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ABSTRACT
In most spatial data management applications, objects are
represented in terms of their coordinates in a 2-dimensional
space and search queries in this space are processed using
spatial index structures. On the other hand, bitmap-based
indexing, especially thanks to the compression opportuni-
ties bitmaps provide, has been shown to be highly effective
for query processing workloads including selection and ag-
gregation operations. In this paper, we show that bitmap-
based indexing can also be highly effective for managing
spatial data sets. More specifically, we propose a novel com-
pressed spatial hierarchical bitmap (cSHB) index structure
to support spatial range queries. We consider query work-
loads involving multiple range queries over spatial data and
introduce and consider the problem of bitmap selection for
identifying the appropriate subset of the bitmap files for pro-
cessing the given spatial range query workload. We develop
cost models for compressed domain range query processing
and present query planning algorithms that not only select
index nodes for query processing, but also associate appro-
priate bitwise logical operations to identify the data objects
satisfying the range queries in the given workload. Exper-
iment results confirm the efficiency and effectiveness of the
proposed compressed spatial hierarchical bitmap (cSHB) in-
dex structure and the range query planning algorithms in
supporting spatial range query workloads.

1. INTRODUCTION
Spatial and mobile applications are gaining in popular-

ity, thanks to the wide-spread use of mobile devices, cou-
pled with increasing availability of very detailed spatial
data (such as Google Maps and OpenStreetMap [3]), and
location-aware services (such as FourSquare and Yelp). For
implementing range queries (Section 3.1.2), many of these
applications and services rely on spatial database manage-
ment systems, which represent objects in the database in
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terms of their coordinates in 2D space. Queries in this 2D
space are then processed using multidimensional/spatial in-
dex structures that help quick access to the data [28].

1.1 Spatial Data Structures
The key principle behind most indexing mechanisms is to

ensure that data objects closer to each other in the data
space are also closer to each other on the storage medium.
In the case of 1D data, this task is relatively easy as the
total order implicit in the 1D space helps sorting the ob-
jects so that they can be stored in a way that satisfies the
above principle. When the space in which the objects are
embedded has more than one dimension, however, the data
has multiple degrees of freedom and, as a consequence, there
are many different ways in which the data can be ordered
on the storage medium and this complicates the design of
search data structures. One common approach to develop-
ing index structures for multi-dimensional data is to parti-
tion the space hierarchically in such a way that (a) nearby
points fall into the same partition and (b) point pairs that
are far from each other fall into different partitions. The re-
sulting hierarchy of partitions then can either be organized
in the form of trees (such as quadtrees, KD-trees, R-trees
and their many variants [28]) or, alternatively, the root-to-
leaf partition paths can be serialized in the form of strings
and these strings can be stored in a string-specific search
structure. Apache Lucene, a highly-popular search engine,
for example, leverages such serializations of quadtree parti-
tions to store spatial data in a spatial prefix tree [1].

An alternative to applying the partitioning process in the
given multi-dimensional space is to map the coordinates of
the data into a 1D space and perform indexing and query
processing on this 1D space instead. Intuitively, in this al-
ternative, one seeks an embedding from the 2D space to a
1D space such that (a) data objects closer to each other in
the original space are also closer to each other on the 1D
space, and (b) data objects further away from each other
in the original space are also further away from each other
on the 1D space. This embedding is often achieved through
fractal-based space-filling curves [11, 17]. In particular, the
Peano-Hilbert curve [17] and Z-order curve [23] have been
shown to be very effective in helping cluster nearby objects
in the space. Consequently, if data are stored in an order
implied by the space-filling curve, then the data elements
that are nearby in the data space are also clustered, thus
enabling efficient retrieval. In this paper, we leverage these
properties of space-filling curves to develop a highly com-
pressible bitmap-based index structure for spatial data.
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Figure 1: Processing a range query workload using
compressed spatial hierarchical bitmap (cSHB)

1.2 Bitmap-based Indexing
Bitmap indexes [29, 32] have been shown to be highly

effective in answering queries in data warehouses [34] and
column-oriented data stores [5]. There are two chief rea-
sons for this: (a) first of all, bitmap indexes provide an effi-
cient way to evaluate logical conditions on large data sets
thanks to efficient implementations of the bitwise logical
“AND”, “OR”, and “NOT” operations; (b) secondly, espe-
cially when data satisfying a particular predicate are clus-
tered, bitmap indexes provide significant opportunities for
compression, enabling either reduced I/O or, even, complete
in-memory maintenance of large index structures. In addi-
tion, (c) existence of compression algorithms [15, 33] that
support compressed domain implementations of the bitwise
logical operations enables query processors to operate di-
rectly on compressed bitmaps without having to decompress
them until the query processing is over and the results are
to be fetched from the disk to be presented to the user.

1.3 Contributions of this Paper
In this paper, we show that bitmap-based indexing is also

an effective solution for managing spatial data sets. More
specifically, we first propose compressed spatial hierarchi-
cal bitmap (cSHB) indexes to support spatial range queries.
In particular, we (a) convert the given 2D space into a 1D
space using Z-order traversal, (b) create a hierarchical repre-
sentation of the resulting 2D space, where each node of the
hierarchy corresponds to a (sub-)quadrant (i.e., effectively
creating an implicit “quadtree”), and (c) associate a bitmap
file to each node in the quadtree representing the data ele-
ments that fall in the corresponding partition. We present
efficient algorithms for answering range queries using a select
subset of bitmap files stored in a given cSHB index.

We then consider a service provider that has to answer
multiple concurrent queries over the same spatial data and,
thus, focus on query workloads involving multiple range
queries. Since the same set of queries can be answered using
different subsets of the bitmaps in the cSHB index struc-
ture, we consider the problem of identifying the appropriate
bitmap nodes for processing the given query workload. More
specifically, as we visualize in Figure 1, (a) we develop cost
models for range query processing over compressed spatial

hierarchical bitmap files and (b) propose efficient bitmap se-
lection algorithms that select the best bitmap nodes from the
cSHB index structure to be fetched into the main-memory
for processing of the query workload. In this paper, we also
present an efficient disk-based organization of compressed
bitmaps. To our best knowledge, this is the first work that
provides an efficient index structure to execute a query work-
load involving multiple spatial range queries by using bitmap
indexes. Experimental evaluations of the cSHB index struc-
ture and the bitmap selection algorithms show that cSHB is
highly efficient in answering a given query workload.

1.4 Paper Organization
This paper is organized as follows. In the next section we

provide an overview of the related work. In Section 3.1, we
introduce the key concepts and notations, and in Section 3.2,
we present the proposed cSHB index structure. Then, in
Section 4, we describe how query workloads are processed us-
ing cSHB: in Section 4.1, we introduce the concepts of range
query plans, in Section 4.2, we present cost models for alter-
native execution strategies, and in Section 4.3, we present
algorithms for finding efficient query plans for a given range
query workload. Experiment results are reported in Sec-
tion 5. We finally conclude the paper in Section 6.

2. RELATED WORK

2.1 Multi-Dimensional Space Partitioning
Multi-dimensional space partitioning strategies can be

categorized into two: In the first case, including quadtree,
BD-tree, G-Tree, and KD-tree variants, a given bounded re-
gion is divided into two or more “open” partitions such that
each partition borders a boundary of the input region. In
the latter case, some of the partitions (often referred to as
minimum bounding regions, MBRs) are “closed” regions of
the space, not necessarily bordering any boundary of the in-
put region. An advantage of this latter category of index
structures, including the R-tree and its variants (R*-tree,
R+-tree, Hilbert R-tree, and others), is that these MBRs
can tightly cover the input data objects.

While most index structures have been designed to pro-
cess individual queries, there are also works focusing on the
execution of a workload of multiple queries on the same in-
dex structure. In [27], the Hilbert values of the centroids
of the rectangles formed by the range queries are sorted,
and these queries are grouped accordingly to process them
over an R-tree. In [14], R-trees are used to execute multiple
range queries and, in their formulation, authors propose to
combine adjacent queries into one. Thus, the algorithm is
not able to differentiate results of individual queries.

There are two problems commonly associated with multi-
dimensional index structures, namely overlaps between par-
titions (which cause redundant I/O) and empty spaces
within partitions (which cause unnecessary I/O). While
there has been a significant amount of research in searching
for partitioning strategies that do not face these problems,
these two issues still remain [26] and are especially critical
in very high-dimensional vector spaces. One way to tackle
this problem has been to parallelize the work. For example,
in [6], the authors describe a Hadoop-based data warehous-
ing system with spatial support, where the main focus is to
parallelize the building of the R*-tree index structure and
query processing over Hadoop.
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Figure 2: Z-order curve for a sample 2D Space.

2.2 Space Filling Curve based Indexing
The two most common space-filling curves are the fractal-

based Z-order curve [23] and the Peano-Hilbert curve [17].
While the Hilbert curve provides a better mapping from
the multidimensional space onto the 1D space, its genera-
tion is a complicated and costly process [26]. With Z-order
curve, however, mapping back-and-forth between the multi-
dimensional space and the 1D space using a process called
bit-shuffling (visualized in Figure 2) is very simple and effi-
cient. Consequently, the Z-order curve has been leveraged
to deal with spatial challenges [12], including construction
of and searches on R-trees [27] and others.

In [35], the authors present a parallel spatial query pro-
cessing system called VegaGiStore that is built on top of
Hadoop. This system uses a two-tiered index structure that
consists of a quadtree-based global index (used for finding
the necessary data blocks) and a Hilbert-ordering based local
index (used for finding the spatial objects in the data block).
In [26], the authors present an index called BLOCK to pro-
cess spatial range queries. Their main assumption is that
the data and index can fit into the main memory, and hence
their aim is to reduce the number of comparisons between
the data points and the query range. They create a sorted
list of the Z-order values for all the data points. Given a
query, they start at the coarsest level. If a block lies entirely
within the given query range, they retrieve the data points
in this block, otherwise, based on a branching fact, they de-
cide whether to search the next granular level. In [7], the
authors proposed a UB-tree index structure that also uses
Z-ordering for storing multidimensional data in a B+ tree
and in [22], the authors presented a hierarchical clustering
scheme for the fact table of a data warehouse in which the
data is stored using the above mentioned UB-tree. In [31],
the authors present a range query algorithm specifically for
the UB-tree. Unlike our approach, the above solutions are
not specifically designed for multiple query workloads.

2.3 Bitmap Indexes
There have been significant amount of works on improv-

ing the performance of bitmap indexes and keeping compres-
sion rates high [20, 32, 33]. Most of the newer compression
algorithms use run-length encoding for compression: this
provides a good compression ratio and enables bitwise op-
erations directly on compressed bitmaps without having to
decompress them first [32]. Consequently, bitmap indexes
are also shown to perform better than other database in-
dex structures, especially in data warehouses and column-
oriented systems [5,32,34].

For attributes with a large number of distinct values,
bitmaps are often created with binning, where the domain

is partitioned into bins and a bitmap is created for each bin.
Given a query, results are constructed by combining rele-
vant bins using bitwise OR operations. Recognizing that
many data attributes have hierarchical domains, there has
also been research in the area of multi-level and hierarchical
bitmap indexes [13,24,25,29]. When the bitmaps are parti-
tioned (with potential overlaps), it is necessary to select an
appropriate set (or cut [25]) of bitmaps for query process-
ing; results are often obtained by identifying a set of bitmaps
and combining them using bitwise ORs. This work builds on
some of the ideas presented in [25] from 1D data to spatial
data. In [25], the cost model only considered the dominant
I/O cost (reading the bitmaps from the disk), but in this
work, we present an updated cost model, that appropriately
includes the I/O cost as well as the cost of performing local
operations on the in-memory bitmaps.

There has been some prior attempts to leverage bitmaps
in spatial query processing. For example, an MBR-based
spatial index structure is proposed in [30], where the leaves
of the tree are encoded in the form of bitmaps. Given a
query, the proposed HSB-index is traversed top-down (as in
R-trees) to identify the relevant bitmaps to be combined.
In this paper, we note that not only leaves, but also in-
ternal nodes of the spatial hierarchy can be encoded as
bitmaps, leading to significant savings in range search time,
especially for query workloads consisting of multiple spatial
range queries. Thus, our work focuses on which bitmaps
to read in the context of spatial range query workloads and
we introduce novel algorithms to choose which bitmaps to
use to answer a query workload efficiently. We generalize
the problem of bitmap selection and consider alternative
strategies that complement OR-based result construction.
In [16], authors propose a storage and retrieval mechanism
for large multi-dimensional HDF5 files by using bitmap in-
dexes. While range queries are supported on their architec-
ture, they neither leverage Z-order indexing, nor hierarchi-
cal bitmaps as proposed in this work. Also, their proposed
mechanism is not optimized for multiple query workloads.

3. COMPRESSED SPATIAL HIERARCHI-
CAL BITMAP (cSHB) INDEXES

In this section, we present the key concepts used in the pa-
per and introduce the compressed spatial hierarchical bitmap
(cSHB) index structure for answering spatial range queries.

3.1 Key Concepts and Notations

3.1.1 Spatial Database
A multidimensional database, D, consists of points that

belong to a (bounded and of finite-granularity) multidimen-
sional space S with d dimensions. A spatial database is a
special case where d = 2. We consider rectangular spaces
such that the boundaries of S can be described using a pair
of south-west and a north-east corner points, csw and cne

(csw.x ≤ cne.x and csw.y ≤ cne.y and ∀p∈S csw .x ≤ p.x ≤
cne.x and csw.y ≤ p.y ≤ cne.y).

3.1.2 Spatial Query Workload
In this paper, we consider query workloads, Q, consisting

of a set of rectangular spatial range queries.

• Spatial Range Query: A range query, q ∈ Q, is
defined by a corresponding range specification q.rs =
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〈qsw, qne〉, consisting of a south-west point and a north-
east point, such that qsw.x ≤ qne.x and qsw.y ≤ qne.y.

Given a range query, q, with a range specification,
q.rs = 〈qsw, qne〉, a data point p ∈ D is said to be
contained within the query range (or is a range point)
if and only if qsw.x ≤ p.x ≤ qne.x and qsw.y ≤ p.y ≤
qne.y.

3.1.3 Spatial Hierarchy
In cSHB, we associate to the space S a hierarchy H , which

consists of the node set N (H) = {n1, . . . , nmaxn}:
• Nodes of the hierarchy: Intuitively, each node, ni ∈

N (H) corresponds to a (bounded) subspace, Si ⊆ S,
described by a pair of corner points, ci,sw and ci,nw.

• Leaves of the hierarchy: LH denotes the set of leaf
nodes of the hierarchy H and correspond to all poten-
tial point positions of the finite space S. Assuming that
the database, D, contains only points, only the leaves
of the spatial hierarchy occur in the database.

• Parent of a node: For all ni, parent(ni) denotes the
parent of ni in the corresponding hierarchy; if ni is the
root, then parent(ni) = ⊥.

• Children of a node: For all ni, children(ni) denotes
the children of ni in the corresponding hierarchy; if
ni ∈ LH , then children(ni) = ∅. In this paper, we as-
sume that the children induce a partition of the region
corresponding to the parent node:

(
∀

nh �=nj∈children(ni)
Sh∩Sj = ∅

)
and

⎛
⎝Si =

⋃
nh∈children(ni)

Sh

⎞
⎠ .

• Descendants of a Node: The set of descendants of
node ni in the corresponding hierarchy is denoted as
desc(ni). Naturally, if ni ∈ LH , then desc(ni) = ∅.

• Internal Nodes: Any node in H that is not a leaf
node is called an internal node. The set of internal
nodes of H is denoted by IH . Each internal node in
the hierarchy corresponds to a (non-point) sub-region
of the given space. If N (H, l) denotes the subset of the
nodes at level l of the hierarchy H , then we have(
∀ni �=nj∈N (H,l) Si∩Sj = ∅

)
and

⎛
⎝S =

⋃
ni∈N (H,l)

Si

⎞
⎠ .

The root node corresponds to the entire space, S .
• Leaf Descendants of a Node: Leaf descendants,

leafDesc(ni), of a node are the set of nodes such that

leafDesc(ni) = desc(ni) ∩ LH .

3.2 Compressed Spatial Hierarchical Bitmap
(cSHB) Index Structure

In this section, we introduce the proposed compressed spa-
tial hierarchical bitmap (cSHB) index structure:

Definition 3.1 (cSHB Index Stucture). Given a
spatial database D consisting of a space, S, and a spatial
hierarchy, H, a cSHB index is a set, B of bitmaps, such
that for each ni ∈ N (H), there is a corresponding bitmap,
Bi ∈ B, where the following holds:

000000 000011 

0000** 0001** 0010** 0011** 

00**** 

root 

 
 

  
000001 000010 001000 001011 001001 001010 

 

Figure 3: A sample 4-level hierarchy defined on the
Z-order space defined in Figure 2 (the string associ-
ated to each node corresponds to its unique label)

• if ni is an internal node (i.e., ni ∈ IH), then(
∃o∈D∃nh∈leafDesc(ni) located at(o, nh)

)
↔ (Bi[o] =

1), whereas
• if ni is a leaf node (i.e., ni ∈ LH), then(

∃o∈D located at(o, ni)
)
↔ (Bi[o] = 1) ◦

3.2.1 Our Implementation of cSHB
A cSHB index structure can be created based on any hier-

archy satisfying the requirements1 specified in Section 3.1.3.
In this paper, without loss of generality, we discuss a Z-

curve based construction scheme for cSHB. The resulting
hierarchy is analogous to the MX-quadtree data structure,
where all the leaves are at the same level and a given region
is always partitioned to its quadrants at the center [28]. As
introduced in Sections 1.1 and 2.2, a space-filling curve is a
fractal that maps a given finite multidimensional data space
onto a 1D curve, while preserving the locality of the multi-
dimensional data points (Figure 2): in other words nearby
points in the data space tend to be mapped to nearby points
on the 1D curve. As we also discussed earlier, Z-curve is a
fractal commonly used as a space-filling curve (thanks to its
effectiveness in clustering the points in the data space and
the efficiency with which the mapping can be computed).

A key advantage of the Z-order curve (for our work) is
that, due to the iterative (and self-similar) nature of the un-
derlying fractal, the Z-curve can also be used to impose a
hierarchy on the space. As visualized in Figure 3, each in-
ternal node, ni, in the resulting hierarchy has four children
corresponding to the four quadrants of the space, Si. Conse-
quently, given a 2h-by-2h space, this leads to an (h+1)-level
hierarchy, (analogous to an MX-quadtree [28]) which can be
used to construct a cSHB index structure2. As we show
in Section 5, this leads to highly compressible bitmaps and
efficient execution plans.

3.2.2 Blocked Organization of Compressed Bitmaps
Given a spatial database, D, with a corresponding hier-

archy, H , we create and store a compressed bitmap for each
node in the hierarchy, except for those that correspond to
regions that are empty. These bitmaps are created in a
bottom-up manner, starting from the leaves (which encode
for each point in space, S , which data objects in D are lo-
cated at that point) and merging bitmaps of children nodes
into the bitmaps of their parents. Each resulting bitmap is
stored as a compressed file on disk.

It is important to note that, while compression provides
significant savings in storage and execution time, a naive
storage of compressed bitmaps can still be detrimental for

1In fact, cSHB can be created even when some of the re-
quirements are relaxed – for example children do not need
to cover the parent range entirely (as in R-trees).
2Without loss of generality, we assume that the width and
height are 2h units for some integer h ≥ 1.
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Algorithm 1 Writing blocks of compressed bitmaps to disk

1: Input:

• A spatial database, D, defined over 2h-by-2h size space, S
and a corresponding (h+1)-level (Z-curve based) hierarchy,
H, with set of internal nodes, IH

• Minimum block size, K

2: procedure writeBitmaps
3: Block T = ∅
4: availableSize = K
5: for level l = (h + 1) (i.e., leaves) to 0 (i.e., root) do
6: for each node ni in l in increasing Z-order do
7: if l == (h + 1) then
8: Initialize a compressed bitmap Bi

9: else
10: Bi = OR

nj∈children(ni)
Bj

11: end if
12: if size(Bi) ≥ K then
13: write Bi to disk;
14: else
15: T = append(T, Bi)
16: availableSize = availableSize − size(Bi)
17: if (availableSize ≤ 0) or (ni is the last

node at this level) then
18: write T to disk;
19: Block T = ∅
20: availableSize = K
21: end if
22: end if
23: end for
24: end for
25: end procedure

performance: in particular, in a data set with large number
of objects located at unique points, there is a possibility that
a very large number of leaf bitmaps need to be created on
the secondary storage. Thus, creating a separate bitmap file
for each node may lead to inefficiencies in indexing as well as
during query processing (as directory and file management
overhead of these bitmaps may be non-negligible).

To overcome this problem, cSHB takes a target block size,
K, as input and ensures that all index-files written to the
disk (with the possible exception of the last bitmap file in
each level) are at least K bytes. This is achieved by concate-
nating, if needed, compressed bitmap files (corresponding to
nodes at the same level of hierarchy). In Algorithm 1, we
provide an overview of this block-based bottom-up cSHB in-
dex creation process. In Line 10, we see that the bitmap of
an internal node is created by performing a bitwise OR oper-
ation between the bitmaps of the children of the node. These
OR operations are implemented in the compressed bitmap
domain enabling fast creation of the bitmap hierarchy. As it
creates compressed bitmaps, the algorithm packs them into
a block (Line 15). When the size of the block exceeds K,
the compressed bitmaps in the block are written to the disk
(Line 18) as a single file and the block is re-initialized.

Example 3.1. Let us assume that K = 10 and also that
we are considering the following sequence of nodes with the
associated (compressed) bitmap sizes:

〈n1, 3〉; 〈n2, 4〉; 〈n3, 2〉; 〈n4, 15〉; 〈n5, 3〉; . . .
This sequence of nodes will lead to following sequence of
bitmap files materialized on disk:

[B4]︸︷︷︸
size=15

; [B1‖B2‖B3‖B5]︸ ︷︷ ︸
size=3+4+2+3=12

; . . .

Note that, since the bitmap for node n4 is larger than the
target block size, B4 is written to disk as a separate bitmap

0    1    2    3   4    5   6   7 

  5
   

6 
  7

 
 2

   
 3

   
4 
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1 

  

0    1    2    3   4    5   6   7 
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0 [56,57]

1100XX

0 
   

1 
  

00
0

00
1

[48,51]

Range 2

Range 1

(a) 2D query range (b) Corresponding 1D ranges

Figure 4: Mapping of a single spatial range query
to two 1D ranges on the Z-order space: (a) A con-
tiguous 2D query range, [sw = (4, 4); ne = (6, 5)] and
(b) the corresponding contiguous 1D ranges, [48,51]
and [56,57], on the Z-curve

file; on the other hand, bitmaps for nodes n1, n2, n3, and
n5 need to be concatenated into a single file to obtain a block
larger than K = 10 units. �

Note that this block-based structure implies that the size
of the files and the number of bitmap files on the disk will be
upper bounded, but it also means that the cost of the bitmap
reads will be lower bounded by K. Therefore, to obtain
the best performance, repeated access to a block to fetch
different bitmaps must be avoided through bitmap buffering
and/or bitmap request clustering. In the next section, we
discuss the use of cSHB index for range query processing. In
Section 5, we experimentally analyze the impact of block-size
on the performance of the proposed cSHB index structure.

4. QUERY PROCESSING WITH THE cSHB
INDEX STRUCTURE

In this section, we describe how query workloads are pro-
cessed using the cSHB index structure. In particular, we
consider query workloads involving multiple range queries
and propose spatial bitmap selection algorithms that select
a subset of the bitmap nodes from the cSHB index structure
for efficient processing of the query workload.

4.1 Range Query Plans and Operating Nodes
In order to utilize the cSHB index for answering a spatial

range query, we first need to map the range specification
associated with the given query from the 2D space to the
1D space (defined by the Z-curve). As we see in Figure 4,
due to the way the Z-curve spans the 2D-space, it is possible
that a single contiguous query range in the 2D space may
be mapped to multiple contiguous ranges on the 1D space.
Therefore, given a 2D range query, q, we denote the resulting
set of (disjoint) 1D range specifications, as RSq.

Let us be given a query, q, with the set of 1D range speci-
fications, RSq. Naturally, there may be many different ways
to process the query, each using a different set of bitmaps
in the cSHB index structure, including simply fetching and
combining only the relevant leaf bitmaps:

Example 4.1 (Alternative Range Query Plans).
Consider a query q with q.rs = 〈(1, 0), (3, 1)〉 on
the space shown in Figure 2. The correspond-
ing 1D range, [2, 11], would cover the following
leaf nodes of the hierarchy shown in Figure 3:
RSq = (000010, 000011, 001000, 001001, 001010, 001011).
The following are some of the alternative query plans for q
using the proposed cSHB index structure:
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• Inclusive query plans: The most straightforward way
to execute the query would be to combine (bitwise OR
operation) the bitmaps of the leaf nodes covered in 1D
range, [2, 11]. We refer to such plans, which construct
the result by combining bitmaps of selected nodes using
the OR operator, as inclusive plans.

An alternative inclusive plan for this query would be to
combine the bitmaps of nodes 000010, 000011, 0010**:

B000010 OR B000011 OR B0010∗∗.

• Exclusive query plans: In general, an exclusive query
plan includes removal of some of the children or de-
scendant bitmaps from the bitmaps of a parent or an-
cestor through the ANDNOT operation. One such ex-
clusive plan would be to combine the bitmaps of all leafs
nodes, except for B000010, B000011, B001000, B001001,
B001010, B001011, into a bitmap Bnon result and return

BrootANDNOTBnon result.

• Hybrid query plans: Both inclusive and exclusive only
query plans may miss efficient query processing alter-
natives. Hybrid plans combine inclusive and exclusive
strategies at different nodes of the hierarchy. A sample
hybrid query plan for the above query would be(

B0000∗∗ ANDNOT (B000000 OR B000001)
)
OR B0010∗∗.�

As illustrated in the above example, a range query, q, on
hierarchy H , can be answered using different query plans,
involving bitmaps of the leaves and certain internal nodes of
the hierarchy, collectively referred to as the operating nodes
of a query plan. In Section 4.3, we present algorithms for se-
lecting the operating nodes for a given workload, Q; but first
we discuss the cost model that drives the selection process.

4.2 Cost Models and Execution Strategies
In cSHB, the bitwise operations needed to construct the

result are performed on compressed bitmaps directly, with-
out having to decompress them.

4.2.1 Cost Model for Individual Operations
We consider two cases: (a) logical operations on disk-

resident compressed bitmaps and (b) logical operations on
in-buffer compressed bitmaps.

Operations on Disk-Resident Compressed Bitmaps.
In general, when the logical operations are implemented

on compressed bitmaps that reside on the disk, the time
taken to read a bitmap from the secondary storage to the
main memory dominates the overall bitwise manipulation
time [15]. The overall cost is hence proportional to the size
of the (compressed) bitmap file on the secondary storage.

Let us consider a logical operation on bitmaps Bi and Bj .
Let us assume that T (Bi) and T (Bj) denotes the blocks in
which Bi and Bj are stored, respectively. Since multiple
bitmaps can be stored in a single block, it is possible that
Bi and Bj are in the same block. Hence, let us further
assume that T(Bi,Bj) is the set of unique blocks that contain
the bitmaps, Bi and Bj . Then the overall I/O cost is:

costio(Bi op Bj) = αIO

( ∑
T∈T(Bi,Bj)

size(T )
)
,

where αIO is an I/O cost multiplier and op is a binary bitwise
logical operator. A similar result also holds for the unary
operation NOT.

Operations on In-Buffer Compressed Bitmaps.
When the compressed bitmaps on which the logical op-

erations are implemented are already in-memory, the disk
access cost is not a factor. However, also in this case, the
cost is proportional to the sizes of the compressed bitmap
files in the memory, independent of the specific logical oper-
ator that is involved [33], leading to

costcpu(Bi op Bj) = αcpu

(
size(Bi) + size(Bj)

)
,

where αcpu is the CPU cost multiplier. A similar result also
holds for the unary operation NOT.

4.2.2 Cost Models for Multiple Operations
In this section, we consider a cost model which assumes

that blocks are disk-resident. Therefore, we consider a stor-
age hierarchy consisting of disk (storing all bitmaps), RAM
(as buffer storing relevant bitmaps), and L3/L2 caches (stor-
ing currently needed bitmaps).

Buffered Strategy.
In the buffered strategy, visualized in Figure 1, the

bitmaps that correspond to any leaf or non-leaf operating
nodes for the query plan of a given query workload, Q, are
brought into the buffer once and cached for later use. Then,
for each query q ∈ Q, the corresponding result bitmap is ex-
tracted using these buffered operating node bitmaps. Con-
sequently, if a node is an operating one for more than one
q ∈ Q, it is read from the disk only once (and once for each
query from the memory). Let us assume that TONQ denotes
the set of unique blocks that contains all the necessary op-
erating nodes given a query workload Q(ONQ). This leads
to the overall processing cost, time costbuf (Q,ONQ), of

αIO

⎛
⎝ ∑

T∈TONQ

size(T )

⎞
⎠

︸ ︷︷ ︸
read cost

+αcpu

⎛
⎝∑

q∈Q

∑
ni∈ONq

size(Bi)

⎞
⎠

︸ ︷︷ ︸
operating cost

.

Since all operating nodes need to be buffered, this execu-
tion strategy requires a total of storage costbuf (Q,ONQ) =∑

ni∈ONQ
size(Bi) buffer space. Note that, in general,

αIO > αcpu. However, in Section 5, we see that the number
of queries in the query workload and query ranges determine
the relative costs of in-buffer operations vs. disk I/O.

The buffered strategy has the advantage that each query
can be processed individually on the buffered bitmaps and
the results for each completed query can be pipelined to the
next operator without waiting for the results of the other
queries in the workload. This reduces the memory needed
to temporarily store the result bitmaps. However, in the
buffered strategy, the buffer needed to store the operating
node bitmaps can be large.

Incremental Strategy.
The incremental strategy avoids buffering of all operating

node bitmaps simultaneously. Instead, all leaf and non-leaf
operating nodes are fetched from the disk one at a time on
demand and results for each query are constructed incremen-
tally. This is achieved by considering one internal operating
node at a time and, for each query, focusing only on the leaf
operating nodes under that internal node. For this purpose,
a result accumulator bitmap, Resj , is maintained for each
query in qj ∈ Q and each operating node read from the disk
is applied directly on this result accumulator bitmap.
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Figure 5: Buffer misses and the overall read time
(data and other details are presented in Section 5)

While it does not need buffer to store all operating node
bitmaps, the incremental strategy may also benefit from par-
tial caching of the relevant blocks. This is because, while
each internal node needs to be accessed only once, each
leaf node under this internal node may need to be brought
to the memory for multiple queries. Moreover, since the
data is organized in terms of blocks, rather than individ-
ual nodes (Section 3.2.2), a single block may serve multiple
nodes to different queries. When sufficient buffer is available
to store the working set of blocks (containing the operating
leaf nodes under the current internal node), the execution
cost, time costinc(Q,ONQ), of the incremental strategy is
identical to that of the buffered strategy. Otherwise, as illus-
trated in Figure 5, the read cost component is a function of
buffer misses, αIO×# buffer misses, which itself depends
on the size of the buffer and the clustering of the data.

The storage complexity3 is storage costinc(Q,ONQ) =∑
qj∈Q size(Resj) plus the space needed to maintain the

most recently read blocks in the current working set. Ex-
periments reported in Section 5 show that, for the considered
data sets, the sizes of the working sets are small enough to
fit into the L3-caches of many modern hardware.

4.3 Selecting the Operating Bitmaps for a
Given Query Workload

To process a range query workload, Q, on a data set, D,
with the underlying cSHB hierarchy H , we need to select
a set of operating bitmap nodes, ONQ, of H from which
we can construct the results for all qj ∈ Q, such that
time cost(Q,ONQ) is the minimum among all possible sets
of operating bitmaps for Q. It is easy to see that the number
of alternative sets of operating bitmaps for a given query
workload Q is exponential in the size of the hierarchy H .
Therefore, instead of seeking the set of operating bitmaps
among all subsets of the nodes in H , we focus our attention
on the cuts of the hierarchy, defined as follows:

Definition 4.1 (Cuts of H Relative to Q). A
complete cut, C, of a hierarchy, H , relative to a query load,
Q, is a subset of the internal nodes (including the root) of
the hierarchy, satisfying the following two conditions:

• validity: there is exactly one node on any root-to-leaf
branch in a given cut; and

• completeness: the nodes in C collectively cover every
possible root-to-leaf branch for all leaf nodes in the re-
sult sets for queries in Q.

3The space complexity of the incremental strategy can be
upper-bounded if the results for the queries in Q can be
pipelined to the next set of operators progressively as partial
results constructed incrementally.

If a set of internal nodes of H only satisfies the first condi-
tion, then we refer to the cut as an incomplete cut. ◦

As visualized in Figure 1, given a cut C, cSHB queries are
processed by using only the bitmaps of the nodes in this
cut, along with some of the leaf bitmaps necessary
to construct results of the queries in Q. In the rest of
this subsection, we first describe how queries are processed
given a cut, C, of H and then present algorithms that search
for a cut, C, given a workload, Q.

4.3.1 Range Query Processing with Cuts
It is easy to see that any workload, Q, of queries can be

processed by any (even incomplete) cut, C, of the hierarchy
and a suitable set of leaf nodes: Let Rq denote the set of
leaf nodes that appear in the result set of query q ∈ Q and
R̄q be the set of leaf nodes that do not appear in the result
set. Let also RC

q be the set of the result leaves covered by a
node in C. Then, one possible way to construct the result
bitmap, Bq, is as follows:

Bq =

⎛
⎜⎜⎜⎝
(

OR
ni∈C

Bi

)
OR

(
OR

ni∈Rq\RC
q

Bi

)
︸ ︷︷ ︸

inclusions

⎞
⎟⎟⎟⎠ ANDNOT

nj∈RC
q ∩R̄q

Bj︸︷︷︸
exclusions

.

Intuitively any result nodes that are not covered by the cut
need to be included in the result using a bitwise OR opera-
tion, whereas any leaf node that is not in any result needs
to be excluded using an ANDNOT operation. Consequently,

• if C ∩ Rq = ∅, an inclusion-only plan is necessary,

• an exclusion-only plan is possible only if C covers Rq

completely.

Naturally, given a range query workload, Q, different query
plans with different cuts will have different execution costs.
The challenge is, then,

• to select an appropriate cut, C, of the hierarchy, H ,
for query workload, Q, and

• to pick, for each query qj ∈ Q, a subset Cj ∈ C for
processing qj ,

in such a way that these will minimize the overall processing
cost for the set of range queries in Q. Intuitively, we want to
include in the cut, those nodes that will not lead to a large
number of exclusions and cannot be cheaply constructed by
combining bitmaps of the leaf nodes using OR operations.

4.3.2 Cut Bitmap Selection Process
Given the above cut-based query processing model, in this

section we propose a cut selection algorithm consisting of
two steps: (a) a per-node cost estimation step and (b) a
bottom-up cut-node selection step. We next describe each
of these two steps.

Node Cost Estimation.
First, the process assigns an estimated cost to those hier-

archy nodes that are relevant to the given query workload,
Q. For this, the algorithm traverses through the hierarchy,
H , in a top-down manner and identifies part, R, of the hier-
archy relevant for the execution of at least one query, q ∈ Q
(i.e., for at least one query, q, the range associated with the
node and the query range intersect). Note that this process
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Algorithm 2 Cost and Leaf Access Plan Assignment Algo-
rithm
1: Input: Hierarchy H, Query Workload Q
2: Outputs: Query workload, Q(ni), and cost estimate, costi,

for each node, ni ∈ H; leaf access plan, Ei,j , for all
node/query pairs ni ∈ H and qj ∈ Q(ni); a set, R ⊆ IH ,
or relevant internal nodes

3: Initialize: R = ∅
4: procedure Cost and LeafAccessPlanAssignment
5: for each internal node ni ∈ IH in top-down fashion do
6: if ni = “root′′ then
7: Q(ni) = Q
8: else
9: Q(ni) = {q ∈ Q(parent(ni)) s.t. (q.rs ∩ Si) �=

∅}
10: end if
11: if Q(ni) �= ∅ then
12: add ni into R
13: end if
14: end for
15: for each node ni ∈ R in a bottom-up fashion do
16: for qj ∈ Q(ni) do
17: Compute icost(ni, q)
18: Compute ecost(ni, q)
19: Compute the leaf access plan, Ei,j , as

Ei,j = [ecost(ni , qj) < icost(ni , qj)]
20: end for
21: Compute the leaf access cost, leaf costi, as(∑

qj∈Q(ni)
Ei,j × ecost(ni, qj) + (1 −Ei,j)× icost(ni, qj)

)

22: end for
23: end procedure

also converts the range in 2-D space into 1-D space by iden-
tifying the relevant nodes in the hierarchy. Next, for each
internal node, ni ∈ R, a cost, costi, is estimated assuming
that this node and its leaf descendants are used for identify-
ing the matches in the range Si. The outline of this process
is presented in Algorithm 2 and is detailed below:
• Top-Down Traversal and Pruning. Line 5 indicates that
the process starts at the root and moves towards the leaves.
For each internal node, ni, being visited, first, the set,
Q(ni) ⊆ Q, of queries for which ni is relevant is identified by
intersecting the ranges of the queries relevant to the parent
(i.e., Q(parent(ni))) with the range of ni. More specifically,

Q(ni) = {q ∈ Q(parent(ni)) s.t. (q.rs ∩ Si) �= ∅}.

If Q(ni) = ∅, then ni and all its descendants are ignored,
otherwise ni is included in the set R.
• Inclusive and Exclusive Cost Computation. Once the por-
tion, R, of the hierarchy relevant to the query workload is
identified, next, the algorithm re-visits all internal nodes in
R in a bottom-up manner and computes a cost estimate for
executing queries in Q(ni): for each query, q ∈ Q(ni), the
algorithm computes inclusive and exclusive leaf access costs:

• Inclusive leaf access plan (Line 17): If query, q, is ex-
ecuted using an inclusive plan at node, ni, this means
that the result for the range (q.rs∩Si) will be obtained
by identifying and combining (using bitwise ORs) all
relevant leaf bitmaps under node ni. Therefore, the
cost of this leaf access plan is

icost(ni, q) =
∑

(nj∈leafDesc(ni))∧((q.rs∩Sj) �=∅)

size(Bj).

This value can be computed incrementally, simply by
summing up the inclusive costs of the children of ni.

• Exclusive leaf access plan (Line 18): If query, q, is ex-
ecuted using an exclusive leaf access plan at node, ni,
this means that the result for the range (q.rs∩Si) will
be obtained by using Bi and then identifying and ex-
cluding (using bitwise ANDNOT operations) all irrel-
evant leaf bitmaps under node ni. Thus, we compute
the exclusive leaf access plan cost, ecost(ni, q), of this
query at node ni as

ecost(ni, q) = size(Bi)

+
∑

(nj∈leafDesc(ni))∧((q.rs∩Sj)=∅)

size(Bj)

or equivalently as

ecost(ni, q) = size(Bi) +

⎛
⎝ ∑

nj∈leafDesc(ni)

size(Bj)

⎞
⎠

− icost(ni, q)

Since the initial two terms above are recorded in the
index creation time, the computation of exclusive cost
is a constant time operation.

• Overall Cost Estimation and the Leaf Access Plan. Given
the above, we can find the best strategy for processing the
query set Q(ni) at node ni by considering the overall esti-
mated cost term, cost(ni, Q(ni)), defined as⎛
⎝ ∑

qj∈Q(ni)

Ei,j × ecost(ni, qj) + (1−Ei,j)× icost(ni, qj)

⎞
⎠

︸ ︷︷ ︸
leaf access cost for all relevant queries

where Ei,j = 1 means an exclusive leaf access plan is chosen
for query, qj , at this node and Ei,j = 0 otherwise.

Cut Bitmap Selection.
Once the nodes in the hierarchy are assigned estimated

costs as described above, the cut that will be used for
query processing is found by traversing the hierarchy in a
bottom-up fashion and picking nodes based on their esti-
mated costs4. The process is outlined in Algorithm 3. Intu-
itively, for each internal node, ni ∈ IH , the algorithm com-
putes a revised cost estimate, rcosti, by comparing the cost,
costi, estimated in the earlier phase of the process, with the
total revised costs of ni’s children:

• In Line 13, the function findBlockIO(ni) returns the
cost of reading the block T (Bi). If this block has al-
ready been marked“to-read”, then the reading cost has
already been accounted for, so the cost is zero. Other-
wise, the cost is equal to the size of the block T (Bi),
as explained in Section 4.2.1.

• As we see in Line 21, it is possible that a block T is
first marked “to-read” and then, later in the process,
marked “not-to-read”, because for the corresponding
nodes in the cut, more suitable ancestors are found
and the block is no longer needed.

• If costi is smaller (Line 17), then ni and its leaf de-
scendants can be used for identifying the matches to
the queries in the range Si. In this case, no revision is

4Note that this bottom-up traversal can be combined with
the bottom-up traversal of the prior phase. We are describ-
ing them as separate processes for clarity.
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Algorithm 3 Cut Selection Algorithm

1: Input: Hierarchy H; per-node query workload Q(ni); per-
node cost estimates costi; and the corresponding leaf access
plans, Ei,j , for node/query pairs ni ∈ H and qj ∈ Q(ni); the
set, R ⊆ IH , or relevant internal nodes

2: Output: All-inclusive, CI , and Exclusive, CE , cut nodes
3: Initialize: Cand = ∅
4: procedure findCut
5: for each relevant internal node ni in R in a bottom-
6: up fashion do
7: Set internal children = children(ni) ∩ IH ;
8: if internal children = ∅ then
9: add ni to Cand;
10: rcosti = costi
11: else
12: costChildren =

∑
nj∈internal children rcostj

13: rcostIOi = findBlockIO(ni)
14: for each child nj in internal children do
15: costChildrenIO = costChildrenIO +

findBlockIO(nj)
16: end for
17: if (rcosti + rcostIOi) ≤ (costChildren +

costChildrenIO) then
18: for each descendant nk of ni in Cand do
19: remove nk from Cand;
20: if nk is the only node to read from

T (Bk) then
21: mark T (Bk) as “not-to-read”;
22: end if
23: end for
24: add ni to Cand;
25: rcosti = costi
26: mark T (Bi) as “to-read”;
27: else
28: rcosti = costChildren
29: end if
30: end if
31: end for
32: CE = {ni ∈ Cand s.t. ∃qj∈Q(ni)

Ei,j == 1}
33: CI = Cand/CE

34: end procedure

necessary and the revised cost, rcosti is equal to costi.
Any descendants of ni are removed from the set, Cand,
of cut candidates and ni is inserted instead.

• If, on the other hand, the total revised cost of ni’s chil-
dren is smaller than costi, then matches to the queries
in the range Si can be more cheaply identified by con-
sidering the descendants of ni, rather than ni itself
(Line 27). Consequently, in this case, the revised cost,
rcosti, is set to

rcosti =
∑

nj∈children(ni)

rcostj .

As we experimentally show in Section 5, the above process
has a small cost. This is primarily because, during bottom-
up traversal, only those nodes that have not been pruned
in the previous top-down phase are considered. Once the
traversal is over, the nodes in the set, Cand, of cut candi-
dates are reconsidered and those that include exclusive leaf
access plans are included in the exclusive cut set, CE, and
the rest are included in the all-inclusive cut set, CI .

Caching of Cut and Leaf Bitmaps.
During query execution, the bitmaps of the nodes in CE

are read into a cut bitmaps buffer, whereas the bitmaps for
the nodes in CI do not need to be read as the queries will be

answered only by accessing relevant leaves under the nodes
in CI . We store the blocks containing the bitmaps of these
relevant leaves in an LRU-based cache so that leaf bitmaps
can be reused by multiple queries.

4.3.3 Complexity
The bitmap selection process consists of two steps: (a) a

per-node cost estimation step and (b) a cut bitmap selection
step. Each of these steps visit only the relevant nodes of the
hierarchy. Therefore, if we denote the set of nodes of the
hierarchy, H , that intersect with any query in Q, as H(Q),
then the overall work is linear in the size of H(Q).

During the cost estimation phase, for each visited node,
ni, an inclusive and exclusive cost is estimated for any query
that intersects with this node. Therefore, the worst case
time cost of the overall process (assuming that all queries in
Q intersect with all nodes in H(Q)) is O(|Q| × |H(Q)|).

5. EXPERIMENTAL EVALUATION
In this section, we evaluate the effectiveness of the pro-

posed compressed spatial hierarchical bitmap (cSHB) index
structure using spatial data sets with different characteris-
tics, under different system parameters. To assess the effec-
tiveness of cSHB, we also compare it against alternatives.

We ran the experiments on a quad-core Intel Core i5-2400
CPU @ 3.10GHz machine with 8.00GB RAM, and a 3TB
SATA Hard Drive with 7200 RPM and 64MB Buffer Size,
and in the same Windows 7 environment. All codes were
implemented and run using Java v1.7.

5.1 Alternative Spatial Index Structures and
the Details of the cSHB Implementation

As alternatives to cSHB, we considered different systems
operating based on different spatial indexing paradigms. In
particular, we considered spatial extensions of PostgreSQL
called PostGIS [2], of a widely used commercial DBMS
(which we refer to as DBMS-X), and of Lucene [1]:

• PostGIS [2] creates spatial index structures using an
R-tree index implemented on top of GiST.

• DBMS-X maps 2D space into a 1D space using a vari-
ation of Hilbert space filling curve and then indexes
the data using B-trees.

• Apache Lucene [1,18], a leading system for text index-
ing and search, provides a spatial module that supports
geo-spatial range queries in 2D space using quadtrees
and prefix-based indexing. Intuitively, the space is par-
titioned using a MX-quadtree structure (where all the
leaves are at the same level and a given region is always
partitioned to its quadrants at the center [28]) and each
root-to-leaf path is given a unique path-string. These
path-strings are then indexed (using efficient prefix-
indexing algorithms) for spatial query processing.

Since database systems potentially have overheads beyond
pure query processing needs, we also considered disk-based
implementations of R*-tree [8] and the Hilbert R-tree [19].
For this purpose, we used the popular XXL Java library [10]:

• A packed R*-tree, with average leaf node utilization
∼ 95% (page size 4MB).

• A packed Hilbert R-tree, with average leaf node uti-
lization ∼ 99% (page size 4MB).
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Table 1: Data sets and clustering
Data set #points #points per (non-

empty) cell (h = 10)
Min. Avg. Max.

Synthetic (Uniform) 100M 54 95 143
Gowalla (Clustered) 6.4M 1 352 312944
OSM (Clustered) 688M 1 3422 1.2M
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Figure 6: Data Skew

Table 2: Parameters and default values (in bold)
Parameter Value range

Block Size (MB) 0.5; 1; 2.5; 5; 10
Query range size 0.5% 1%; 5%

|Q| 100; 500; 1000
h 9; 10; 11

Buffer size (MB) 2; 3; 5; 10; 20; 100

We also implemented the proposed cSHB index structure on
top of Lucene. In particular, we used the MX-quadtree hi-
erarchy created by Lucene as the spatial hierarchy for build-
ing cSHB. We also leveraged Lucene’s (Java-based) region
comparison libraries to implement range searches. The com-
pressed bitmaps and compressed domain logical operations
were implemented using the JavaEWAH library [21]. Due
to space limitations, we only present results with the incre-
mental strategy for query evaluation.

5.2 Data Sets
For our experiments, we used three data sets:

(a) a uniformly distributed data set that consists of 100
million synthetically generated data points. These
points are mapped to the range 〈−180,−90〉 to 〈180, 90〉,
(b) a clustered data set from Gowalla, which contains the
locations of check-ins made by users. This data set is down-
loaded from the Standford Large Network Dataset Collec-
tion [4], and (c) a clustered data set from OpenStreetMap

(OSM) [3] which contains locations of different entities dis-
tributed across North America. The OSM data set consists
of approximately 688 million data points in North Amer-
ica. We also normalized both the real data sets to the range
〈−180,−90〉 to 〈180, 90〉. In order to obtain a fair compar-
ison across all index structures and the data sets, all three
data sets are mapped onto a 2h×2h space and the positions
of the points in this space are used for indexing. Table 1
provides an overview of the characteristics of these three
very different data sets. Figure 6 re-confirms the data skew
in the three data sets using the box-counting method pro-
posed in [9]: in the figure, the lower the negative slope, the
more skewed the data. The figure shows that the clustered
Gowalla data set has the largest skew.

5.3 Evaluation Criteria and Parameters
We evaluate the effectiveness of the proposed compressed

spatial hierarchical bitmap (cSHB) index structure by com-

Table 3: Index Creation Time (sec.)
Data
set

cSHB Luc. DBMS
-X

Post
GIS

R*-
tree

Hilb.
R-tree

Synthetic 1601 2396 3865 4606 2160 2139
Gowalla 24 114 232 112 22 20
OSM 2869 12027 30002 76238 18466 17511

Table 4: Index Size on Disk (MB)
Data
set

cSHB Luc. DBMS
-X

Post
GIS

R*-
tree

Hilb.
R-tree

Synthetic 10900 5190 1882 8076 3210 1510
Gowalla 44 220 121 600 211 100
OSM 2440 22200 12959 61440 22100 10400

paring its (a) index creation time, (b) index size, and (c)
query processing time to those of the alternative index struc-
tures described above under different parameter settings.
Table 2 describes the parameters considered in these exper-
iments and the default parameter settings.

Since our goal is to assess the contribution of the index in
the cost of the query plans, all index structures in our com-
parison used index-only query plans. More specifically, we
executed a count(∗) query and configured the index struc-
tures such that only the index is used to identify the relevant
entries and count them to return the results. Consequently,
only the index files are used and data files are not accessed.

Note that all considered index structures accept square-
shaped query ranges. The range sizes indicated in Table 2
are the lengths of the boundaries relative to the size of the
considered 2D space. These query ranges in the query work-
loads are generated uniformly.

5.4 Discussion of the Indexing Results
Indexing Time. Table 3 shows the index creation times for
different systems and index structures, for different data sets
(with different sizes and uniformity): cSHB index creation
is fastest for the larger Synthetic and OSM data sets, and
competitive for the smaller Gowalla data set. As the data
size gets larger, the alternative index structures become sig-
nificantly slower, whereas cSHB is minimally affected by the
increase in data size. The index creation time also includes
the time spent on creating the hierarchy for cSHB.

Index Size. Table 4 shows the sizes of the resulting in-
dex files for different systems and index structures and for
different data sets. As we see here, cSHB provides a compet-
itive index size for uniform data (where compression is not
very effective). On the other hand, on clustered data, cSHB
provides very significant gains in index size – in fact, even
though the clustered data set, OSM, contains more points,
cSHB requires less space for indexing this data set than it
does for indexing the uniform data set.
Impact of Block Size. As we discussed in Section 3.2.2,
cSHB writes data on the disk in a blocked manner. In Fig-
ure 7, we see the impact of the block sizes on the time needed
to create the bitmaps. As we see here, one advantage of us-
ing blocked storage is that the larger the blocks used, the
faster the index creation becomes.

5.5 Discussion of the Search Results
Impact of the Search Range. Table 5 shows the impact
of the query range on search times for 500 queries under
the default parameter settings, for different systems. As we
expected, as the search range increases, the execution time
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Table 5: Comparison of search times for alternative
schemes and impact of the search range on the time
to execute 500 range queries (sec.)
Range cSHB Luc. DBMS Post R*- Hilb. cSHB

-X GIS tree R-tree -LO
Synthetic (Uniform; 100M)

0.5% 35 123 414 12887 2211 4391 52
1% 42 131 345 28736 2329 4480 59
5% 137 187 368 72005 2535 4881 1700

Gowalla (Clustered; 6.4M)
0.5% 2 2 24 19 8 24 2
1% 3 3 29 34 11 26 3
5% 3 48 37 194 20 45 5

OSM (Clustered; 688M)
0.5% 13 23 303 1129 3486 4368 13
1% 15 30 645 4117 3889 5599 14
5% 28 66 15567 18172 4626 6402 78
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Figure 8: cSHB execution breakdown

becomes larger for all alternatives. However, cSHB provides
the best performance for all ranges considered, especially for
the clustered data sets. Here, we also compare cSHB with
its leaf-only version (called cSHB-LO), where instead of a
cut consisting of potentially internal nodes, we only choose
the leaf nodes for query processing. As you can see from the
figure, while cSHB-LO is a good option for very small query
ranges (0.5% and 1%), it becomes very slow as the query
range increases (since the number of bitwise operations in-
creases, and it is not able to benefit from clustering).

Execution Time Breakdown. Figure 8 provides a break-
down of the various components of cSHB index search (for
500 queries under the default parameter settings): The
bitmap selection algorithm presented in Section 4.3 is ex-
tremely fast. In fact, the most significant components of
the execution are the times needed for reading the hierarchy
into memory5, and for fetching the selected bitmaps from
the disk into the buffer, and performing bitwise operations
on them. As expected, this component sees a major increase

5Once a hierarchy is read into the memory, the hierarchy
does not need to be re-read for the following queries.
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Figure 9: Impact of the block size (500 queries,
1% q. range, uniform data)
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Figure 10: Impact of the number of queries on the
execution time of cSHB (1% q. range, uniform data)

as the search range grows, whereas the other costs are more
or less independent of the sizes of the query ranges.

Impact of the Block Sizes. As we see above, reading
bitmaps from the disk and operating on them is a major
part of cSHB query execution cost; therefore these need to
be performed as efficiently as possible. As we discussed in
Section 3.2.2, cSHB reads data from the disk in a blocked
manner. In Figure 9, we see the impact of the block sizes on
the execution time of cSHB, including the time needed to
read bitmaps from the disk. As we see here, small blocks are
disadvantageous (due to the directory management overhead
they cause). Very large blocks are also disadvantageous as,
the larger the block gets, the larger becomes the amount of
redundant data read for each block access. As we see in the
figure, for the configuration considered in the experiments,
1MB blocks provided the best execution time.
Impact of the Number of Queries in the Workload.
Figure 10 shows the total execution times as well as the
breakdown of the execution times for cSHB for different
number of simultaneously executing queries. While the total
execution time increases with the number of simultaneous
queries, the increase is sub-linear, indicating that there are
savings due to the shared processing across these queries.
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Table 6: Working set size in terms of 1MB blocks
Q.Range (on 100M data) Min Avg. Max.

0.5% 1 2.82 36
1% 1 2.51 178
5% 1 1.02 95

Table 7: Impact of the buffer size on exec. time (in
seconds, for 500 queries, 100M data)

Query Buffer Size
Range 2MB 3MB 5MB 10MB 20MB 100MB

0.5% 11.8 11.3 10.9 10.6 10.5 10.2
1% 24.2 19.1 18.1 17.5 17.3 16.3
5% 823.8 399.9 155.9 105.8 101.6 94.9

Also, in Section 4.2.2, we had observed that the number of
queries in the query workload and query ranges determine
the relative costs of in-buffer operations vs. disk I/O. In
Figures 8 and 10, we see that this is indeed the case.

Impact of the Depth of the Hierarchy. Figure 11 shows
the impact of the hierarchy depth on the execution time of
cSHB: a 4× increase in the number of cells in the space (due
to a 1-level increase in the number of levels of the hierarchy)
results in < 4× increase in the execution time. Most sig-
nificant contributors to this increase are the time needed to
read the hierarchy and the time for bitmap operations.

Impact of the Cache Buffer. As we discussed in Sec-
tion 4.2.2, the incremental scheduling algorithm keeps a
buffer of blocks containing the working set of leaf bitmaps.
As Table 6 shows, the average size of the working set is
fairly small and can easily fit into the L3 caches of modern
hardware. Table 7 confirms that a small buffer, moderately
larger than the average working set size, is sufficient and
larger buffers do not provide significant gains.

6. CONCLUSIONS
In this paper, we argued that bitmap-based indexing can

be highly effective for running range query workloads on
spatial data sets. We introduced a novel compressed spa-
tial hierarchical bitmap (cSHB) index structure that takes
a spatial hierarchy and uses that to create a hierarchy
of compressed bitmaps to support spatial range queries.
Queries are processed on cSHB index structure by se-
lecting a relevant subset of the bitmaps and performing
compressed-domain bitwise logical operations. We also de-
veloped bitmap selection algorithms that identify the subset
of the bitmap files in this hierarchy for processing a given
spatial range query workload. Experiments showed that the
proposed cSHB index structure is highly efficient in sup-
porting spatial range query workloads. Our future work will
include implementing and evaluating cSHB for data with
more than two dimensions.
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