for one workload but not for another, we lever-
age Google’s monitoring infrastructure to dynamically and
accurately track the global workload of each database, as
well as network latencies. Our evaluation, using both sim-
ulations with production workloads and production exper-
iments, presented in Section 6, shows that our method is
fast, accurate and significantly outperforms previously pro-
posed “common sense” heuristics. We show that it results
in a substantial speed-up for the vast majority of databases
in our system, halving the operation latency for 17% of the
databases and reducing the latency by up to 94% for others.

The goal of the second optimization tier, presented in
Section 4 is, given replica locations, to determine the best
replica roles in addition to the optimal leader placement.
While the number of voter replicas is usually determined
based on availability requirements, their locations are flex-
ible. For example, if 2 simultaneous replica failures must
be tolerated, 5 voting replicas will be used and our system
determines which 5 replicas are to be voters based on the
observed workload. Usually in such systems the leader is one
of the voters and thus optimizing voter placement not only
affects the latency of commits but also of other operations
involving the leader. Our evaluation in Section 6 confirms
the benefits of dynamic role assignment for both write and
read heavy workloads, achieving a speed-up of up to 50% on
top of the first optimization tier, for some databases.

Finally, in Section 5 we present two new algorithms used
to determine replica locations (in addition to choosing replica
roles and a leader), which constitutes our third optimization
tier. For example, if a database suddenly experiences a surge
in client operations coming from Asia, we will detect the
change in workload and identify the best replica locations
to minimize latency. The algorithm additionally determines
which among the replicas should be voters and which voter
should be leader. Section 6 shows that the two algorithms
are near optimal and identifies workloads where each of the

algorithms is preferable. We also show how these algorithms
can be used to determine the desired number of replicas.

The optimization algorithms are dynamic – the best con-
figuration for a given time interval is determined considering
the workload in previous time intervals, weighted accord-
ing to recency. The algorithms can thus react to workload
changes without being overly sensitive to spikes.

In summary, the main contribution of this paper is the
design, implementation and evaluation of an optimization
framework for dynamically optimizing the replication pol-
icy of leader-based storage systems. Our system frees ad-
ministrators from manually and periodically trying to ad-
just database replication based on the currently observed
workloads, which is a very difficult task since such systems
usually support hundreds of distinct workloads and multi-
ple operation types each involving a series of message ex-
changes. Our system uses monitoring information to per-
form the optimization automatically, allowing a detailed and
separate consideration of each workload. Our evaluation
demonstrates dramatic latency improvements for a produc-
tion distributed storage system used in Google.

2. STORAGE MODEL
We assume a common distributed storage model combin-

ing partitioning and replication to achieve scalability and
fault tolerance: users (administrators) define databases, each
database is sharded into multiple partitions, and each par-
tition is replicated separately [1, 10, 14, 15, 16, 17, 26]. We
call these partitions replication groups. A single replication
policy, defined by the database administrator, governs all
replication groups in a database and determines the configu-
ration of each group – the number of replicas, their locations
and their roles in the replication protocol1.

A replica can be either read-write or read-only . Both are
full replicas and can serve reads locally. Whereas read-write
replicas vote on commits, read-only replicas are notified of
state changes only after they occur. Such categorization
exists in many systems, such as acceptors and learners in
Paxos [21] or participants and observers in ZooKeeper [19].
One of the voting replicas in every replication group is cho-
sen as the group leader. The leader is chosen dynamically
and when it fails, a different leader is elected. Leaders
are typically responsible for coordinating replication in their
group, for locking and concurrency control to support trans-
actions, and participate in transaction involving multiple
groups.

We denote the voting replicas of a group g by V(g). Recall
that all groups in a database share the same configuration,
and hence are replicated across the same locations (i.e., clus-
ters or datacenters). Since we are solely interested in the
location of the replicas, we simply use V(db) to refer to V(g)
for any group g in a database db. Similarly, R(db) refers to
the set of all replicas (read-write and read-only). We omit
the index db and g when it is clear from the context. A client
is denoted by c, the replica closest to the client (in terms of
network latency) by nearest(c,R) (note that it is taken from
the set R), and the leader of a group g by leader(g). Finally,
we denote the set of client locations by C and the universe
of potential replica locations by S (note that R ⊆ S).

1The storage system we used for evaluation supports multi-
ple replication policies per database, however few databases
make use of this feature and all such databases perform man-
ual configuration tuning.

1491



Operations are invoked by clients and multiple operations
may be executed together as part of transactions. Trans-
actions may involve one or more groups within a database.
Next, we identify five representative operations, most com-
monly supported (under various names) in replicated dis-
tributed storage systems. Our framework optimizes opera-
tion latency. As such it requires knowledge of the flow of
each operation. Hence, for each operation, we give a possi-
ble message flow which we use to showcase our optimization
framework in the following sections. This flow is simplified
and actual implementations may use various optimizations,
which may in turn require adjustments to the optimization
formulation. However, such optimizations are orthogonal to
the contributions of this paper.

weak read. A read from one of the replicas (typically the
replica closest to the client). As replicas may lag behind the
leader, the read can return stale values. Typically, a client c
sends a request to nearest(c,R), which replies with its local
copy of the requested data.

bounded read. This read typically includes a bound on
the staleness of returned values. If nearest(c,R) is not suf-
ficiently up to date, it forwards the request to the leader
leader(g), which responds with the latest version of the data.
Once updated, nearest(c,R) responds to the client.

strong read. This read returns the last committed value,
typically returned by the leader. In some systems, clients
read directly from the leader; in others, the read is relayed
through nearest(c,R).

For example, Yahoo! PNUTS [15] supports all three types
of reads. Apache ZooKeeper, as well as Amazon SimpleDB [2],
DynamoDB [1], MongoDB [4], and many others, support
only the weak (sometimes called “eventually consistent”)
and the strong (sometimes called “consistent”) read types.
Often, instead of providing an explicit API for bounded
reads, systems such as ZooKeeper make guarantees about
the maximum allowed staleness of replicas. The choice among
the reads may be explicitly made by the user or automati-
cally done by the storage system based on higher level user
preferences (such as in MongoDB or Riak [3]). Next, we
define two state update operaitons:

single-group transaction. This is a state-changing oper-
ation or transaction that involves the data of a single repli-
cation group g. It is executed by leader(g) on behalf of a
client c, and, for high availability, requires leader(g) to per-
sist the state changes on a quorum (usually a majority) of
voting replicas. To this end, leader(g) sends messages to
the voting replicas V(g) and waits for a quorum to respond.
If the minimal required set of affirmative responses is col-
lected, the transaction commits and a commit message is
sent to the client as well as to the group replicas.

multi-group transaction. When committing a trans-
action involving data from multiple groups, a distributed
atomic commit protocol must be executed across the groups
in order to either commit or abort the transaction atomi-
cally in all involved groups. Typically, this protocol is two-
phase commit and the leader of one of the groups involved
in the transaction acts as the coordinator while the others
are participants. In order to be fault tolerant, every step of
the protocol must be agreed-upon by the members of each
group, and not only by its leader. For the the purposes of
this paper, we assume the following simple protocol: the
coordinator leader leader(g) broadcasts a prepare message

to participant leaders. Each participant leader leader(g′)
checks locally whether the transaction may be committed
and if so persists its intention to commit to a quorum of vot-
ers V(g′). It then sends an ack message to leader(g). Once
all participants have acked, leader(g) commits the transac-
tion by persisting it to a quorum of V(g) and responds to
the client. It then sends commit messages to the participant
leaders which in turn commit the operation in their respec-
tive groups by persisting the state-changes to a quorum.

For example, VoltDB [26], HyperDex [17], DynamoDB
and Microsoft Orleans [14] support both transactions types,
whereas PNUTS [15], ZooKeeper [19] and many NoSQL
stores only support variants of single-group transactions.

3. TIER 1: LEADER PLACEMENT
In this work, we focus on optimizing operation latency.

From the description in Section 2, it is easy to see that op-
eration latency is affected by the location of the client, loca-
tion of the replica closest to the client, locations of the read-
write replicas, and finally, by the choice of the leader among
the read-write replicas. Our first algorithm, described in
this section, optimizes leader placement without modifying
server roles and locations (V and R) given by the database
andministrator.

Consider a database with one thousand groups and five
read-write replicas per group, each of which can become
leader. It may seem that in order to optimize leader place-
ment for such database we have to consider 5000 differ-
ent placement configurations. Unfortunately, this is not
the case. Multi-group transactions involve several groups,
whose leaders execute a distributed atomic commit proto-
col. Changing the placement of one group leader may there-
fore impact the optimal placement of the leaders of other
groups. In fact, for our numerical example, in the worst
case the number of different placement options is 51000.

In order to achieve a practical solution we must reduce
the solution space drastically. We chose to optimize leader
placement on the granularity of a database instead of a sin-
gle group. Since all groups in a database are replicated in
the same way, this method reduces the solution space to
one of the read-write replica locations for this database. In
practice, while our optimization algorithm outputs a single
location, the storage system may place the different leaders
of groups belonging to the database close to this location,
taking various constraints related to load balancing, failure
diversity, etc., into account. We denote the leader location
produced by our algorithm for database db in the i-th time

interval by λ
(i)
db .

For simplicity, we focus on optimizing the average opera-
tion latency; this metric is generalized in Section 3.1. Intu-
itively, to minimize average operation latency we compute
it for every possible leader location (any read-write replica
can potentially become leader), and then choose the loca-
tion yielding minimum average latency. Assuming that dif-
ferent clients in the same cluster experience similar latencies
when communicating with servers, we logically group clients
within each cluster and consider “client clusters” rather than
individual clients in our analysis.

Since different operation types may have different latency
profiles, we compute a weighted average. Specifically, at

interval i we (a) determine the average latency t
(i)
α,c(`) of

each type of operation α from every client cluster c, for each
potential leader location ` ranging over the set V(db) of read-
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write replica locations as defined for database db, and (b)

quantify the number of operations n
(i)
α,c of each type α for

each client cluster c. Finally, we choose a leader λ
(i)
db that

minimizes the following expression (for simplicity we omit
the denominator of the weighted average):

λ
(i)
db = arg min

`∈V(db)
{score(i)(`)} ,

where score(i)(`) =
∑
α,c t

(i)
α,c(`) · n(i)α,c. The location λ

(i)
db can

then serve as prediction for the optimal location λ
(i+1)
db in

the (i+1)-st time interval. Next, we calculate t
(i)
α,c(`) by

considering the flow of different operation types described
in Section 2. We assume that leader identities are exposed
to the clients, and hence clients send strong reads and trans-
actions directly to the relevant leaders.

Denote the average roundtrip-time latency between nodes

a and b in time interval i by rtt
(i)
a,b. For weak reads, the

average latency is simply rtt
(i)

c,nearest(c,R), and similarly for

strong reads, given a candidate leader location `, we get

rtt
(i)
c,`. For bounded reads, using the linearity of expecta-

tion, we have that the average latency is rtt
(i)

c,nearest(c,R) +

rtt
(i)

nearest(c,R),`, which corresponds to a roundtrip between

the client and the nearest replica and another roundtrip be-
tween that replica and the leader. For simplicity, we do
not distinguish here between bounded reads served locally
versus those forwarded to the leader, but do implement the
distinction. Calculating single-group transaction latency is
slightly more complex, as it requires the leader to wait for
a majority of voter responses, i.e., for the median fastest re-
sponse. Unfortunately, the median and average operations
don’t commute in general. We found, however, that cross-
cluster latency distributions tend to be very narrow around
their respective mean values and overlap only for tail laten-
cies. They can therefore be approximated as fixed values for
computing the average of the median. The median of av-
erage rtt latencies is therefore a very good approximation
for the average of median rtt latencies. Hence, the average
operation latency of single-group transactions can be esti-

mated as rtt
(i)
c,` + q

(i)
` , where q

(i)
` = medianv∈V(db){rtt(i)`,v}.

The computation for multi-group transactions is made
complex by the fact that every multi-group transaction in-
volves a different set of groups. Fortunately, our decision
to optimize per database (rather than per group) consider-
ably simplifies the calculation. First, since we are looking

for the best single location λ
(i)
db for all group leaders in the

database, we only need to consider assignments which re-
sult in the same placement for all group leaders and the
latency between these colocated leaders is effectively negli-
gible. Second, since all groups in a database usually share
the same configuration, the set of latency distributions be-
tween the leaders and their respective voters is the same for
all group leaders in the database. To leverage this, let us
recap the flow of multi-group transactions: The client sends
a message to one of the group leaders and waits for a re-
sponse. The average roundtrip latency between the client

and the leader is simply rtt
(i)
c,`. The leader (coordinator)

then contacts other leaders (participants). Since all leaders
are in the same location ` this latency is negligible. Each
participant leader then sends a message to its voters and

waits for a majority of responses, which takes q
(i)
` . Then,

participant leaders contact the coordinator leader. Finally,
the coordinator leader commits the transaction by sending
it to the voters of its group and waits for a majority of re-

sponses, which again takes q
(i)
` , on average. Overall, the

average latency of a multi-group commit can be estimated

as rtt
(i)
c,` + 2 · q(i)` . To summarize, the score of a candidate

leader location ` ∈ V, is given by Equation 1.
Both n(i) and average rtt(i) latencies are measured for

the last observed (i-th) time interval and, as presented thus

far, used to predict λ
(i+1)
db . Observe that there is a tradeoff

between the chosen time interval length and the accuracy of
prediction. By choosing a short interval (e.g., one minute)
our solution becomes very sensitive to workload spikes, dete-
riorating prediction accuracy. By using long intervals (e.g.,
one day) the prediction may be more accurate yet it may
average out potentially interesting workload changes (such
as diurnal patterns). Instead of attempting to pick the
“best” time interval length (which may vary across different
databases), in Equation 2 we introduce a decay parameter
τ and compute score based on multiple past intervals (and
not just the i-th interval), weighting them according to re-
cency using an exponential moving average (for simplicity
we again omit the denominator of the weighted average).

score(i)(`,R, q(i)` ) =
∑
c∈C

[(n
(i)
weak read,c · rtt

(i)

c,nearest(c,R)

+ n
(i)
bounded read,c · (rtt

(i)

c,nearest(c,R) + rtt
(i)

nearest(c,R),`)

+ n
(i)
strong read,c · rtt

(i)
c,` + n

(i)
single-group transaction,c · (rtt

(i)
c,` + q

(i)
` )

+ n
(i)
multi-group transaction,c · (rtt

(i)
c,` + 2 · q(i)` )]

(1)

agg score(i)(`,R, q(i)` ) =

=
1

τ
· agg score(i−1)(`,R, q(i−1)

` ) + score(i)(`,R, q(i)` )

λ
(i)
db = arg min

`∈V
{agg score(i)(`,R, q(i)` )}

(2)

Interval i = 1 is the first interval considered for our anal-
ysis and agg score(0)(., ., .) = 0. Note that Equation 1 can
be generalized to account for multiple replication policies
(configurations) per database. However a straightforward
extension is exponential in the number of configurations,
as it has to account for multi-group transactions involving
every possible subset of configurations, and every possible
leader placement in each configuration. The design of a more
efficient method is an interesting topic for future research.

3.1 Optimizing Tail Latency
For some users, optimizing tail latency is more important

than optimizing for the mean. Although currently our sys-
tem optimizes for average latency, in the future, we plan to
extend it to allow database owners to specify the desired
percentile and optimize for that percentile when determin-
ing the best configuration for the database.

When considering tail latency, we can no longer use the
nice linearity properties we leveraged so far. Below we show
how to extend the score calculation in Equation 1. As in-
put, instead of the average roundtrip-time latencies, we now
need to know the roundtrip-time latency distribution Ha,b
between each pair of locations a and b. We assume that
these distributions are independent. For simplicity, assume
that latencies are discretized as multiples of 1ms.

1493



When computing the latency of each operation type, in-
stead of summing up averages we should compute the dis-
tribution of the sum of random variables. As an example,
consider the simple case of a bounded read, which travels
from a client c to the closest replica nearest(c,R), then from
nearest(c,R) to the leader ` and back all the way to the
client. In order to find the latency distribution of this op-
eration we perform a discrete convolution Hc,nearest(c,R) ∗
Hnearest(c,R),` as follows:

Pr(t
(i)
bounded read,c(`) = x) =

Pr(rttc,nearest(c,R) + rttnearest(c,R),` = x) =
x∑

k=m

Pr(rttc,nearest(c,R) = k, rttnearest(c,R),` = x− k) =

x∑
k=m

Pr(rttc,nearest(c,R) = k) · Pr(rttnearest(c,R),` = x− k),

wherem denotes the minimum possible value of t
(i)
bounded read,c(`)

and rtt is the random variable corresponding to the latency
(rather than the average latency). Once the distribution of
the sum has been computed, the required percentile can be
taken from this distribution.

Computing the distribution of the quorum latency is more
complex. The simplest numeric method is to perform a
Monte Carlo simulation, repeatedly sampling the distribu-
tions H`,v for v ∈ V and computing the median latency each
time. For an analytical solution, observe that the leader
needs to collect majority − 1 responses from other servers,

where majority← d |V|+1
2
e and assume that the leader’s own

response arrives faster than any other response. The CDF
of the maximum response time from any set of read-write
replicas is simply the product of the CDFs of response time
for the individual replicas. For example, for 3 read-write
replicas `, v and w where ` is the candidate leader:

Pr(max(rtt`,v, rtt`,w) ≤ x) = Pr(rtt`,v ≤ x, rtt`,w ≤ x)

= Pr(rtt`,v ≤ x) · Pr(rtt`,w ≤ x)

We can therefore construct the CDF of maximum response
time for every subset of the read-write replicas. From these,
using the inclusion-exclusion principle [5], we can compute
the probability of the event that at least one subset of the
read-write replicas, of cardinality majority − 1, has max-
imum response latency less than x, for each x. But this
event is equivalent to the event that the quorum’s response
time is less than x, hence it gives us the CDF of the quo-
rum response time. Continuing our example for 3 read-write
replicas, we get:

Pr(q
(i)
` < x) = Pr(rtt`,v ≤ x) + Pr(rtt`,w ≤ x)

− Pr(max(rtt`,v, rtt`,w) ≤ x)

4. TIER 2: LEADER AND REPLICA ROLES
Our tier-1 optimization algorithm, described in the pre-

vious section, optimizes leader placement while keeping V
and R fixed. In this section, we introduce our tier-2 opti-
mization algorithm that determines the best voter locations
V from R as well as the best leader location from V. This
algorithm does not modify R (this is the topic of Section 5).
As we explain next, for reasons of efficiency we do not di-
rectly use the method described in Section 3, but rather the
optimization objective in Equation 2.

In order to evaluate and compare different configurations
we must take into account the best leader location possi-
ble with the configuration. Given a configuration with |R|
replica locations, a brute-force approach (shown in Algo-

rithm 1) is to enumerate
(|R|
|V|

)
configurations, corresponding

to different possible subsets of num voters = |V| read-write
replicas, and for each one find the optimal leader using the
algorithm given in Section 3. Recall that our tier-1 algo-
rithm evaluates every read-write replica as a potential leader
by considering the resulting cost for every client cluster. For
a typical database in the production system considered in
Section 6, this algorithm would result in more than 26 mil-
lion computations per database and time interval.

Algorithm 1 Brute-force algorithm for tier-2.

1: procedure tier-2-brute-force(R, num voters)
2: for each set V ∈ Rnum voters

3: for each replica ` ∈ V
4: q

(i)
` = medianv∈V {rtt

(i)
`,v}

5: score` ← agg score(i)(`,R, q(i)` ) (Equation 2)
6: λV ← arg min`∈V {score`}
7: scoreV ← agg score(i)(λV ,R, q

(i)
λV

)

8: Vopt = arg minV {scoreV }
9: return (λVopt , Vopt) // Optimal leader and quorum

We propose a much more efficient alternative (Algorithm 2):
instead of picking read-write replicas first and then the leader
among them, we reverse the decision order and eliminate
configurations that are clearly sub-optimal due to their poor
leader score. More precisely, for every candidate leader `,
out of all the replica locations R (not just read-write), we
find the k-th smallest rtt to other replicas, where k =
d num voters+1

2
e, and use it to calculate score(i). We then

choose the leader λ
(i)
db for which score(i) is minimized. Fi-

nally, we compute the set of voters for leader λ
(i)
db by picking

the num voters replicas with minimum rtt from the leader
(in fact, we could take just the k fastest replicas and pick the
remaining num voters− k replicas arbitrarily since quorum
latency is determined by the fastest majority of votes).

Algorithm 2 Efficient algorithm for tier-2.

1: procedure tier-2-efficient(R, num voters)
2: for each replica ` ∈ R
3: q

(i)
` ←d

num voters+1
2

e-th smallest rtt
(i)
`,r, r∈R

4: score` ← agg score(i)(`,R, q(i)` ) (Equation 2)
5: λ = arg min`∈R{score`}
6: max voter rtt← num voters-th smallest rttλ,r, r∈R
7: Uλ ← k-closest(λ,num voters,max voter rtt,R)
8: return (λ, Uλ)

9: procedure k-closest(`, num voters, max latency, R)
10: P< ← {r ∈ R | rtt`,r < max latency}
11: P= ← {r ∈ R | rtt`,r = max latency}
12: return P< ∪ {(num voters− |P<|) elements from P=}

To see why Algorithm 2 returns the optimal solution, let
us consider the leader λVopt and set of voters Vopt returned
by Algorithm 1. Algorithm 2 evaluates λVopt as candidate
leader (line 2). Optimality follows from the fact that Al-
gorithm 2 chooses voters for λVopt from a larger set of can-
didates (since Vopt ⊆ R) and therefore quorum latency for
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λVopt is necessarily smaller or equal in Algorithm 2 (line 3)
compared to Algorithm 1 (line 4).

Complexity of Algorithm 2. It takes O(R) to consider
every replica as candidate leader and, for each candidate, an-
other O(R) to find the k-th smallest rtt to other replicas
(using a worst-case linear time selection algorithm). Invoca-
tion of k-closest in the last step of the algorithm takes O(R),
overall yielding O(R2) complexity, clearly better compared
to the exponential complexity of Algorithm 1. For a typ-
ical database in our storage system, Algorithm 2 requires
roughly 2.8 thousand computations per database and time
interval, which is 4 orders of magnitude less than brute force.

Failure Diversity. Since progress in quorum-based repli-
cated systems is usually guaranteed only as long as a quorum
of read-write replicas is available and can communicate in
a timely manner, read-write replicas must be located in dif-
ferent failure domains. To account for this fact, we slightly
modify our algorithm as follows: instead of choosing the k-
th smallest rtt for each leader candidate out of a set of R
replicas, we pre-process the set for each candidate leader by
bucketing replicas according to the different failure domains
and choosing the replica with smallest rtt from the can-
didate leader as a representative replica from each domain
(bucket), filtering out the remaining replicas in each domain.
We then select the k-th smallest rtt from the reduced set
of replicas. The linear time pre-processing does not increase
the complexity of our algorithm and may potentially speed
up the execution of k-closest. Note that in practice there
may be multiple different diversity constraints that one may
want to consider, and further adjustments may be required.
Our system recommends an alternative set of replicas for a
given database preserving the failure diversity level currently
met by the database configuration. In the future, we plan
to offer clients several alternative configurations trading off
increased fault tolerance and operation latency.

5. TIER 3: REPLICA LOCATIONS, ROLES,
AND LEADER

In this section we expand the scope of our optimization
and present two efficient algorithms to select the best set
of replicas R from the possible locations S, a set of voters
V ⊆ R and the best leader from V (one of the algorithms
makes direct use of Algorithm 2). Unlike the algorithms
in Sections 3 and 4, which find the optimal solution, the
algorithms in this section are heuristics and we compare the
achieved solutions with the optimum in Section 6.4. The
algorithms in this section take the desired number of replicas
as a parameter. How to determine this number is further
explored in Section 6.4.

Similarly to Section 4, a brute force algorithm is straight-
forward, but exponential in complexity and highly imprac-
tical: such an algorithm could consider every possible sub-
set of replicas R ⊆ S, execute tier-2-efficient(R, |V|), and
choose the best combination of leader, voters and replicas.

Recall that in Section 4 we reduced the search space by
finding the best score for every possible leader in linear time.
This approach yielded an optimal solution because the lo-
cations of all replicas were fixed and thus, for each client,
nearest(c,R) and hence also rttc,nearest(c,R) did not depend
on the choice of the set of voters or the leader. Our goal was
to minimize the rest of the expression in Equation 1. Here,
on the other hand, optimizing the function nearest is part
of the problem. Given the location ` of a candidate leader,

we cannot, for example, greedily choose the closest replicas
to ` to be voters since it may be better to trade off quorum
latency for decreasing the latency between the clients and
their closest replicas (e.g., for a read-heavy database).

Our problem is a variant of non-metric facility location,
which is known to be NP-Complete. We present two efficient
heuristics for choosing replica locations, both make use of
Algorithm 3, a variant of the weighted K-Means algorithm.
The algorithm assigns a weight wc to each client cluster c
based on the total number of operations performed by c:

wc =
∑
α

n(i)α,c = n
(i)
weak read,c + n

(i)
bounded read,c + n

(i)
strong read,c

+n
(i)
single-group transaction,c + n

(i)
multi-group transaction,c

The goal of Algorithm 3 is to find a set of servers G (G ⊆ S)
such that cost(G) is minimized:

cost(G) =
∑
c∈C

wc · rtt(i)c,nearest(c,G) (3)

Algorithm 3 gets an initial set of replica locations (cen-

Algorithm 3 Weighted K-Means for choosing replica locations.

1: // Lfixed: set of fixed replica locations, which can’t be moved
2: // num replicas: total number of replicas to be placed
3: procedure weighted-k-means(Lfixed, num replicas)
4: // pick initial centroids
5: G← Lfixed

6: sort all client clusters c ∈ C by descending wc
7: while |G| < num replicas and more client clusters remain
8: c← next client cluster in C
9: if nearest(c,S) 6∈ G then

10: add nearest(c,S) to G
11: new cost← cost(G)
12: repeat
13: prev cost← new cost
14: // cluster clients according to nearest centroid
15: ∀g ∈ G let Cg ← {c | g = nearest(c,G)}
16: // attempt to adjust centroids
17: for each g ∈ G \ Lfixed

18: g′ ← v ∈ S s.t.
∑
c∈Cg wc · rtt

(i)
c,v is minimized

19: update centroid g to g′

20: new cost← cost(G)
21: until new cost− prev cost < threshold
22: return G

troids) Lfixed and the total desired number of locations num
replicas as parameters. First, we choose initial locations for

the remaining centroids (lines 6-10) by placing them close to
the “heaviest” client clusters (according to wc). Each cen-
troid location g defines a set of client clusters Cg for which
g is the nearest centroid (line 15). The remainder of Al-
gorithm 3 tries to adjust the position of each centroid g
in a way that minimizes cost (weighted roundtrip-time) for
clients in Cg. Note that the centroids in Lfixed are not being
moved. The algorithm terminates returning the set of cen-
troids G once there is no sufficient improvement in the total
cost, i.e., cost(G).

Recall that our goal is not only to find good replica loca-
tions, but also find a quorum and a leader. Our two new
algorithms differ in the order in which they perform these
tasks. Algorithm 4 first places all replicas in “strategic” lo-
cations using Algorithm 3 and then invokes Algorithm 2 to
determine the leader and voters from within the replicas.

Algorithm 5, on the other hand, first sets the leader and
a quorum of voters and then invokes Algorithm 2 to place
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Algorithm 4 Algorithm KQ.

1: procedure KMeans-Quorum(num replicas, num voters)
2: G← weighted-k-means(∅,num replicas)
3: (λ, V )← tier-2-efficient(G,num voters)
4: // Return the leader, set of voters and set of replicas
5: return (λ, V,G)

the remaining replicas close to the clients. More specifically,
we go over all possible leaders locations in S and find the
best quorum for this leader. This quorum is then considered
as centroids during the invocation of Algorithm 3 but these
centroids are pinned down and not moved by the algorithm.

Algorithm 5 Algorithm QK.

1: procedure Quorum-KMeans(num replicas, num voters)

2: majority← d num voters+1
2

e
3: minority← num voters−majority
4: for each replica ` ∈ S
5: q

(i)
` ← majority-th smallest rtt

(i)
`,s, s ∈ S

6: Q` ← k-closest(`,majority, q
(i)
` ,S)

7: G` ← weighted-k-means(Q`,num replicas)

8: score` ← agg score(i)(`,G`, q
(i)
` ) (Equation 2)

9: λ = arg min`∈S{score`}
10: O ← any minority locations from Gλ \Qλ
11: // Return the leader, set of voters and set of replicas
12: return (λ, Qλ ∪O, Gλ)

Note that in Algorithm 5, unlike in Algorithm 4, we know
both the leader and the quorum latency when invoking Al-
gorithm 3 and therefore in line 18 of Algorithm 3 actually
use the cost function given in Equation 1 (with the change
that the summation is done only over clients in Cg) instead
of the simplified cost model given in Equation 3. For sim-
plicity, this is omitted from the pseudo-code.

6. EVALUATION
In this section we describe the evaluation of our optimiza-

tion framework with one of Google’s large-scale distributed
storage systems. This particular system supports the five
representative operation types described in Section 2, which
made it the perfect candidate for optimization.

We implemented a system consisting of three tools: a data
collection pipeline, an optimizer, and a simulator. The data
collection pipeline fetches relevant inputs on the number and
latencies of relevant operations from Google’s monitoring
tools, as well as relevant data from the database schemas
such as the network QoS class used by each database, and
then prepares it for consumption by the optimizer. The
data is broken down into several nonoverlapping time inter-
vals, within each interval — by database, and within each
database — by client cluster and by operation type. The
optimizer generates scores for each one of the requested opti-
mization tiers on each one of the time intervals 1..i reported
by the collection pipeline, using an exponential moving av-
erage as demonstrated in Section 3 (Equation 2) with τ = 2
as the decay parameter. It then gives a placement recom-
mendation for each interval based on the previous ones. Fi-
nally, the simulator compares the optimizer’s recommended
placement strategy for each interval with other reasonable
placement heuristics as well as with the optimal placement
for the time interval.

Our experiments were carried out on machines with 12-
core 3.50GHz Xeon(R) CPU and 32 GB RAM. The running

times of our tools for tiers 1 and 2 for 48 time intervals on
all production databases combined were under 1.5 minutes.
In what follows we present experiments dedicated to each of
the optimization tiers.

6.1 Leader Placement
In this section we show experimental results demonstrat-

ing the benefit of optimizing leader placement for the vast
majority of databases in our storage system.

Speedup potential. In the following experiment, we
scored the current configuration of each database and com-
pared it with the configuration proposed by our optimizer.
We analyzed the average operation latency of databases dur-
ing one typical workday partitioned into 48 nonoverlapping
intervals of 30 minutes each.

In our storage system, a database administrator can spec-
ify an optional “preferred leader” location, and the storage
system picks a location close to it (it may not always be pos-
sible to use the preferred location due to lack of available re-
sources or ongoing maintenance). When assigning a score to
the current database configuration, we need to distinguish
databases with and without the “preferred leader” setting.
To each database db with preferred leader set to location

`? ∈ V(db) we assign the score score
(i)
db

M
= score(i)(`?,R, q(i)`? )

at each interval i = 1, 2, . . . , 48. For databases db without a
specified preferred leader, the group leaders are assumed to
be spread uniformly across V(db) (according to our obser-
vations, this assumption closely models real deployments in
our system). Accordingly, the score of such database con-

figuration is the average of scores score(i)(`,R, q(i)` ) across
V(db):

score
(i)
db

M
=

1

|V(db)|
∑

`∈V(db)

score(i)(`,R, q(i)` ) . (4)

For each interval i = 1, 2, . . . , 48, we calculate

1− score(i)(λ
(i−1)
db ,R, q(i−1)

λ
(i−1)
db

)/score
(i)
db ,

the potential reduction in latency when following the place-
ment recommendation of our optimizer, which places the
leader in interval i based on the preceding intervals 1 . . . i−1.
For each database db, we calculate the average latency reduc-
tion over all the values of i. Figures 1(a) and 1(b) demon-
strate the effectiveness of optimizing leader placement for
databases with and without an existing preferred leader set-
ting, respectively.

Observe that there is a significant divide between databases
that manually set the preferred leader and those that do
not in terms of latency reduction when following our rec-
ommended leader placement. We can see that typically, ad-
ministrators that choose to set the preferred leader, set it in
a way matching the recommendation of our optimizer; this
can be seen in Figure 1(a) which shows that over 75% of the
databases of this kind are found in the first bucket [0, 1%],
i.e., they cannot further benefit from our recommendation.
This serves as a validation that our model matches the in-
tention of database administrators in all these cases. We
see, however, that for some databases the manual setting is
sub-optimal, as evidenced by the existence of ∼10% outliers,
the score of which is off by at least 10% from the optimum.
Our recommendations can help speed-up such outliers.

We found, however, that only 25% of all databases specify
a preferred leader and with more new databases created, this
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Figure 1: Histogram of latency reduction for
databases with and without a preferred leader set-
ting. Bins on the x-axis denote % latency reduc-
tion compared to current placement. The height of
each bin (y-axis) is the percent of databases (with
or without a preferred leader setting) for which the
corresponding reduction in latency was measured.

percentage diminishes further. This surprising fact further
motivates the need for automatic optimizations. For the re-
maining 75% of the databases our tool provides significant
latency improvements, as shown in Figure 1(b). The aver-
age operation latency in many of the cases can be reduced
by tens of percent. Over 17% of such databases can halve
their average operation latency by following our placement
recommendation. For some databases, latency is reduced by
more than 90%.

Optimizer output and recommendation oscillation.
Figure 2 shows a sample output of our optimizer, which out-
puts the best leader location every 30 minutes and the la-
tency overhead for alternative locations, compared to the
best one (for brevity, we show only 2 additional locations).
Notice the oscillation in recommendations between clusters
`1 and `3 caused both by their similar scores and by work-
load changes between 00:30–02:00 and 03:00–05:00. Our al-
gorithm mitigates minor workload spikes by using a decay
parameter τ which counters the spikes with historic scores.
A second level of defence should be deployed which consid-
ers the costs and benefits of moving the leader to a different
location. For example, moving the leader may not be worth
while if the optimizer predicts a 2% latency reduction.

22:30: opt `1, 2nd best `2 = 4%, 3rd best `3 = 9.1%
23:00: opt `1, 2nd best `2 = 5.77%, 3rd best `3 = 9.77%
23:30: opt `1, 2nd best `3 = 5.2% , 3rd best `3 = 23.53%
00:00: opt `1, 2nd best `2 = 5.24%, 3rd best `3 = 7.68%
00:30: opt `3, 2nd best `1 = 5.59%, 3rd best `2 = 13.07%
...
02:00: opt `3, 2nd best `1 = 14.32%, 3rd best `2 = 23.42%
02:30: opt `1, 2nd best `3 = 7.38%, 3rd best `2 = 9.16%
03:00: opt `3, 2nd best `1 = 22.6%, 3rd best `2 = 33.09%
...
05:00: opt `3, 2nd best `1 = 11.49%, 3rd best `2 = 23.46%
05:30: opt `3, 2nd best `1 = 3.3%, 3rd best `2 = 15.08%
06:00: opt `1, 2nd best `3 = 0.92%, 3rd best `2 = 11.73%

Figure 2: Sample output of the optimizer.

Comparison with other placement strategies. We
use our simulator to compare four placement policies us-
ing historical storage activity data from one typical day,
discretized into 48 intervals of 30 minutes each. For i =
2, 3, 4, . . . , 48 and each one of the strategies, the simulator
sets the leader at time interval i, based on the prediction pro-
vided by the placement strategies on interval i−1 and assigns
score s(i) to that prediction based on the actual workload
data for interval i.

We considered four strategies for each database db: (op-

timized) placing the leader at λ
(i)
db (with decay τ = 2), as

predicted by the optimizer using data from intervals preced-

ing i, whose score on interval i is score(i)(λ
(i−1)
db ,R, q(i−1)

λ
(i−1)
db

),

(closest-to-writes) placing the leader statically in a cluster
`†, wherefrom most of the transactions in interval i = 0

originated, with score score(i)(`†,R, q(i)
`†

), (smallest-quorum)
placing the leader in a cluster `� = `�(db), where the av-

erage round-trip-time latency medianv∈V(db){rtt(i)`�,v} from
the leader to the majority of voters is minimal, with score

score(i)(`�,R, q(i)`� ), (average) random leader location across
all the groups of the database db, achieving the average
score as in (4). We compare with the closest-to-writes and
smallest-quorum strategies, since they are sometimes em-
ployed by database administrators when setting the pre-
ferred leader, and with the average strategy, since it re-
flects the performance of databases without the preferred
leader setting, as explained in the previous experiment. The
closest-to-writes strategy is a common heuristic used also
in other systems (see Section 7). Our baseline is the opti-
mal “oracle” strategy which sets the leader for interval i at

λ
(i)
db (considering the i-th interval workload when aposteri-

ori determining the best leader location for interval i, using

τ = ∞). Latency overhead s(i)/score(i)(λ
(i)
db ,R, q

(i)

λ
(i)
db

) − 1

with respect to the optimum score(i)(λ
(i)
db ,R, q

(i)

λ
(i)
db

) is calcu-

lated for each strategy score s(i) on each interval i ≥ 2.
Figures 3(a) and 3(b) demonstrate latency reductions (in

percent) for two databases with no manual preferred leader
location. The optimized strategy perfectly predicted the op-
timum for both databases. In general, for all the databases,
predictions were nearly perfect, with small deviations from
optimum due to sudden workload spikes. More than 90%
of operations belonging to the database in Figure 3(a) were
bounded reads, that is why the closest-to-writes and the
smallest-quorum policies, both of which disregard the loca-
tions of readers, underperform compared to the optimized
strategy which considers client locations and all operation
types. The smallest-quorum policy is slightly better than
closest-to-writes due to its choice of a well-connected replica
as leader. In Figure 3(b), 38% of operations are strong reads
and 60% of operations are weak reads. Once again the opti-
mized strategy prefectly predicts the optimum strategy and
outperforms the average and the smallest-quorum strategies
by a large margin (more than 60% on average); the closest-
to-writes strategy is not applicable in this case, as there were
virtually no transactions in the considered database.

6.2 Evaluation in Production
We are working directly with customers to validate our

models in production. We present the results of one such
experiment in Figure 4. For simplicity, in this experiment
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Figure 3: Latency overhead of various placement
strategies compared to the “oracle” optimum score

score(i)(λ
(i)
db ,R, q

(i)

λ
(i)
db

).

we only reconfigured the chosen database once, even though
the optimizer outputs recommendations continuously. We
monitored the 50-th percentile latency (solid line) as the
database is reconfigured (at 16:00) causing all leaders to
migrate to the location λ recommended by our optimizer
(dashed curve shows the percent of leaders in location λ).
We observe a reduction of ∼70% in latency when the mi-
gration completes (around 16:15), after which the latency
slightly increased and stabilized at ∼40% of its initial value,
exceeding the predicted improvement by a factor of 2. Even
though our model currently optimizes mean latency, it is in-
teresting to note that in this experiment we saw a reduction
of 30% in 99-th percentile latency (however 90% latency
did not improve). In another experiment with a different
database, we measured a ∼33%, ∼25% and ∼15% speedup

Figure 4: Production experiment with one database.
Figure depicts drop in 50-th percentile latency (solid
line) along with migration of leaders to recom-
mended location (dashed line). Latency base (100%
mark, left y-axes) is chosen as average latency over
3 hours preceding start of experiment (1pm–4pm).

in 50-th, 90-th and 99-th percentile latencies, respectively.
Note that our tool predicted a reduction of 39.7% in average
latency, which is fairly close to what was observed.

The discrepancy between the predicted and the actual re-
duction can be ascribed to the fact that at any given point
in time the number of leaders at the different locations from
V(db) is not exactly the same (though across a longer period
of time on average, it is close to uniform). We found that
for the first database mentioned above, one of the locations
in V(db) was taken down for maintenance at the time of the
experiment (leaders were evenly spread across the remaining
locations). For the second database, the predicted latency
reduction was calculated under the assumption that all the
leaders have an equal probability of 20% to be in any one of
the 5 possible locations, but in reality about one-third of all
the leaders were found in the same location. In the future
we intend to measure the actual leader distribution across
V(db) dynamically and encorporate it in our model.

6.3 Replica Roles
Next, we evaluate our tier-2 algorithm, that determines

the optimal replica types in addition to leader placement.
Before conducting our experiments, we intuitively expected
to find databases with workflows exhibiting the “follow-the-
sun” phenomenon.2 For example, we expected to see clients
in the US and in Europe with intense activity during day-
time and reduced activity at night, such that the overall
“center” of activity oscillates between US and Europe every
∼12 hours. We found, however, that often the traffic origi-
nating from US-based clients is greater than that originating
from non-US clients even during night time in the US, there-
fore the center of activity always remains in the US. This
is demonstrated for one database in Figure 5, which shows
that European traffic amounts to ∼35% of US traffic during
120 consecutive hours.

Figure 5: Europe traffic as a percentage of US traffic
over 120 hours, for a single database.

Nevertheless, we discovered diurnal patterns between US
East Coast and West Coast, as shown in Figure 6, where
we plot the ratio between the number of operations origi-
nating in the East Coast and the number of operations from
clients on the West Coast across 48 consecutive hours with
one database, overlaid with the leader locations as suggested
by our optimizer. Delineated by vertical lines are points at
which our optimizer suggested to switch leader placement
from a cluster on one coast to a cluster on the other coast.
The reader can readily notice the correlation between ra-
tios larger than 1 and optimizer recommendations for leader
placement on the East Coast (as well as between ratios
smaller than 1 and recommendations for the West Coast).

2Apache ZooKeeper users have a similar intuition [6].
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Figure 6: Ratio of East Coast to West Coast traffic,
for a single database. Vertical lines denote times at
which recommended leader placement changed from
East Coast to West Coast or vise versa.

The charts in Figure 7 show the reduction in latency of
tier-2 and tier-1 optimizations versus the current score, for
two different databases. Figure 7(a) features a database
which does not set the preferred leader, ∼98% of operations
in which are strong reads, for which the optimization of tier-
2 was considerably better than that of tier-1. The leader
placement in our tier-1 optimization was chosen in Central
US, whereas in tier-2 it migrated to the Pacific Northwest.
This reduction in latency looks paradoxical at first, consid-
ering the fact that the locations of the voters and quorum
are only supposed to affect the latency of transactions, which
are virtually nonexistent in this database. This phenomenon
is readily explained by the fact that our optimization in
tier-2 allows us to consider all the replicas in R as poten-
tial leader candidates, instead of just the pre-determined set
of read-write replicas considered by our tier-1 optimization.
Indeed, the Pacific Northwest replica was initially config-
ured as a read-only replica and thus could not function as
leader, whereas in tier-2, where we can convert it to a read-
write replica, it has become a legitimate candidate (and an
eventual “winner”), thereby bringing about the surprising
reduction in latency.

Figure 7(b) shows a different case, where both tier-1 and
tier-2 optimizations suggested the same leader placement,
but tier-2 chose a different quorum, due to which the average
operation latency was cut by an additional ∼15% compared
to tier-1. This database also does not set a preferred leader.
About 57% of operations are strong reads and additional
∼42% are multi-group transactions; the latter operations
significantly benefited from a new, better connected quorum
of replicas. In this case tier-2 approximately doubles the
reduction in latency achieved by tier-1.

Note that in all the experiments above we first analyzed
the level of failure diversity currently preserved by the database
configuration and only suggested alternative configurations
maintaining the same diversity level.

6.4 Replica Locations
In tier-3 of optimization, we experimented with the per-

formance of the KQ and QK heuristics (see Section 5).
We start by comparing their performance with that of the

exhaustive search preserving the failure diversity constraints
of the current database configuration. Figure 8 shows the
average ratio between the score given by the optimizer to
the exhaustive search and the scores of QK and KQ heuris-

Figure 7: Latency reduction due to tier-1 and 2 op-
timizations across 3 days of workload data for two
selected databases.

tics, as a function of the total number of replicas, across 12
largest (by the amount of traffic) databases in our system,
when the number of voters |V| was fixed at 3. On the same
chart, we also plot the average ratio between the score of the
exhaustive search and the best of two heuristics across the
same 12 largest databases. For some databases, KQ is better
than QK, whereas for others the QK outperforms KQ, re-
sulting in a perhaps surprising fenomena where the average
Best(QK,KQ) score is better than both the average KQ and
average QK score. For |R| ∈ {6, 7}, KQ was consistently
better than QK, that is why Best(QK,KQ) coincides with
KQ at that point. The performance of QK on the chart is
worse on average that than of KQ because of the fact that
most of the considered databases are read-heavy and the rel-
atively small number of replicas considered, of which 2 are
“wasted” by QK on the quorum. For such databases it is
worthwhile to spread out the replicas to place them as close
to most of the clients as possible, which is where KQ excels
in comparison with QK.

We notice that already with |R| = 5 replicas, the best of
the two heuristics performs within 5% margin of the opti-
mum produced by exhaustive search, with the added benefit
of being substantially faster. For |R| = 7, both QK and KQ,
which are polynomial (in |R|), generated results for all 12
databases within seconds, whereas the exponential exhaus-
tive search took several orders of magnitude longer.

Next, we compare KQ and QK, specifically interested
in identifying workloads where each of the two algorithms
should be preferred over the other. In the following ex-
periment, run with |V| = 5 and |R| = 7 we broke down
all databases into buckets by the percentage of transactions
among all operations and compared the two algorithms for
databases in each bucket. Figure 9 shows a positive corre-
lation between the percentage of transactions and the su-
periority of QK, which, for databases with more than 60%
transactions performs better by more than 80% compared
with KQ. A second experiment in which the databases were
broken down into buckets by the percentage of weak reads
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Figure 8: Score of the exhaustive search in percent
of the score of KQ, QK and best of two heuristics
(with |V| = 3), as a function of |R|.

shows a strong correlation between that percentage and the
superiority of KQ; results of this experiment, which appear
in Figure 10, demonstrate that for read-heavy databases the
speedup of KQ versus QK can be as high as ∼23% on aver-
age. Similar experiments with breakdowns of databases by
percentages of bounded reads and strong reads did not yield
a conclusive outcome.

Figure 9: Speedup of QK vs. KQ heuristic as a func-
tion of the percentage of transactions in a database.

Figure 10: Speedup of KQ vs. QK heuristic as a
function of the percentage of weak reads.

How many replicas do you need? Whereas the num-
ber of read-write replicas is usually set by an administrator
to meet certain fault tolerance goals, the total number of
replicas is usually more flexible. The cost of adding / mov-
ing / maintaining a replica is often significant as it requires
allocating resources, copying data, and potentially deploy-
ing other relevant services if collocation dependencies exist.
At minimum, the number of replicas should be sufficient to
withstand the expected database load. But often, additional
replicas are added close to the clients in order to reduce
latency. Our framework can help explore the cost/benefit
tradeoff of adding such replicas by examining the potential
latency gains, and can determine their locations.

In the following experiment, we set |V| = 3 and let |R|
range between 4 and 13. We then measure the scores of
both QK and KQ heuristics using workload from one day
for one database. Figure 11 demonstrates, for each heuristic
and |R| ∈ {4, 5, 6, . . . , 13}, its average latency slowdown in
percent versus the score obtained with 13 replicas, which
equals the optimal score for any tier-3 optimization with 3
voters (obtained using an exhaustive search). We can readily
see that both heuristics flatten out very soon; specifically,
with |R| = 11, both are within ∼13.5% margin from the
optimal score. This demonstrates the deminishing returns
of adding more replicas – initially each new replica halves
the average operation latency, while adding the 12th or 13th
replica barely makes any difference.

Figure 11: Slowdown of QK and KQ heuristics in
percent from the optimum.

7. RELATED WORK
It has long been realized that distributed systems need to

be dynamic, i.e., adjust their membership and other configu-
ration parameters over time. Many storage systems [11, 18,
24] use an auxiliary coordination service such as Chubby [13]
or ZooKeeper [19] to coordinate reconfiguration while oth-
ers use the system itself [23, 25]. See [22, 12] for a tuto-
rial on different approaches for reconfiguration of replicated
state-machines (i.e., Paxos-like systems) and [8] for a survey
on reconfiguring strongly consistent key-value stores. Much
fewer works provide insights on how to determine the “best”
storage configuration at runtime. Since LAN and WAN en-
vironments pose very different challenges, below we focus on
storage systems that dynamically reconfigure in WAN.

PNUTS [15] and Megastore [10] place master/leader repli-
cas close to the writers. Earlier works propose other heuris-
tics, e.g., that the current leader should hand off leadership
to another replica if that replica forwards more requests
to the leader than it receives from elsewhere [28]. These
heuristics may work well for some workloads but not for
others. For example, in Section 6.1 we show that placing
the leader close to the origin of the majority of writes per-
forms poorly on our production workloads, which are mostly
read dominant (and yet involve the leader). Furthermore,
unlike in [28], we consider network latencies and instead of
looking at the aggregate number of requests (or just one re-
quest type, such as writes), we consider the detailed flow of
each request type and perform an optimization for the entire
workload. In this work we formally state optimality criteria
and our solution achieves optimal leader placement.

Adaptive replication mechanisms in PNUTS [20] and No-
mad [27] dynamically create replicas based on locally ob-
served reads. In Nomad, for example, a replica is created
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at a given location when an object is read more than a cer-
tain number of times from that location, over a certain pe-
riod of time, or at a certain rate. Authors of [20] state that
they considered more exact methods but decided to use local
heuristics since efficiently acquiring, tracking and collecting
access statistics from around the world is a complex and
expensive process. In this work we leverage Google’s mon-
itoring infrastructure to dynamically and accurately track
the workload of each database, as well as network laten-
cies. We demonstrate that a solution optimizing the entire
workload can be both fast and practical.

Volley [7] proposes a heuristic for placing application data
across data centers while minimizing client latency as well as
synchronization latency arrising from data inter-dependency.
The Volley algorithm does not support data replication and
was not evaluated with replicated state. The authors briefly
propose to model replicas as distinct data items that may
have a certain amount of inter-item communication. Note,
however, that with replication each client request is only
sent to one of the replicas; unlike Volley, our tier-3 algo-
rithm takes such workload partitioning into account when
placing the replicas. Furthermore, unlike Volley, our cost
model considers muliple types of client requests with differ-
ent flows and we compare our replica placement heuristics
with the optimum achieved by an exhaustive search using
production workloads.

Tuba [9] is an extension of Microsoft Azure Storage that
provides geo-replicated key-value store and automatically re-
configures its master and set of replicas based on the work-
load. Unlike Tuba, our algorithms do not require any changes
to the storage system. Tuba uses exhaustive search to enu-
merate all placement options and choose the best one. It
was evaluated with three storage locations using a synthetic
workload. We tried exhaustive search, but it was not prac-
tical for our “Google scale” storage system. A highly op-
timized exhaustive search algorithm for replica placement
(Section 6.4), akin to the exhaustive search in Tuba, took
more than a day to complete and was only slightly bet-
ter than our heuristic: up to 5% better for 5 replicas per
group and less than 1% for larger configurations. In con-
trast, our optimal algorithms for choosing leader and replica
roles (tiers 1 and 2) and heuristic methods for replica place-
ment (tier 3) terminated in less than 2 minutes for all the
databases combined.

8. CONCLUSION
Although mechanisms exist for changing the replication

policy of distributed storage systems at runtime, system
administrators are usually entrusted with determining the
“best” configuration manually. We developed a new workload-
driven optimization framework that dynamically and auto-
matically determines the optimal configuration for leader
and quorum based systems. Our system optimizes three as-
pects of the configuration: 1) leader location, 2) roles of
different servers in the replication protocol, and 3) replica
locations. We show that by just applying the first optimiza-
tion tier to a large-scale distributed storage system used
internally in Google, we can reduce the latency of 17% of
the databases by more than half, including some databases
with a speed-up over 90%. We demonstrate that the sec-
ond optimization tier further reduces latency by up to 50%
in some cases. Finally, we evaluated and compared differ-
ent strategies for selecting replica locations and showed that
they are close to optimal.
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