
Incremental Knowledge Base Construction Using
DeepDive

Jaeho Shin† Sen Wu† Feiran Wang† Christopher De Sa† Ce Zhang†‡ Christopher Ré†
†Stanford University

‡University of Wisconsin-Madison
{jaeho, senwu, feiran, cdesa, czhang, chrismre}@cs.stanford.edu

ABSTRACT
Populating a database with unstructured information is a
long-standing problem in industry and research that encom-
passes problems of extraction, cleaning, and integration. Re-
cent names used for this problem include dealing with dark
data and knowledge base construction (KBC). In this work,
we describe DeepDive, a system that combines database and
machine learning ideas to help develop KBC systems, and we
present techniques to make the KBC process more efficient.
We observe that the KBC process is iterative, and we de-
velop techniques to incrementally produce inference results
for KBC systems. We propose two methods for incremen-
tal inference, based respectively on sampling and variational
techniques. We also study the tradeoff space of these meth-
ods and develop a simple rule-based optimizer. DeepDive
includes all of these contributions, and we evaluate Deep-
Dive on five KBC systems, showing that it can speed up
KBC inference tasks by up to two orders of magnitude with
negligible impact on quality.

1. INTRODUCTION
The process of populating a structured relational database

from unstructured sources has received renewed interest in
the database community through high-profile start-up com-
panies (e.g., Tamr and Trifacta), established companies like
IBM’s Watson [7, 16], and a variety of research efforts [11,
25,28,36,40]. At the same time, communities such as natu-
ral language processing and machine learning are attacking
similar problems under the name knowledge base construc-
tion (KBC) [5, 14, 23]. While different communities place
differing emphasis on the extraction, cleaning, and integra-
tion phases, all communities seem to be converging toward
a common set of techniques that include a mix of data pro-
cessing, machine learning, and engineers-in-the-loop.
The ultimate goal of KBC is to obtain high-quality struc-

tured data from unstructured information. These databases
are richly structured with tens of different entity types in

This work is licensed under the Creative Commons Attribution-
NonCommercial-NoDerivs 3.0 Unported License. To view a copy of this li-
cense, visit http://creativecommons.org/licenses/by-nc-nd/3.0/. Obtain per-
mission prior to any use beyond those covered by the license. Contact
copyright holder by emailing info@vldb.org. Articles from this volume
were invited to present their results at the 41st International Conference on
Very Large Data Bases, August 31st - September 4th 2015, Kohala Coast,
Hawaii.
Proceedings of the VLDB Endowment, Vol. 8, No. 11
Copyright 2015 VLDB Endowment 2150-8097/15/07.

complex relationships. Typically, quality is assessed us-
ing two complementary measures: precision (how often a
claimed tuple is correct) and recall (of the possible tuples to
extract, how many are actually extracted). These systems
can ingest massive numbers of documents–far outstripping
the document counts of even well-funded human curation ef-
forts. Industrially, KBC systems are constructed by skilled
engineers in a months-long (or longer) process–not a one-
shot algorithmic task. Arguably, the most important ques-
tion in such systems is how to best use skilled engineers’
time to rapidly improve data quality. In its full generality,
this question spans a number of areas in computer science,
including programming languages, systems, and HCI. We
focus on a narrower question, with the axiom that the more
rapid the programmer moves through the KBC construction
loop, the more quickly she obtains high-quality data.
This paper presents DeepDive, our open-source engine for

knowledge base construction.1 DeepDive’s language and ex-
ecution model are similar to other KBC systems: DeepDive
uses a high-level declarative language [11, 28, 30]. From a
database perspective, DeepDive’s language is based on SQL.
From a machine learning perspective, DeepDive’s language
is based on Markov Logic [13, 30]: DeepDive’s language in-
herits Markov Logic Networks’ (MLN’s) formal semantics.2
Moreover, it uses a standard execution model for such sys-
tems [11, 28, 30] in which programs go through two main
phases: grounding, in which one evaluates a sequence of SQL
queries to produce a data structure called a factor graph that
describes a set of random variables and how they are cor-
related. Essentially, every tuple in the database or result
of a query is a random variable (node) in this factor graph.
The inference phase takes the factor graph from grounding
and performs statistical inference using standard techniques,
e.g., Gibbs sampling [42,44]. The output of inference is the
marginal probability of every tuple in the database. As with
Google’s Knowledge Vault [14] and others [31], DeepDive
also produces marginal probabilities that are calibrated: if
one examined all facts with probability 0.9, we would ex-
pect that approximately 90% of these facts would be cor-
rect. To calibrate these probabilities, DeepDive estimates
(i.e., learns) parameters of the statistical model from data.
Inference is a subroutine of the learning procedure and is
the critical loop. Inference and learning are computation-
ally intense (hours on 1TB RAM/48-core machines).

1http://deepdive.stanford.edu
2DeepDive has some technical differences from Markov
Logic that we have found useful in building applications.
We discuss these differences in Section 2.3.

1310

In our experience with DeepDive, we found that KBC is
an iterative process. In the past few years, DeepDive has
been used to build dozens of high-quality KBC systems by
a handful of technology companies, a number law enforce-
ment agencies via DARPA’s MEMEX, and scientists in fields
such as paleobiology, drug repurposing, and genomics. Re-
cently, we compared a DeepDive system’s extractions to the
quality of extractions provided by human volunteers over
the last ten years for a paleobiology database, and we found
that the DeepDive system had higher quality (both precision
and recall) on many entities and relationships. Moreover, on
all of the extracted entities and relationships, DeepDive had
no worse quality [32]. Additionally, the winning entry of
the 2014 TAC-KBC competition was built on DeepDive [3].
In all cases, we have seen the process of developing KBC
systems is iterative: quality requirements change, new data
sources arrive, and new concepts are needed in the applica-
tion. This led us to develop techniques to make the entire
pipeline incremental in the face of changes both to the data
and to the DeepDive program. Our primary technical con-
tributions are to make the grounding and inference phases
more incremental.3

Incremental Grounding. Grounding and feature extrac-
tion are performed by a series of SQL queries. To make
this phase incremental, we adapt the algorithm of Gupta,
Mumick, and Subrahmanian [18]. In particular, DeepDive
allows one to specify “delta rules” that describe how the
output will change as a result of changes to the input. Al-
though straightforward, this optimization has not been ap-
plied systematically in such systems and can yield up to
360× speedup in KBC systems.

Incremental Inference. Due to our choice of incremental
grounding, the input to DeepDive’s inference phase is a fac-
tor graph along with a set of changed data and rules. The
goal is to compute the output probabilities computed by the
system. Our approach is to frame the incremental mainte-
nance problem as one of approximate inference. Previous
work in the database community has looked at how machine
learning data products change in response to both to new la-
bels [24] and to new data [9,10]. In KBC, both the program
and data change on each iteration. Our proposed approach
can cope with both types of change simultaneously.
The technical question is which approximate inference al-

gorithms to use in KBC applications. We choose to study
two popular classes of approximate inference techniques:
sampling-based materialization (inspired by sampling-based
probabilistic databases such as MCDB [21]) and variational-
based materialization (inspired by techniques for approxi-
mating graphical models [38]). Applying these techniques to
incremental maintenance for KBC is novel, and it is not the-
oretically clear how the techniques compare. Thus, we con-
ducted an experimental evaluation of these two approaches
on a diverse set of DeepDive programs.
We found these two approaches are sensitive to changes

along three largely orthogonal axes: the size of the factor
graph, the sparsity of correlations, and the anticipated num-
ber of future changes. The performance varies by up to two
orders of magnitude in different points of the space. Our

3As incremental learning uses standard techniques, we cover
it only in the full version of this paper.

study of the tradeoff space highlights that neither materi-
alization strategy dominates the other. To automatically
choose the materialization strategy, we develop a simple
rule-based optimizer.

Experimental Evaluation Highlights. We used DeepDive
programs developed by our group and DeepDive users to un-
derstand whether the improvements we describe can speed
up the iterative development process of DeepDive programs.
To understand the extent to which DeepDive’s techniques
improve development time, we took a sequence of six snap-
shots of a KBC system and ran them with our incremental
techniques and completely from scratch. In these snapshots,
our incremental techniques are 22× faster. The results for
each snapshot differ at most by 1% for high-quality facts
(90%+ accuracy); fewer than 4% of facts differ by more
than 0.05 in probability between approaches. Thus, essen-
tially the same facts were given to the developer through-
out execution using the two techniques, but the incremental
techniques delivered them more quickly.

Outline. The rest of the paper is organized as follows. Sec-
tion 2 contains an in-depth analysis of the KBC development
process, and the presentation of our language for modeling
KBC systems. We discuss the different techniques for in-
cremental maintenance in Section 3. We also present the
results of the exploration of the tradeoff space and the de-
scription of our optimizer. Our experimental evaluation is
presented in Section 4.

Related Work
Knowledge Base Construction (KBC) KBC has been
an area of intense study over the last decade, moving from
pattern matching [19] and rule-based systems [25] to systems
that use machine learning for KBC [5, 8, 14, 15, 28]. Many
groups have studied how to improve the quality of specific
components of KBC systems [27, 43]. We build on this line
of work. We formalized the development process and built
DeepDive to ease and accelerate the KBC process, which we
hope is of interest to many of these systems as well. Deep-
Dive has many common features to Chen and Wang [11],
Google’s Knowledge Vault [14], and a forerunner of Deep-
Dive, Tuffy [30]. We focus on the incremental evaluation
from feature extraction to inference.

Declarative Information Extraction The database com-
munity has proposed declarative languages for information
extraction, a task with similar goals to knowledge base con-
struction, by extending relational operations [17, 25, 36], or
rule-based approaches [28]. These approaches can take ad-
vantage of classic view maintenance techniques to make the
execution incremental, but they do not study how to in-
crementally maintain the result of statistical inference and
learning, which is the focus of our work.

Incremental Maintenance of Statistical Inference and
Learning Related work has focused on incremental infer-
ence for specific classes of graphs (tree-structured [12] or
low-degree [1] graphical models). We deal instead with the
class of factor graphs that arise from the KBC process, which
is much more general than the ones examined in previous
approaches. Nath and Domingos [29] studied how to ex-
tend belief propagation on factor graphs with new evidence,

1311

Candidate
Generation
& Feature
Extraction

Supervision Learning &
Inference

3 Hours 1 Hours 3 Hours

KBC System Built with DeepDiveInput Output
...
Barack
Obama and
his wife
M. Obama
...

1.8M
Docs

HasSpouse

2.4M
Facts

Engineering-in-the-loop Development

Fe
at

ur
e

Ex
t.

ru
le

s

N
ew

 d
oc

um
en

ts

In
fe

re
nc

e
ru

le
s

Su
pe

rv
is

io
n

ru
le

s
Up

da
te

d
KB

Er
ro

r
an

al
ys

is

add…

Figure 1: A KBC system takes as input unstruc-
tured documents and outputs a structured knowl-
edge base. The runtimes are for the TAC-KBP com-
petition system (News). To improve quality, the de-
veloper adds new rules and new data.

but without any modification to the structure of the graph.
Wick and McCallum [41] proposed a “query-aware MCMC”
method. They designed a proposal scheme so that query
variables tend to be sampled more frequently than other
variables. We frame our problem as approximate inference,
which allows us to handle changes to the program and the
data in a single approach.

2. KBC USING DEEPDIVE
We describe DeepDive, an end-to-end framework for build-

ing KBC systems with a declarative language. We first re-
call standard definitions, and then introduce the essentials
of the framework by example, compare our framework with
Markov Logic, and describe DeepDive’s formal semantics.

2.1 Definitions for KBC Systems
The input to a KBC system is a heterogeneous collection

of unstructured, semi-structured, and structured data, rang-
ing from text documents to existing but incomplete KBs.
The output of the system is a relational database containing
facts extracted from the input and put into the appropriate
schema. Creating the knowledge base may involve extrac-
tion, cleaning, and integration.

Example 2.1. Figure 1 illustrates our running example:
a knowledge base with pairs of individuals that are married
to each other. The input to the system is a collection of
news articles and an incomplete set of married persons; the
output is a KB containing pairs of person that are married.
A KBC system extracts linguistic patterns, e.g., “... and his
wife ...” between a pair of mentions of individuals (e.g.,
“Barack Obama” and “M. Obama”). Roughly, these patterns
are then used as features in a classifier deciding whether
this pair of mentions indicates that they are married (in the
HasSpouse) relation.

We adopt standard terminology from KBC, e.g., ACE.4
There are four types of objects that a KBC system seeks
4http://www.itl.nist.gov/iad/mig/tests/ace/2000/

to extract from input documents, namely entities, relations,
mentions, and relation mentions. An entity is a real-world
person, place, or thing. For example, “Michelle_Obama_1”
represents the actual entity for a person whose name is
“Michelle Obama”; another individual with the same name
would have another number. A relation associates two (or
more) entities, and represents the fact that there exists a
relationship between the participating entities. For exam-
ple, “Barack_Obama_1” and “Michelle_Obama_1” partic-
ipate in the HasSpouse relation, which indicates that they
are married. These real-world entities and relationships are
described in text; a mention is a span of text in an input
document that refers to an entity or relationship: “Michelle”
may be a mention of the entity “Michelle_Obama_1.” A
relation mention is a phrase that connects two mentions
that participate in a relation such as “(Barack Obama, M.
Obama)". The process of mapping mentions to entities is
called entity linking.

2.2 The DeepDive Framework
DeepDive is an end-to-end framework for building KBC

systems, as shown in Figure 1.5 We walk through each
phase. DeepDive supports both SQL and datalog, but we
use datalog syntax for exposition. The rules we describe in
this section are manually created by the user of DeepDive
and the process of creating these rules is application-specific.

Candidate Generation and Feature Extraction. All data
in DeepDive is stored in a relational database. The first
phase populates the database using a set of SQL queries
and user-defined functions (UDFs) that we call feature ex-
tractors. By default, DeepDive stores all documents in the
database in one sentence per row with markup produced by
standard NLP pre-processing tools, including HTML strip-
ping, part-of-speech tagging, and linguistic parsing. After
this loading step, DeepDive executes two types of queries:
(1) candidate mappings, which are SQL queries that produce
possible mentions, entities, and relations, and (2) feature ex-
tractors that associate features to candidates, e.g., “... and
his wife ...” in Example 2.1.

Example 2.2. Candidate mappings are usually simple.
Here, we create a relation mention for every pair of can-
didate persons in the same sentence (s):

(R1) MarriedCandidate(m1,m2) : -
PersonCandidate(s,m1), PersonCandidate(s,m2).

Candidate mappings are simply SQL queries with UDFs
that look like low-precision but high-recall ETL scripts. Such
rules must be high recall: if the union of candidate mappings
misses a fact, DeepDive has no chance to extract it.
We also need to extract features, and we extend classical

Markov Logic in two ways: (1) user-defined functions and
(2) weight tying, which we illustrate by example.

Example 2.3. Suppose that phrase(m1,m2, sent) returns
the phrase between two mentions in the sentence, e.g., “and
his wife” in the above example. The phrase between two
5For more information, including examples, please see http:
//deepdive.stanford.edu. Note that our engine is built on
Postgres and Greenplum for all SQL processing and UDFs.
There is also a port to MySQL.

1312

SID MID
S1 M2

PersonCandidate Sentence (documents)
SID Content
S1 B. Obama and Michelle

were married Oct. 3,
1992.

MarriedCandidate
MID1 MID2

M1 M2

(3a) Candidate Generation and Feature Extraction

(R1) MarriedCandidate(m1,m2) :-
 PersonCandidate(s,m1),PersonCandidate(s,m2).

(3b) Supervision Rules

(S1) MarriedMentions_Ev(m1,m2,true) :-
 MarriedCandidate(m1,m2), EL(m1,e1), EL(m2,e2),
 Married(e1,e2).

MID1 MID2 VALUE

M1 M2 true

MarriedMentions_Ev

EID1 EID2

Barack
Obama

Michelle
Obama

Married

EL
MID EID
M2 Michelle Obama

(2) User Schema

B. Obama and Michelle
were married Oct. 3, 1992.

(1a) Unstructured Information

Malia and Sasha Obama
attended the state dinner

Person1	 Person2	

Barack	 	
Obama	

Michelle	 	
Obama	

HasSpouse

(1b) Structured Information

(FE1) MarriedMentions(m1,m2) :-
 MarriedCandidate(m1,m2),Mentions(s,m1),
 Mentions(s,m2),Sentence(s,sent)
 weight=phrase(m1,m2,sent).

SID MID
S1 M2

Mentions

Figure 2: An example KBC system. See Section 2.2 for details.

mentions may indicate whether two people are married. We
would write this as:

(FE1) MarriedMentions(m1,m2) : -
MarriedCandidate(m1,m2), Mention(s,m1),
Mention(s,m2), Sentence(s, sent)
weight = phrase(m1,m2, sent).

One can think about this like a classifier: This rule says
that whether the text indicates that the mentions m1 and
m2 are married is influenced by the phrase between those
mention pairs. The system will infer based on training data
its confidence (by estimating the weight) that two mentions
are indeed indicated to be married.

Technically, phrase returns an identifier that determines
which weights should be used for a given relation mention
in a sentence. If phrase returns the same result for two re-
lation mentions, they receive the same weight. We explain
weight tying in more detail in Section 2.3. In general, phrase
could be an arbitrary UDF that operates in a per-tuple fash-
ion. This allows DeepDive to support common examples of
features such as “bag-of-words” to context-aware NLP fea-
tures to highly domain-specific dictionaries and ontologies.
In addition to specifying sets of classifiers, DeepDive inherits
Markov Logic’s ability to specify rich correlations between
entities via weighted rules. Such rules are particularly help-
ful for data cleaning and data integration.

Supervision. Just as in Markov Logic, DeepDive can use
training data or evidence about any relation; in particular,
each user relation is associated with an evidence relation
with the same schema and an additional field that indicates
whether the entry is true or false. Continuing our exam-
ple, the evidence relationMarriedMentions_Ev could con-
tain mention pairs with positive and negative labels. Oper-
ationally, two standard techniques generate training data:
(1) hand-labeling, and (2) distant supervision, which we il-
lustrate below.

Example 2.4. Distant supervision [20, 27] is a popular
technique to create evidence in KBC systems. The idea is to
use an incomplete KB of married entity pairs to heuristically
label (as True evidence) all relation mentions that link to a

pair of married entities:

(S1) MarriedMentions_Ev(m1,m2, true) : -
MarriedCandidates(m1,m2), EL(m1, e1),
EL(m2, e2), Married(e1, e2).

Here, Married is an (incomplete) list of married real-world
persons that we wish to extend. The relation EL is for “en-
tity linking” that maps mentions to their candidate entities.
At first blush, this rule seems incorrect. However, it gen-
erates noisy, imperfect examples of sentences that indicate
two people are married. Machine learning techniques are
able to exploit redundancy to cope with the noise and learn
the relevant phrases (e.g., “and his wife”). Negative exam-
ples are generated by relations that are largely disjoint (e.g.,
siblings). Similar to DIPRE [6] and Hearst patterns [19],
distant supervision exploits the “duality” [6] between patterns
and relation instances; furthermore, it allows us to integrate
this idea into DeepDive’s unified probabilistic framework.

Learning and Inference. In the learning and inference
phase, DeepDive generates a factor graph, similar to Markov
Logic, and uses techniques from Tuffy [30]. The inference
and learning are done using standard techniques (Gibbs
Sampling) that we describe below after introducing the for-
mal semantics.

Error Analysis. DeepDive runs the above three phases in
sequence, and at the end of the learning and inference, it
obtains a marginal probability p for each candidate fact. To
produce the final KB, the user often selects facts in which
we are highly confident, e.g., p > 0.95. Typically, the user
needs to inspect errors and repeat, a process that we call
error analysis. Error analysis is the process of understand-
ing the most common mistakes (incorrect extractions, too-
specific features, candidate mistakes, etc.) and deciding how
to correct them [34]. To facilitate error analysis, users write
standard SQL queries.

2.3 Discussion of Design Choices
We have found three related aspects of the DeepDive ap-

proach that we believe enable non-computer scientists to
write DeepDive programs: (1) there is no reference in a
DeepDive program to the underlying machine learning al-
gorithms. Thus, DeepDive programs are declarative in a

1313

strong sense. Probabilistic semantics provide a way to de-
bug the system independently of any algorithm. (2) Deep-
Dive allows users to write feature extraction code in familiar
languages (Python, SQL, and Scala). (3) DeepDive fits into
the familiar SQL stack, which allows standard tools to in-
spect and visualize the data. A second key property is that
the user constructs an end-to-end system and then refines
the quality of the system in a pay-as-you-go way [26]. In
contrast, traditional pipeline-based ETL scripts may lead to
time and effort spent on extraction and integration–without
the ability to evaluate how important each step is for end-
to-end application quality. Anecdotally, pay-as-you-go leads
to more informed decisions about how to improve quality.

Comparison with Markov Logic. Our language is based
on Markov Logic [13,30], and our current language inherits
Markov Logic’s formal semantics. However, there are three
differences in how we implement DeepDive’s language:

Weight Tying. As shown in rule FE1, DeepDive allows
factors to share weights across rules, which is used in ev-
ery DeepDive system. As we will see declaring a classifier is
a one-liner in DeepDive: Class(x) : -R(x, f) with weight =
w(f) declares a classifier for objects (bindings of x); R(x, f)
indicates that object x has features f. In standard MLNs,
this would require one rule for each feature.6 In MLNs,
every rule introduces a single weight, and the correlation
structure and weight structure are coupled. DeepDive de-
couples them, which makes writing some applications easier.

User-defined Functions. As shown in rule FE1, DeepDive
allows the user to use user-defined functions (phrase in FE1)
to specify feature extraction rules. This allows DeepDive to
handle common feature extraction idioms using regular ex-
pressions, Python scripts, etc. This brings more of the KBC
pipeline into DeepDive, which allows DeepDive to find op-
timization opportunities for a larger fraction of this pipeline.

Implication Semantics. In the next section, we introduce
a function g that counts the number of groundings in dif-
ferent ways. g is an example of transformation groups [22,
Ch. 12], a technique from the Bayesian inference literature
to model different noise distributions. Experimentally, we
show that different semantics (choices of g) affect the qual-
ity of KBC applications (up to 10% in F1 score) compared
with the default semantics of MLNs. After some notation,
we give an example to illustrate how g alters the semantics.

2.4 Semantics of a DeepDive Program
A DeepDive program is a set of rules with weights. Dur-

ing inference, the values of all weights w are assumed to
be known, while, in learning, one finds the set of weights
that maximizes the probability of the evidence. As shown
in Figure 3, a DeepDive program defines a standard struc-
ture called a factor graph [39]. First, we directly define the
probability distribution for rules that involve weights, as it
may help clarify our motivation. Then, we describe the cor-
responding factor graph on which inference takes place.
Each possible tuple in the user schema–both IDB and

EDB predicates–defines a Boolean random variable (r.v.).
Let V be the set of these r.v.’s. Some of the r.v.’s are fixed

6Our system Tuffy introduced this feature to MLNs, but its
semantics had not been described in the literature.

User Relations

Inference Rules

Factor Graph

Variables V

F1

R S Q

 q(x) :- R(x,y)

F2 q(x) :- R(x,y), S(y)

F1 F2
Factors F

Factor function corresponds to
Equation 1 in Section 2.4.

Grounding

x y
a 0

a 1

a 2

r1

r2

r3

s1

s2

y
0

10

q1

x
a r1 r2 r3 s1 s2 q1

Figure 3: Schematic illustration of grounding. Each
tuple corresponds to a Boolean random variable and
node in the factor graph. We create one factor for
every set of groundings.

Semantics g(n)
Linear n
Ratio log(1+ n)
Logical 1{n>0}

Figure 4: Semantics for g in Equation 1.

to a specific value, e.g., as specified in a supervision rule or
by training data. Thus, V has two parts: a set E of evi-
dence variables (those fixed to a specific values) and a set
Q of query variables whose value the system will infer. The
class of evidence variables is further split into positive evi-
dence and negative evidence. We denote the set of positive
evidence variables as P, and the set of negative evidence
variables as N. An assignment to each of the query vari-
ables yields a possible world I that must contain all positive
evidence variables, i.e., I ⊇ P, and must not contain any
negatives, i.e., I ∩N = ∅.

Boolean Rules We first present the semantics of Boolean
inference rules. For ease of exposition only, we assume that
there is a single domain D. A rule γ is a pair (q,w) such that
q is a Boolean query and w is a real number. An example
is as follows:

q() : -R(x,y),S(y) weight = w.

We denote the body predicates of q as body(z̄) where z̄ are
all variables in the body of q(), e.g., z̄ = (x,y) in the example
above. Given a rule γ = (q,w) and a possible world I, we
define the sign of γ on I as sign(γ, I) = 1 if q() ∈ I and −1
otherwise.
Given c̄ ∈ D|z̄|, a grounding of q w.r.t. c̄ is a substitution

body(z̄/c̄), where the variables in z̄ are replaced with the
values in c̄. For example, for q above with c̄ = (a,b) then
body(z̄/(a,b)) yields the grounding R(a,b),S(b), which is
a conjunction of facts. The support n(γ, I) of a rule γ in
a possible world I is the number of groundings c̄ for which
body(z̄/c̄) is satisfied in I:

n(γ, I) = |{c̄ ∈ D|z̄| : I |= body(z̄/c̄) }|

The weight of γ in I is the product of three terms:

w(γ, I) = w sign(γ, I) g(n(γ, I)), (1)

1314

where g is a real-valued function defined on the natural num-
bers. For intuition, if w(γ, I) > 0, it adds a weight that
indicates that the world is more likely. If w(γ, I) < 0, it in-
dicates that the world is less likely. As motivated above, we
introduce g to support multiple semantics. Figure 4 shows
choices for g that are supported by DeepDive, which we
compare in an example below.
Let Γ be a set of Boolean rules, the weight of Γ on a

possible world I is defined as

W(Γ , I) =
∑
γ∈Γ

w(γ, I).

This function allow us to define a probability distribution
over the set J of possible worlds:

Pr[I] = Z−1exp(W(Γ , I)) where Z =
∑
I∈J

exp(W(Γ , I)), (2)

and Z is called the partition function. This framework is able
to compactly specify much more sophisticated distributions
than traditional probabilistic databases [37].

Example 2.5. We illustrate the semantics by example.
From the Web, we could extract a set of relation mentions
that supports “Barack Obama is born in Hawaii” and an-
other set of relation mentions that support “Barack Obama
is born in Kenya.” These relation mentions provide conflict-
ing information, and one common approach is to “vote.” We
abstract this as up or down votes about a fact q().

q() : - Up(x) weight = 1.
q() : - Down(x) weight = −1.

We can think of this as a having a single random variable
q() in which the size of Up (resp. Down) is an evidence
relation that indicates the number of “Up” (resp. “Down”)
votes. There are only two possible worlds: one in which
q() ∈ I (is true) and not. Let |Up| and |Down| be the sizes
of Up and Down. Following Equation 1 and 2, we have

Pr[q()] =
eW

e−W + eW

where

W = g(|Up|) − g(|Down|).

Consider the case when |Up| = 106 and |Down| = 106−100.
In some scenarios, this small number of differing votes could
be due to random noise in the data collection processes. One
would expect a probability for q() close to 0.5. In the linear
semantics g(n) = n, the probability of q is (1 + e−200)−1 ≈
1−e−200, which is extremely close to 1. In contrast, if we set
g(n) = log(1 + n), then Pr[q()] ≈ 0.5. Intuitively, the prob-
ability depends on their ratio of these votes. The logical se-
mantics g(n) = 1n>0 gives exactly Pr[q()] = 0.5. However,
it would do the same if |Down| = 1. Thus, logical semantics
may ignore the strength of the voting information. At a high
level, ratio semantics can learn weights from examples with
different raw counts but similar ratios. In contrast, linear is
appropriate when the raw counts themselves are meaningful.

No semantic subsumes the other, and each is appropriate
in some application. We have found that in many cases the
ratio semantics is more suitable for the application that the
user wants to model. We show in the full version that these

semantics also affect efficiency empirically and theoretically–
even for the above simple example. Intuitively, sampling
converges faster in the logical or ratio semantics because
the distribution is less sharply peaked, which means that
the sampler is less likely to get stuck in local minima.

Extension to General Rules. Consider a general infer-
ence rule γ = (q,w), written as:

q(ȳ) : -body(z̄) weight = w(x̄).

where x̄ ⊆ z̄ and ȳ ⊆ z̄. This extension allows weight tying.
Given b̄ ∈ D|x̄∪ȳ| where b̄x (resp. b̄y) are the values of b̄
in x̄ (resp. ȳ), we expand γ to a set Γ of Boolean rules by
substituting x̄ ∪ ȳ with values from D in all possible ways.

Γ = {(qb̄y ,wb̄x) | qb̄y() : -body(z̄/b̄) and wb̄x = w(x̄/b̄x)}

where each qb̄y() is a fresh symbol for distinct values of b̄t,
and wb̄x is a real number. Rules created this way may have
free variables in their bodies, e.g., q(x) : -R(x,y, z) with w(y)
create |D|2 different rules of the form qa() : -R(a,b, z), one
for each (a,b) ∈ D2, and rules created with the same value
of b share the same weight. Tying weights allows one to
create models succinctly.

Example 2.6. We use the following as an example:

Class(x) : -R(x, f) weight = w(f).

This declares a binary classifier as follows. Each binding for
x is an object to classify as in Class or not. The relation R
associates each object to its features. E.g., R(a, f) indicates
that object a has a feature f. weight = w(f) indicates that
weights are functions of feature f; thus, the same weights
are tied across values for a. This rule declares a logistic
regression classifier.

It is straightforward formal extension to let weights be
functions of the return values of UDFs as we do in DeepDive.

2.5 Inference on Factor Graphs
As in Figure 3, DeepDive explicitly constructs a factor

graph for inference and learning using a set of SQL queries.
Recall that a factor graph is a triple (V, F, ŵ) in which V is
a set of nodes that correspond to Boolean random variables,
F is a set of hyperedges (for f ∈ F, f ⊆ V), and ŵ : F ×
{0, 1}V → R is a weight function. We can identify possible
worlds with assignments since each node corresponds to a
tuple; moreover, in DeepDive, each hyperedge f corresponds
to the set of groundings for a rule γ. In DeepDive, V and
F are explicitly created using a set of SQL queries. These
data structures are then passed to the sampler, which runs
outside the database, to estimate the marginal probability
of each node or tuple in the database. Each tuple is then
reloaded into the database with its marginal probability.

Example 2.7. Take the database instances and rules in
Figure 3 as an example, each tuple in relation R, S, and Q
is a random variable, and V contains all random variables.
The inference rules F1 and F2 ground factors with the same
name in the factor graph as illustrated in Figure 3. Both F1
and F2 are implemented as SQL in DeepDive.

To define the semantics, we use Equation 1 to define
ŵ(f, I) = w(γ, I), in which γ is the rule corresponding to

1315

f. As before, we define Ŵ(F, I) =
∑
f∈F ŵ(f, I), and then the

probability of a possible world is the following function:

Pr[I] = Z−1 exp
{
Ŵ(F, I)

}
where Z =

∑
I∈J

exp{Ŵ(F, I)}

The main task that DeepDive conducts on factor graphs
is statistical inference, i.e., for a given node, what is the
marginal probability that this node takes the value 1? Since
a node takes value 1 when a tuple is in the output, this
process computes the marginal probability values returned
to users. In general, computing these marginal probabilities
is]P-hard [39]. Like many other systems, DeepDive uses
Gibbs sampling [35] to estimate the marginal probability of
every tuple in the database.

3. INCREMENTAL KBC
To help the KBC system developer be more efficient, we

developed techniques to incrementally perform the ground-
ing and inference step of KBC execution.

Problem Setting. Our approach to incrementally maintain-
ing a KBC system runs in two phases. (1) Incremen-
tal Grounding. The goal of the incremental grounding
phase is to evaluate an update of the DeepDive program
to produce the “delta” of the modified factor graph, i.e.,
the modified variables ∆V and factors ∆F. This phase con-
sists of relational operations, and we apply classic incremen-
tal view maintenance techniques. (2) Incremental Infer-
ence. The goal of incremental inference is given (∆V,∆F)
run statistical inference on the changed factor graph.

3.1 Standard Techniques: Delta Rules
Because DeepDive is based on SQL, we are able to take

advantage of decades of work on incremental view main-
tenance. The input to this phase is the same as the in-
put to the grounding phase, a set of SQL queries and the
user schema. The output of this phase is how the output
of grounding changes, i.e., a set of modified variables ∆V
and their factors ∆F. Since V and F are simply views over
the database, any view maintenance techniques can be ap-
plied to incremental grounding. DeepDive uses DRed algo-
rithm [18] that handles both additions and deletions. Recall
that in DRed, for each relation Ri in the user’s schema,
we create a delta relation, Rδi , with the same schema as Ri
and an additional column count. For each tuple t, t.count
represents the number of derivations of t in Ri. On an up-
date, DeepDive updates delta relations in two steps. First,
for tuples in Rδi , DeepDive directly updates the correspond-
ing counts. Second, a SQL query called a “delta rule”7 is
executed which processes these counts to generate modified
variables ∆V and factors ∆F. We found that the overhead
DRed is modest and the gains may be substantial, and so
DeepDive always runs DRed–except on initial load.

3.2 Novel Techniques for Incremental Main-
tenance of Inference

We present three techniques for the incremental inference
phase on factor graphs: given the set of modified variables
∆V and modified factors ∆F produced in the incremental

7For example, for the grounding procedure illustrated in
Figure 3, the delta rule for F1 is qδ(x) : −Rδ(x,y).

grounding phase, our goal is to compute the new distribu-
tion. We split the problem into two phases. In the mate-
rialization phase, we are given access to the entire Deep-
Dive program, and we attempt to store information about
the original distribution, denoted Pr(0). Each approach will
store different information to use in the next phase, called
the inference phase. The input to the inference phase is the
materialized data from the preceding phase and the changes
made to the factor graph, the modified variables ∆V and
factors ∆F. Our goal is to perform inference with respect to
the changed distribution, denoted Pr(∆). For each approach,
we study its space and time costs for materialization and the
time cost for inference. We also analyze the empirical trade-
off between the approaches in Section 3.2.4.

3.2.1 Strawman: Complete Materialization
The strawman approach, complete materialization, is com-

putationally expensive and often infeasible. We use it to set
a baseline for other approaches.
Materialization Phase We explicitly store the value of

the probability Pr[I] for every possible world I. This ap-
proach has perfect fidelity, but storing all possible worlds
takes an exponential amount of space and time in the num-
ber of variables in the original factor graph. Thus, the
strawman approach is often infeasible on even moderate-
sized graphs.8
Inference Phase We use Gibbs sampling: even if the

distribution has changed to Pr(∆), we only need access to
the new factors in ∆ΠF and to Pr[I] to perform the Gibbs
update. The speed improvement arises from the fact that
we do not need to access all factors from the original graph
and perform a computation with them, since we can look
them up in Pr[I].

3.2.2 Sampling Approach
The sampling approach is a standard technique to im-

prove over the strawman approach by storing a set of possi-
ble worlds sampled from the original distribution instead of
storing all possible worlds. However, as the updated distri-
bution Pr(∆) is different from the distribution used to draw
the stored samples, we cannot reuse them directly. We use
a (standard) Metropolis-Hastings scheme to ensure conver-
gence to the updated distribution.
Materialization Phase In the materialization phase, we

store a set of possible worlds drawn from the original distri-
bution. For each variable, we store the set of samples as a
tuple bundle, as in MCDB [21]. A single sample for one ran-
dom variable only requires 1 bit of storage. Therefore, the
sampling approach can be efficient in terms of materializa-
tion space. In the KBC systems we evaluated, 100 samples
require less than 5% of the space of the original factor graph.
Inference PhaseWe use the samples to generate propos-

als and adapt them to estimate the up-to-date distribution.
This idea of using samples from similar distributions as pro-
posals is standard in statistics, e.g., importance sampling,
rejection sampling, and different variants of Metropolis-Hast-
ings methods. After investigating these approaches, in Deep-
Dive, we use the independent Metropolis-Hastings approach [2,

8Compared with running inference from scratch, the straw-
man approach does not materialize any factors. Therefore, it
is necessary for strawman to enumerate each possible world
and save their probability because we do not know a priori
which possible world will be used in the inference phase.

1316

Algorithm 1 Variational Approach (Materialization)
Input: Factor graph FG = (V,F), regularization parameter λ, num-

ber of samples N for approximation.
Output: An approximated factor graph FG′ = (V,F′)

1: I1, ..., IN ←N samples drawn from FG.
2: NZ← {(vi,vj): vi and vj are in some factor in FG}.
3: M← covariance matrix estimated using I1, ..., IN, such thatMij

is the covariance between variable i and variable j. Set Mij = 0
if (vi,vj) 6∈NZ.

4: Solve the following optimization problem using gradient de-
scent [4], and let the result be X̂

argmaxX log detX
s.t., Xkk =Mkk + 1/3,

|Xkj −Mkj| 6 λ

Xkj = 0 if (vk,vj) 6∈NZ

5: for all i, j s.t. X̂ij 6= 0 do
6: Add in F′ a factor from (vi,vj) with weight X̂ij.
7: end for
8: return FG′ = (V,F′).

35], which generates proposal samples and accepts these
samples with an acceptance test. We choose this method
only because the acceptance test can be evaluated using the
sample, ∆V, and ∆F–without the entire factor graph. Thus,
we may fetch many fewer factors than in the original graph,
but we still converge to the correct answer.
The fraction of accepted samples is called the acceptance

rate, and it is a key parameter in the efficiency of this ap-
proach. The approach may exhaust the stored samples, in
which case the method resorts to another evaluation method
or generates fresh samples.

3.2.3 Variational Approach
The intuition behind our variational approach is as fol-

lows: rather than storing the exact original distribution, we
store a factor graph with fewer factors that approximates
the original distribution. On the smaller graph, running in-
ference and learning is often faster.
Materialization Phase The key idea of the variational

approach is to approximate the distribution using simpler or
sparser correlations. To learn a sparser model, we use Algo-
rithm 1 which is a log-determinant relaxation [38] with a `1
penalty term [4]. We want to understand its strengths and
limitations on KBC problems, which is novel. This approach
uses standard techniques for learning that are already im-
plemented in DeepDive [45].
The input is the original factor graph and two parame-

ters: the number of samples N to use for approximating
the covariance matrix, and the regularization parameter λ,
which controls the sparsity of the approximation. The out-
put is a new factor graph that has only binary potentials.
The intuition for this procedure comes from graphical model
structure learning: an entry (i, j) is present in the inverse co-
variance matrix only if variables i and j are connected in the
factor graph. Given these inputs, the algorithm first draws
a set of N possible worlds by running Gibbs sampling on the
original factor graph. It then estimates the covariance ma-
trix based on these samples (Lines 1-3). Using the estimated
covariance matrix, our algorithms solves the optimization
problem in Line 4 to estimate the inverse covariance matrix
X̂. Then, the algorithm creates one factor for each pair of
variables such that the corresponding entry in X̂ is non-zero,

using the value in X̂ as the new weight (Line 5-7). These are
all the factors of the approximated factor graph (Line 8).
Inference Phase Given an update to the factor graph

(e.g., new variables or new factors), we simply apply this
update to the approximated graph, and run inference and
learning directly on the resulting factor graph. As shown in
Figure 5(c), the execution time of the variational approach
is roughly linear in the sparsity of the approximated fac-
tor graph. Indeed, the execution time of running statistical
inference using Gibbs sampling is dominated by the time
needed to fetch the factors for each random variable, which is
an expensive operation requiring random access. Therefore,
as the approximated graph becomes sparser, the number of
factors decreases and so does the running time.
Parameter Tuning We are among the first to use these

methods in KBC applications, and there is little literature
about tuning λ. Intuitively, the smaller λ is, the better the
approximation is–but the less sparse the approximation is.
To understand the impact of λ on quality, we show in Fig-
ure 6 the quality F1 score of a DeepDive program called
News (see Section 4) as we vary the regularization parame-
ter. As long as the regularization parameter λ is small (e.g.,
less than 0.1), the quality does not change significantly. In
all of our applications we observe that there is a relatively
large “safe” region from which to choose λ. In fact, for all
five systems in Section 4, even if we set λ at 0.1 or 0.01, the
impact on quality is minimal (within 1%), while the impact
on speed is significant (up to an order of magnitude). Based
on Figure 6, DeepDive supports a simple search protocol to
set λ. We start with a small λ, e.g., 0.001, and increase it by
10× until the KL-divergence is larger than a user-specified
threshold, specified as a parameter in DeepDive.

3.2.4 Tradeoffs
We studied the tradeoff between different approaches and

summarize the empirical results of our study in Figure 5.
The performance of different approaches may differ by more
than two orders of magnitude, and neither of them domi-
nates the other. We use a synthetic factor graph with pair-
wise factors9 and control the following axes:

(1) Number of variables in the factor graph. In our
experiments, we set the number of variables to values
in {2, 10, 17, 100, 1000, 10000}.

(2) Amount of change. How much the distribution
changes affects efficiency, which manifests itself in the
acceptance rate: the smaller the acceptance rate is,
the more difference there will be in the distribution.
We set the acceptance rate to values in {1.0, 0.5, 0.1,
0.01}.

(3) Sparsity of correlations. This is the ratio between
the number of non-zero weights and the total weight.
We set the sparsity to values in {0.1, 0.2, 0.3, 0.4, 0.5, 1.0}
by selecting uniformly at random a subset of factors
and set their weight to zero.

We now discuss the results of our exploration of the trade-
off space, presented in Figure 5(a-c).

9In Figure 5, the numbers are reported for a factor graph
whose factor weights are sampled at random from [−0.5, 0.5].
We also experimented with different intervals ([−0.1, 0.1],
[−1, 1], [−10, 10]), but these had no impact on the tradeoff

1317

Strawman Sampling Variational

Mat.
Phase

Space 2na Sina/ρ na
2

Cost 2naSM ×
C(na, f)

SIC(na, f)/ρ
na

2+
SMC(na, f)

Inference
Phase Cost SI ×

C(na+nf, 1+f’)
SIna/ρ+

SIC(nf, f ’)/ρ
SI ×

C(na+nf, na
2+f’)

Sensitivity

Size of
the Graph High Low Mid

Amount of
Change Low High Low

Sparsity of
Correlation Low Low High

na: # original vars
nf: # modified vars

f: # original factors
f’: # modified factors

ρ: acceptance rate
SI: # samples for inference

C(#v, #f): Cost of Gibbs with #v vars, and #f factors SM: # samples for materialization
0.00001
0.0001
0.001
0.01
0.1
1
10
100

1 10 100 1000

0.00001

0.001

0.1

10

1000

1 10 100 1000

0.001

0.01

0.1

1

10

0.0010.010.11

0.001
0.01
0.1
1
10
100
1000

0.0010.010.11

0.001

0.01

0.1

1

0.11

0.001

0.01

0.1

1

10

100

1000

0.11M
at

er
ia

liz
at

io
n

Ti
m

e
(s

ec
on

ds
)

Ex
ec

ut
io

n
Ti

m
e

(s
ec

on
ds

)

(a) Size of the Graph (b) Acceptance Rate (c) Sparsity

Sampling

Variational

Strawman
Sampling

Variational

Sampling

Variational

Sampling

Variational

Sampling

Variational

Sampling

Variational

Strawman

Figure 5: A Summary of the tradeoffs. Left: An analytical cost model for different approaches; Right:
Empirical examples that illustrate the tradeoff space. All converge to <0.1% loss, and thus, have comparable
quality.

Size of the Factor Graph Since the materialization cost of
the strawman is exponential in the size of the factor graph,
we observe that, for graphs with more than 20 variables, the
strawman is significantly slower than either the sampling
approach or the variational approach. Factor graphs arising
from KBC systems usually contain a much larger number of
variables; therefore, from now on, we focus on the tradeoff
between sampling and variational approaches.

Amount of Change As shown in Figure 5(b), when the
acceptance rate is high, the sampling approach could out-
perform the variational one by more than two orders of mag-
nitude. When the acceptance rate is high, the sampling ap-
proach requires no computation and so is much faster than
Gibbs sampling. In contrast, when the acceptance rate is
low, e.g., 0.1%, the variational approach could be more than
5× faster than the sampling approach. An acceptance rate
lower than 0.1% occurs for KBC operations when one up-
dates the training data, adds many new features, or concept
drift happens during the development of KBC systems.

Sparsity of Correlations As shown in Figure 5(c), when
the original factor graph is sparse, the variational approach
can be 11× faster than the sampling approach. This is be-
cause the approximate factor graph contains less than 10%
of the factors than the original graph, and it is therefore
much faster to run inference on the approximate graph. On
the other hand, if the original factor graph is too dense, the
variational approach could be more than 7× slower than the
sampling one, as it is essentially performing inference on a
factor graph with a size similar to that of the original graph.

Discussion: Theoretical Guarantees We discuss the
theoretical guarantee that each materialization strategy pro-
vides. Each materialization method inherits the guarantee
of that inference technique. The strawman approach retains
the same guarantees as Gibbs sampling; For the sampling
approach use standard Metropolis-Hasting scheme. Given
enough time, this approach will converge to the true dis-
tribution. For the variational approach, the guarantees are
more subtle and we point the reader to the consistency of
structure estimation of Gaussian Markov random field [33]
and log-determinate relaxation [38]. These results are theo-
retically incomparable, motivating our empirical study.

0!

0.1!

0.2!

0.3!

0.4!

0.001! 0.1! 10!

Q
ua

lit
y

(F
1)
!

Different Regularization Parameters!

0!

500!

1000!

1500!

0.001! 0.1! 10!#
Fa

ct
or

s
(m

ill
io

n)
!

Figure 6: Quality and number of factors of the News
corpus with different regularization parameters for
the variational approach.

3.3 Choosing Between Different Approaches
From the study of the tradeoff space, neither the sam-

pling approach nor the variational approach dominates the
other, and their relative performance depends on how they
are being used in KBC. We propose to materialize the factor
graph using both the sampling approach and the variational
approach, and defer the decision to the inference phase when
we can observe the workload.
Materialization Phase Both approaches need samples

from the original factor graph, and this is the dominant
cost during materialization. A key question is “How many
samples should we collect?” We experimented with sev-
eral heuristic methods to estimate the number of samples
that are needed, which requires understanding how likely
future changes are, statistical considerations, etc. These ap-
proaches were difficult for users to understand, so DeepDive
takes a best-effort approach: it generates as many samples
as possible when idle or within a user-specified time interval.
Inference Phase Based on the tradeoffs analysis, we de-

veloped a rule-based optimizer with the following set of rules:

• If an update does not change the structure of the
graph, choose the sampling approach.
• If an update modifies the evidence, choose the varia-
tional approach.
• If an update introduces new features, choose the sam-
pling approach.
• Finally, if we run out of samples, use the variational
approach.

This simple set of rules is used in our experiments.

1318

System # Docs # Rels # Rules # vars # factors
Adversarial 5M 1 10 0.1B 0.4B

News 1.8M 34 22 0.2B 1.2B
Genomics 0.2M 3 15 0.02B 0.1B
Pharma. 0.6M 9 24 0.2B 1.2B

Paleontology 0.3M 8 29 0.3B 0.4B

Figure 7: Statistics of KBC systems we used in ex-
periments. The # vars and # factors are for factor
graphs that contain all rules.

Rule Description

A1 Calculate marginal probability for variables
or variable pairs.

FE1 Shallow NLP features (e.g., word sequence)
FE2 Deeper NLP features (e.g., dependency path)
I1 Inference rules (e.g., symmetrical HasSpouse).
S1 Positive examples
S2 Negative examples

Figure 8: The set of rules in News. See Section 4.1

4. EXPERIMENTS
We conducted an experimental evaluation of DeepDive for

incremental maintenance of KBC systems.

4.1 Experimental Settings
To evaluate DeepDive, we used DeepDive programs de-

veloped by our users over the last three years from pale-
ontologists, geologists, biologists, a defense contractor, and
a KBC competition. These are high-quality KBC systems:
two of our KBC systems for natural sciences achieved quality
comparable to (and sometimes better than) human experts,
as assessed by double-blind experiments, and our KBC sys-
tem for a KBC competition is the top system among all
45 submissions from 18 teams as assessed by professional
annotators. To simulate the development process, we took
snapshots of DeepDive programs at the end of every devel-
opment iteration, and we use this dataset of snapshots in the
experiments to understand our hypothesis that incremental
techniques can be used to improve development speed.

Datasets and Workloads To study the efficiency of Deep-
Dive, we selected five KBC systems, namely (1) News, (2)
Genomics, (3) Adversarial, (4) Pharmacogenomics, and (5)
Paleontology. Their names refers to the specific domains
on which they focus. Figure 7 illustrates the statistics of
these KBC systems and of their input datasets. We group
all rules in each system into six rule templates with four
workload categories. We focus on the News system below.
The News system builds a knowledge base between per-

sons, locations, and organizations, and contains 34 different
relations, e.g., HasSpouse or MemberOf. The input to the
KBC system is a corpus that contains 1.8 million news ar-
ticles and Web pages. We use four types of rules in News
in our experiments, as shown in Figure 8, error analysis
(rule A1), candidate generation and feature extraction (FE1,
FE2), supervision (S1, S2), and inference (I1), correspond-
ing to the steps where these rules are used.
Other applications are different in terms of the quality

of the text. We choose these systems as they span a large
range in the spectrum of quality: Adversarial contains ad-
vertisements collected from websites where each document
may have only 1-2 sentences with grammatical errors; in
contrast, Paleontology contains well-curated journal articles
with precise, unambiguous writing and simple relationships.

0
0.1
0.2
0.3
0.4

1 1000Q
ua

lit
y

(F
1

Sc
or

e)

Total Execution Time (seconds)

Rerun

Incremental

(a) Quality Improvement Over Time (b) Quality (F1) of Different Semantics

Adv News Gen Pha Pale

Linear 0.72 0.32 0.47 0.52 0.74

Logical 0.72 0.34 0.53 0.56 0.80

Ratio 0.72 0.34 0.53 0.57 0.81

Figure 10: (a) Quality improvement over time; (b)
Quality for different semantics.

Genomics and Pharma have precise texts, but the goal is to
extract relationships that are more linguistically ambiguous
compared to the Paleontology text. News has slightly de-
graded writing and ambiguous relationships, e.g., “member
of.” Rules with the same prefix, e.g., FE1 and FE2, belong
to the same category, e.g., feature extraction.

DeepDive Details DeepDive is implemented in Scala and
C++, and we use Greenplum to handle all SQL. All fea-
ture extractors are written in Python. The statistical in-
ference and learning and the incremental maintenance com-
ponent are all written in C++. All experiments are run
on a machine with four CPUs (each CPU is a 12-core 2.40
GHz Xeon E5-4657L), 1 TB RAM, and 12×1TB hard drives
and running Ubuntu 12.04. For these experiments, we com-
piled DeepDive with Scala 2.11.2, g++-4.9.0 with -O3 opti-
mization, and Python 2.7.3. In Genomics and Adversarial,
Python 3.4.0 is used for feature extractors.

4.2 End-to-end Performance and Quality
We built a modified version of DeepDive called Rerun,

which given an update on the KBC system, runs the Deep-
Dive program from scratch. DeepDive, which uses all tech-
niques, is called Incremental. The results of our evalua-
tion show that DeepDive is able to speed up the development
of high-quality KBC systems through incremental mainte-
nance with little impact on quality. We set the number of
samples to collect during execution to {10, 100, 1000} and
the number of samples to collect during materialization to
{1000, 2000}. We report results for (1000, 2000), as results
for other combinations of parameters are similar.

Quality Over Time We first compare Rerun and Incre-
mental in terms of the wait time that developers experience
to improve the quality of a KBC system. We focus on News
because it is a well-known benchmark competition. We run
all six rules sequentially for both Rerun and Incremental,
and after executing each rule, we report the quality of the
system measured by the F1 score and the cumulative exe-
cution time. Materialization in the Incremental system is
performed only once. Figure 10(a) shows the results. Using
Incremental takes significantly less time than Rerun to
achieve the same quality. To achieve an F1 score of 0.36
(a competition-winning score), Incremental is 22× faster
than Rerun. Indeed, each run of Rerun takes ≈ 6 hours,
while a run of Incremental takes at most 30 minutes.
We further compare the facts extracted by Incremental

and Rerun and find that these two systems not only have
similar end-to-end quality, but are also similar enough to
support common debugging tasks. We examine the facts
with high-confidence in Rerun (> 0.9 probability), 99% of

1319

Rule Adversarial News Genomics Pharma. Paleontology
Rerun Inc. × Rerun Inc. × Rerun Inc. × Rerun Inc. × Rerun Inc. ×

A1 1.0 0.03 33× 2.2 0.02 112× 0.3 0.01 30× 3.6 0.11 33× 2.8 0.3 10×
FE1 1.1 0.2 7× 2.7 0.3 10× 0.4 0.07 6× 3.8 0.3 12× 3.0 0.4 7×
FE2 1.2 0.2 6× 3.0 0.3 10× 0.4 0.07 6× 4.2 0.3 12× 3.3 0.4 8×
I1 1.3 0.2 6× 3.6 0.3 10× 0.5 0.09 6× 4.4 1.4 3× 3.8 0.5 8×
S1 1.3 0.2 6× 3.6 0.4 8× 0.6 0.1 6× 4.7 1.7 3× 4.0 0.5 7×
S2 1.3 0.3 5× 3.6 0.5 7× 0.7 0.1 7× 4.8 2.3 3× 4.1 0.6 7×

Figure 9: End-to-end efficiency of incremental inference and learning. All execution times are in hours. The
column × refers to the speedup of Incremental (Inc.) over Rerun.

them also appear in Incremental, and vice versa. High
confidence extractions are used by the developer to debug
precision issues. Among all facts, we find that at most 4%
of them have a probability that differs by more than 0.05.
The similarity between snapshots suggests, our incremental
maintenance techniques can be used for debugging.

Efficiency of Evaluating Updates We now compare Re-
run and Incremental in terms of their speed in evaluating
a given update to the KBC system. To better understand
the impact of our technical contribution, we divide the to-
tal execution time into parts: (1) the time used for feature
extraction and grounding; and (2) the time used for statis-
tical inference and learning. We implemented classical in-
cremental materialization techniques for feature extraction
and grounding, which achieves up to a 360× speedup for rule
FE1 in News. We get this speedup for free using standard
RDBMS techniques, a key design decision in DeepDive.
Figure 9 shows the execution time of statistical inference

and learning for each update on different systems. We see
from Figure 9 that Incremental achieves a 7× to 112×
speedup for News across all categories of rules. The anal-
ysis rule A1 achieves the highest speedup – this is not sur-
prising because, after applying A1, we do not need to rerun
statistical learning, and the updated distribution does not
change compared with the original distribution, so the sam-
pling approach has a 100% acceptance rate. The execution
of rules for feature extraction (FE1, FE2), supervision (S1,
S2), and inference (I1) has a 10× speedup. For these rules,
the speedup over Rerun is to be attributed to the fact that
the materialized graph contains only 10% of the factors in
the full original graph. Below, we show that both the sam-
pling approach and variational approach contribute to the
speed-up. Compared with A1, the speedup is smaller be-
cause these rules produce a factor graph whose distribution
changes more than A1. Because the difference in distribu-
tion is larger, the benefit of incremental evaluation is lower.
The execution of other KBC applications showed similar

speedups, but there are also several interesting data points.
For Pharmacogenomics, rule I1 speeds-up only 3×. This
is caused by the fact that I1 introduces many new factors,
and the new factor graph is 1.4× larger than the original
one. In this case, DeepDive needs to evaluate those new
factors, which is expensive. For Paleontology, we see that
the analysis rule A1 gets a 10× speed-up because as illus-
trated in the corpus statistics (Figure 7), the Paleontology
factor graph has fewer factors for each variable than other
systems. Therefore, executing inference on the whole factor
graph is cheaper.

Materialization Time One factor that we need to consider
is the materialization time for Incremental. Incremen-

1

100

10000

NoSampling
All

NoWorkloadInfo
NoRelaxation

A1 F1 F2 I1 S1 S2In
fe

re
nc

e
Ti

m
e

(s

ec
on

ds
)

Figure 11: Study of the tradeoff space on News.

tal took 12 hours to complete the materialization (2000
samples), for each of the five systems. Most of this time is
spent in getting 2× more samples than for a single run of
Rerun. We argue that paying this cost is worthwhile given
that it is a one-time cost and the materialization can be used
for many successive updates, amortizing the one-time cost.

4.3 Lesion Studies
We conducted lesion studies to verify the effect of the

tradeoff space on the performance of DeepDive. In each
lesion study, we disable a component of DeepDive, and leave
all other components untouched. We report the execution
time for statistical inference and learning.
We evaluate the impact of each materialization strategy

on the final end-to-end performance. We disabled either the
sampling approach or the variational approach and left all
other components of the system untouched. Figure 11 shows
the results for News. Disabling either the sampling approach
or the variational approach slows down the execution com-
pared to the “full” system. For analysis rule A1, disabling
the sampling approach leads to a more than 11× slow down,
because the sampling approach has, for this rule, a 100% ac-
ceptance rate because the distribution does not change. For
feature extraction rules, disabling the sampling approach
slows down the system by 5× because it forces the use of
the variational approach even when the distribution for a
group of variables does not change. For supervision rules,
disabling the variational approach is 36× slower because the
introduction of training examples decreases the acceptance
rate of the sampling approach.

Optimizer Using different materialization strategies for dif-
ferent groups of variables positively affects the performance
of DeepDive. We compare Incremental with a strong
baseline NoWorkloadInfo which, for each group, first
runs the sampling approach. After all samples have been
used, we switch to the variational approach. Note that this
baseline is stronger than the strategy that fixes the same
strategy for all groups. Figure 11 shows the results of the
experiment. We see that with the ability to choose between
the sampling approach and variational approach according
to the workload, DeepDive can be up to 2× faster than
NoWorkloadInfo.

1320

5. CONCLUSION
We described the DeepDive approach to KBC and our ex-

perience building KBC systems over the last few years. To
improve quality, we argued that a key challenge is to ac-
celerate the development loop. We described the semantic
choices that we made in our language. By building on SQL,
DeepDive is able to use classical techniques to provide incre-
mental processing for the SQL components. However, these
classical techniques do not help with statistical inference,
and we described a novel tradeoff space for approximate in-
ference techniques. We used these approximate inference
techniques to improve end-to-end execution time in the face
of changes both to the program and the data; they improved
system performance by two orders of magnitude in five real
KBC scenarios while keeping the quality high enough to aid
in the development process.

Acknowledgments. We gratefully acknowledge the support of the
Defense Advanced Research Projects Agency (DARPA) XDATA pro-
gram under No. FA8750-12-2-0335 and DEFT program under No.
FA8750-13-2-0039, DARPA’s MEMEX program and SIMPLEX pro-
gram, the National Science Foundation (NSF) CAREER Award under
No. IIS-1353606, the Office of Naval Research (ONR) under awards
No. N000141210041 and No. N000141310129, the National Institutes
of Health Grant U54EB020405 awarded by the National Institute of
Biomedical Imaging and Bioengineering (NIBIB) through funds pro-
vided by the trans-NIH Big Data to Knowledge (BD2K) initiative, the
Sloan Research Fellowship, the Moore Foundation, American Family
Insurance, Google, and Toshiba. Any opinions, findings, and conclu-
sions or recommendations expressed in this material are those of the
authors and do not necessarily reflect the views of DARPA, AFRL,
NSF, ONR, NIH, or the U.S. government.

6. REFERENCES
[1] U. A. Acar, A. Ihler, R. Mettu, and O. Sümer. Adaptive

inference on general graphical models. In UAI, 2008.
[2] C. Andrieu, N. De Freitas, A. Doucet, and M. I. Jordan. An

introduction to MCMC for machine learning. Machine
Learning, 2003.

[3] G. Angeli, S. Gupta, M. Jose, C. D. Manning, C. Ré,
J. Tibshirani, J. Y. Wu, S. Wu, and C. Zhang. Stanford’s 2014
slot filling systems. TAC KBP, 2014.

[4] O. Banerjee, L. El Ghaoui, and A. d’Aspremont. Model
selection through sparse maximum likelihood estimation for
multivariate gaussian or binary data. JMLR, 2008.

[5] J. Betteridge, A. Carlson, S. A. Hong, E. R. Hruschka Jr, E. L.
Law, T. M. Mitchell, and S. H. Wang. Toward never ending
language learning. In AAAI Spring Symposium, 2009.

[6] S. Brin. Extracting patterns and relations from the world wide
web. In WebDB, 1999.

[7] E. Brown, E. Epstein, J. W. Murdock, and T.-H. Fin. Tools
and methods for building watson. IBM Research Report, 2013.

[8] A. Carlson, J. Betteridge, B. Kisiel, B. Settles, E. R.
Hruschka Jr, and T. M. Mitchell. Toward an architecture for
never-ending language learning. In AAAI, 2010.

[9] F. Chen, A. Doan, J. Yang, and R. Ramakrishnan. Efficient
information extraction over evolving text data. In ICDE, 2008.

[10] F. Chen, X. Feng, C. Re, and M. Wang. Optimizing statistical
information extraction programs over evolving text. In ICDE,
2012.

[11] Y. Chen and D. Z. Wang. Knowledge expansion over
probabilistic knowledge bases. In SIGMOD, 2014.

[12] A. L. Delcher, A. Grove, S. Kasif, and J. Pearl.
Logarithmic-time updates and queries in probabilistic
networks. J. Artif. Intell. Res., 1996.

[13] P. Domingos and D. Lowd. Markov Logic: An Interface Layer
for Artificial Intelligence. Morgan & Claypool, 2009.

[14] X. L. Dong, E. Gabrilovich, G. Heitz, W. Horn, K. Murphy,
S. Sun, and W. Zhang. From data fusion to knowledge fusion.
In VLDB, 2014.

[15] O. Etzioni, M. Cafarella, D. Downey, S. Kok, A.-M. Popescu,
T. Shaked, S. Soderland, D. S. Weld, and A. Yates. Web-scale
information extraction in KnowItAll: (preliminary results). In
WWW, 2004.

[16] D. Ferrucci, E. Brown, J. Chu-Carroll, J. Fan, D. Gondek,
A. A. Kalyanpur, A. Lally, J. W. Murdock, E. Nyberg,
J. Prager, N. Schlaefer, and C. Welty. Building Watson: An
overview of the DeepQA project. AI Magazine, 2010.

[17] G. Gottlob, C. Koch, R. Baumgartner, M. Herzog, and
S. Flesca. The Lixto data extraction project: Back and forth
between theory and practice. In PODS, 2004.

[18] A. Gupta, I. S. Mumick, and V. S. Subrahmanian. Maintaining
views incrementally. SIGMOD Rec., 1993.

[19] M. A. Hearst. Automatic acquisition of hyponyms from large
text corpora. In COLING, 1992.

[20] R. Hoffmann, C. Zhang, X. Ling, L. Zettlemoyer, and D. S.
Weld. Knowledge-based weak supervision for information
extraction of overlapping relations. In ACL, 2011.

[21] R. Jampani, F. Xu, M. Wu, L. L. Perez, C. Jermaine, and P. J.
Haas. MCDB: A Monte Carlo approach to managing uncertain
data. In SIGMOD, 2008.

[22] E. T. Jaynes. Probability Theory: The Logic of Science.
Cambridge University Press, 2003.

[23] S. Jiang, D. Lowd, and D. Dou. Learning to refine an
automatically extracted knowledge base using Markov logic. In
ICDM, 2012.

[24] M. L. Koc and C. Ré. Incrementally maintaining classification
using an RDBMS. PVLDB, 2011.

[25] Y. Li, F. R. Reiss, and L. Chiticariu. SystemT: A declarative
information extraction system. In HLT, 2011.

[26] J. Madhavan, S. Jeffery, S. Cohen, X. Dong, D. Ko, C. Yu, and
A. Halevy. Web-scale data integration: You can only afford to
pay as you go. In CIDR, 2007.

[27] M. Mintz, S. Bills, R. Snow, and D. Jurafsky. Distant
supervision for relation extraction without labeled data. In
ACL, 2009.

[28] N. Nakashole, M. Theobald, and G. Weikum. Scalable
knowledge harvesting with high precision and high recall. In
WSDM, 2011.

[29] A. Nath and P. Domingos. Efficient belief propagation for
utility maximization and repeated inference. In AAAI, 2010.

[30] F. Niu, C. Ré, A. Doan, and J. Shavlik. Tuffy: Scaling up
statistical inference in Markov logic networks using an
RDBMS. PVLDB, 2011.

[31] F. Niu, C. Zhang, C. Ré, and J. Shavlik. Elementary:
Large-scale knowledge-base construction via machine learning
and statistical inference. Int. J. Semantic Web Inf. Syst., 2012.

[32] S. E. Peters, C. Zhang, M. Livny, and C. Ré. A machine
reading system for assembling synthetic Paleontological
databases. PloS ONE, 2014.

[33] P. D. Ravikumar, G. Raskutti, M. J. Wainwright, and B. Yu.
Model selection in gaussian graphical models: High-dimensional
consistency of `1-regularized MLE. In NIPS, 2008.

[34] C. Ré, A. A. Sadeghian, Z. Shan, J. Shin, F. Wang, S. Wu, and
C. Zhang. Feature engineering for knowledge base construction.
IEEE Data Eng. Bull., 2014.

[35] C. P. Robert and G. Casella. Monte Carlo Statistical Methods.
Springer-Verlag New York, Inc., Secaucus, NJ, USA, 2005.

[36] W. Shen, A. Doan, J. F. Naughton, and R. Ramakrishnan.
Declarative information extraction using datalog with
embedded extraction predicates. In VLDB, 2007.

[37] D. Suciu, D. Olteanu, C. Ré, and C. Koch. Probabilistic
Databases. Morgan & Claypool, 2011.

[38] M. Wainwright and M. Jordan. Log-determinant relaxation for
approximate inference in discrete Markov random fields. Trans.
Sig. Proc., 2006.

[39] M. J. Wainwright and M. I. Jordan. Graphical models,
exponential families, and variational inference. FTML, 2008.

[40] G. Weikum and M. Theobald. From information to knowledge:
Harvesting entities and relationships from web sources. In
PODS, 2010.

[41] M. Wick and A. McCallum. Query-aware MCMC. In NIPS,
2011.

[42] M. Wick, A. McCallum, and G. Miklau. Scalable probabilistic
databases with factor graphs and MCMC. PVLDB, 2010.

[43] L. Yao, S. Riedel, and A. McCallum. Collective cross-document
relation extraction without labelled data. In EMNLP, 2010.

[44] C. Zhang and C. Ré. Towards high-throughput Gibbs sampling
at scale: A study across storage managers. In SIGMOD, 2013.

[45] C. Zhang and C. Ré. DimmWitted: A study of main-memory
statistical analytics. PVLDB, 2014.

1321

