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ABSTRACT

Many real applications consume data that is intrinsically uncertain,

noisy and error-prone. In this study, we investigate the problem of

finding the top-k nearest neighbors in uncertain data series, which

occur in several different domains. We formalize the top-k nearest

neighbor problem for uncertain data series, and describe a model

for uncertain data series that captures both uncertainty and correla-

tion. This distinguishes our approach from prior work that com-

promises the accuracy of the model by assuming independence

of the value distribution at neighboring time-stamps. We intro-

duce the Holistic-PkNN algorithm, which uses novel metric bounds

for uncertain series and an efficient refinement strategy to reduce

the overall number of required probability estimates. We evalu-

ate our proposal under a variety of settings using a combination of

synthetic and 45 real datasets from diverse domains. The results

demonstrate the significant advantages of the proposed approach.

1. INTRODUCTION
In recent years, the database and data mining community has

investigated extensively the problem of modeling and querying un-

certain data [3, 15], and several probabilistic database systems have

been proposed [16, 6, 28]. Uncertainty can occur for different

reasons, including imprecision in the sensor measurements, ap-

proximations due to summarization techniques ,privacy-preserving

transformations of sensitive records and the limited confidence in

the output of predictive models.

The problem of identifying the top-k nearest neighbors has been

widely studied in traditional database systems [17], and has been

successfully used to implement classifiers, recommendation engines

and location-based services.

Similarly, the evaluation of top-k nearest queries has received

considerable attention in probabilistic databases [12, 26, 20, 29, 8,

21, 11]. In this study, we consider the problem of finding the top-k
nearest neighbors in uncertain data series, i.e., in ordered sequences

of values that are uncertain1. Some examples are as follows:

1Time series are a special case of data series, where the values are
measured over time, but a series can also be defined over other
measures (e.g., mass in Mass Spectroscopy, etc.).
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Figure 1: (a) samples from independent random variables, (b) sam-

ples from full-joint distribution.

• The variations of the soil moisture during one year can be

modeled by multiple measurements collected from different

nearby field locations at a regular time interval. An uncertain

data series can be used to model these sensor measurements

to represent the uncertainty of the soil moisture within the

investigated area. The type of cultivation can be assigned

as class label to the uncertain data series. Nearest neighbor

searches on a dataset of uncertain data series representing the

soil moisture at different sites can then be used to recommend

the type of cultivation in new farm lands.

• Trajectories are intrinsically noisy because of imprecisions

in the positioning system. In addition, trajectories can be

anonymized due to privacy concerns. Uncertain data series

can be used to model the unknown original trajectory by enu-

merating all the feasible modifications consistent with a re-

covery procedure, i.e., the possible worlds for the original

trajectory. One can then identify which are the individuals

that most likely went to the pharmacy after visiting the hos-

pital using nearest neighbor searches.

Modeling correlation and uncertainty is critical to produce mean-

ingful results. We illustrate an example in Figure 1, where we

show how two different representations of the same uncertain se-

ries can lead to different results. Figure 1(a) shows an uncertain

series modeled by five independent random variables (Xi). The

same uncertain series is represented in Figure 1(b) by a single mul-

tivariate random variable (X ′
i). In contrast to the independent ran-

dom variables in Xi, the single multivariate random variable X ′
i

can model the dependencies among neighboring time-stamps. Two

real-valued samples represent the value distribution at each time-

stamp in Figure 1(a) and two series samples are drawn from the

full-joint distribution of X ′
i in Figure 1(b). Despite having the same

point values, the two representations of uncertain series Xi and X ′
i

have a different distance distribution to the query Q. For example,

the distance between the highlighted sample (thick dashed line) in

Xi and Q has zero occurring probability under the X ′
i represen-

tation. In summary, proper modeling of correlation leads to more
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accurate results, while removing uncertainty using averaged values

may lead to erroneous conclusions. For example, the distance be-

tween Q and the average series obtained averaging the values of Xi

and X ′
i is the same even if their distance distributions differ.

The complexity introduced by correlation and uncertainty poses

new challenges for the efficient evaluation of top-k nearest neigh-

bor searches in uncertain data series. Prior studies assumed the

value distributions at neighboring time-stamps to be independent

as a simplifying assumption. However, correlation of neighboring

values is an important property of data series, and ignoring it can

lead to erroneous results as demonstrated in Figure 1. Moreover,

prior approaches base their efficiency on the iterative refinement

of the spatial regions that bound the uncertainty. However, this is

not an effective strategy with uncertain data series as their bound-

ing regions overlap with high probability, especially for series with

normalized values.

Pioneering studies on modeling and querying uncertain data se-

ries include DUST [27], PROUD [31] and MUNICH [7], and have

been experimentally and analytically compared in [14]. Figure 2

positions these studies and our proposal, the Holistic-PkNN algo-

rithm, by their underlying uncertainty model on the x-axis and by

their ability to represent correlation on the y-axis. The methods
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Figure 2: Mapping of relevant studies, clustered along two dimen-

sions: the underlying uncertainty model, and their ability to retain the

correlation of the value distributions of neighboring points.

that consider distribution moments as underlying uncertainty model

represent uncertainty using statistics of the series distribution such

as the mean, variance and skewness. A different approach consists

in the ”possible world” semantics, where uncertainty is quantified

by a set of possible instantiations, i.e., samples drawn from the se-

ries distribution. The techniques reported in the bottom quadrants

model uncertain data series as independent sequences of random

variables. Independence is a simplifying assumption, and can lead

to erroneous results. The moving average [14] can be adapted to

leverage the correlation across neighboring points (top-left quad-

rant). However, moving averages may lead to misleading results.

In this study, we introduce the Holistic-PkNN algorithm, which

represents uncertain data series using full-joint distributions and re-

tains the correlation information. It adopts a ”possible world” se-

mantics model, with an uncertain series being represented by a set

of sample series drawn from its full-joint distribution, thus enabling

the modeling of both uncertainty and correlation. The algorithm

starts by estimating the distance bounds between the query and the

uncertain series using novel metric bounds, specifically suited to

uncertain series. The distance bounds are refined incrementally us-

ing a selection strategy that tightens the probability bounds using a

small number of iterations and probability estimate computations.

In summary, the contributions of this paper are as follows.

• We formally define the problem of top-k nearest neighbor

queries in uncertain data series, and we introduce a repre-

sentation specific for uncertain data series, which retains the

information in the sequence of the uncertain series values.

• We propose an iterative algorithm for the evaluation of top-k
nearest neighbor queries, which can efficiently refine the can-

didate result set, leading to a significantly reduced number of

probability estimations during the incremental refinement of

the probability bounds.

• We further introduce novel metric-space bounds for uncer-

tain series, which are much tighter when compared to tra-

ditional solutions. Based on those, we describe an efficient

method for the retrieval of the candidate series, using a met-

ric index.

• We perform an extensive experimental evaluation, using 45

real datasets from diverse domains and synthetic datasets.

The results demonstrate the effectiveness of the proposed

techniques and serve as guidelines for the practitioners.

This paper is organized as follows. In Section 2, we discuss

different alternative models of uncertain data series and formally

define our problem. In Section 3, we present our proposal. In Sec-

tion 4, we discuss the experimental results. In Section 5, we survey

prior studies and we conclude in Section 6.

2. PROBLEM DEFINITION
In this section, we formalize the problem after introducing some

definitions. A dataset D is a set of N uncertain data series. Sim-

ilarly to prior works [12, 8], we further assume that the uncertain

series in D are independent, i.e., the samples drawn from uncertain

series Xi are independent of the samples drawn from uncertain se-

ries Xj , ∀i 6= j.

A data series2 S is an ordered sequence of n real valued numbers

S = S[t], 1 ≤ t ≤ n. An uncertain data series X is a data

series whose values at each time-stamp are uncertain. We adopt the

attribute-uncertainty model under the ”possible world” semantics

to represent uncertain series.

A possible instantiation represents a sample value drawn from

the full joint distribution of the uncertain series. We denote the

value at time-stamp t of sample j of uncertain series Xi as Xj
i [t].

The index i may be omitted for ease of exposition. We formalize

the uncertain data series model as follows:

DEFINITION 2.1 (UNCERTAIN DATA SERIES MODEL). An un-

certain series X of length n is represented by m series samples. A

series sample Xj is a sample drawn from the full joint distribution

of X . Formally, X = {Xj : 1 ≤ j ≤ m}.

An example of uncertain series represented under the uncertain

data series model is shown in Figure 1(b). As discussed in the

introduction, the uncertain data series model can represent uncer-

tainty and correlation more accurately than other models that fail

to capture the correlation of the value distributions at neighboring

time-stamps.

The distance between uncertain series X and query Q is uncer-

tain and its distribution is induced by the distance measure. In par-

ticular, the distance samples are obtained by evaluating the distance

measure between the series instantiations Xj as defined under the

uncertain data series model and Q:

DEFINITION 2.2 (SAMPLE DISTANCE DISTRIBUTION). The

sample distance distribution between uncertain series X and query

2In the rest of this paper we use the terms data series, time series,
series and sequence, interchangeably.
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series Q is denoted by Dist(X,Q) and is defined as Dist(X,Q) =
{dist(Xj , Q) : j ∈ 1, ...,m}, where dist(Xj , Q) is the distance

measure between Q and the jth instance of X .

We consider the Euclidean distance as reference implementation

of the dist(·) function, however other metric distance measures

can be considered as well. Table 1 summarizes the most important

symbols used in the rest of the paper.

Now we are ready to formulate the problem of top-k nearest

neighbor search in uncertain data series. Let D be a dataset of

N uncertain series represented by the uncertain data series model

with series length n and number of samples m. Given a query se-

ries Q, the probability of an uncertain data series Xi to be the NN

(Nearest Neighbor), denoted by PNN (Q,Xi), is: PNN (Q,Xi) =

∫

Pr



Dist(Q,Xi) = s ∧
∧

∀j 6=i

Dist(Xj , Q) > s



 ds (1)

Let r(i) be a rank function s.t. r(i) ≤ r(j) iff PNN (Q,Xi) ≥
PNN (Xj , Q). We can now introduce the definition of the top-k
probable nearest neighbors:

PROBLEM 2.1 (TOP-k PROBABLE NEAREST NEIGHBORS).

Given a dataset D and query Q, the top-k probable nearest neigh-

bor search Top-k-PNN (D,Q, k) returns the k uncertain series Xi

with the largest PNN (Q,Xi) probabilities. Formally, the result set

is defined as {Xr(1), ..., Xr(k)}.

We observe that this problem is computationally bound by the

evaluation of the PNN (Q,Xi) probabilities. To this effect, coarse

representations of the sample distance distributions are used to re-

fine incrementally the probability bounds. The selection of the re-

finements is crucial, and can affect significantly the time perfor-

mance [12, 20, 8, 11]. In this study, we propose a novel selec-

tion strategy that can tighten the probability bounds using a smaller

number of iterations, thus reducing the overall number of evalua-

tions of the probability bounds. The efficient retrieval of the can-

didates and the initialization of the probability bounds is imple-

mented using novel metric bounds, specifically suited to uncertain

series.

3. PROPOSED APPROACH
In this section, we present our proposal for the efficient evalu-

ation of Top-k-PNN (D,Q, k) queries. We present a baseline al-

gorithm and its computational complexity in Section 3.1. An ap-

proach that uses coarse representations of the distance samples to

Notation Description

Q Query series
k Result set size
n Series length
m Number of uncertain series samples
D Dataset of uncertain series
N Number of uncertain series in dataset D
Xi ith uncertain series

Xl
i lth sample of ith uncertain series

Xl
i [t] lth sample of Xi at time-stamp t

Bi = [Blb
i , Bub

i ] PNN bounds for uncertain series Xi

Si = {Sl
i} distance partition for Xi

Sl
i lth distance interval in Si

W l
i Weight of lth distance interval in Si

I(X) 1 if X is true, 0 otherwise

Table 1: Notation used in the paper.

obtain estimates of the PNN probability bounds is reported in Sec-

tion 3.2. We introduce the Holistic-PkNN algorithm in Section 3.3.

The procedure uses the incremental refinement of the distance dis-

tributions to determine the result efficiently. The holistic selection

of the refinements is discussed in Section 3.4. In Section 3.5 we

present different algorithms to prune the search space and to ini-

tialize the distance distributions.

3.1 Baseline Algorithm
In this section, we present the baseline algorithm to evaluate top-

k probable nearest neighbor queries under the uncertain data series

model. With the independence assumption among the uncertain

series Xi ∈ D, Eq. 1 can be simplified to: PNN (Q,Xi) =
∫

Pr(Dist(Q,Xi) = s)
∏

∀j 6=i

Pr(Dist(Xj , Q) > s)ds (2)

where the Probability Density Function (PDF), Pr(Dist(Q,Xi) =
s), is essentially used to weight the second term and the inverse of

the Cumulative Density Function (CDF), Pr(Dist(Xj , Q) > s),
is estimated as the ratio of samples matching the inequality condi-

tion:

Pr(Dist(Xj , Q) > s) =
1

|{r ∈ Dist(Xj , Q) : r > s}|

For ease of exposition, we introduce the I(X) indicator function:

I(X) evaluates to 1 if the condition X holds, 0 otherwise. The

evaluation of Eq. 2 can then be reduced as follows: PNN (Q,Xi) =

1

mN

∑

s∈Dist(Q,Xi)





∏

∀j 6=i





∑

r∈Dist(Xj ,Q)

I(r > s)







 (3)

where 1/(mN ) results from further simplifications of the Dist(Q,
Xi) = s terms in Eq.2, and Dist(·) is a set of distance samples

previously defined in Definition 2.2. The Top-k-PNN (D,Q, k)
queries are evaluated by determining the k uncertain series with

the largest PNN probabilities, where the PNN (Q,Xi) estimates

are determined using Eq. 3 and the selection algorithm is used to

identify the top-k uncertain series [19].

The evaluation of Eq. 3 has a CPU cost of O(Nm2), thus the

CPU cost sums up to O(m2N2) if we consider all Xi ∈ D. The

time complexity of the selection algorithm is linear to the size of

the array (on average) and is bounded by O(N). We note that the

evaluation of PNN (Q,Xi) dominates the CPU cost.

3.2 Bounding PNN probability estimates
The evaluation of the PNN probabilities is based on the distance

measurements between the query series Q and the uncertain series

Xi (Eq. 2.2). Once the distance samples have been determined, the

raw series Xi are not accessed anymore.

In the following we show how coarse representations of the dis-

tance samples Dist(Q,Xi) can be used to determine the bounds

for the PNN probability estimates for candidate Xi. Candidates can

be either discarded or added to the result set according to the proba-

bility bounds without considering the individual distance samples,

a rather expensive operation due to the high number of possible

sample combinations in Eq. 3.

DEFINITION 3.1 (DISTANCE INTERVAL). A distance interval

Sl
i is a region in the distance space that represents a subset of the

distance samples in Dist(Q,Xi). The lower and upper bounds of

Sl
i are denoted by lb(Sl

i) and ub(Sl
i), respectively. The associated

weight is denoted by W l
i and is defined as the ratio of samples in
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Figure 3: Example of valid distance partition instantiations Smin
i ,

Smid
i and Smax

i representing the distance samples in Dist(Q,Xi).

Dist(Q,Xi) falling within the interval bounds. Any distance in-

terval Sl
i represents at least a distance sample, i.e., W l

i > 0. A

distance partition Si is a set of disjoint distance intervals Sl
i that

partition the samples in Dist(Q,Xi).

Given a distance partition Si, these two properties hold: first,

distance intervals Sl
i and Sk

i do not overlap, ∀l 6= k. Second,

the sum of the weights of the distance intervals in the Si partition

equals to one, i.e.
∑

l
W l

i = 1.

Distance partitions at different levels of detail can be instanti-

ated to represent the samples in Dist(Q,Xi). The number of dis-

tance intervals (denoted by d) in the partitions ranges between 1
and m. We denote with Smin

i the partition instantiation composed

by a single distance interval (coarsest level, d = 1). Smax
i denotes

the partition instantiation composed by m distinct distance inter-

vals (finest level, d = m). An example of Smin
i , Smax

i and an

intermediate valid distance partition instantiation denoted by Smid
i

is reported in Figure 3. Distance partitions can be used to esti-

mate lower- and upper-bounds of the PNN probabilities, denoted

by P lb
NN (Q,Xi) and Pub

NN (Q,Xi), respectively.

The lower-bound P lb
NN (Q,Xi) is determined by using the upper-

bounds ub(Sl
i) as representatives of the distance intervals in parti-

tion Si and the lower-bounds lb(Sl
j) as representatives of the dis-

tance intervals in the other partitions Sj . The resulting adaptation

of Eq.3 is: P lb
NN (Q,Xi) =

∑

Sa
i
∈Si






W a

i

∏

∀j 6=i







∑

Sb
j
∈Sj

W b
j · I(ub(S

a
i ) < lb(Sb

j ))












(4)

Similarly, the upper-bound Pub
NN (Q,Xi) is determined by using

the lower-bounds lb(Sl
i) as representatives of the distance intervals

in partition Si and the upper-bounds ub(Sl
j) as representatives of

the distance intervals in the other partitions Sj . The resulting adap-

tation of Eq.3 is: Pub
NN (Q,Xi) =

∑

Sa
i
∈Si






W a

i

∏

∀j 6=i







∑

Sb
j
∈Sj

W b
j · I(lb(S

a
i ) < ub(Sb

j ))












(5)

We denote the probability interval identified by the lower- and upper-

bounds of the PNN probability estimates by Bi:

Bi = [P lb
NN (Q,Xi), P

ub
NN (Q,Xi)]

We observe that if we use the finest representation of the distance

samples Smax
i for all uncertain series Xi ∈ D, then P lb

NN (Q,Xi)
and Pub

NN (Q,Xi) can be reduced to Eq.3 and degenerate to the

same value, PNN (Q,Xi).

The CPU cost of determining the PNN probability bounds using

Eq.4 and Eq.5 is bounded by the number of distance intervals in

each partition. A low number of distance intervals in each parti-

tion is to be preferred. However, PNN bounds might not be tight

enough to discriminate the answer set and a more fine-grained rep-

resentation of the distance partitions may be required to improve

sufficiently the PNN bounds. In the next section, we introduce the

Holistic-PkNN algorithm that solves efficiently this problem.

3.3 The HolisticPkNN algorithm
In this section we present Holistic-PkNN, an iterative algorithm

to evaluate Top-k-PNN (D,Q, k) queries as defined in Section 2.

The Holistic-PkNN algorithm uses the PNN probability bounds Bi

as defined in Section 3.2 and refines incrementally the distance par-

titions Si until convergence at a reduced CPU cost.

After pruning the search space using the coarsest representations

of the distance intervals, the procedure refines iteratively the dis-

tance partitions of the candidates whose PNN probability bounds

overlap with the top-k probability bounds. The algorithm termi-

nates when all candidates are either added to the result set or pruned

out.

Let topk(V ) be the kth largest value in a set V of values, not

necessarily distinct. Let Blb and Bub be the set of PNN proba-

bility lower-bounds and the set of PNN probability upper-bounds,

respectively. The critical region [c, d] is defined as follows:

DEFINITION 3.2 (CRITICAL REGION). Let c = topk(B
lb)

and d = topk+1(B
ub). The critical region R is defined as the

probability interval R = [c, d]. The critical region is empty if

c > d.

Uncertain series Xi whose PNN probability upper bound Pub
NN (Q,

Xi) is lower than the lower bound c of the critical region R have

zero probability of being the NN, and can be safely pruned. On the

contrary, uncertain series Xi whose PNN probability lower bound

P lb
NN (Q,Xi) is higher than the upper bound d of the critical region

R can be safely appended to the result set. We can now formally

introduce the set of the active candidates:

DEFINITION 3.3 (ACTIVE CANDIDATES). Uncertain series

Xi is an active candidate iff its PNN probability interval Bi over-

laps with the critical region R. We denote with X∗ the set of the

uncertain series that qualify as active candidates.

The set of the active candidates X∗ identifies the uncertain series

Xi that can be eligible to enter the result set but require tighter

PNN probability bounds to make a final decision. Note that, if

c > d, then the critical region R is empty, and the set of active

candidates X∗ is empty. This condition is encountered when the

PNN probability bounds are sufficiently tight to discriminate the

result set without further refinements.

Figure 4(a) shows an example of a critical region (R) for k = 2.

The uncertain series corresponding to PNN interval B4 is clearly

part of the result set since it dominates all the other PNN bounds.

However, PNN bounds B3 and B2 overlap and we cannot discrim-

inate between them. Figure 4(b) shows an example of a critical

region for k = 2, s.t. PNN probability bounds B4 and B3 dom-

inate all the other PNN bounds and there is no uncertainty on the

memberships of the result set. PNN probability bounds of uncer-

tain series Xi ∈ X∗ are tightened by refining some of the distance

partitions. A partition is refined by increasing the number of its

distance intervals. We observe that the underlying relationships be-

tween different candidates can lead to tighter PNN bounds for can-

didate Xi after refining a distance interval in partition Sj , where

i 6= j.
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Figure 4: Graph (a) shows an example of critical region R with over-

lapping PNN probability bounds B3 and B2. Graph (b) reports an

example of empty critical region R.

Let S∗ be the set of the distance partitions S1, ..., SN . Let B∗

be the set of the PNN probability bounds B1, ..., BN . The overall

Holistic-PkNN procedure that refines selectively the distance parti-

tions until convergence of the result set is illustrated in Algorithm 1.

Line 1 initializes the distance partitions Si for all Xi ∈ D to their

Algorithm 1 Holistic-PkNN(D: dataset, Q: query sequence, k:

result set size).

1: Si ← init-distance-partitions(Q,Xi) for all candidates Xi ∈
D

2: Bi ← PNN (Q,Xi) bounds using Eq. 4 and Eq. 5 for all can-

didates Xi ∈ D
3: Update critical region [c, d] using Def. 3.2

4: while c ≤ d do

5: C ← find-critical(B∗, [c, d])
6: R←

⋃

Xi∈C
find-splits(Si)

7: for Sl
i ∈ R do

8: Si ←dist-refine(Sl
i)

9: end for

10: Bi ← PNN (Q,Xi) bounds using Eq. 4 and Eq. 5 for all

active candidates Xi ∈ X∗

11: Update critical region [c, d] using Def. 3.2

12: end while

13: T ← {Xi : P
lb
NN (Q,Xi) > d}

respective Smin
i instances. Efficient algorithms to determine the

Smin
i instances are presented in Section 3.5.1. In Line 2, lower-

and upper-bounds Bi for all Xi ∈ D are initialized using Eq. 4

and Eq. 5. The bounds c, d of the critical region R are updated

in Line 3 using Definition 3.2. This concludes the initialization of

the data structures before the iterative refinement of the PNN prob-

ability bounds. The PNN bounds are then tightened iteratively in

Lines 4-12 until convergence of the result set, i.e., the termination

condition c > d is met. In each iteration a set of PNN bounds to

be tightened is selected (set C) and the distance intervals expected

to improve the selected PNN bounds are refined (set R). The PNN

probability bounds of the candidates Xi ∈ X∗ and the critical re-

gion [c, d] are updated at the end of each iteration. Line 5 identifies

the uncertain series Xi ∈ C whose PNN bounds are selected for

improvement. The implementation of the find-critical procedure is

presented in Section 3.4. In Line 6 the distance intervals Sl
i to be

refined are identified, and then refined in Lines 7-9. The efficient

evaluation of the refinements is discussed in Section 3.5.2. Line

10 updates the PNN probability bounds Bi of the active candidates

Xi ∈ X∗. The bounds c, d of critical region R are then updated in

Line 11. Finally, the result set is constructed in Line 13.

We note that the find-splits procedure may return the same dis-

tance interval Sl
i to tighten the PNN probability bounds of differ-

ent candidates. However, the distance interval Sl
i gets refined only

once by the dist-refine function. Multiple PNN bounds can benefit

holistically from the same refinement, keeping the global number

of refinements as low as possible (thus making the evaluation of the

PNN bounds in Line 10 more efficient).

LEMMA 1 (TERMINATION). Algorithm 1 always terminates

after a finite number of partition refinements.

Proof. Let S∗ be the set of distance partitions Si initialized in Line

1 with their respective Smin
i instances. Lines 4-12 ensure that at

least one partition Si is refined at every iteration. In the worst

case, all distance partitions Si ∈ S∗ are refined completely, ob-

taining their respective Smax
i instances. Consequently, the PNN

probability bounds Bi converge to the exact probability estimate,

i.e. P lb
NN (Q,Xi) = Pub

NN (Q,Xi). It is then easy to show that

topk+1(B
ub) < topk(B

lb), i.e., d < c. We assume that the

PNN (Q,Xi) estimates are distinct values, i.e., if PNN (Q,Xi) =
PNN (Q,Xj) then it must be that i = j.

3.4 Tightening the PNN bounds
The optimal search path to identify the top-k probable nearest

neighbors in the Holistic-PkNN method (Algorithm 1) minimizes

the number of partition refinements (Lines 7-9) and minimizes the

number of evaluations of the PNN probability bounds (Line 10).

Unfortunately its determination is computationally prohibitive, as

it would require an extensive search in the solution space of the

possible refinements, altogether with repeated evaluations of the

PNN probability bounds. The incurred CPU cost would deny any

expected benefit provided by the iterative refinements, and this mo-

tivates the introduction of efficient sub-optimal algorithms.

In this section, we discuss efficient implementation of the func-

tions find-critical and find-splits used in Algorithm 1. While the

procedure find-critical identifies the PNN bounds Bi to be tight-

ened, procedure find-splits finds the refinements in the distance par-

titions Si to be applied.

3.4.1 findcritical

We identify the candidates whose probability bounds have to be

tightened as the set of the active candidates, X∗. In contrast to se-

lection heuristics [26, 8] proposed in prior studies, our experiments

show that it is more convenient to consider all the candidates in the

critical region at each iteration rather than a small subset.

3.4.2 findsplits

Given a set or uncertain series R, the find-splits procedure iden-

tifies the best distance intervals Sl
i of the distance partitions Si to

be splitted, i.e., refined. First, we discuss the importance of the

dependencies across different distance partitions in the selection of

the refinements to apply.

LEMMA 2 (DEPENDENCIES IN DISTANCE PARTITIONS).

Tightening the PNN probability bounds Bi of candidate Xi ∈ X∗

may require some refinements in the distance partition Sj , j 6= i.
Uncertain series Xj may not belong to the active set, i.e., Xj 6∈
X∗.

Demonstration by example. Let D be a dataset with N = 4 and

m = 3. Let S1, S2, S3 and S4 be the instantiated distance par-

titions: S1 = {[2, 2] : 0.33, [4, 4] : 0.33, [6, 6] : 0.33}, S2 =
{[4, 8] : 1}, S3 = {[1, 1] : 0.33, [5, 5] : 0.33, [9, 9] : 0.33} and

S4 = {[1, 1] : 0.33, [3, 3] : 0.33, [7, 7] : 0.33}.
The PNN probability estimates determined using the Eq.4 and

Eq.5 result in the following Bi bounds: B1 = [0.14, 0.25], B2 =
[0.22, 0.25], B3 = [0.22, 0.25] and B4 = [0.37, 0.37].
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Figure 5: Graph (a) shows the distance partitions Si and graph (b)

reports their respective PNN bounds Bi.

We want to identify the top-2 most probable nearest neighbors,

i.e., k = 2. Figure 5(a) and Figure 5(b) show the corresponding

distance partitions Si and the PNN probability bounds Bi, respec-

tively. We observe that the candidate uncertain series X4 and X1

can be safely appended to the result set and discarded, respectively.

We are unable to discriminate the PNN probabilities of X2 and X3.

However, distance partitions S1, S2 and S3 have been fully refined

to their Smax
i instantiations and cannot be refined further. There is

no other choice than refining samples in the distance partition S2,

whose respective uncertain series X2 is not in the set of the active

candidates X∗ and has zero probability of being part of the result.

We introduce the Pair-split method in Algorithm 2 as baseline

implementation of the find-split procedure. Let width(Sa
i ) be the

distance width of the distance interval Sa
i . The algorithm iterates

Algorithm 2 Pair-split(Si: distance partition)

1: R← ∅
2: scorebest ← 0
3: for ∀ (Sa

i , S
b
j ) s.t. Sa

i ∈ Si ∧ Sb
j ∈ Sj ∧ i 6= j do

4: score←W a
i · width(Sa

i ) +W b
j · width(Sb

j )

5: if score > scorebest ∧ Sa
i overlaps with Sb

j then

6: R← {Sa
i , S

b
j}

7: scorebest ← score
8: end if

9: end for

over all combinations of the (Sa
i , S

b
j ) pairs (Lines 3-9). Line 4

defines a score based on the two interval weights and the respective

distance widths. Lines 5-8 select the pair (Sa
i , S

b
j ) s.t. they overlap

with the largest score value.

Intuitively, splitting the pair of overlapping distance intervals

(Sa
i , S

b
j ) whose weighted width is the largest is expected to im-

prove the PNN probability bounds of the respective PNN probabil-

ity estimates Bi and Bj , respectively.

Note that the pair-split algorithm considers only pair-wise de-

pendencies between distance intervals. However, there may be a

distance interval Sa
i , overlapping with a large number of distance

intervals Sb
j , whose score is too low to get selected. In the next

section, we propose heuristics that overcome this limitation.

3.4.3 Uncertaintyaware distance refinements

In this section we discuss how to identify a pair of refinements to

tighten the PNN bounds Bi by looking explicitly at the candidate

refinements in distance partition Si and in distance partitions Sj ,

6= i. The proposed heuristics consider the pair-wise dependencies

between different distance partitions Si and Sj , i 6= j.

First, we identify the best distance interval Sa
i to tighten the

PNN bounds Bi. We observe that refining Sa
i may be beneficial

to tighten Bi only if it overlaps with one or more distance intervals

Sb
j , j 6= i. Among the Sa

i candidate refinements, we select the

Sa
i candidate that maximizes the weighted sum of the overlapping

distance intervals with all other partitions Sj s.t. j 6= i. Function

select-inner implements this strategy:

select-inner(Q,Xi) = argmax
Sa
i
∈Si

W a
i

∏

∀j 6=i







∑

Sb
j
∈Sj

W b
j · I(lb(S

a
i ) < ub(Sb

j ) ∧ ub(Sa
i ) > lb(Sb

j ))







(6)

Second, we identify the best distance interval Sb
j to tighten the PNN

bounds Bi s.t. j 6= i. Similarly, we observe that refining Sb
j may be

beneficial to tighten Bi only if it overlaps with one or more distance

intervals in Si. Among the Sb
j candidate refinements, we select the

Sb
i candidate refinement that maximizes the weighted sum of over-

lapping distance intervals with the distance intervals in partition Si.

Function select-outer implements this strategy:

select-outer(Q,Xi) = argmax
Sb
j
∈Sj ,∀j 6=i

W b
j

∑

Sa
i
∈Si

W a
i · I(ub(S

a
i ) > lb(Sb

j ) ∧ lb(Sa
i ) < ub(Sb

j ))
(7)

The find-split procedure can be implemented by returning the dis-

tance intervals identified by the select-inner and the select-outer

heuristics. We observe that the computation of Eq.6 can be com-

bined efficiently with the evaluation of the PNN upper-bound in

Eq.5 because of the similarities in the formulation and in the veri-

fied inequalities. Eq. 7 cannot be combined in a similar way with

the evaluation of the PNN intervals because of the different order-

ing in the enumeration of the distance interval pairs.

3.5 Distance Partitions
We now discuss an efficient implementation of the procedure

init-distance-partitions that initializes the distance partitions Si,

and their incremental refinement required in the dist-refine func-

tion in Algorithm 1.

3.5.1 Initialization

The init-distance-partitions procedure initializes the distance par-

titions Si for all candidates Xi ∈ D. We consider two different im-

plementations that can be used to construct the distance partitions

using their Smin
i instantiations.

First, we present distance bounds inspired by the spatial proper-

ties of the uncertain series. The value of an uncertain series Xi can

be bounded by the minimum and maximum values at each time-

stamp across all its instantiations Xl
i , where 1 ≤ l ≤ m. The

lower-bound series of uncertain series Xi at time-stamp t (denoted

by Xlb
i [t]) is defined as:

Xlb
i [t] = Xl

i [t] : X
l
i [t] ≤ Xk

i [t] ∀ k ∈ {1, ...,m}

Similarly, the upper-bound series of uncertain series Xi at time-

stamp t (denoted by (denoted by Xub
i [t]) is defined as:

Xub
i [t] = Xl

i [t] : X
l
i [t] ≥ Xk

i [t] ∀ k ∈ {1, ...,m}

DEFINITION 3.4 (UNCERTAIN SERIES ENVELOPE). Let Xlb
i

and Xub
i be the lower-bound and upper-bound series of uncertain

series Xi, respectively. The uncertain series envelope of uncertain

series Xi is defined as the pair of series Ei = (Xlb
i , Xub

i ).
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Figure 6: Graph (a) shows an example of uncertain series envelope.

Graph (b) illustrates an example of metric distance bounds.

Figure 6(a) shows an example of an uncertain series envelope. We

observe that the uncertain series envelope Ei identifies the smallest

n-dimensional hyper-rectangle enclosing all instantiations of un-

certain series Xi. Note that Uncertain series envelopes are equiv-

alent to the concept of Minimum Bounding Rectangles (MBRs),

a popular representation of bounding regions in spatial indexes.

Envelopes can be pre-computed, since they don’t depend on the

query series. Given a query Q, an uncertain series envelope Ei can

be used to determine the lower-bound of the distance samples in

Dist(Q,Xi) as follows: spatiallb(Q,Xi) =
√

√

√

√

√

∑

1≤t≤n







0 if Xlb
i [t] ≤ Q[t] ≤ Xub

i [t]
min((Q[t]−Xlb

i [t])2,
(Q[t]−Xub

i [t])2) otherwise

(8)

Similarly, the upper-bound (denoted by spatialub(Q,Xi)) of the

distance samples in Dist(Q,Xi) is defined as: spatialub(Q,Xi) =
√

∑

1≤t≤n

max((Q[t]−Xlb
i [t])2, (Q[t]−Xub

i [t])2) (9)

The distance bounds between uncertain series Xi and query Q are

determined by measuring the minimum and maximum distances

between the uncertain series envelope Ei and query Q. An equiva-

lent formulation of the distance lower-bound can be found in [30].

On the contrary, the upper-bound spatialub(Q,Xi) is novel.

We introduce now a different formulation of distance bounds,

inspired by the metric properties of the distance function. Let P
be a series serving as pivot in the metric space. A pivot is a series

that has been selected as representative series during the distance

computations, and its distance to an uncertain series Xi can be used

to bound the distance between Xi and the query Q thanks to the

triangle inequality property. We note that the triangular inequality

holds only in metric spaces, i.e. distance spaces induced by metric

distance measures.

Let dPX be the maximum distance between series P and all Xl

instantiations, i.e. dPQ = max(Dist(Xi, P )) . Let dPQ be the

distance between P and Q, i.e., dPQ = dist(P,Q). dPX can be

pre-computed, since it does not depend on the query Q. Figure 6(b)

shows an example (only distances are relevant, the example is pro-

jected in two dimensions for ease of exposition).

Given a query Q, a pivot P and uncertain series X , the dis-

tance between X and Q is bounded by the following lower-bound:

max(0, dPQ − dPX). Similarly, one can define an upper-bound

for the distance between X and Q: DPQ + DPX . These bounds

have been widely used in index structures for metric spaces [24,

10]. Multiple pivot series can be combined to increase to improve

the distance bounds as follows. Let P ∗ be a set of pivot series. The

best lower-bound (denoted by metriclb(Q,Xi)) is determined us-

ing the pivot P s.t. it maximizes max(0, dPQ−dPX) and the best

upper-bound (denoted by metricub(Q,Xi)) is determined using

P ′ s.t. it minimizes dP ′Q + dP ′X :

metriclb(Q,Xi) = max
P∈P∗

max(0, dPQ − dPX)

metricub(Q,Xi) = min
P∈P∗

(dPQ + dPX)

The tightness of the metric bounds depends on the quality of the

selected pivot series. In the experimental evaluation we consider

different strategies that have been proposed in prior works.

The distance partitions Si for all uncertain series Xi are initial-

ized using their spatial or metric bounds in the Holistic-PkNN al-

gorithm using a linear scan on the dataset D. We observe that in

the worst case all distance bounds obtained using metric or spatial

bounds overlap. If the initial distance bounds overlap then further

refinements are needed to discriminate the respective PNN proba-

bility bounds. In the following, we discuss how distance partitions

are refined incrementally.

3.5.2 Refinement

Let Si be a distance partition to be refined and let Sl
i be the

distance interval that has been previously selected for refinement

by the find-splits procedure as presented in Section 3.4.2.

If the bounds of the distance interval Sl
i have been determined

using metric or spatial distance bounds (Section 3.5.1), then lb(Sl
i)

and ub(Sl
i) are lower- and upper-estimates of min(Dist(Q,Xi))

and max(Dist(Q,Xi)), respectively. We substitute Sl
i with a

new distance interval Sk
i s.t. lb(Sk

i ) = min(Dist(Q,Xi)) and

ub(Sk
i ) = max(Dist(Q,Xi)). Please note that, after the substi-

tution, the distance partition Si is a new instantiation of the distance

partition Smin
i . Distance samples Dist(Q,Xi) are maintained in a

sorted array. The optimal distance bounds min(Dist(Q,Xi)) and

max(Dist(Q,Xi)) of the new instantiation of Smin
i serve as first

refinement for Si.

In case of subsequent refinements, the refinement of the distance

interval Sl
i is performed by partitioning the region covered by Sl

i

into two new distance intervals. Let plb, pub be a pair of pointers

to the sub-array in the Dist(Q,Xi) sorted array that identifies the

lowest and highest distance sample in Sl
i , and let distmid be the

value that partitions the region defined by Sl
i into two equi-width

regions. Then, the closest sample to distmid in the sub-array iden-

tified by pointers plb, pub is used as largest sample in the new left

partition, and its immediate next sample in the sorted array is used

as lowest sample in the new right partition.

While the first refinement is very expensive, since it requires the

evaluation of the distance samples in Dist(Q,Xi), the CPU cost

of subsequent refinements is negligible: it is bounded by the cost

of evaluating a binary search on a subset of the distance samples,

i.e., O(log(m)). Recall that m is the number of Xi instantiations.

4. EXPERIMENTAL RESULTS
In this section we empirically evaluate our proposal under a va-

riety of settings, assessing time performance and accuracy. We

implemented all techniques in C++, and ran the experiments on a

Linux machine with Intel Xeon 1.80GHz processors and 64GB of

RAM. For all results, we report the averages of the measurements

obtained from 10 independent runs, as well as the 95% confidence

intervals. Confidence intervals are reported when the y-axis is not

in log scale for clearness.
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Datasets: We consider real and synthetic datasets. Time perfor-

mance is assessed on synthetic datasets constructed as follows. Let

walki be a random walk of length n where the value difference

between neighboring time-stamps is a normally distributed random

variable with zero mean and unit standard deviation. The series

walki is then normalized [25], obtaining a new series denoted by

seedi. The l-th sample of uncertain series Xi, X
l
i , is obtained by

adding samples drawn from a normally distributed random variable

N(0, σ) to the seedi values. Finally, the samples are normalized

again. The procedure is repeated independently for each uncertain

series Xi. Please note that the seed series seedi used to generate

the samples of uncertain series Xi is different from the other seed

series seedj , j 6= i. Random queries are generated similarly (and

independently) to the Xi series samples.

Accuracy is assessed on a second different synthetic dataset that

allows us to assign class labels to the queries according to the gen-

eration model. Uncertain series are derived for a single seed series.

The samples of uncertain series Xi are obtained by perturbing the

seed series with standard deviation σ = α+ iβ. α ensures a min-

imum distance to the seed series and β imposes a total order on

the distance of the seed series and the uncertain series that we use

as ground truth. We observe that series X1 is the NN to the seed
series according to this perturbation model, and its seed is used

as query. We additionally consider 45 real datasets from the UCR

time series collection (described in detail in [1]) with class labels.

The datasets are divided into two sets, train and test. We assume

that these raw series are samples drawn from unknown distributions

that may be noisy and error-prone. Similarly to prior works [8, 11,

12, 21, 31, 7, 27, 14], uncertain series are constructed from the se-

ries in the train set: first, normalized real series are used as seed

series seedi. Second, the perturbation standard deviation σ is used

to generate positive samples of the normal distribution, then used

independently as perturbation standard deviation σ′ for each sam-

ple. The resulting uncertain series is composed by a set of samples

whose perturbation standard deviation varies and is controlled by

σ.

Evaluation measures: We now describe how accuracy and time

performance have been assessed. Given a random query series Q
drawn from the test set, the class label associated with the uncertain

series identified as the NN in the train set is assigned as label. For

each method we compute the confusion matrix M (Mij is the count

of query series assigned to class i instead of j). Accuracy is defined

as the ratio of true positives for all class labels:

Accuracy =
1

|test|

∑

Mii, (10)

where |test| is the size of the test set. If all queries are labeled cor-

rectly, M is a diagonal matrix. The experiment is repeated several

times on each dataset (train and test pair sets) to get statistically

significant results. We note that the very same results can be ob-

tained using different algorithms that implement the top-k probable

nearest neighbor queries as formulated in Section 2.

The time performance is measured as the time required to eval-

uate the specified queries. In the first set of experiments, we also

evaluate the quality of diverse strategies to prune the search space.

Algorithms: The time performance of our algorithm is compared

to the Baseline algorithm (presented in Section 3.1), and an adapta-

tion of the Find-TopK-PNN method [8]. The algorithm Find-TopK-

PNN has been designed to minimize the number of I/O operations:

uncertain series are retrieved in min-distance order to the query.

The PNN probability upper-bound of a virtual object is used to

bound the PNN upper-bound probabilities of all non-retrieved ob-

jects, and it is used to control the retrieval of new uncertain se-

Parameter Range

No. of samples (m) [100, ...,500, ..., 1000]
No. of uncertain series (N) [100, ...,1000, ..., 100000]

Standard deviation (σ) [0.1, ...,0.5, ..., 1]
Series length (n) [100, ...,256, ..., 1000]
Result set size (k) [1, ..., 16]

Table 2: Experiment parameter configuration ranges. Default

values are indicated in bold.

ries until convergence is reached. Our adaptation, named Holistic-

PkNN-Virtual, considers our best-performing combination of the

procedures for the initialization and the refinement of the distance

partitions, and for the evaluation of the PNN probability bounds.

We also evaluate four distinct versions of our algorithm, Holistic-

PkNN, which correspond to different combinations of the find-critical

and find-splits implementations: the find-critical function can be

implemented using the multi-simulation procedure [26] (denoted

by the suffix M), or by enumerating all candidates whose PNN

probability bounds overlap with the critical region (denoted by the

suffix H); the find-splits function can be implemented using the

pair-split method (Algorithm 2, denoted by the suffix P), or us-

ing the select-inner and select-outer procedures (Eq. 6 and Eq. 7,

denoted by the suffix S). From our experiments, the optimal con-

figuration is Holistic-PkNN-HS, also denoted in short by Holistic-

PkNN. Similarly to [5], we use the average of the series samples as

unique pivot for each uncertain series. We note that the algorithms

Baseline, Holistic-PkNN-Virtual and Holistic-PkNN are different

algorithms that return the very same result set as defined by the

formulation of top-k probable nearest neighbor queries defined in

Section 2.

We further evaluate an adaptation of M-trees to prune the search

space. An M-tree is a tree whose nodes represent regions in a metric

space and can be used to index objects in metric spaces [24]. In

contrast to the original M-tree where a leaf node is used to represent

a set of indexed objects stored on disk, each leaf node indexes an

uncertain series.

The accuracy of our proposal is compared to the algorithms DUST

[27] and Euclidean-AVG. The DUST algorithm models the uncer-

tain series as a series of independent random variable, and the dis-

tance between the query and the uncertain series is based on the

probability of their distance to be zero. The Euclidean-AVG algo-

rithm averages all samples to obtain their average series, that is then

used as representative to determine a distance measure between the

uncertain series and the query.

The parameters considered in the experiments are summarized

in Table 2. When not explicitly stated, we use the default configu-

ration value (highlighted in bold).

4.1 Effectiveness of Pruning Strategies
The tightness of the distance bounds during the initialization of

the distance partitions as detailed in Section 3.5.1 can greatly re-

duce the processing time, thanks to the early pruning of a large

fraction of the candidate uncertain series. In the first set of exper-

iments, we measure the ratio of candidates that cannot be pruned

immediately after the initialization of their distance partitions for

the spatial, metric and exact distance bounds on synthetic datasets

constructed to evaluate the time performance. Recall that the spa-

tial and metric distance bounds can be estimated efficiently (Sec-

tion 3.5), while exact distance bounds require the evaluation of the

exact distance samples in Dist(Q,Xi). We stress that the spatial

and metric distance bounds lower- and upper-bound the exact dis-

tance bounds and the final produced result is exactly the same.
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Figure 7: Ratio of retained candidates when

varying the number series samples m.
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Figure 8: Ratio of retained candidates when

varying the perturbation standard deviation σ.
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Figure 9: Ratio of retained candidates when

varying the uncertain series length n.

In Figure 7 we report the ratio of the retained uncertain series

after pruning the candidates based on the distance partitions ini-

tialized using the exact, metric and spatial distance bounds with

perturbation standard deviation σ = 0.2 when varying the number

of samples, m. The exact distance bounds are the most accurate,

followed by the metric and then the spatial distance bounds. The

average ratio of the retained candidates is 0.7%, 19% and 57%
when the distance partitions are initialized using the exact, metric

and spatial distance bounds, respectively. We observe a slight in-

crease in the ratio of retained candidates as the number of samples

m increases. Recall that the m samples are drawn from a normal

distribution. As the number of samples m increases, the probabil-

ity that at least a few samples deviate significantly from the mean

value increases. Although the distance bounds are affected by out-

lier samples, the overall sample distribution is stable and does not

depend on the number of samples.

In the next experiment, depicted in Figure 8, we vary the per-

turbation standard deviation σ, and report the ratio of retained un-

certain series after pruning the candidates based on their initializa-

tion of the distance partitions for the spatial, metric and exact dis-

tance bounds. As the perturbation standard deviation σ increases,

the pruning power of the different initializations for the distance

partition is reduced. With exact bounds, 20% of the candidates is

retained when σ approaches 1.0. On the contrary, 100% of the can-

didates are retained when σ approaches 0.4 and 0.8 for the spatial

and metric bounds, respectively.

In Figure 9 we report the ratio of retained uncertain series after

pruning the candidates based on their initialization of the distance

partitions for the spatial, metric and exact distance bounds with

perturbation standard deviation σ = 0.2 when varying the length

of the uncertain series, n. Similarly to the previous experiments,

exact distance bounds are the most accurate, followed by the met-

ric and then the spatial distance bounds. The series length n does

not affect significantly the performance. We note that normally

distributed samples along the candidate series result in a normally

distributed distance between the candidate and the query. The same

applies for other distributions, independently from the series length

n that does not affect the effectiveness of the pruning strategies.

The above experiments show that the metric distance bounds out-

perform consistently the spatial distance bounds in terms of ratio

of pruned candidates.

4.2 Time performance
In the next set of experiments, we compare the time performance

using the different methods to initialize the distance partitions Si to

evaluate Top-k-PNN (D,Q, k) queries. Figure 10 reports the time

performance when varying the number of samples m for the spa-

tial, metric and exact distance bounds. The metric distance bounds

are the best performing, followed by the spatial and then the exact

distance bounds. We observe that the evaluation of Top-k-PNN (D,
Q, k) queries using the metric distance bounds can be up to 18%
faster than using spatial distance bounds. This is due to the tighter

distance bounds when using the spatial bounds. It is worth noting

that the exact distance bounds are even tighter, but the high incurred

CPU cost for the evaluation of the exact distance samples leads to

inferior overall performance.

We report the time performance when varying the perturbation

standard deviation σ with distance partitions initialized using spa-

tial, metric and exact distance bounds in Figure 11. then the ex-

act distance bounds. As the perturbation standard deviation σ in-

creases, all methods perform nearly the same. This is due to the

increasing probability of overlaps between the distance distribu-

tions. As this probability increases, the CPU cost is mainly driven

by the repeated evaluation of the PNN bounds and the iterative re-

finements of the distance partitions.

The time performance with varying number of uncertain series

N is illustrated in Figure 12. The distance partitions are initial-

ized using the spatial, metric and exact distance bounds. Simi-

larly to the previous experiments, the metric distance bounds are

the best performing, followed by the spatial and then the exact dis-

tance bounds. As expected, the CPU cost increases linearly to the

dataset size, N .

Finally, we evaluated the time performance when pruning the

candidates with the metric distance bounds using a linear scan over

all candidates and our adaptation of the M-tree index. The M-tree

index proved to be competitive to a linear scan only when the per-

turbation standard deviation σ is low, i.e., σ = 0.2. In conclusion,

the distance partitions initialized using the metric distance bounds

using one pivot series are the best performing. In the rest of this

study we initialize the distance partitions Si using the metric dis-

tance bounds, initialized through a linear scan over the dataset.

4.2.1 Comparison to Prior Approaches

In the next series of experiments, we compare the time perfor-

mance of the algorithms Baseline and the different versions of the

Holistic-PkNN algorithm. We may omit the prefix Holistic for ease

of presentation in some of the figures. Recall that the Holistic-

PkNN-Virtual technique is our adaptation of the Find-TopK-PNN

algorithm [8].

We report the time performance when varying the number of

samples m for the Baseline and Holistic-PkNN algorithms in Fig-

ure 13. The graph shows that Holistic-PkNN-HS is the best per-
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the number of samples m.
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Figure 11: Time performance when varying

the perturbation standard deviation σ.
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Figure 12: Time performance when varying

the number of uncertain series N .
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Figure 13: Time performance when varying

number of samples m for Baseline and Holistic-

PkNN algorithms.
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Figure 14: Time performance when varying

the perturbation standard deviation σ for Base-

line and Holistic-PkNN algorithms.
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Figure 15: Time performance when varying

k for the Baseline, Holistic-PkNN and Holistic-

PkNN-Virtual algorithms.

forming, while the Baseline approach performs the worst. We note

that Holistic-PkNN-HS is up to two orders of magnitude faster then

the Holistic-PkNN-Virtual algorithm. This is due to the larger num-

ber of iterations of the Holistic-PkNN-Virtual algorithm, that con-

tinuously increases the number of candidates until convergence.

The larger number of iterations is associated with a larger, very

CPU intensive, number of evaluations of the PNN probability bounds.

The Baseline approach does not rely on pruning strategies to re-

duce the number of candidates. The distinct distance samples in

Dist(Q,Xi) are used in the pairwise comparisons in the baseline

algorithm. The incurred CPU cost is up to three orders of magni-

tude higher than that of the algorithms in the Holistic-PkNN family.

In the next experiment, we assess the time performance when

varying the perturbation standard deviation σ for the Baseline and

Holistic-PkNN algorithms. The results are reported in Figure 14

and show that Holistic-PkNN-HS is in general the best performing.

The Baseline approach exhibits again the worst performance. The

CPU cost of the Baseline algorithm is not affected by the properties

of the perturbation, and is constant. We observe that the Holistic-

PkNN-Virtual algorithm is the best performing when the pertur-

bation standard deviation σ is lower than 0.2. An in-depth anal-

ysis of the execution revealed that a lower number of candidates

is retrieved by the Holistic-PkNN-Virtual when the perturbation is

sufficiently low. The reduced number of candidates is limiting the

number of evaluations of the PNN probability bounds across all

iterations in contrast to the Holistic-PkNN-HS algorithm.

We report our results on performance when varying the number

k of retrieved uncertain series in Figure 15. Holistic-PkNN is the

best performing. We observe that the Baseline approach determines

the exact PNN probability estimates for all candidates and the CPU

cost incurred in the identification of the top-k result set is negligi-

ble if compared to the computational cost of evaluating the PNN

estimates. The Holistic-PkNN algorithm is more than one order of

magnitude faster than the Holistic-PkNN-Virtual method when k is

low.

We conclude by reporting the time performance when varying

the uncertain series length n. The results in Figure 16(a) show

that Holistic-PkNN is the winner across the entire range of values,

with a larger margin for the low range of series lengths. We ob-

serve that the incurred CPU time cost does not increase steadily as

the series length n increases. An in-depth analysis of the execution

traces revealed that, as n increases, the difference between the clos-

est and the farthest distance samples increases. In other words, as

the dimensionality (n) increases, the distance samples are spread

in a wider region. This results in a lower probability of overlaps

between the distance partitions, eventually resulting in less active

candidates in X∗ as reported in Figure 16(b). Fewer active can-

didates in X∗ translate to fewer PNN probability bound estimates

and fewer refinements of the distance partitions. We further note

that the time required to determine the distance samples increases

linearly to n. The resulting time performance is a combination of

these two characteristics of the distance distributions.

Following the results presented in Section 4.1, we conclude that

the Holistic-PkNN-Virtual algorithm combined with M-trees is ex-

pected to be the best performing only when the perturbation stan-

dard deviation is low. In general though, the Holistic-PkNN-HS

algorithm using a linear scan to initialize the distance partitions Si

with metric distance bounds is to be preferred.
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Figure 16: Graph (a) shows the time performance when varying the

uncertain series length n for the Baseline, Holistic-PkNN and Holistic-

PkNN-Virtual algorithms. Graph (b) reports the ratio of candidates in

the active set X∗ when varying the uncertain series length n for the

Holistic-PkNN algorithm.

1000 10000 100000
Number of uncertain series (N)

0
100

101
102
103
104
105
106
107

T
im

e
 (
m
s)

stddev=0.1
stddev=0.2
stddev=0.3

1000 10000 100000
Number of uncertain series (N)

0
100

101
102
103
104
105
106
107

T
im

e
 (
m
s)

m=100
m=200
m=300

(a) (b)

Figure 17: Holistic-PkNN time performance when varying the num-

ber of uncertain series N for (a) different levels of perturbation stan-

dard deviation σ, and (b) number of uncertain series samples m.

4.2.2 Scalability

Finally, we report our results on scalability. Figure 17(a) shows

the time performance for different levels of perturbation standard

deviation σ, when varying the number of uncertain series N using

the Holistic-PkNN algorithm. We observe that the incurred CPU

cost for N = 10, 000 and perturbation standard deviation σ = 0.3
is similar to the time performance for N = 100, 000 and pertur-

bation standard deviation σ = 0.1. The size of the dataset N and

the perturbation standard deviation σ are two parameters that affect

significantly the time performance of the algorithm, and even rel-

atively small datasets are challenging when a large fraction of the

distance distributions overlap (i.e., when σ is large). Figure 17(b)

shows the time performance of Holistic-PkNN for different config-

urations of the number of uncertain series N and samples m. The

incurred time increases as N and m increase, with N being the

most critical parameter.

These experiments show that Holistic-PkNN-HS can be used in

practice for large datasets, even with a high perturbation standard

deviation σ and number of samples m.

4.3 Quality results
In this section, we report our results on the classification accu-

racy defined in Eq. 10 on synthetic and real datasets constructed to

evaluate the accuracy. Figure 18(a) reports the accuracy for meth-

ods DUST, Euclidean-Avg and Top-k-PNN (D,Q, k) on a synthetic

dataset, where the uncertain series are obtained by perturbing the

query series with an increasing standard deviation σ′. As the per-

turbation increases, the accuracy for DUST and Euclidean-Avg de-

teriorates, while Top-k-PNN (D,Q, k) manages to maintain a high

accuracy. In Figure 18(b), we present our results on 45 real datasets.
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Figure 18: Accuracy when (a) varying the NN perturbation standard

deviation σ′, and (b) varying the perturbation standard deviation σ.

The experiment shows the accuracy by varying the perturbation

standard deviation σ for the NN classifier defined using the algo-

rithms DUST, Euclidean-Avg and Top-k-PNN (D,Q, k). We ob-

serve that, as the perturbation standard deviation increases, the top-

1 probable nearest neighbor formulation is more accurate than the

DUST and Euclidean-Avg algorithms. The DUST algorithm re-

quires to know the exact value distribution at each time-stamp. In

our experiments we assume the normal distribution whose parame-

ters are estimated from the samples. Moreover, DUST uses lookup

tables of predetermined probability estimates to make the algorithm

tractable. The errors due to these approximations cause the DUST

algorithm to perform worse than the Euclidean-Avg method.

5. RELATED WORK
The problem of modeling, querying and mining uncertain data

has been investigated extensively in recent years [4, 13]. At the

same time we have witnessed an increased interest in data series

management and processing [32, 23, 22, 9], related to data pro-

duced by sensors, or scientific experiments.

The ”possible worlds” model [2] formalizes uncertainty by defin-

ing the space of the possible instantiations of the database. Instan-

tiations must be consistent with the semantics of the data. For

example, in a spatio-temporal database there may be two distinct

possible trajectories representing the uncertain trajectory of a mov-

ing object, but an object cannot be in two different locations at the

same time. In the context of time series databases, a series can

be formalized as a point in a high-dimensional space with corre-

lated dimensions. An uncertain series can then be represented by

enumerating its possible instantiations under the ”possible world”

semantics. Prior works on uncertain time series [27, 31, 7] intro-

duce the additional assumption of independence across different

timestamps. Nevertheless, temporal correlation is a a well known

property of time series data and ignoring it may lead to erroneous

results. The interested reader can find an analytical and experimen-

tal comparison of the aforementioned methods in [14].

The evaluation of top-k probable nearest neighbor queries on un-

certain data is a well recognized problem, that can be tracked back

to the seminal work of Cheng et al. [12]. Subsequently many dif-

ferent formulations of ”nearest neighbor” in uncertain data have

been proposed [20, 29, 21]. A detailed review of the state of the

art can be found in [18]. In [12], the authors dissect the process-

ing of NN queries in four steps: projection, pruning, bounding and

evaluation. The projection phase returns the regions bounding the

object uncertainties, the pruning phase removes from the list of can-

didate objects with zero probability of being the NN, and finally the

bounding and evaluation phases refine the probability bounds until

the NN object is identified. The traits of this four-step approach
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can be found in nearly all the subsequent studies tackling the same

problems.

In [8] Beskales et al. proposed a method where the non-retrieved

objects are modeled by means of a special ”virtual” object that rep-

resents them all. When the ”virtual” object is considered for in-

sertion in the result set, a new real object is retrieved in minimum-

distance order to be processed. The retrieved objects are repre-

sented by spatial regions that bound their uncertain location. When

the bounding regions overlap, they are partitioned to obtain a more

fine-grained representation of the object uncertainties. The algo-

rithm terminates when the ”virtual” object (and thus all non-retrieved

objects) can be safely pruned and the bounding regions of the ob-

jects have been sufficiently refined to discriminate their NN prob-

abilities. In [26] Re et al. proposed the Multi Simulation (MS) al-

gorithm to discern the top-k most probable NN objects by running

in parallel several Monte-Carlo simulations. The objects that can-

not be safely added to the result set of that cannot be discarded are

identified by using the notion of critical region. The critical region

is a region in the probability space. Each object is represented by its

probability interval of being the NN. The objects having their prob-

ability intervals overlapping with the critical region are selected for

another simulation step until convergence (i.e., the critical region

is empty). On the contrary to our approach, the NN probability

bounds for different objects are not correlated.

6. CONCLUSIONS
Uncertain data series can be used to represent data series whose

values are imprecise or inherently uncertain. In this work, we for-

malize the top-k nearest neighbor problem in uncertain data se-

ries, and propose a comprehensive model for uncertain series. Prior

studies assume the independence of the value distribution at neigh-

boring time-stamps as a simplifying assumption, compromising the

accuracy of the model in order to reduce the problem complexity.

In this study, we introduce the Holistic-PkNN algorithm, a method

that captures both uncertainty and correlation, using novel metric

bounds that are specifically suited to uncertain series. We further

introduce a novel selection strategy that tightens the probability

bounds using a small number of iterations and probability estimate

computations. The experimental evaluation with real and synthetic

datasets demonstrates the efficiency and effectiveness of the pro-

posed approach.
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