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ABSTRACT 

The detection of time series motifs, which are approximately 

repeated subsequences in time series streams, has been shown to 

have great utility as a subroutine in many higher-level data 

mining algorithms. However, this detection becomes much 

harder in cases where the motifs of interest are vanishingly rare 

or when faced with a never-ending stream of data. In this work 

we investigate algorithms to find such rare motifs. We 

demonstrate that under reasonable assumptions we must 

abandon any hope of an exact solution to the motif problem as it 

is normally defined; however, we introduce algorithms that 

allow us to solve the underlying problem with high probability.  

Keywords 
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1. INTRODUCTION 
Time series motifs are approximately repeated patterns found 

within a longer time series. Since their definition a decade ago 

[18], dozens of researchers have used them to support higher-

level data mining tasks such as clustering, classification, 

dictionary learning [5], visualization, rule discovery and 

anomaly detection [25]. While the original time series motif 

discovery algorithm was an approximate algorithm, the recently 

introduced MK algorithm provides a scalable exact solution 

[25]. For a user-defined length of interest, the MK algorithm 

finds the pair of non-overlapping subsequences that have the 

minimal Euclidean distance to each other. The algorithm has 

been further generalized to a limited streaming setting; it is now 

possible to find and maintain the motif pair in a sliding window, 

say the last k minutes, of a continuous stream [24]. 

In spite of recent progress in motif discovery, there are two 

related situations for which there are currently no tractable 

solutions. If the motifs are extremely rare, then it is extremely 

unlikely that we will see two of them within k minutes of each 

other, as assumed by [24]. Depending on data arrival rates and 

the hardware platform used, k might be as large as 20 minutes. 

However, as shown in Figure 1, we may be interested in finding 

patterns that occur only once a month or less. If we ignore the 

streaming case and assume that the m-datapoints are stored in 

memory, we are still limited by the scalability of the current 

fastest known algorithm [23][25], which is O(mlog(m)) with 

high constants. For some of the datasets we wish to consider (cf. 

Section 6.3), this would require decades of CPU time.  

In this work we introduce an efficient framework that allows us 

to solve such problems with very high probability. Our key 

observation is based on an understanding of how motif 

discovery is actually used in domains as diverse as 

electroencephalography [25], entomology and nematology [5]. 

 

Figure 1: A never-ending time series stream from a 

weather station’s solar panel [2], only a fraction of which 

we can buffer. A pattern we are observing now seems to 

have also occurred about four months ago. 

It is important to recognize that the narrowly defined time series 

motif pair discovery problem as defined in [25] is really a proxy 

problem for the underlying task of finding more generally 

repeating patterns. For example, suppose that there are ten 

examples of an unknown repeated behavior in a dataset with ten 

million items, and we wish to discover them. We could employ 

the MK algorithm, which would find the pair from the ten 

patterns that are the minimum distance apart, and then use a 

quick linear scan to find the other eight patterns. Indeed, this is 

suggested in [25]. Note, however, that it would suffice for our 

purposes to find any two of the ten repeated patterns; we do not 

really need the smallest distance pair, or any specified pair. This 

is a simple but important observation, because it allows us to 

succeed if we find any one of 45 pairs, clearly a much easier 

task. As we shall show, this slightly relaxed assumption allows 

us to solve problems that are otherwise intractable, and to 

discover repeated patterns in unbounded streams. The patterns 

discovered by our algorithm can serve as an input to higher-

order algorithms that do semi-supervised learning [11], or look 

for changes in the frequencies of the discovered patterns that 

may signal anomalous behavior [18] etc. 

2. DEFINITIONS AND NOTATION 
In order to concretely state the problem at hand, we will define 

the key terms used. We begin with a definition of our data type 

of interest, time series:  

Definition 1 Time Series: A time series TS = ts1, ts2, ...,tsm is an 

ordered set of m real-valued variables, where tsm is the most 

recent value.  

We are only interested in the local properties of a time series; 

thus, we confine our interest to subsections of the time series, 

which are called subsequences: 

Definition 2 Subsequences: Given a time series TS of length m, 

a subsequence of TS is a sampling of length l ≤ m of contiguous 
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positions from TS starting from position i. Formally, TSi,l = tsi, 

tsi+1...tsi+l-1 for 1 ≤ i ≤ m-l+1. 

The subsequences from a time series are extracted by the use of 

a sliding window: 

Definition 3  Sliding Window: For a time series TS of length m, 

and a user-defined subsequence of length n, all possible 

subsequences of TS can be found by sliding a window of size n 

across TS. 

It is well understood in the literature that (with very rare and 

well-defined exceptions) it is meaningless to compare time 

series unless they are z-normalized [15][18] . 

Definition 4  Z-normalized Subsequence: If the values of a 

time series subsequence TSP have an approximately zero mean 

with standard deviation (and variance) in a range close to one, 

then TSP is called a z-normalized subsequence.  

A common task associated with subsequences is to determine if 

a given subsequence is similar to other subsequences under 

some distance measure. This notion is formalized in the 

definition of a match: 

Definition 5  Match: Given a positive real number T (called 

threshold) and a time series TS containing  subsequences TSP 

and TSQ beginning at position P and Q, respectively, if D(TSP, 

TSQ) ≤ T, then TSQ is called a matching subsequence of TSP.  

These notations are summarized in Figure 2. The obvious 

definition of a match is necessary to formally define a trivial 

match. Clearly, the best matches to a subsequence tend to be 

located one or two points to the left or the right of the 

subsequence in question. Almost all algorithms need to exclude 

such trivial solutions. The concrete definition is given below: 

Definition 6 Trivial Match: Given a time series TS containing 

subsequences TSP and TSQ beginning at position P and Q, 

respectively, TSQ is a trivial match to TSP if either P = Q or a 

subsequence TSQ
’ beginning at Q’ such that D(TSP, TSQ

’) > R 

and either Q < Q’ < P or P < Q’ < Q does not exist. 

We are now in a position to define objects, which are non-

overlapping subsequences from a time series stream: 

Definition 7 Object: Given a time series TS = (ts1, ts2, ...,tsm) 

two objects of length l are subsequences (TSi,l, TSj,l) of TS such 

that 1 ≤ i ≤ i + l-1 < j ≤ m-l. 

The reason we consider only non-overlapping subsequences is to 

avoid trivial matches, which must be excluded to define the 

success condition of our problem. 

To measure the distance between objects, we use the ubiquitous 

Euclidean distance measure [1][8]: 

Definition 8 Euclidean Distance: Given two time series (or 

time series subsequences) TSP and TSQ, both of length m, the 

Euclidean distance between them is the square root of the sum 

of the squared differences between each pair of the 

corresponding data points:                   
     

 
  

     

The reader may imagine that using the Dynamic Time Warping 

(DTW) distance measure could produce better results for the 

task at hand. However, this is not the case. As shown in [25], for 

time series objects which are very similar (suggestive of these 

being motifs), the values of Euclidean distance and DTW must 

be very tightly related. Given this, we use the ubiquitous 

Euclidean distance measure for calculating the similarity 

between the time series patterns [9][14][22][23]. We are now in 

a position to give a concrete problem statement. 

3. PROBLEM DEFINITION 
Assume we are given a never-ending time series stream S that 

mostly produces instances of patternless data in R, and with 

some low probability p, instances of an unknown pattern in G 

(we will define patternless later). As shown in our running 

example in Figure 2, items in G appear visually similar to each 

other, but are not perfectly similar. Our goal is simply to detect 

an instance in G as early as possible. 

 

Figure 2: A never-ending time series stream S produces 

mostly patternless data in R, and with very low 

probability, instances in G.  

Note that our problem is to detect instances in G as early as 

possible; but we are not interested in testing the significance of 

these instances. Our algorithm is designed to be a subroutine for 

higher level algorithms, and the ranking of the patterns in G in 

terms of significance can be done by these algorithms [6][7][13]. 

Further note that we are assuming that we are given the lengths 

of the patterns-of-interest by domain experts, an assumption 

which is typical in the data mining community [5][13][22][30]. 

However, recent work by [23] shows that this assumption can be 

relaxed with little overhead.  

Note that we assume there is no explicit test to check if a pattern 

is in G. Concretely, patterns in G have statistical properties that 

are also typical of data in R. Thus, the defining assumption of 

this work is that the only way we can tell if an item is in G is to 

note that it is sufficiently similar to another item also suspected 

to be from G, which we call a match (cf. Definition 5).  

More formally, we assume a distance threshold T such that:   

 Any two objects, where at least one is not in G, are unlikely 

to have a distance < T.  

 Any two instances in G are likely to have a distance < T. 

The former point is essentially an informal definition of 

patternless, but must come with a caveat. As R approaches 

infinity (recall we have an unbounded stream) and given that we 

are dealing with z-normalized objects, the space of possible 

shapes of a time series will eventually be exhausted and R must 

eventually produce two instances that are less than the threshold 

apart. Thus, the assumption of the existence of a distance 

threshold T discussed above is relative to a sample size of S that 

is approximately w, the amount of memory we can devote to this 

task (measured in the number of instances that can be stored). 

The threshold T may be given to us in the form of domain 

knowledge, or we may have to learn it from the data (cf. [33]). 

This idea is illustrated in Figure 3. 

 

Figure 3: DG and DR represent the all-pair distance 

distributions of the patterns in G and R, respectively. The 

distance threshold T represents the boundary that 
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separates the decision whether the two patterns in 

question belong to G or not.  

Note that the two distributions here are Gaussian.  This is often 

the case for real data (cf. Figure 10 and Figure 12), and we adopt 

this assumption for ease of exposition. We note, however, that 

generalizations to other distributions are trivial. We further note 

that for illustration purposes, the DR distribution is only slightly 

larger than the distribution DG; however, in the problems we 

wish to deal with, we expect the prior probability of the patterns 

in R (i.e., 1-p) to be many orders of magnitude larger. 

Finally, a critical observation from Figure 3 is that the two 

distributions overlap. Thus, no matter what value of T we have, 

we must deal with some probability of error. In particular, two 

types of error can occur: 

 The region marked C is proportional to the probability that 

we will falsely believe that two patterns from R that happen 

to be similar are exemplars from G. 

 The region denoted D is proportional to the probability that 

two exemplars that are from G will not be identified as 

such because they happen to be farther apart than average.  

For real-world problems we expect the area of C + D to be much 

smaller than that illustrated in Figure 3. Obviously, we can 

adjust the threshold based on our relative tolerance for each type 

of error. This relative tolerance itself may depend on the 

application [13]. 

We are finally in a position to formally define the task at hand: 

Problem Statement: Given an unbounded time series stream S 

that mostly produces instances in R, but with some very low 

probability p, produces instances of an unknown pattern in G, 

and a user-defined distance threshold T, detect and return an 

instance in G such that the expected number of instances in S 

seen is minimized. 

For example, recall our running example shown in Figure 1 and 

Figure 2. The distinctive pattern (shown colored/bold) 

consisting of a smooth “dump” with a “dropout” near the center, 

appears to have been caused by the shadow of a pole falling on 

the solar panel during a rare cloudless day. Such patterns occur 

five or six times a year (at that location), so if we wait long 

enough we will probably see two close together, perhaps even 

on consecutive days. However our task is to discover such 

patterns as soon as possible, independent of when/how often, 

they occur. 

3.1 A Brute Force Algorithm 
Given the assumptions above, a trivial algorithm suggests itself. 

We can simply keep the first k items of S in memory, and then, 

when the kth + 1 item arrives, we compare it to all k items 

currently stored and report “current item is a member 

of G” if  we find that D(k + 1, j) < T and j < k + 1. 

Note that this algorithm has some probability of making a type I 

or type II error, but this is intrinsic to our assumptions, and no 

algorithm can do better. 

This brute force algorithm is clearly optimal, but also clearly 

untenable. We are assuming that S is an infinite stream, and p is 

a very small number. Thus, we will eventually run out of space 

to store items, or the time needed to make all the comparisons.  

We can at least mitigate the time complexity of the naïve 

algorithm using off-the-shelf dynamic indexing techniques 

(recall that because we are dealing with real-valued high 

dimensional objects, we cannot avail of the O(1) equality tests 

available to the discrete analogue problems) [10]. Therefore, we 

concern ourselves here with the more difficult resource 

limitation: space constraints. 

3.2 Brute Force with Limited Memory 
In our problem setting, we assume that we must work with C, a 

cache of a fixed size w. Here, w is the number of instances that 

can be stored in main memory. Note that while taking the 

distances of the cached patterns, we only consider patterns 

which are not trivial matches (cf. Definition 6) to each other (cf. 

Section 2).  

It is clear that the performance of any cache-based algorithm 

depends critically on the size of the cache. Consider the two 

following special cases. If w = ∞, then the cache-based 

algorithm is as good as the trivial algorithm discussed above. If 

w = 2, then the probability of an instance in G being in the cache 

as another instance in G arrives is just p, and we will typically 

have to wait a very long time before reporting success.  

Given this observation, our metric of success can be seen as the 

expected number of objects seen from S before detecting an 

object in G. We are now in a position to give a derivation of this 

metric, which we discuss in the next section. 

3.2.1 Derivation of the Success Metric 
In order to derive the theoretical model for the success metric, 

we denote the number of objects that must be seen from S before 

reporting success, .  

By definition, at each time step, S produces an instance in G 

with probability p. By the time we detect an instance in G, the 

elements in C may or may not experience cache replacement(s). 

Case 1: No cache replacement 

Consider the case when there has not been any cache 

replacement by the time we report success. In order to find the 

probability of success, we denote the number of objects 

observed from S until the first and second instances in G are in     

C by  and ,respectively.  

Each i is a geometric random variable with success probability 

p. Because there has not been any cache replacement when we 

report success, the probability of having the first two instances 

in G be in C is:    
       . 

Case 2: Cache replacement 

Now consider the case when there has been cache replacement 

at least once. After discarding an element from the cache, the 

remaining w-1 elements in the cache can be in either of the 

following two categories:  

Category 1: All of the w-1 patterns in C are instances in R. 

The probability of this event is:                 . 

Category 2: All but one of the w-1 patterns in C are 

instances in R. The probability of this event is: 

                         . 

We can report success if and only if the wth pattern to be inserted 

into C is in G, and the previous w-1 patterns in C belong to 

Category 2. Therefore, the probability of the success event is: 

                          .  
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If the patterns in C are such that no two of them are instances in 

G, then we call it a failure event. We describe the probabilities 

of this event below: 

If the wth pattern to be inserted into C is in R, and the previous 

w-1 patterns in C belong to Category 2, then the probability of 

the failure event is:                                . 

If the wth pattern to be inserted into C is in R, and the previous 

w-1 patterns in C belong to Category 1, then the probability of 

the failure event is:                               . 

If the wth pattern to be inserted into C is in G, and the previous 

w-1 patterns in C belong to Category 1, then the probability of 

the failure event is:                           . 

Given this analysis, the probability of having the first two 

instances in G be in C is: 

    
 

               

                                 
 
    

 .        

Based on the analyses above,     
 becomes: 

                  
                                                                                   

                                  
               

                                 
 
    

                             (1) 

Therefore, after seeing n objects in S¸ the probability of failing 

to detect an instance in G is:                
  . Given this, 

the probability of success after observing n instances in S is: 

                   .  

More generally, Figure 4 shows the relationship between cache 

size and the number of items seen before detecting an instance 

in G, under the following concrete assumptions. One in a 

hundred objects in S belongs to G; everything else belongs to R. 

We further assume (just for this toy example) that the moment 

we have two instances in G in the cache, we can unambiguously 

detect that fact.  

From Figure 4 we observe that if w = 20, then we have to see 

about 2,857 objects to have a 0.99 probability of correctly 

identifying an instance in G. As w gets larger, the number of 

objects needed to reach this 0.99 probability threshold decreases, 

but we can clearly see diminishing returns. Using a cache size 

five times larger only reduces the number of objects we need to 

see to about 918 objects, and moving to an arbitrarily large 

cache size (w = ∞) further improves this down to about 227. For 

comparison, with w = 2, the 0.99 probability is not reached until 

we have seen 46,049 objects (this value is truncated from Figure 

4 for clarity). 

Note that our toy example considers the case when p = 0.01; 

however, we expect to deal with real-world problems in which p 

may be several orders of magnitude smaller. Such values of p 

will “stretch” the x-axis, but our core observations about the 

diminishing returns properties remain.  

 

Figure 4: The number of objects that must be seen to 

find a pattern in G, for different cache sizes w, with a 

desired probability of success. The 0.99 probability is 

highlighted with a horizontal dashed line.  

Also note that we have not stated which cache replacement 

policy we used in Figure 4. As we shall show below, the two 

most obvious candidates, First-In-First-Out (FIFO) and Random 

Replacement (RR), both correspond to this analysis.  

3.3 Analysis of Cache Replacement Policies 
Two obvious cache replacement policies are First-In-First-Out 

(FIFO) and Random Replacement (RR) [28]. As the names 

suggest, in FIFO, the oldest object in the cache is discarded at 

each time step, whereas in RR, the object to be discarded is 

selected randomly. Note that the FIFO replacement policy is 

vulnerable to an adversarial case [3]. Imagine a version of our 

problem in which S produces instances in G at uniform time 

instances. If the number of objects produced by S after an 

instance in G is greater than or equal to w-1, then we can never 

detect an instance in G using the FIFO cache replacement 

policy. The obvious solution to mitigate such a problem is to use 

randomization, which is often used in algorithms to avoid such 

pathological cases [21]. It is important to note that this 

adversarial worst case is not pathologically unlikely. For 

example, some manufacturing machines may produce a special 

pattern as the machine is recalibrated during a shift change, 

every eight hours. A FIFO policy with a cache size of seven 

hours would never discover this pattern.     

Using the analysis in Section 3.2, we can more formally define 

the metric of success for our problem. For the case without any 

cache replacement, the number of objects observed from S until 

two instances in G are in C, i.e., is a negative binomial 

random variable. We define as      
 
   . 

Because the expectation of a sum of random variables is the sum 

of their expectations, we have:           
 
     

       
 
    

 

 
 

 

 
 

 

 
  (Recall from Section 3.2, each i is a 

geometric random variable with success probability p). 

Therefore, if w >= 2/p, we expect no cache replacement. 

For the case with at least one cache replacement, E() depends 

on the number of objects seen from S immediately before the 

cache replacement,replacement’, and after the cache 

replacement(s),replacement, until we report finding a pattern in 

G.  replacement’ is simply w, and replacement is a geometric random 

variable with success probability    
 as in Equation 1. 

Therefore, for this case,      
 

   

   . Similar to our 

observation about the case without cache replacement, if w < 

2/p, we expect cache replacement(s) to occur. 

In Figure 5 we show that the expected number of elements seen 

from S before detecting an instance in G (our success metric 

stated in Section 3.2) decreases with increasing cache size. In 

addition to this, Figure 5 shows how closely the success metric 

agrees with the empirical results for both of our candidate cache 

replacement policies.  

As Figure 5 suggests, the larger the cache is, the fewer objects in 

S we can expect to see before detecting a pattern in G. This 

observation does not seem directly exploitable, as the cache size 

is a domain constraint. However, as we will show in Section 4, 

we can “virtually” increase the cache size by changing the 

representation of the data. 
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Figure 5: The experimentally-determined success metric 

for FIFO and RR policies closely agrees with the 

theoretically-derived metric for a wide range of values of w. 

3.4 A Magic Sticky Cache  
The analysis in Section 3.3 shows that for a fixed w, the more 

objects we see, the higher the probability is of detecting an 

instance in G. Given w and p, we can predict the performance 

using the analysis in Section 3.3. The results show that a larger 

cache size helps improve the performance. Beyond making the 

cache size larger, is there any other way we could improve the 

performance? 

To answer this question, we can perform a gedankenexperiment. 

Imagine for a moment that we could “magically” control the 

discard probabilities of the patterns in G and R from the cache, 

such that patterns from G tend to “stick” in the cache for longer.  

In particular, imagine we somehow can discard items in R with, 

say, a 50 or 100 times greater probability than items in G.  This 

would improve the chances of an item from G remaining in the 

cache as a new G exemplar arrives, and thus improve .  This 

intuition is illustrated with an experiment shown in Figure 6. 

As we can see, making the cache “stickier” for items that might 

be in G significantly improves our chance of detecting an 

instance in G. However, it is not clear yet how we could imbue 

the cache with this ability. 

To summarize: The ideas in this section suggest two possible 

approaches (which are not necessarily exhaustive or mutually 

exclusive) that we can consider for improving the performance 

in our problem: 

 

Figure 6: The red/bold line here is identical to the w = 20 

line in Figure 4. If we could somehow increase the 

probability of discarding an element from R we would 

obtain a significant improvement  

 Find a cache replacement policy that minimizes the 

probability of discarding instances in G as opposed to 

instances in R= S - G (cf. Figure 6);  

 Change the representation of the data, such that we can fit 

more objects into C. This implicitly improves the 

probability of keeping an instance of G in the cache (cf. 

Figure 4 and Figure 5). 

In the next section, we explore the latter idea, and in Section 5 

we discuss the former idea. 

4. DATA REPRESENTATION POLICY 

4.1 Initial Observation 
Recall from Figure 5 that the larger the cache is, the higher the 

probability is of detecting an instance in G. We can emulate the 

effect of a larger cache by changing the representation of the 

data. Compressing or downsampling the data allows more 

objects to fit in the cache; we can thus expect to detect an 

instance in G sooner than in the raw space. 

This idea requires some careful consideration. While time series 

data is typically amiable to lossless compression techniques such 

as delta encoding or Lempel Ziv, such methods require 

decompression before the Euclidean distance calculations, and 

are thus more suited to archiving data. They would clearly 

introduce an intractable overhead for a fast-moving stream, 

where we would have to (re)decompress each instance at every 

cache insertion. 

Downsampling (or equivalently, lossy compression) avoids this 

problem, but introduces a new issue we must deal with. From 

Figure 7, we can see that changing the representation of the data 

inevitably changes the distances between objects. 

 

Figure 7: top) DG and DR are identical to the all-pair 

distance distributions of the patterns in G and R, 

respectively, in Figure 3. bottom) After downsampling 

the data, the new distance distributions (DGN and DRN) 

and the new threshold TN shift left. 

If we consider only orthonormal transformations (DFT, DWT, 

SVD, etc.), the distances between any pairs of objects can only 

be reduced [1]. Because of this lower-bounding property, the 

distributions in Figure 7.top) can only shift to the left (Figure 

7.bottom). As a consequence, the distance threshold T can also 

only shift left in the approximate space (TN).  

Note, however, that we cannot say how the overlapping area of 

the distance distributions will change – because either of the 

distribution’s standard deviations could increase, decrease, or 

remain the same (Figure 7.bottom), therefore, the area C + D 

could also change arbitrarily. In practice, however, this area 

always increases, and in the next section we show how to 

incorporate this into our cost model.  

4.2 Cost Model 
It is important to note that in our problem definition, of the two 

errors we can make while detecting an instance in G, one 

“hurts” more than the other. This is because if we falsely miss 

two exemplars in G, then we still have the hope of detecting an 
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instance in G in the future. However, if we mistakenly say two 

exemplars are in G, when in fact at least one is in R, then we 

can never detect two instances in G, as we immediately stop our 

search. Of course, we could adapt our definition such that we do 

not actually stop, perhaps buffering the tentative motif and 

continuing the search. However, the tentative motif must be 

examined by a human or algorithm at some point [13]. Thus, 

these false positives do have an inescapable cost [13]. 

Given this observation, we can design a cost model in which we 

fix the probability that we mistakenly claim two patterns to be in 

G (area C in Figure 7). This fixing results in an increasing 

tendency of the probability of falsely dismissing two true 

patterns in G (area D in Figure 7) as we downsample the data. 

As a consequence, the probability that two patterns in the cache 

are believed to be from G tends to decrease. We defer the 

calculations of these probabilities until Section 4.2.1. However, 

Figure 8 shows an empirical illustration of this observation. 

 

Figure 8: left) When downsampling, the probability of 

falsely dismissing two instances in G tends to increase if 

we fix the probability that two cache patterns are 

claimed to be in G by mistake. right) Consequently, the 

probability that two patterns in the cache are believed to 

be from G tends to decrease.    

From Figure 8.left) we can see that if we fix the probability that 

two patterns in C are falsely identified to be in G, then as we 

downsample more, the probability of the false dismissals of two 

cached patterns in G tends to increase. As a consequence, the 

probability that two cached patterns are potential candidates in 

G tends to decrease (Figure 8.right). 

We are now in a position to describe the derivation of these 

probabilities and to formally define the ‘costs’ involved. 

4.2.1 Cost Calculation   
Assume that we know the distance threshold T in the raw space, 

which can come either from user input or from a threshold 

learning model (cf. [33]). Further assume that we know the 

means (   
,   

) and standard deviations (   
,   

) of both of 

the distance distributions in Figure 7.top. Given these, we can 

calculate the standard score of T corresponding to each of these 

distributions as below: 

                      
     

 

                       
     

 

Using the standard normal probability table, we can calculate the 

area to the left of zFalse Positive, which is the probability of 

mistakenly claiming two patterns to be in G. Similarly, we can 

calculate the area to the right of zFalse Dismissal, which is the 

probability of falsely dismissing two true patterns in G. In 

Figure 7.top, these errors are represented as shaded areas labeled 

C and D, respectively. From now on, we will refer to these 

errors as α and β, respectively. 

Given these two error probabilities, Figure 3 illustrates that the 

probability that two cached patterns are believed to be 

exemplars in G is:  

                  .                     (2) 

As noted above, we fix α to be a constant independent of the 

downsampling rate. Therefore, the probability of falsely 

dismissing two true patterns in G in this space becomes greater. 

We illustrate this error as the shaded area D in Figure 7.bottom. 

We call this error βN, and calculate it as follows. 

From the fixed α, we can calculate zFalse Positive. Using this zFalse 

Positive, we can calculate TN (cf. Figure 7.bottom) as below:  

        
                       

  

where      
 and     

 are the mean and standard deviation of the 

distance distribution    
 in Figure 7.bottom. 

We can calculate the standard score of TN corresponding to the 

distribution    
 in Figure 7.bottom as: 

            
      

 

Using the standard normal probability table, we can calculate the 

area to the right of zN, which is βN. β and βN correspond to the 

probabilities shown in Figure 8.left) for the original and 

downsampled spaces, respectively. 

From the areas A, B, C and D in Figure 7.bottom), we can 

calculate the probability that two cached patterns are believed to 

be exemplars in G,    
 using equation 2.    and    

 

correspond to the probabilities shown in Figure 8.right) for the 

original and downsampled spaces, respectively.  

More generally, Figure 9 shows the relationship between a 

‘virtually’ large cache made by downsampling the data and the 

number of objects we expect to see before reporting success, 

under the following conditions. We make a synthetic dataset of 

two classes, G and R, by distorting an instance of Gun point and 

FaceAll datasets [16], respectively, with some Gaussian noise. 

We assume the rareness of the patterns in G is 1/100 and our 

cache is allowed to store just two patterns in raw format. Under 

the assumption that we can unambiguously detect instances in 

G, we show the expected number of objects we need to see 

before reporting success in Figure 9.left). 

 

Figure 9: left) The help factor: A larger cache allows 

faster detection of instances in G. center) The hurt factor: 

The greater the downsampling, the slower the detection. 

right) The performance of the overall system is based on 

the influence of these two factors, with downsample 

factors of 2 to 4 performing best.       

As noted above, due to downsampling the data, we can no 

longer identify instances in G unambiguously; therefore, we 

detect two instances in G with probability pG. Because we fix 

the false positive error probability, the probability of falsely 

dismissing true instances in G tends to increase as we 

downsample more (Figure 8.left). This increased probability of 

false dismissals of the patterns in G results in a decreasing 

tendency of pG (Figure 8.right). As a consequence, we expect to 
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see an increase in the expected number of objects in S we 

examine before detecting an instance in G. This effect is 

illustrated in Figure 9.center).  

If we review these two observations: A larger cache allows 

faster detection of an instance in G and A “larger” cache 

(emulated by downsampling) causes slower detection of an 

instance in G given the higher probability of not recognizing a 

pair from G, they suggest that there must be a cache size that 

maximizes this tradeoff, i.e.,                             . 

In Figure 9.right), this cache size is achieved with downsample 

factors from two to four. 

There are two important observations we must make before 

moving on. First, note that the cache size that maximizes this 

tradeoff has a fairly wide “valley,” suggesting that this 

parameter is not too sensitive. Second, while the best 

downsampling factor depends on the data and its sampling rate, 

it can be robustly learned on a small amount of training data. 

That is to say, if we find that the best downsampling factor for 

one person’s electrooculography data at 1024Hz is about eight 

to ten, we can expect this to generalize well to other individuals. 

4.3 Dimensionality Reduction 
In our simple analysis in the previous section, we assumed that 

we placed more objects into the cache by downsampling. 

However, the reader will appreciate that there are more 

sophisticated dimensionality and cardinality reduction 

techniques to reduce the size of a time series. Indeed, the 

literature is replete with dimensionality reduction techniques, 

such as Singular Value Decomposition (SVD), Discrete Fourier 

Transform (DFT), Discrete Wavelet Transform (DWT), and 

Piecewise Aggregate Approximation (PAA) [31]. Here we 

consider PAA as the dimensionality reduction technique, 

because it is simple, incrementally computable and has linear 

time complexity [14]. We note that PAA and DWT are logically 

identical if both the original and reduced dimensionality are 

integer powers of two, and nearly identical otherwise [14]. 

Recall our observation in Figure 7; in Figure 10 we demonstrate 

that we get a similar shifting of the distance distributions under 

PAA as downsampling.  

 

Figure 10: top) The all-pair distance distributions of the 

patterns in G and R in the raw space. bottom) After 

reducing the dimensionality by an integer factor of 5, the 

new distance distributions shift left. 

As noted in Section 3.3, a larger cache size allows faster 

detection of a pattern in G, and dimensionality reduction 

emulates the effect of a larger cache. But as described in Section 

4.1, working in the dimensionality-reduced space also makes it 

harder to determine if two objects in the cache belong to G.  

Therefore, we should expect to see a similar “help and hurt” 

effect as illustrated in Figure 9. To see this, in Figure 11 we 

conducted a similar experiment on the same synthetic dataset in 
Section 4.2.1 using PAA instead of downsampling. 

 

Figure 11: help factor vs. hurt factor using PAA. The 

tradeoff between both factors suggests that a 

dimensionality reduction factor of about 10 is best here. 

4.4 Cardinality Reduction 
We use the SAX (Symbolic Aggregate Approximation) [18] 

approach for cardinality reduction. This is because SAX is 

unique in allowing a distance calculation in the symbolic space 

that is commensurate with the Euclidean distance. 

In Figure 12 we show that if we reduce the volume of time 

series with cardinality reduction rather than dimensionality 

reduction (cf. Figure 10), the distance distributions in the 

approximate space do not shift to the left as much. This is a 

promising sign that cardinality reduction might be a better 

technique for the task at hand.  

 
Figure 12: top) The all-pair distance distributions of the 

patterns in G and R in the raw space. bottom) After 

reducing only the cardinality of the data by a factor of 5 

(6 bits), the new distance distributions shift left 

(assuming the original data points are 32 bits). 

As hinted at in the observation in Section 4.1, we get the similar 

“help and hurt” behaviors after doing cardinality reduction on 

the same synthetic dataset in Section 4.2.1. We illustrate this in 

Figure 13. 

 

Figure 13: The tradeoff between the help and hurt 

factors using SAX suggests that a cardinality reduction 

factor of about 8 is best. 

We can now answer the following question: Of the three 

techniques introduced to emulate a large cache, which is best? 

To see this, we plot the results of the experiments in this section 

on a single commensurate axis in Figure 14. We can see that 

cardinality reduction gives the minimum value of the expected 

number of objects we need to see before we report success. 

Moreover, cardinality reduction has a very wide flat “valley,” 
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meaning a large range of parameter choices produces excellent 

results.  

 

Figure 14: Of the three data reduction techniques, 

cardinality reduction dominates the other two over the 

entire range of virtual cache sizes.  

Note that these results are for a single dataset with a single 

setting. However, many additional experiments (archived at 

[33]) confirm this general behavior.  

5. STICKY CACHE ALGORITHM 
As hinted at in the thought experiment in Section 3.4, if we had 

a ‘magic’ cache in which the potential instances in G tend to 

remain for longer, the probability of early detection of an 

instance in G increases significantly. In order to realize this idea, 

we need to create a biased cache replacement policy that reduces 

the probability of discarding potential G items from the cache as 

opposed to instances in R. This seems to open a chicken-and-

egg paradox, as finding a pair of objects from G is our goal. In 

this section we will show how we can use a Bloom filter [4] to 

resolve this paradox. 

A Bloom filter is a space-efficient randomized data structure (bit 

array) to support membership queries with no false negative and 

a small false positive probability [4]. It uses k independent hash 

functions, each of which maps some set element to one of the m 

bit positions of the array and sets the hashed bit positions. A 

membership query takes an input element and feeds it to the k 

hash functions to get k array positions. If any of the bit positions 

is found to be 0, then the element is definitely not a set member; 

otherwise, the element is probably a set member. Bloom filters 

have been widely used in frequent pattern mining [17][27]. To 

the best of our knowledge, this paper is the first work where 

Bloom filters have been used for real-valued time series. 

The high-level intuition behind our idea is as follows. For every 

subsequence we see, we will use a Bloom filter to “remember” 

seeing (a SAX representation of) it. Before inserting the SAX 

word corresponding to the subsequence into the Bloom filter, we 

check to see if we have already seen this SAX word. If we have, 

this is suggestive that the subsequence may be from G. Given 

that evidence, we should make sure that it “sticks” in the cache 

longer than the subsequences we have only seen once. 

There are some obvious caveats to this idea. Two SAX words 

being identical does not guarantee that both original real-valued 

sequences come from G, and two real-valued sequences that 

come from G can map to different SAX words. However, as we 

shall show, for reasonable SAX parameters false positives and 

false negatives are rare, and a collision in the SAX space is 

really highly predictive of membership in G.  

Note that for this idea to work we actually need to see three 

items from G. The first is inserted into the Bloom filter as with 

all items. The second item collides with the first, which tells us 

to store the real-valued version of the second item in the cache, 

marked with low priority for deletion. Finally, when the third 

item arrives it will be recognized to be within threshold T of the 

second item, and we can report success.  

The success of our method depends on finding reasonable values 

for the two SAX parameters - word and alphabet size. This is 

straightforward, so we relegate the discussion to [33]. 

5.1 Setting Appropriate Bloom Filter Size 
As noted in Section 5, we require a biased cache replacement 

policy to detect instances in G earlier. The Bloom filter tags 

each instance in S as potential members in G or R. Based on 

these tags, we make the potential instances in R ∑ times more 

likely to be discarded from the cache than that of a potential 

instance in G. It is important to note that ∑ is not a critical 

parameter. Consider the two extreme situations. If  ∑ = 1, then 

the sticky cache policy degenerates to RR. In contrast, if ∑ = ∞, 

the cache gets filled with potential instances in G, which results 

in frequent flushes of the cache, and decreases the probability of 

detecting instances in G. Note that the Bloom filter is not “free”; 

therefore, we must use up a portion of C for it. As the reader will 

appreciate, the two extreme choices of using almost all of C, or 

almost none of C (thus essentially degenerating to RR), are 

unlikely to perform well. The following analysis allows us to 

derive the appropriate size allocation for the Bloom filter in C.  

Assuming C can hold at most ρ instances  of length λ each, then 

the size of C in bytes is:            1. If we restrict C to hold 

at most ρr instances (ρr ≤ ρ), and allocate the remaining space to 

the Bloom filter, then the size of the Bloom filter in bytes 

is:                       . Therefore, the number of 

unique elements hashed into the Bloom filter is:        

                      2.  

Based on the analysis above, we perform an experiment in 

which we vary the cache /Bloom filter allocation in C to identify 

the region in which we obtain significant performance 

improvement over the naive RR policy. We use a fixed buffer 

which can hold at most 32 patterns each of length 150; thus, 

        38,400 bytes. We vary the number of cache elements/ 

Bloom filter allocation. From Figure 15 we can see that the 

cache holding 8 to 12 patterns performs best and beyond this 

allocation, the performance starts degrading. 

 

Figure 15: For a fixed w = 38,400 bytes (32 patterns of 

length 150), ∑ = 64, and p = 1/100, a cache allocation of 

9,600 to 14,400 bytes (i.e., 8 to 12 patterns) performs 

best.  

The reader will have anticipated the following question: if we 

exploit the performance improvement of the sticky cache in 

addition to the cardinality reduction technique (the best 

                                                                 
1 Each value of the time series takes 8 bytes. 

2 9.58 bits per element for 1% FP probability of the Bloom filter. 
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technique from Section 4.4), can we do even better? To see this, 

we perform cardinality reduction of the patterns by a factor of 8 

(the best reduction factor as of Figure 13), and redo the sticky 

cache experiment. We plot the results of this experiment with 

the other data reduction techniques in Section 4 with the same 

setup and plot the results on a common axis in Figure 16.  

 

Figure 16: Out of all optimization techniques we discuss, 

the Sticky cache approach with a cardinality reduction 

factor of eight performs best. See also Figure 14, which 

shows a subset of this data. 

In the next section we more formally describe the sticky cache 

algorithm. 

5.2 Algorithms 
In order to elucidate our sticky cache framework, we first 

explain how we use the Bloom filter in order to identify 

potential instances in G. Later we describe the cache 

maintenance policy.  

5.2.1 Detection of Potential Target Instances 
For a given alphabet size a and word size ω, we call the 

probability that two instances in G and R will map to the same 

SAX string pGsameSAXString(a,ω) and pRsameSAXString(a,ω), respectively. 

As explained in Section 5.1, in order to exploit the Bloom filter 

for detecting potential instances in G, we have to determine the 

approximate SAX parameters so that pGsameString is maximized 

and pRsameString is minimized. In Table 1, we describe the 

algorithm. 

Recall our assumption of the existence of a distance threshold as 

a form of domain knowledge in Section 3. Based on this domain 

knowledge, we form a buffer of instances in G in line 1. We 

randomly sample patterns of the length of our interest from our 

input time series in order to form a buffer of instances in R in 

line 2. From lines 3-9, we determine the appropriate SAX 

parameters using the scoring function outlined in [33]. 

Table 1: SAX Parameter Selection Algorithm  

I
n
p
u
t
 

TS, the input time series 

l, length of the subsequences  

A, predefined set of SAX alphabet sizes  

Ω, predefined set of SAX word sizes O
u
t
p
u

t
 a, the appropriate SAX alphabet size 

ω, the appropriate SAX word size 

1 

2 

3 

4 

5 

6 

7 

8 

9 

GBuffer = formGbuffer(TS,l) //using domain knowledge 

RBuffer = formRbuffer(TS,l) //by random sampling 

for i = 1 to size(A)  

 for j = 1 to size(Ω)  

     pnormalizedGsameSAXString =findNormalizedProbability(GBuffer,i,j) 

     pnormalizedRsameSAXString =findNormalizedProbability(RBuffer,i,j) 

   end 

end 

(a,ω)=findMaxNormalizedScore(pnormalizedGsameSAXString, 
pnormalizedRsameSAXString) 

We are now in a position to use the Bloom filter in order to 

detect potential instances in G. In Table 2, we outline the 

algorithm. 

 

Table 2: Potential Target Instance Selection Algorithm 

I
n
p
u
t
 

TS, the input time series 

subSeq, subsequence in question 

a, the appropriate SAX alphabet size 

ω, the appropriate SAX word size 

∑S, likeliness factor of potential instances in R to be   

    discarded from the cache 

O
u
t
p
u
t

 

∑, weight of the potential instances in R   

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

11 

12 

13 

14 

15 

16 

SAX_word = quantizeBySAX(subseq, a, ω); 
bool exists = existsInBloomFilter(SAX_word) 

if exists == true 

   ∑ = 1 

   return 

else 

   ∑ = ∑S; 

   if saturatedBloomFilter()== false  

      insertInBloomFilter(SAX_word) 

      return; 

   else 

      flushBloomFilter() 

      insertInBloomFilter(SAX_word) 

      return  

   endif 

endif 

In line 1, we quantize the input subsequence with the 

appropriate SAX parameters we discovered in Table 1. We 

check whether the discretized SAX word exists in the Bloom 

filter in line 2. If the SAX word exists, then we mark it as a 

potential instance in G and assign weight 1 (line 4). Otherwise, 

the potential instances in R are assigned the weight that 

determines how likely they are to be discarded from the cache 

(line 7) and insert the word into the Bloom filter (lines 9 and 

13). We check to see whether the Bloom filter is saturated or not 

(lines 8 and 11). In case the filter is saturated, we flush it (line 

12). 

5.2.2 Cache Maintenance 

Using the algorithm outlined above, we ‘tag’ the instances by a 

user-defined factor, which determines the relative discard 

probabilities for potential instances R and G. We describe the 

algorithm in Table 3. 

Table 3: Cache Maintenance Algorithm 

I
n
p
u
t
 

subSeq, subsequence in question 

w, size of the cache 

C, the cache 

∑, likeliness factor of subSeq to be discarded from 

the cache 

LikelinessBuffer, the buffer storing ∑  

O
u
t
p
u
t

 

success, flag indicating successful cache insertion  

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

11 

12 

13 

14 

15 

16 

17 

18 

19 

20 

21 

22 

if currentCacheElementCount ≤ w   //underflow 

  currentCacheElementCount++ 

  InsertInCache(subSeq, currentCacheElementCount) 

  //insert ∑ in LikelinessBuffer 

 InsertInLikelinessBuffer(∑,currentCacheElementCount)  

  success = true 

else                        //overflow 

                           //Pathological Situation 1 

 //if all potential instances in G are in C 

 if sum(LikelinessBuffer) == w  

   flushBloomFilter() 

   flushCache() 

   flushLikelinessBuffer() 

   currentCacheElementCount = 0 

   InsertInCache(subSeq,1)//insert in first location 

   InsertInLikelinessBuffer(∑,1) 

   SAX_word= quantizeBySAX(subseq, a, ω) 

   insertInBloomFilter(SAX_word) 

   currentCacheElementCount++ 

                           //Pathological Situation 2 

  else if saturatedBloomFilter()==true 

   flushBloomFilter() 
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23 

24 

25 

26 

27 

28 

29 

30 

31 

32 

33 

   currentCacheElementCount++ 

   InsertInCache(subSeq, currentCacheElementCount) 

   InsertInLikelinessBuffer(∑,currentCacheElementCount)  

   SAX_word= quantizeBySAX(subseq, a, ω) 
   insertInBloomFilter(SAX_word) 

 else 

   loc = calculateCacheDiscardLocation(LikelinessBuffer)  

   InsertInCache(subSeq, loc) 

   InsertInLikelinessBuffer(∑,loc)  

 endif 

 success = true 

If there is no cache overflow, we insert the subsequence into the 

next available cache slot (lines 1-6). Otherwise, we check for 

two pathological situations. If the cache is full of potential 

instances in G (which is extremely unlikely to occur provided 

that we have set a, ω properly), then we flush the cache, the 

Bloom filter and the buffer storing the likeliness factor of each 

cache element, and start from scratch (lines 10-19). We also 

check for saturation of the Bloom filter, and if we find it, we 

flush the Bloom filter (lines 21-22). Otherwise, we determine 

the discard location based on the likeliness factors of the 

elements and insert instances into the cache accordingly (lines 

28-32). We describe the cache discard location algorithm in 

Table 4. 

Table 4: Cache Discard Location Calculation Algorithm 

I
n
p
u
t
 

LikelinessBuffer, the buffer storing ∑ 

O
u
t
p
u
t

 

loc, cache discard location    

1 

2 

3 

 

4 

5 

ind = generateRandomIndex([1,sum(LikelinessBuffer)]) 

cumSumArray  = cumulativeSum(LikelinessBuffer) 

//find the first smallest index greater than or equal 

//to ind in cumSumArray 

loc = firstSmallestIndex(cumSumArray,ind) 

return 

We generate a random index between 1 and the total weight in 

the LikelinessBuffer (line 1). We calculate the desired discard 

location so that potential instances in R are ∑ times more likely 

to be discarded (lines 2-4), and return. 

6. EXPERIMENTAL EVALUATION 

We begin by noting that all experiments (including all the 

figures above) are completely reproducible. All experimental 

code and data (and additional experiments omitted for brevity) 

are archived in perpetuity at [33]. 

The goal of our experiments is to show that our algorithm is 

more efficient than any obvious strawman technique, and that it 

is not particularly sensitive to the parameter choices. In addition, 

we show the utility of our approach with case studies on two 

real-world datasets.  

6.1 Rate of Detection  
We begin by comparing our algorithm with the naive RR cache 

replacement policy. RR is a simple, but highly effective 

algorithm for many problems. 

From the UCR archive we take examples of class 1 from the 

MALLAT dataset [16] and consider them as target motifs. We 

randomly embed these into a much longer random walk time 

series with different occurrence probabilities, and our task is to 

recover at least one matching pair as soon as possible.   

We consider the cache size to be a function of the target 

patterns’ occurrence probability. In particular, our cache can 

buffer at most only 10% of the rareness of the target motifs. In 

other words, if our target motifs have 1/100 occurrence 

probability, then our cache can hold at most only 10 patterns. In 

addition, we use 3.2, 12 and 16 as the values of T, a, and ω, 

respectively. Furthermore, we will show that the setting of these 

parameters is not a black art; there exists a wide range of 

possible values of the parameters that have no significant impact 

on the performance of our algorithm. 

In order to show how quickly we detect the target patterns, we 

do the following. We run our sticky cache algorithm and the RR 

algorithm under the same experimental conditions and record 

the average number of objects we must process until we get the 

first true positive (i.e., a pair of patterns are in the cache, and 

our algorithm recognizes this fact).  

As we are interested in our algorithm’s performance relative to 

RR, as shown in Figure 17, we plot the results relative to the 

mean performance of RR, with values less than one indicating 

that our algorithm offers an improvement. In addition, to show 

the quality of our algorithm, we record the number of false 

positives we see before we attain success.  

 

Figure 17: top) For the sticky cache algorithm, the 
average number of objects seen before the first true 
positive is expressed with respect to the results for RR 
policy at different rareness factors.  bottom) The 
parameter robustness of our algorithm offers a wide 
range of possible values that have no significant impact 
on performance (from left to right ω, a and T). 

From Figure 17.top), we can see that in the worst case, the 

sticky cache algorithm is faster than the RR policy by a factor of 

2. In addition to this, because the median score of the sticky 

cache algorithm remains almost constant (~0.18) for different 

rareness factors, we can say that on average, our algorithm is ~6 

times faster than the RR policy. In particular, on average, the 

probability that an object is a false positive before we attain 

success is at most only ~2% [33]. The results above suggest the 

utility of an adaptive T as a function of the rareness factor. We 

modified our model to achieve this; however, because this is 

straightforward, we relegate the discussion to [33]. 

Recall our claim that our algorithm is not sensitive to the 

parameter choices. In order to show this, we do the following 

experiment. Assume that our data generator generates the target 

patterns with a probability of 1/100. Keeping the same 

experimental setup we discussed above, we vary ω, a and T, and 

show the result in Figure 17.bottom). The results show too 

conservative or too liberal values of ω and a result in an increase 

in the average number of objects we see before the first true 

positive.  In addition, if we make T too liberal, then the average 

false positive count increases and vice versa. However, the 

results clearly show the existence of a wide range of choice of 

these parameters which confirms our algorithm is not parameter-

sensitive. 
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6.2 Worst-Case Time Complexity 
Consider the worst-case scenario. For each pattern TSi of length 

m in question, we make its SAX representation first. This step 

needs O(m) time. In order to detect whether TSi is a potential 

instance in G or R, we hash it into the Bloom filter. Assume the 

number of independent hash functions we use in the Bloom filter 

is h. Given this, querying if the SAX representation of TSi is in 

the Bloom filter, and if not, hashing it into the Bloom filter, 

requires O(h) time. In the worst possible case, the Bloom filter 

will be saturated, and we flush it. This is a constant-time 

operation. After this, we insert TSi into a cache of size w. For an 

overflowed cache, discarding a cache element requires O(1) 

time. After we insert TSi into the cache, we calculate its distance 

from all cache elements (recall this is the worst-case scenario) 

until the participating patterns pass the threshold test. This needs 

O(wm) time. Therefore, the overall worst-case time complexity 

of our algorithm is O(m) + O(h) + O(wm). In practice, this 

means our somewhat naive implementation can handle 250Hz 

under typical parameter settings, and a carefully optimized 

implementation could easily handle 1,000Hz. 

6.3 Case Studies 

6.3.1 Wildlife Monitoring 
Wildlife monitoring by examining sensor traces has been shown 

to be a useful tool for measuring the health of the environment 

[29]. In some cases, we may have a known bird call we would 

like to monitor, but here we consider the more difficult task of 

detecting previously unknown calls. Our only assumptions are 

that the call will be repeated at least once. 

Assume we monitor the audio trace of a ten-hour-long night of a 

forest [26]. Given a data rate of 62 Hz in the Mel-Frequency 

Cepstral Coefficients (MFCC) space, we will see about 2.2 

million data points. Assume we have a fixed-size memory which 

can buffer at most only 1/4000 of the subsequences that appear 

on this night. Our final assumption is that we have a predefined 

distance threshold for detecting a pair of target patterns (which 

we learned offline on a handful of known bird calls). Given 

these assumptions, if a bird calls randomly ten times during this 

night, we can ask the following question: What fraction of nights 

can we expect to detect at least one pair (any pair) of bird calls? 

Recall that detecting a single pair is sufficient for the wildlife 

monitoring task. In order to answer this question, we perform 

the following experiment. In a ten-hour-long audio trace of 

environmental sounds, we randomly insert ten approximately 

three-second-long calls of a White Crowned Sparrow 

(Zonotrichia leucophrys) [32]. We run our sticky cache 

algorithm ten times on this dataset and in each run we continue 

monitoring until we detect the first true positive pairs in the 

cache.  

Our experimental results tell us we can expect to detect the 

target bird 98 out of 100 nights. Impressive as these results are, 

they are somewhat pessimistic. After a careful analysis of the 

results we discovered that the “false positives” are actually true 

bird sounds.  In Figure 18 we show examples of both the 

injected bird calls we recovered, and other bird calls (unknown 

species) we recovered. 

We do not report the timing experiments, except to note that we 

can easily search a dataset with an arrival rate much faster than 

real-time on a laptop, suggesting we could handle real-time even 

on a resource-limited recording device.   

 

Figure 18: top) A snippet of the ten-hour-long audio 
trace in the MFCC space. The injected bird calls are 
shown in green/bold. bottom) A) The detected motif pairs 
occurring at 37 minutes and 2.3 hours, respectively. B – 
D) Three examples of unknown bird calls discovered. 

6.3.2 Energy Disaggregation 
The problem of reducing energy consumption has attracted 

increasing interest in recent years. To illustrate how our 

approach may help in solving energy disaggregation problems, 

we consider one year of energy usage data, containing 0.5 

million points [20]. For simplicity, we consider a meter that 

monitors the electricity usage of just two appliances– a 

refrigerator and a dishwasher. From personal experience, we 

assume the dishwasher cycles are approximately 1.5 hours long. 

As before, we use a cache which buffers at most 5% of the data, 

and had 20, 12, and 7.5 as values of ω, a, and T, respectively. In 

order to show how effective our algorithm is, we annotate the 

ground truth by careful human inspection. As soon as our 

algorithm detects a target motif pair, we flush the cache and 

continue scanning the dataset. We show the result in Figure 19. 

 

Figure 19: top) An excerpt of the electricity usage of a 
refrigerator and dishwasher. The dishwasher patterns 
have been marked in green/bold. bottom) The ground 
truth locations (dishwasher usage occurrences) are 
shown as green arcs. The locations identified by our 
algorithm are shown as blue arcs. 

From Figure 19 we can see that our algorithm detected eight 

dishwasher motif pairs, most of which are many days apart.  

7. RELATED WORK 
In recent years researchers have devoted significant attention to 

efficiently discovering motifs in static offline databases 

[9][19][30].  Until [25], all scalable motif discovery algorithms 

were approximate. In [25], the authors proposed an exact motif 

discovery algorithm which was tenable for a database of 

millions of objects. Although the worst case time complexity of 

[25] was quadratic, in practice this is a very pessimistic bound 

and it was shown to be fast enough to serve as a subroutine for 

summarization, near-duplicate detection, etc.  

Because most data sources are not static, and we may need to 

deal with unbounded streams, the necessity of online discovery 

of time series motifs has been noted [24]. However the only 

work devoted to this problem limits its consideration to the last k 

minutes, for some small k [24]. This means that [24] maintains 

motifs based on the most recent history of the stream. However, 

as we noted in our real-world case studies, we may need to find 
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patterns that repeat hours, days or even weeks apart. For such 

cases, it is very unlikely that motifs will occur in the same 

window. In addition to this, if we consider the huge volume of 

data that we wish to process, we are bounded by the scalability 

of the fastest offline algorithm for this problem [23][25]. Our 

work is different in a sense that we detect very sparse motifs 

using a very limited buffer compared to the size of the data with 

very high probability. In the context of the data volume, the 

interested reader might think of [22], which detects motifs from 

gigabyte-scale databases. However, [22] is a multi-pass 

algorithm, whereas we explicitly address situations where we 

can scan the data only once to detect motifs. 

Various discrete analogues of our problem have seen significant 

research; see [10] and the references therein. In the discrete 

space the ability to directly test for equality and to directly hash 

that data, makes the “rare pattern” problem significantly easier. 

However our use of Bloom filters was inspired by this 

community’s literature [10]. Bloom filters have been an area of 

active research in the database community for the last decade, 

with research effort in both applying them to various problems 

and introducing variants such as “forgetting” Bloom filters [10]. 

8. CONCLUSIONS  
We have argued that for most applications, finding the closest 

pair of subsequences is intractable and unnecessary. It suffices 

to find any pair of repeated patterns. Any pair can be used to 

alert an ornithologist to listen to a snippet of bird calls (cf. 

Section 6.3.1), or allow a technician to build a “dictionary” of 

electrical demand patterns (cf. 6.3.2), etc. Based on this 

observation, we have introduced the first algorithm that can 

detect repeated patterns in unbounded real-valued time series. 

We have demonstrated efficiency and effectiveness of this 

algorithm on both synthetic and real-world datasets.  
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