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ABSTRACT

We present Scalable Host-tree Embeddings for Efficient Par-
titioning (Sheep), a distributed graph partitioning algorithm
capable of handling graphs that far exceed main memory.
Sheep produces high quality edge partitions an order of
magnitude faster than both state of the art offline (e.g.,
METIS) and streaming partitioners (e.g., Fennel). Sheep’s
partitions are independent of the input graph distribution,
which means that graph elements can be assigned to process-
ing nodes arbitrarily without affecting the partition quality.
Sheep transforms the input graph into a strictly smaller

elimination tree via a distributed map-reduce operation. By
partitioning this tree, Sheep finds an upper-bounded com-
munication volume partitioning of the original graph.
We describe the Sheep algorithm and analyze its space-

time requirements, partition quality, and intuitive character-
istics and limitations. We compare Sheep to contemporary
partitioners and demonstrate that Sheep creates competitive
partitions, scales to larger graphs, and has better runtime.

1. INTRODUCTION
Graph partitioning is an important problem that affects

many graph-structured systems. For example, partitioning
quality greatly impacts the performance [26] of distributed
graph analysis frameworks such as Giraph [4] and Power-
Graph [14]. PowerGraph even integrates a novel streaming
partitioner into its data loader. These designs have received
considerable attention and invited much comparison [34].
METIS [19] is the gold standard for graph partitioning

and remains competitive after 15 years. Though METIS
and related work “solve” the small graph partitioning prob-
lem, these approaches do not scale to today’s large graphs.
Distributed systems, such as PowerGraph, have emerged be-
cause there are now many graph-structured problems that
exceed the main memory of a single machine, and METIS
and similar approaches are unable to partition graphs of this
scale. Additionally, there is growing interest in partitioning
algorithms that minimize metrics other than edge-cut. For
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example, the minimum communication volume metric [8]
has become attractive for the growing classes of graphs and
analyses that do not partition well in edge-cut models.

Fundamentally, graph partitioning for distributed com-
puting is a chicken and egg problem. We want to partition
large graphs so we can process them at memory speed when
they exceed the memory of a single machine. Distribution
lets us handle larger graphs and parallelize computation,
but it is only efficient when the partitions distribute the data
well. Unfortunately, partitioning requires us to solve an NP-
complete problem on an out-of-memory graph without an a
priori well-partitioned data distribution! Streaming graph
partitioners [35] and streaming graph analysis systems, such
as Graphchi [22], are recent approaches to this problem.

But streaming graph systems pose two problems. First,
they are sensitive to the stream order, which can affect per-
formance (as in triangle counting [2]) or solution quality (as
in PowerGraph or the more recent Fennel partitioner [36]).
These results are unsurprising, because many graph ordering
problems are NP-complete [5] and related to partitioning.
The second problem is that streams cannot always take ad-
vantage of parallel scaling. Some streaming algorithms are
difficult to parallelize (Fennel), while others support multi-
ple streams (PowerGraph). However, if a multi-stream algo-
rithm is sensitive to the cross-stream input partitioning, it
becomes yet another partitioning chicken and egg problem.

We present Sheep, a distributed graph partitioner that
embraces the relationship between ordering and partition-
ing. Given an order or ranking on an undirected graph’s
vertices, Sheep finds partitions by a method that does not
vary with how the input graph is distributed among tasks.
Thus, Sheep can arbitrarily divide the input graph to ex-
ploit parallelism and fit tasks in memory. Using simple de-
gree ranking, Sheep creates competitive edge partitions an
order of magnitude faster than both offline and streaming
partitioners. As a result, Sheep scales well on large graphs.

Sheep is founded on a synthesis of insights between sparse
matrix and complex network theories. Sheep reduces the in-
put graph to a small elimination tree [30], a venerable struc-
ture that expresses vertex separators of the input graph.
Sheep then solves a partitioning problem on this tree that
translates to an upper-bounded communication volume par-
titioning on the original graph. This “reduce and partition”
technique is similar to METIS, but the theory and details
are quite different. In particular, Sheep’s tree transforma-
tion is a distributed map-reduce operation. This distributed
reduction is itself an interesting avenue for future research.
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The contributions of this work are:
• A new parallel and distributed partitioning algorithm

that addresses the minimum communication volume
partitioning problem on undirected graphs.
• A demonstration that Sheep scales well to graphs that

exceed single machine memory, and is faster than com-
peting algorithms without sacrificing partition quality.
• A distributed elimination tree construction that avoids

construction of a chordal graph.
• A novel theory that relates partitioning, complex net-

works, and sparse matrix theories.
This paper is structured as follows. In the following Sec-

tion we present background material and related work. In
Section 3 we present the high-level Sheep algorithm and
show how it creates partitions. In Section 4 we go into de-
tail on the distributed tree reduction step, and give some
theory and intuitions governing why Sheep works. We eval-
uate Sheep in comparison to other partitioners and against
itself at various scales in Section 5. Section 6 addresses the
limitations of Sheep and suggests ideas for future research.

2. BACKGROUND AND RELATED WORK
There are four areas of research on which this work builds:

graph partitioning algorithms, graph analytic systems that
are impacted by partitioning, sparse matrix theory, and
complex network analysis. We address the first three topics
below, but we defer complex networks to Section 4.3.

2.1 Graph Partitioning
METIS [19], which has been a reliable standard for graph

partitioning, is a multi-level graph partitioner that creates a
sequence of “coarsened” graphs where each vertex represents
a union of vertices in the previous graph. It computes par-
titions on the smallest graph and then projects them back
to each larger graph in succession, refining the partitions as
it does so. METIS can optimize edge cuts or communica-
tion volumes, but the solutions discovered in either case are
sometimes similar [18]. Multi-level methods are frequently
used for graphs with tens or hundreds of millions of ele-
ments. However, they consume memory and are an order
of magnitude slower than streaming methods, so multi-level
partitioners are challenged by the billion-element graphs be-
coming common today. ParMETIS [20] is a distributed ver-
sion of METIS, but it suffers from a partitioning chicken
and egg problem: each distributed task works on a subgraph
and needs to communicate with other tasks in proportion to
the edges between subgraphs. So the performance of this
method is harmed without some a priori partitioning.
The streaming partitioning model [35] was created to ad-

dress partitioning problems on large scale graphs. In this
model each graph element arrives in sequence and must be
immediately assigned to a partition. Streaming forbids par-
tition refinement or any global introspection such as spectral
analysis; it is also well suited for integration with the data
loaders of graph analysis engines. Fennel [36] is a represen-
tative work in this area that interpolates between two estab-
lished heuristics [31] [35]. Bourse et al. [8] extend Fennel’s
method to communication volume partitioning. However,
all streaming partitioners are sensitive to the stream order
and random orders are pessimal approximations [36]. Thus,
it is difficult to quantify the quality of a streaming parti-
tioner; but in general streaming partitioners produce worse
partitions than METIS, though they operate more quickly.

Sheep outperforms both METIS and Fennel in runtime,
is competitive with METIS in quality for a small number of
partitions (i.e., less than 5), and is competitive with Fennel
for larger numbers of partitions.

2.2 Partitioning in Graph Analytic Engines
PowerGraph [14] is representative of graph analysis frame-

works that use stream partitioning to break a large graph
into pieces small enough to run on individual nodes. It uses
an edge placement partitioning model, assigning edges to
machines and duplicating vertices on multiple nodes as nec-
essary. PowerGraph integrates a novel multi-streaming par-
titioner into its data loader to minimize duplicates. This de-
sign has received much attention but is well known to have
a problem with severe partition imbalances [8]. Pregel [25]
and Giraph [4] are frameworks that partition vertices in-
stead of edges, whereas GPS [33] and PowerLyra [9] are
recent hybrid systems: they partition the edge sets of high-
degree vertices but keep the edge sets of low-degree vertices
together. Sheep is most effective for edge partitions, and it
intuitively produces partitions that exploit this same prop-
erty as GPS and PowerLyra, although it does so indirectly
by a different method; we discuss this further in Section 4.4

GraphChi [22] is a single-machine graph analysis system
that handles out-of-memory graphs by creating partitions
that it processes as parallel streaming working sets. While
in principle this system could benefit from well partitioned
sets, out of memory partitioning is traditionally addressed
by adding more memory; so Graphchi, which targets low-
memory systems, does not feature any partitioner at all.
X-Stream [32] is a similar streaming analysis system.

2.3 Sparse Matrix Theory
Sheep partitions a graph by partitioning a data structure

called an elimination tree [30], as described in the following
Section. Elimination trees are a famous data structure, but
Sheep constructs the tree using a novel distributed method.
Nested dissection [12] is an alternate method to construct
elimination trees in parallel. It works by finding small ver-
tex separators and then recursing into the remaining compo-
nents of the graph. Because vertex separators are a form of
partitioning (Section 3.4), this is a chicken and egg problem
for partitioning applications. However, there is a sense in
which Sheep “reverses” nested dissection by deriving parti-
tions from an elimination tree constructed by other means.
Ashcraft and Liu explored a similar idea [3] with an algo-
rithm that extracts separators from an elimination tree and
then sorts the separators to find a better tree, although they
optimize for different parameters than does Sheep.

3. OVERVIEW

3.1 The Sheep Algorithm
Given an undirected graph, G, we partition it by:
1. Sorting the vertices,
2. Reducing the the graph to an elimination tree [30],

T , according to the order in step 1,
3. Partitioning the elimination tree, and then
4. Translating the tree partitions into graph partitions.
Elimination trees are defined in detail in the rest of this

Section, as is the partitioning method for T and the trans-
lation of partitions from T to G. The vertex sort and tree
reduction are discussed in detail in Section 4.
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3.2 Conventions
G = (V,E) is an undirected graph where V is a set and E

is a subset of V × V . GV and GE distinguish the elements
of different graphs. By convention, n = |V | and m = |E|.
P = (V,≤) is a partial order on a set V given by the

binary relation ≤ over V . For clarity we may refer to ≤P

and <P . We say P is total iff x ≤ y or y ≤ x for all x, y ∈ V .
In this paper, the symbol P is generally a total order.
Because ≤ is a binary relation over V , any partial order

defines a graph (V,E′), although unlike G, this graph is
a directed acyclic graph (DAG). By convention if x ≤ y
then (x, y) ∈ E′ where x is the source and y is the target.
Conversely, the transitive closure (reachability graph) of any
DAG is a partial order, so we can say that a DAG “defines
a partial order”. In particular, an elimination tree is a DAG
and defines a partial order (Section 3.3). This order is not a
total order unless the elimination tree is a linear path graph.

3.3 Elimination Trees
Let G = (V,GE) be an undirected graph and T = (V, TE)

be a directed rooted tree or forest with the same vertex set:
that is, for any connected component TC ∈ T there is a
unique r ∈ TC that is reachable from all x ∈ TC . This im-
plies that edges point from leaves towards the root. Then, T
is an elimination tree of G iff T holds the following property:

Property 1 (Elimination Property). For each
(x, y) ∈ GE, either x is reachable from y in T or vice-versa.
Equivalently, x and y share an ancestor-descendant relation
in T , and T defines a partial order where x < y or y < x.

If G is a complete graph (clique) then T must be a linear
path graph. T is usually more interesting than a line, but in
general T is not a balanced tree. If G is connected then T
must be a single tree, but for graphs with k connected com-
ponents, T can be a forest with up to k trees. An elimination
tree is deeply related to the components and connectivity of
its associated graph via the following corollaries:

Corollary 1.1. Let x and y be children of z in T . Let
subt(x) be the set of vertices in the subtree rooted at x in T .
Then, there does not exist any edge (x′, y′) ∈ GE between
subt(x) and subt(y). This is a well known result [15].

Corollary 1.2. Let x and y be children of z in T . Let
supr(z) be the set of z and reachable vertices from z in T . If
we delete supr(z) from G, then in the resulting graph subt(x)
is not reachable from subt(y) and vice-versa.

Corollary 1.2 is true because any path from subt(x) to
subt(y) must contain a vertex in supr(z). We say supr(z) is
a vertex separator of subt(x) and subt(y), because it is a set
of vertices whose removal separates sets of graph elements.
Note that supr(z) is not necessarily minimal, because it may
contain vertices whose removal is unnecessary to separate
subt(x) and subt(y). However, supr(z) is bounded above by
the tree-depth [6] of the elimination tree. Figure 1 depicts
an example tree; we discuss tree construction in Section 4.

3.4 Partitioning
An edge k-partitioning of G is an assignment E → {1, ...k}

to k partition sets such that each edge is assigned to one par-
tition and no partition is larger than (1 + b)(m/k), where b
is called the balance factor. Similarly, a vertex k-partitioning
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Figure 1: Graph G and elimination tree T . For

(x, y) ∈ GE, x is reachable from y or vice-versa. Note

that supr(6) = {6, 7} is a vertex separator of 1 and 2,
and in addition 7 is a separator of subt(5) = {3, 4, 5}.

is an assignment V → {1, ...k} where no partition is larger
than (1+ b)(n/k). Partition optimizations usually minimize
the balance factor and another constraint called the cost.

Sheep is a communication volume [8] minimizing parti-
tioner, like PowerGraph and some versions of Fennel. Com-
munication volume is a partition cost that counts the unique
partitions touching each vertex, minus one for normalization
so that the cost of a 1-partitioned graph is 0.

∑

x∈V

|{partition(element) : element ∈ adjacent(x)}| − 1

Note that for edge partitions element is an edge, but for ver-
tex partitions element is a vertex and includes x itself (e.g.
the cost of a two vertex line graph with each vertex in a dif-
ferent partition is 2). In general, edge partitionings achieve
lower volumes because there are more edges than vertices
and therefore more degrees of freedom to assign partitions.

Informally, communication volume counts the number of
“duplicate” vertices in some graph-structured systems. For
example, PowerGraph partitions edges across machines and
then instantiates adjacent vertices on each machine. Each
vertex has one duplicate instance for each partition adja-
cent to it, minus one primary instance. Of course, which
instance is primary does not affect the count. If we say the
primary instance rests with the highest-ordered partition in
some arbitrary order, then we can equivalently express com-
munication volume by a summation over the partitions.

Let K be the set of partitions. Then, an equivalent ex-
pression of communication volume is:
∑

i∈K

|{x : x ∈ V, x ∈ adjacent(i) ∩ adjacent(j), i < j ∈ K}|

That is, each vertex x adjacent to partition i is a duplicate
iff x is also adjacent to a higher-ordered partition j; else,
the primary instance of x rests with i. For vertex partitions
adjacent(i) is inclusive of all x ∈ i. This duplicate set is triv-
ially a vertex separator of adjacent(i) from all adjacent(j)
in the subgraph induced on G by the union of adjacent(i)
and all adjacent(j). Therefore, we can model a partitioning
as a separator series: each partition in arbitrary order sepa-
rates its primary vertices from the graph of “remaining” un-
claimed vertices. The duplicate vertices are the separators,
and the communication volume is the sum of the separators.

An elimination tree also expresses a series of separators
that are upper bound by its tree-depth. Recall that by
Corollary 1.2, if x and y are children of z in T , then supr(z)
is a vertex separator of subt(x) and subt(y) in G. Further-
more, by recursion supr(z) is a separator of subt(x) and
subt(y′) for all y′ such that y′ is a child of z′, z′ ∈ supr(z).

1480



In effect, supr(z) is a vertex separator of subt(x) from the
“remaining” vertices not in subt(x) (see Figure 1.
Using these properties we establish a map between the el-

ements of T and G such that a vertex partitioning of T maps
to an edge or vertex partitioning of G, with an upper bound
on the communication volume given by the tree-depth of T .

3.5 Translating Partitionings
First, we model a cut-minimizing vertex partitioning prob-

lem on T that will translate to a bounded communication
edge partitioning problem on G. Let the partition of each
edge (x, z′) ∈ GE be the partition of x ∈ TV , where x ∈
subt(z′) by the Elimination Property and x is a child of z in
T . It follows that z′ ∈ supr(z), and that the adjacencies of
(x, z′) and the adjacencies of all (y′, z′) where y′ /∈ subt(x)
intersect in supr(z), or else supr(z) is not a vertex separator
of x and y′ and contradicts Corollary 1.2. More generally,
the adjacencies of every edge mapped in subt(x) and every
edge not mapped in subt(x) must intersect in supr(z).
Therefore, let the weight of x ∈ TV be |{(x, z′) ∈ GE : x ∈

subt(z′)}|, and let the cut cost of (x, z) ∈ TE be |supr(z)|.
These costs decrease from leaf to root. It turns out that
weighted tree partitioning is trivial for decreasing edge costs:
there is a simple leaf to root dynamic program [21] that,
given a decreasing edge-costed tree and a maximum subtree
weight, finds a minimum cost partitioning of T into subtrees
less than that weight. Each subtree maps to an edge parti-
tion in G, and its cut cost |supr(z)| gives an upper bound
on the intersection of the adjacencies of that partition and
every partition that follows it in T . The sum of these cuts
is an upper bound on the communication volume in G.
If the maximum subtree size is (1+b)(m/k) this will some-

times produce k′ ≥ k partitions. To achieve exactly k par-
titions it may be necessary to bin-pack subtrees into parti-
tions: this is a common feature of balanced tree partitioning
algorithms. However, we can always achieve exactly k par-
titions by relaxing the balance factor. Since bin packing has
a constant approximation factor, we know that the amount
we may relax the balance is similarly bounded; in practice
we achieve partitions with less than 3% imbalance. Packing
can only decrease the communication volume, so this does
not affect the correctness of the upper bound, which is at
worst O(k′ × depth(T )) because depth(T ) ≥ |supr(z)|.
For a vertex partitioning of G, let the partition of each x ∈

GV be the partition of x ∈ TV . However, in this case the cut
cost of each edge (x, z) ∈ TE must be |subt(x)| + |supr(z)|,
because the adjacencies in G of vertices x′ ∈ subt(x) and
z′ ∈ supr(z) may intersect in subt(x) as well as supr(z). In-
tuitively, in an edge partitioning we have the freedom to map
each edge to the “lower” vertex, and this lets us restrict the
partition intersections to supr(z), the set above the lower
vertex. However, a vertex partitioning constrains edges to
map to both endpoints. We could also construct an edge
partitioning that assigns each edge to the higher vertex with
a cut cost of |subt(x)|, but these costs do not decrease from
leaf to root. If the costs do not decrease then we must par-
tition T by some other algorithm. However, since T is small
compared to G we can use a powerful method like METIS
even for large G. For example, the UK Web dataset [7] is
44.8GB as a graph file, but only 841MB as a tree file.
Sheep produces better edge partitioning results because

its bounds are tighter. This reflects the greater degree of
freedom in edge partitioning problems, particularly the free-

dom to diffusely partition the edge sets of higher vertices.
However, for both edge and vertex partitionings the cut cost
is upper bound by the tree-depth of T , and so in both cases
Sheep’s partitions improve with shallow trees. Tree-depth
minimization is also NP-complete [6] but this aspiration
opens up some novel ideas. In particular, elimination tree
construction is usually modeled as an ordering problem, so
this lets us reason about partitioning in terms of a vertex
order or ranking that would give an ideal tree. This leads to
a novel observation regarding elimination trees and complex
network theories, which we discuss in Section 4.3.

4. THE TREE CONSTRUCTION
We present our tree construction in three parts. First, we

review the elimination game, a classic elimination algorithm
(Section 4.1). We then present our own elimination algo-
rithm and prove that we can distribute it across arbitrary
partitions of the graph(Section 4.2). Finally, we discuss how
vertex orders affect the trees we and how we derive good or-
ders from complex networks theory (Section 4.3). Finally,
we give some intuition for these results (Section 4.4).

4.1 Elimination Games
The elimination game is a classic algorithm [29] that takes

an undirected graph and produces an elimination tree.

Require: G is an undirected graph (V,GE)
Require: P is a total order (V,≤)

function Elimination Game(G, P )
H ← G
T ← (V, ∅)
for all x ∈ V in order P do

S ← {y : (x, y) ∈ HE , x <P y}
HE ← HE ∪ {(y, z) : y, z ∈ S}
TE ← TE ∪ (x,minP (y ∈ S))

For each vertex x, we add edges to the graph between all
y such that y is a P -greater neighbor of x. The parent
of x ∈ T is the P -minimum over all such neighbors. The
Elimination Property that (x, y) ∈ GE share an ancestor
descendant relationship in T holds because in iteration x
either TE gains (x, y) or some (x, x′), in which case HE

gains (x′, y). Then, in iteration x′ either TE gains (x′, y), or
we continue until TE gains some (x′′, y). Then, x, x′...x′′, y
is a path from x to y in T . Note that T is not a subtree of
G, because TE gains (x, y) from HE and H is a supergraph.

H is called a chordal graph or elimination graph. Chordal
graphs are important generalizations of trees with many in-
teresting properties [15], some of which are inherited by the
elimination tree T , which is called a host tree of H. In par-
ticular, chordal graphs have O(n) minimal separators. How-
ever, H is an unbounded supergraph of G and in practice
is often expensive to construct. P is called an elimination
order of G and a “perfect” elimination order of H.

Our distributed tree construction algorithm requires a
special observation about the elimination game. The proof
is simple but is delegated to the appendix for brevity:

Theorem 1. Let G[V <P z] be the subgraph induced on
G by vertices less than z. Then, z is the parent in T of
exactly the P -maximum vertices in the disjoint components
of G[V <P z] that z joins together in G[V ≤P z].
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This gives an elegant characterization of the trees con-
structed by the elimination game as products of a union-
find algorithm. Because union-find algorithms are easy to
distribute, this leads to a distributed tree construction.

4.2 Distributed Reduction
Let U = (V, P ) be a union-find data structure over a set

V that chooses as each subset’s representative the maximum
element in that subset according to a total order P = (V,≤).

Require: G is an undirected graph (V,GE)
Require: P is a total order (V,≤)

function Persistent Union Find(G, P )
U ← (V, P )
T ← (V, ∅)
for all z ∈ V in order P do

for all (x, z) ∈ GE , x <p z do

y ← U.find(x)
if y 6= z then

U.union(y, z)
TE ← TE ∪ (y, z)

return T

In each outer iteration vertex z adopts the P -maximum
vertex y in each disjoint component of G[V <P z] that z
joins in G[V ≤P z]. By Theorem 1, these are the same chil-
dren of z as in the elimination game, so T is an elimination
tree. Afterwards z is the new P -maximum representative
for this set of components, which are now one and joined
through z. We call this a “persistent” union-find because T
captures the development of the union-find data structure.
This algorithm uses less space and time than an algorithm

that creates a chordal supergraph. Supergraphs are at best
o(n+m) but usually much worse; conversely, the union-find
U and tree T use O(n) space and O(n+a(n)m) time, where
a() is the near-constant inverse Ackermann function [11].
However, many elimination algorithms dynamically order
themselves by inspecting the chordal graph, so this method
is not clearly practical without a good order a priori.
The observation that this union-find algorithm can be ef-

ficiently distributed is at the core of Sheep. We prove that:

Theorem 2. Let G1 and G2 be two subgraphs of G such
that G1 ∪ G2 = G. Let t(G,P ) be the elimination tree pro-
duced by union-find on G in order P . Then,

t(t(G1, P ) ∪ t(G2, P ), P ) = t(G,P )

Note that though t(G1, P ) ∪ t(G2, P ) is a directed graph,
it is interpreted as undirected when input to the union-find
algorithm. This proof is given in the appendix.
We emphasize this creates the same exact tree as t(G,P ).

By this theorem we can split G into any number of sub-
graphs, construct trees independently for each, and then
union and reduce the intermediate trees in parallel to create
a final tree for G. The result is insensitive to how the graph
is split and the space-time requirements remain nearly linear
for each subgraph. This lets us reduce large graphs quickly.
An implementation using a map-reduce might look like:

function Reduce To Tree(G, P )
G1, G2...Gw ← Split(G)
T1, T2...Tw ← {Mapper(G′, P ) : G′ ∈ G1, G2...Gw}
T ← Reducer() over T1, T2...Tw and fixed P

function Mapper(G′, P )
return PersistentUnionFind(G′, P )

function Reducer(TL, TR, P )
U ← Undirected(TL ∪ TR)
return PersistentUnionFind(U,P )

Let G1, G2...Gw be a set of subgraphs of G such that G1∪
G2∪ ...Gw = G. Let n′ and m′ be the maximum numbers of
vertices and edges respectively in any such Gw. Then, the
parallel runtime of this distributed tree construction is:

O(n′ + a(n′)m′ + log(w)(n+ a(n)n))

where the log expression is the reduce operation over inter-
mediate trees. Because the log expression is essentially O(n)
for fixed w, and because m typically dominates n, it is more
important to balance m′ = (m/w) than n′. This is achieved
by evenly splitting an edge list of GE . If we also want to
balance n′ we may do so by randomizing the list. In either
case, this avoids the partitioning chicken and egg problem.

4.3 Ordering Vertices
Trees created by elimination algorithms are the result of a

graph G in an order P . So far we have held P constant, but
in real applications the graph is constant and the order can
vary. Thus, the tree and the vertex separators it expresses
are entirely determined by P , hence our earlier statement
that Sheep embraces the relationship between ordering and
partitioning: Sheep’s partitions result from the separators
expressed by an elimination order. Formally, if S is a min-
imal separator of components C1 and C2 in G, then any P
such that ∀x ∈ C1 ∪ C2, ∀y ∈ S, x <P y will express S in T .

Order sensitivity is a challenge faced by all streaming
graph partitioners. Tsourakakis et al. proved that not only
must every streaming partitioner have adversarial orders,
but also that random input orders are approximately adver-
sarial [36]. Therefore, for arbitrary input orders one cannot
make guarantees as to the quality of streaming partitioning
results. Sheep is subject to this argument if P is arbitrary.

However, Sheep accommodates its order in its underly-
ing theory, so we can define what is meant by a good or-
der. As discussed in Section 3, tree-depth upper bounds the
separators expressed by the elimination tree; therefore, a
minimum tree-depth order will produce smaller bounds and
better communication volumes. Unsurprisingly, tree-depth
minimization is NP-complete. There are many depth heuris-
tics in the literature, but in general these inspect the graph
or chordal graph. We need a compatible heuristic for our
distributed construction, since it cannot easily inspect the
total graph and does not create a chordal graph.

We found a valuable resource in the complex networks
community. Albert et al. pioneered the empirical use of
attack plots that, for a given vertex order on the x-axis, plot
the size of the largest remaining connected component when
one deletes vertices in that attack order [1]. The purpose of
these plots is to show how different networks dissassemble
under different attack orders, and to find orders that fully
dissassemble networks in a minimum number of attacks.

Consider a walk on T from root to leaves. At each vertex
z in the walk, the subtrees of the children of z ∈ T represent
components in the “remaining graph” G[V <p z]: it is like
we delete supr(z) and examine the remaining components.
The subtree with the most depth is the component that re-
quires the most steps to fully disassemble. So, disassembling
the graph in a minimum number of attacks is exactly the
same goal as minimizing its elimination tree-depth. Attack
orders and elimination orders are simply opposite orders.
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Complex network research repeatedly observes [1][17] that
many natural networks, and in particular, networks with
skew degree distributions, are vulnerable to degree-ordered
attacks. More sophisticated attack orders use centrality
measures such as betweenness [17]. It is not surprising that
this works: degree may be characterized as a “greedy edge
attack” and betweenness as a “greedy shortest path attack.”
Elimination algorithms sometimes use a similar degree

heuristic [13] , although this is usually applied online to
the chordal graph in order to optimize related parameters
called tree-width and matrix fill-in for matrix factorization.
Tree-width is a strictly tighter separator bound than tree-
depth [15], but because the chordal graph is a supergraph of
the input graph these parameters do not lead to graph size
reductions. For matrix factorization this is not a concern
because factorization requires instantiation of the chordal
graph (or “fill-in graph”). This research area arises from the
application of graph theory to graphical models of matrices;
Sheep reapplies some of these theories to the partitioning
problems faced by large scale graph analysis frameworks.
Thus, it is well known that degree orders are sometimes

“good” for elimination trees. However, so far as we know it
is a novel observation that complex networks research gives
empirical characterizations of both the classes of graphs on
which degree orders are tree-depth minimizing, and the or-
ders that outperform degree orders on these graphs. By
default Sheep assumes a degree elimination order for input
graphs; even in distributed graphs this is easy to compute
by broadcasting local degree vectors. Note that Sheep need
not physically sort the graph in degree order; it merely uses
the order logically in its tree construction algorithm.
Our results show that degree orders on skew networks

produce low cost partitions that are competitive with other
partitioners; this method works extremely well for biparti-
tioning and often outperforms METIS. We also show that
Sheep is improved when better rankings are available, e.g.,
across repeated analytics runs. This ability to improve the
graph’s data organization with purely analytic results may
be an interesting technique for graph database cracking [16].

4.4 Intuition
Degree sorting is also a classic heuristic optimization for

triangle counting algorithms, because it improves reference
locality in networks with skew degree distributions. The
many low-degree vertices tend to reference the few high-
degree vertices, so clustering the high-degree vertices gives a
block-structured cache efficient partitioning. However, this
heuristic is topologically naive. In particular, many low-
degree vertices are not clustered with their adjacencies. For
example, if a 2-degree vertex is adjacent to another 2-degree
vertex, they may not be clustered in the sort order even
though this constraint may be easily fulfilled.
Intuitively, Sheep exploits a partially ordered tree that is

more informative than its linear input order. Unlike a to-
tal order, the tree expresses antichains: sets of independent
elements in the underlying graph. Independence is notably
present in sparse topologies such as the low-degree vertices
of a skew network. Shallow trees generally exhibit more
antichains, and a tighter bound on the set of vertices that
other vertices may reference. Sheep clusters related elements
better than a sorting heuristic, because it does not cluster
unrelated elements in common cases where a sorting heuris-
tic would. In very dense graphs, Sheep devolves to a sort.

One consequence of the above is that for edge partitions,
Sheep usually divides the edges of high-degree vertices and
keeps the edges of low-degree vertices together. This is
because Sheep maps (x, y) ∈ GE to the lower vertex x ∈
subt(y) in T , which is also the lower-degree vertex if P is a
degree order. Therefore, the edges of the high degree ver-
tices are spread across T , whereas the edges of the low degree
vertices are concentrated in the peripheral and leaves of T .
Due to the clustering property described above the periph-
erals are usually independent and well-localized. This result
may be intuitively compared to the high-degree vertex par-
titioning methods used by GPS [33] and PowerLyra [9].

5. EVALUATION
We evaluate Sheep to demonstrate the following claims:
• Sheep scales in the following ways: parallel processing

on one machine (Section 5.2), out-of-memory process-
ing on one machine (Section 5.2), and parallel process-
ing in a distributed environment (Section 5.3).
• Sheep is faster than other partitioners on large graphs

(Section 5.4).
• Sheep’s partitions are competitive and are improved

by better vertex orders (Section 5.5).
We compare Sheep to results published in KDD’14 [8],

which evaluated METIS, PowerGraph, and both vertex and
edge streaming Fennel on the edge balanced minimium com-
munication volume partitioning problem. Fennel [36] is a
good representative for streaming partitioners, because it
is a simple per-vertex or per-edge loop that considers each
partition for each element and chooses the partition that
minimizes a special cost function. This design is typical of
streaming partitioners [31] [35]. We contacted the authors
to ensure that our results can be accurately compared. Fen-
nel is called “IC” in Bourse’s results, but we have confirmed
this is a modification of Fennel to optimize communication
volumes instead of edge cuts.

In addition to these graphs we added a few others to cover
interesting cases. The Twitter graph and UK Web graph are
popular billion-edge networks for graph systems evaluations,
and the High Energy Physics coauthorship network is a well
known complex networks dataset. Most of these graphs are
available through the Stanford Large Network Dataset Col-
lection [23]. Table 1 summarizes these graphs.

5.1 Implementation and Setup
We implemented Sheep in C++ using LLAMA [24], an

open-source graph storage library. LLAMA is based on the
venerable compressed sparse row (CSR) representation, but
allows mutability, and, for read-only algorithms like Sheep,

name n = |V | m = |E| file size reason
HEphysics [28] 7,610 15,751 189KB fig. 12
com-youtube 1,135k 2,988k 36MB bourse
cit-patents 3,775k 16,519k 198MB bourse
com-liveJ 3,998k 34,681k 416MB bourse
soc-liveJ 4,848k 68,735k 828MB fig. 2
com-orkut 3,072k 117m 1.4GB bourse
twitter rv 42m 1,468m 17.6GB scale
uk 2007 05 [7] 106m 3,739m 44.9GB scale

Table 1: Graph datasets used in this evaluation.

1483



it adds little overhead relative to conventional CSR imple-
mentations. It is not distributed, so for distributed tasks
we simply open LLAMA subgraphs in different processes.
Sheep uses the MPI map-reduce library both for distributed
sorting and for the tree reduction operation described in Sec-
tion 4.2. However, Sheep can fall back on a parallel filesys-
tem for inter-process communication if MPI is not available.
Sheep uses CSR for most variable-length data structures

to reduce allocator overhead. However, a tree can be se-
rialized as an array of parent pointers, so this representa-
tion is preferred for inter-process communication. As with
many iterative graph algorithms, the inner loop of Sheep is
performance sensitive, so it was important to optimize our
union-find implementation and to use vertex isomorphisms
between data structures for fast comparison in the order P .
Typically algorithms that process an out-of-memory graph

in order should sort the graph first. However, for Sheep it
is efficient to divide the graph into in-memory working sets
and then process each subgraph as-is. Because each inter-
mediate tree is a partial suborder of the total order P , and
because these trees are merged and reduced in order P , there
is a sense in which Sheep is “its own external merge sort.”
For single machine experiments, we use a 6-core Intel i7-

970 at 3.20GHz with 12GB of RAM and a Samsung 840
Pro SSD. For distributed processing, we use a cluster of
Dell PowerEdge M915 servers; each has 64 AMD Abu Dhabi
cores at 2.30GHZ with 256GB of RAMand 41.25GBps Infini-
band. The local disk is not measured because all our cluster
benchmarks are hot cached. Graph input files are binary 96-
bit edge lists, as in the Graph500 benchmark [27], but none
of the graphs in this study exceed four billion (32-bit) ver-
tices. LLAMA itself is a 64-bit CSR system. In distributed
experiments we first copy the graph to local storage on each
node, but we do not include the copy time because it is not
a feature of the algorithms and may vary greatly between
data center architectures. We do however include graph file
ingest times, because distributed ingest is an important fea-
ture of distributed algorithms and is measured in Graph500.
Bourse et al. did not evaluate runtime, so we measured

timings for several competing partitioners. There is no pub-
lic Fennel implementation, but it is a simple algorithm, so
we implemented the versions in Bourse’s study. We imple-
mented both edge streaming Fennel and vertex streaming
Fennel with an initial CSR ingest. Despite the ingest time,
Fennel’s vertex streaming is an order of magnitude faster
than its edge streaming, because the critical partitioning
work is O(kn + m) rather than O(n + km), where k is the
partition count. Because Bourse gives quality results for
both versions of Fennel, we evaluated vertex Fennel to priv-
ilege Fennel’s timing results. Vertex-streaming Fennel would
be even faster with a pre-sorted vertex adjacency list, but so
would Sheep, and we want to use the Graph500 standard.
We ran METIS with default settings. By default METIS

is an edge cut partitioner, but it accepts a communication
volume minimizing goal with some time overhead. Whether
this actually improves the volume varies with the graph [18].
We timed METIS without this option because it slows down
METIS and does not always improve its quality, and our
quality results come from Bourse. METIS requires that ad-
jacency lists have dense vertex IDs (i.e., n = max(id)), so
we privileged METIS further by providing it this format.
The PowerGraph partitioner is deeply integrated with the

PowerGraph bootstrap process, so it would not be fair to
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take timing results directly from PowerGraph. We do, how-
ever, include quality results for PowerGraph from Bourse.

5.2 Singlemachine Scaling
Figure 2 plots the runtime of Sheep on our commodity

machine for a variety of input graphs for one and six par-
allel workers. As expected, single-worker Sheep’s runtime is
linear in the size of the graph and additional workers speed
it up. The speed up is relatively poor for small graphs, but
it improves with larger graphs. We will see this trend in the
cluster setting as well. This is a common pattern in parallel
algorithms, but the cause here is especially interesting.

Figure 3 shows a detailed breakdown of runtime versus the
number of workers for Orkut, the largest of the graphs shown
in Figure 2. The load time represents the time to ingest into
the in-memory CSR, the sort time measures computing the
global degree order, the “map” time measures construction
of the intermediate tree from the initial subgraphs, and the
reduce time measures the distributed reduce that combines
the intermediate trees into a final tree. The actual tree par-
titioning step takes less than 200ms and is not distributed,
so we ellide it for visibility. We observe that, while the sort
and reduce costs are not insignificant, scaling is limited be-
cause the load and reduce times do not scale linearly in the
number of workers. This is surprising, because each worker
processes m/k edges, and the algorithm is near-linear.
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Figure 4: Parallel time scaling for Sheep on the

Twitter data set on a single cluster node.

The cause of this limitation is imbalance in the underlying
graph structure. If we divide a graph edge list into w random
parts, then in expectation, each part contains m/w edges
but some n′ vertices, where n′ is a function of the degree
distribution and is generally greater than n/w. This is not
an implementation detail but rather a fundamental property
of distributed graph algorithms that divide the graph into
subgraphs. Additionally, there is no guarantee that the in-
put edge list is randomly distributed, and in fact, processes
that produce edge lists typically exhibit locality. Therefore,
there is some skew in the number of vertices represented in
each subgraph, although this effect is less significant. This is
not an instance of the partitioning chicken and egg problem
– random hashing solves this. However, because this prob-
lem is specific to certain graphs and diminishes with scale,
it is generally not worth randomizing the input.
When graphs exceed the memory of a single machine,

Sheep scales by dividing the graph into memory-sized work-
ing sets. For example, the undirected Twitter graph is ap-
proximately 23GB in CSR, and therefore 1.9x the memory of
our commodity machine. If we break the graph into 10 parts
we can run 2 tree constructions simultaneously in memory
and partition Twitter in just 7.5 minutes. Compare this re-
sult to our in-memory Orkut results. The Twitter graph is
approximately 12.5 times the size of the Orkut graph, and
7.5 minutes is approximately 25x the runtime of Orkut with
2 workers, producing a factor of 2x overhead. Since Twitter
is out of memory and Orkut is hot cached, this overhead is
entirely expected and seems reasonable.
Twitter fits in memory on our 256GB cluster machines.

Figure 4 plots the runtime of Sheep on Twitter versus the
number of parallel workers on a single cluster machine. Twit-
ter is large enough that we see serious parallel scaling in both
our load and map times, such that the distributed reduction
becomes the limiting factor, as predicted by the complexity
equation in Section 4.2. In fact, for graphs as large as Twit-
ter our ingest scales better than 1/k, because CSR ingest
requires a partial edge sort. Using 18 cores we load and par-
tition this graph in just 2.8 minutes. In comparison, Fennel
takes over 20 minutes, and METIS takes hours.

5.3 Distributed Scaling
Of course, for out of core graphs we are inevitably inter-

ested in distributed scaling. Figure 5 plots time versus in-
creasing workers and nodes for Sheep on the 3.7 billion edge
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controllers improves its runtime at scale.

UK Web dataset [7]. While our single node time is quite
reasonable (less than 8 minutes), adding more cores does
not produce linear scaling. The ingest step does not reliably
improve, and the reduction step is surprisingly expensive.
The underlying cause of this is that we are badly thrashing
the various caches of the 256GB NUMA node; the reduce,
in particular, involves many inter-process buffer copies.

As Sheep is distributed, it can scale to more machines to
relieve memory pressure. The addition of just one machine
improves the runtime as we move from three cores per ma-
chine to twelve. The x-axis labels of CxM signify C cores on
M machines. 3x2 cores is significantly faster than 6x1 cores
because, unsurprisingly, the data ingest is faster. With 12x2
cores we get almost twice the performance of 24x1 cores, not
only because ingest is faster, but also because we relieve the
memory burden of buffer copying in the reduce step. Note
also that 6x4 cores introduces no overhead over 12x2, so in
our data center it is practical to simply ignore single-machine
scaling and launch Sheep horizontally across machines.

Sheep, like any distributed algorithm, has counter-scaling
costs that eventually cause its performance to approach an
asymptote. The eventual indivisibility of the graph and
the growing cost of the reduce tree must eventually prevent
Sheep from leveraging additional resources. It is also clear
that optimal performance requires some parameter tweaking
with respect to the graph size and features of the data cen-
ter architecture. However, even with suboptimal parameters
Sheep is extremely fast relative to other partitioners.

5.4 Comparative Time
Next we compare Sheep to other partitioning algorithms.

Figure 6 returns to Orkut on our commodity machine and
plots runtimes for the various partitioning algorithms as a
function of different numbers of partitions. First, note that
Sheep is invariant to the number of partitions; not only is our
tree partitioning step invariant to the partition count, but
the partitioning is a trivial fraction of the runtime. Other
partitioners evaluate multiple partitions for each element, so
their times scale with the number of partitions. Neverthe-
less, at the scale of the Orkut graph, Fennel is a reasonable
competitor for Sheep, while METIS is comparatively slow.

We now reexamine Figure 4, which plots time for Sheep
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on Twitter versus the number of parallel workers on a single
cluster machine. Compare to Figure 7, which plots time
for Fennel on Twitter versus the partition count on a single
cluster machine. Sheep is invariant to the partition count,
and Fennel is a serial streaming algorithm. We measure our
implementation of Fennel, but Tsourakakis et al. report a
similar Twitter time of 40 minutes [36]. We were unable to
get METIS to partition in-memory on our 256GB machines,
but Tsourakakis used 1TB machines and reports 8.5 hours.
We observe that Sheep is many times faster than Fennel,

primarily, but by no means entirely, because of rapid data
ingest. But even if we exclude the ingest, Sheep is 2.4x faster
than Fennel at 30 partitions, because Sheep is insensitive to
the partition count. This ingest-free comparison is quite
unfair to Sheep because rapid ingest is a major advantage
of a distributed partitioner. And note that our Fennel im-
plementation’s loader supports some multithreading, so the
advantage is not purely due to parallelism. Fundamentally
it is cheaper to build several small CSRs than one large one.
Figure 8 plots the runtimes of various 2-partitioning al-

gorithms at different input scales; this is the least favorable
comparison for Sheep. For smaller graphs Sheep and Fen-
nel run in essentially the same time, suggesting that both
algorithms are data-bound. We see the same result when
2-partitioning Twitter if we discount ingest times, but at no
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point does Fennel significantly outperform Sheep. However,
Fennel is harmed by growing partition counts, and on larger
graphs, Sheep benefits from rapid parallel ingest.

On small graphs, where METIS is a viable option, the par-
tition quality of METIS and similar multi-level techniques
are on average much better than other methods. Since
METIS is almost two decades old, we think that small-
graph partitioning is simply not an interesting problem at
this time. We created Sheep to target larger graphs, and on
these graphs Sheep is much faster than other partitioners.

5.5 Partition Quality
Figures 9 and 10 add Sheep results to partition qual-

ity results from Bourse et al. The y-axes are edge parti-
tioned communication volumes as defined in Section 3.4. In
the Bourse results the y-axes are normalized by m, but this
compresses the curves and makes it difficult to compare par-
titioners within each plot. We do not reproduce balance
factors from Bourse, because Sheep and every other parti-
tioner except PowerGraph achieve balance factors less than
3%, which is the default in METIS. PowerGraph’s balance
is unbounded, and Bourse reports factors as high as 50% on
Orkut and over 200% on a Youtube dataset.

Sheep is clearly competitive with other partitioners. It
is slightly better than even METIS on bipartitioning prob-
lems, competitive with METIS up to 5 partitions, signif-
icantly better than other streaming partitioners up to 10,
and slightly worse than some partitioners at more than 20.
Taken together with our timing results, this shows that
Sheep achieves its goal of producing competitive partitions
with significantly improved runtimes and scalability.

Fennel and Powergraph are both sensitive to the vertex
input order, and the ideal orders for the two are not neces-
sarily the same. Bourse et al. address this issue by using a
randomized input order. However, this penalizes Fennel, as
Tsourakakis et al. showed that a random order is not ideal
for Fennel [36]. To provide a more meaningful comparison,
we include results from our own Fennel implementation in
the graph’s “natural” vertex ID order. While this may not
be an optimal input order for Fennel (the optimal order is
unknown), natural vertex orders are often correlated with
some stochastic process such as a walk, and Tsourakakis ar-
gues that this often makes them appropriate for streaming.
We tested Fennel with degree and reverse degree orders, but
these gave worse results. Our Fennel implementation per-
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forms similarly to implementations reported elsewhere. It
produces vertex partitions that are then transformed to edge
partitions by Bourse’s degree weight and random assignment
method [8]. It may be possible to derive better partitions
from a well ordered edge partitioned Fennel, but this is an
order of magnitude slower than our vertex implementation.
Figure 11 plots Sheep against our Fennel implementation

on Twitter; these results are not from Bourse. In this case
the natural order of Twitter is unkind to Fennel, as Sheep
outperforms it significantly. Nevertheless, this plot is simi-
lar to the Bourse plots if we assume that the natural order
of Twitter is “random” for Fennel, and that our implemen-
tation should behave like Bourse’s randomized fennel-VP. A
well defined ideal vertex order is one of Sheep’s advantages.
Sheep’s partition quality improves using lower tree-depth

elimination orders. Our observations regarding complex net-
works predict “sequential” betweenness centrality should im-
prove over degree (Section 4.3). Figure 12 shows how Sheep
improves when using sequential betweenness order [17]. The
input graph is a small complex networks dataset observed as
disassembling faster under betweenness attack than degree
attack. As predicted, the tree-depth improves from 754 in
degree order to 459 using sequential betweenness. The parti-
tion quality improvement is significant and roughly propor-
tional to both the depth and the attack quality improvement
reported by Iyer. Our results are nearly identical to METIS.
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Unfortunately, betweenness centrality is expensive to com-
pute, so this exact method is impractical. However, there
are methods to approximate and parallelize betweenness,
and there are other efficiently-obtained centralities such as
the k-core decomposition [10]. Conversely, it may be possi-
ble to derive useful centralities “in reverse” from elimination
trees produced by e.g., METIS. While the importance of de-
gree order is widely recognized in elimination trees, as far as
we know the observation that non-local analytic centralities
may reduce tree-depth is novel. This is an interesting line
of research that we expect to address in future work.

6. CONCLUSION
Sheep is a graph partitioning algorithm that is many times

faster than competing algorithms on large graphs without
sacrificing partition quality. Sheep scales to effectively par-
tition multi-billion edge graphs in as little as 4 minutes.
Sheep’s partition quality is comparable to, or even better
than, METIS for small partition counts and competitive
with streaming partitioners for larger partition counts. How-
ever, we see Sheep’s most exciting contribution as the rela-
tionship it establishes between partition quality, tree decom-
position theories, and analytic centralities. This is a rich
space for innovative theories and system designs.

Sheep is free and open source software and is available at
https://github.com/dmargo/sheep.
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6.1 Limitations and Future Research
Sheep is an undirected communication volume partitioner,

because its underlying theory works with vertex separators.
There is a similar body of theory for edge-cut tree decompo-
sitions, called carving decompositions, so it may be possible
to derive an edge-cut Sheep algorithm. The edge cut costs
of our algorithm are unbounded and, in practice, may be
quite bad, even though the communication volume results
are consistently good. For edge-partitioned systems such as
PowerGraph, an “edge cut” is not meaningfully defined, so
this is not obviously a problem. However, the fact that high
cut and low volume partitionings exist at all is somewhat
interesting and a worthy topic for future research.
Sheep requires a good order to produce good partitions,

but cannot easily create an order by introspection of the
graph, because it splits the graph. Sheep works best for nat-
ural graphs with a skew degree distribution, such as “power
law” graphs, because complex networks research shows that
degree orders attack these graphs. Skew graphs are com-
mon in contemporary large graph analysis. For graphs with
other distributions, such as finite element meshes, it may
be possible to find an ordering heuristic by reviewing com-
plex networks research, but we reserve this for future work.
However, many of these graphs already have a rich history
of successful partitioning methods such as planar bisection,
whereas interest in skew networks is more recent.
Sheep creates a small partitioned tree that identifies the

partition assignment of any graph element. This design is
different from streaming partitioners, which place elements
as they arrive, and affects best practices to integrate Sheep
with existing systems. For example, an analysis system
might ingest the graph, construct the tree, share it among
nodes, and then direct each node’s ingested data to the
appropriate partition. If a placement step is necessary it
should be trivially parallel, since the elements can be placed
independently in consultation with the partitioned tree.
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APPENDIX

In Section 4.1 we claimed this about the elimination game:

Theorem 1. Let G[V <P z] be the subgraph induced on
G by vertices less than z. Then, z is the parent in T of
exactly the P -maximum vertices in the disjoint components
of G[V <P z] that z joins together in G[V ≤P z].

Proof. Lemma 1. For all (x, y) ∈ TE , x <T y in the
partial order defined by T . Because (x, y) ∈ TE iff x <P y,
it follows that T defines a suborder of P . Therefore, for all
x ∈ TV , x must be the P -maximum vertex in subt(x).

Lemma 2. Let G[V <P z] be the subgraph induced on
G by vertices less than z. By Corollary 1.1, subt(x) and
subt(y) are disconnected in G[V <P z]. But, there must
exist an edge (x′, z) in G[V ≤P z] such that x′ in subt(x):

If x is a child of z, then in iteration x of the elimination
game, (x, z) ∈ HE . If (x, z) ∈ HE , either (x, z) ∈ GE or
there exists a prior iteration x′ where (x′, z) ∈ HE . Again,
either (x′, z) ∈ GE or there exists a prior iteration. Because
initially H = G this must terminate in an edge in GE . There
must also exist (y′, z) such that y′ in subt(y).

Lemma 3. If we apply Lemma 2 to G[V <P x] it follows
that for each child of x there must be an edge in G[V ≤P x]
that connects x to that child’s subtree. The same is recur-
sively true of the children of x’s children, etc. It follows
inductively that subt(x) must be a connected component in
G[V <P z]. The same is true of subt(y). By Lemma 2,
subt(x) and subt(y) are disjoint components in G[V <P z],
but z connects these components in G[V ≤P z].

Therefore, by Lemmas 1 and 3 vertex z is the parent of
exactly the P -maximum vertices in the disjoint components
of G[V <P z] that z joins in G[V ≤P z].

In Section 4.2 we made the following claim:

Theorem 2. Let G1 and G2 be two subgraphs of G such
that G1 ∪ G2 = G. Let t(G,P ) be the elimination tree pro-
duced by union-find on G in order P . Then,

t(t(G1, P ) ∪ t(G2, P ), P ) = t(G,P )

Proof. Let G1 and G2 be subgraphs of G such that G1∪
G2 = G. For clarity, let t(G) = t(G,P ) for constant P . Let
G′ = t(G1) ∪ t(G2). We must show that t(G′) = t(G).

By induction we will show that in iteration z of the union-
find t(G′) gains exactly the same children of z as would t(G).
Clearly this is true in the first iteration where no children
are gained: assume this is true of every iteration before z.

In iteration z let the predecessors of z in t(G) be all
(x, z) ∈ GE , x <p z. The predecessors of z in t(G′) are
all (x, z) ∈ G′

E , x <p z. Since G′ = t(G1)∪ t(G2), and t(G1)
and t(G2) both define suborders of P , the predecessors of z
in t(G′) are exactly the children of z in t(G1) and t(G2).

The predecessors of z in t(G1) are all (x, z) ∈ GE , x <p z,
and similarly G2. But since G1E and G2E are subsets of GE

and G1E∪G2E = GE , every predecessor of z in t(G) must be
a predecessor of z in t(G1) or t(G2). So, every predecessor
in G is seen by the algorithm in either t(G1) or t(G2). By
the definition of the algorithm, for every such predecessor
the maximum vertex y in its component in G1[V <P z] or
G2[V <P z] is a child of Z in t(G1) or t(G2). In either case,
y is then a predecessor of z in t(G′).

Therefore, for any predecessor (x, z) of z in t(G), there
exists a corresponding predecessor (y, z) in t(G′) such that y
is a vertex in a component that contains x in either G1[V <P

z] or G2[V <P z]. Since both are subgraphs of G[V <P z], it
must be the case that y is contained in the same component
as x in G[V <P z]. Therefore, by inductive assumption x
and y are contained in the same set of the union-find U at
iteration z of t(G′), and therefore U.find(x) = U.find(y).
Therefore, t(G′) finds the same children as t(G), though the
predecessors by which it finds them may differ.
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