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ABSTRACT

Large-scale real-world graphs are known to have highly skewed
vertex degree distribution and highly skewed edge weight
distribution. Existing vertex-centric iterative graph com-
putation models suffer from a number of serious problems:
(1) poor performance of parallel execution due to inherent
workload imbalance at vertex level; (2) inefficient CPU re-
source utilization due to short execution time for low-degree
vertices compared to the cost of in-memory or on-disk vertex
access; and (3) incapability of pruning insignificant vertices
or edges to improve the computational performance. In this
paper, we address the above technical challenges by design-
ing and implementing a scalable, efficient, and provably cor-
rect two-tier graph parallel processing system, GraphTwist.
At storage and access tier, GraphTwist maximizes parallel
efficiency by employing three graph parallel abstractions
for partitioning a big graph by slice, strip or dice based
partitioning techniques. At computation tier, GraphTwist
presents two utility-aware pruning strategies: slice pruning
and cut pruning, to further improve the computational per-
formance while preserving the computational utility defined
by graph applications. Theoretic analysis is provided to
quantitatively prove that iterative graph computations pow-
ered by utility-aware pruning techniques can achieve a very
good approximation with bounds on the introduced error.

1. INTRODUCTION
Graph as an expressive data structure is popularly used

to model structural relationship between objects in many
application domains, such as social networks, web graphs,
RDF graphs, sensor networks, protein interaction networks.
These graphs typically consist of millions of vertices and
billions of edges. Efficient iterative computation on such
huge graphs is widely recognized as a challenging big data
research problem, which has received heated attention re-
cently. We can broadly classify existing research activities
on scaling iterative graph computations into two categories:
(1) Distributed solutions and (2) Single PC based solutions.

This work is licensed under the Creative Commons Attribution­
NonCommercial­NoDerivs 3.0 Unported License. To view a copy of this
license, visit http://creativecommons.org/licenses/by­nc­nd/3.0/. Obtain
permission prior to any use beyond those covered by the license. Contact
copyright holder by emailing info@vldb.org. Articles from this volume
were invited to present their results at the 41st International Conference on
Very Large Data Bases, August 31st ­ September 4th 2015, Kohala Coast,
Hawaii.
Proceedings of the VLDB Endowment, Vol. 8, No. 11
Copyright 2015 VLDB Endowment 2150­8097/15/07.

Most of existing research efforts are dedicated to the dis-
tributed graph partitioning strategies that can effectively
break large graphs into small, relatively independent part-
s [3,13,14,23,24,27]. Several recent efforts [15,20,22,25,30]
have successfully demonstrated huge opportunities for op-
timizing graph processing on a single PC through graph
parallel abstractions that are efficient in both storage or-
ganization and in-memory computation.

However, to the best of our knowledge, existing approach-
es fail to address the following challenges:

• Efficient vertex-oriented aggregation. Existing graph
abstractions mainly focus on parallelism strategies at each
vertex and its associated edges (its adjacency list). How-
ever, the vertex-centric parallel tasks dramatically increase
the inter-vertex communication overhead regardless whether
the parallel tasks are executed in local memory or shared
memory across a cluster of compute nodes. Thus, how to
perform vertex-oriented aggregation operations at higher
graph parallel abstractions to improve the efficiency re-
mains to be very challenging for big graphs.

• Efficient handling of large graphs with highly skewed

vertex degree distribution and highly skewed edge

weight distribution. Large-scale graphs typically have
skewed vertex degree distribution. Concretely, a relatively
small number of vertices connect to a large fraction of
graph, but a large number of vertices have very few or no
links to other vertices. Some real-world graphs, say DBLP
coauthor graph, have skewed edge weight distribution. Par-
titioning a large graph in terms of vertex partitions without
considering skewed vertex degree distribution or edges with
skewed weight distribution may result in substantial work-
load imbalance in parallel computation. We argue that
different graph parallel abstractions should be supported
at both access tier and computation tier to promote well-
balanced computation workloads, better CPU resource u-
tilization, and more efficient graph parallel executions.

• Resource-adaptive partitioning of big graphs. Given
that different types of iterative graph applications com-
bined with different sizes of graphs often have different
resource demands on CPU, memory and disk I/O, choosing
the right granularity of graph parallel abstractions allows
big graph analysis to be performed on any commodity PC.
An important technical challenge is to devise tunable multi-
level graph parallel abstractions such that the graph pro-
cessing system enables more balanced parallel workloads,
more effective resource utilization for parallel computation,
and at the same time offer the best access locality by max-
imizing sequential access and minimizing random access.
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Graph Type #Vertices #Edges AvgDeg MaxIn MaxOut
Yahoo [29] simple graph 1.4B 6.6B 4.7 7.6M 2.5K
Twitter [19] simple graph 41.7M 1.5B 35.25 770.1K 3.0M
Facebook [12] simple graph 5.2M 47.2M 18.04 1.1K 1.1K
DBLPS [1] simple graph 1.3M 32.0M 40.67 1.7K 1.7K
DBLPM [1] multigraph 0.96M 10.1M 21.12 1.0K 1.0K
Last.fm [2] multigraph 2.5M 42.8M 34.23 33.2K 33.2K

Table 1: Real-world Datasets

• Exploring graph utility-aware pruning techniques.

Iterative graph computations on large graphs with millions
of vertices and billions of edges can generate the intermedi-
ate results that are orders of magnitude bigger than the
original graph. One way to improve the computational
performance on such big graphs is to prune those vertices
or edges that do not directly contribute to the utility of
graph computation as early as possible. For example, when
computing the social influence of authors in the area of DB
on the DBLP coauthor graph, those coauthor edges that
are not DB specific can be pruned at early stage. Simi-
larly, when computing the PageRank scores, those smaller
elements in the transition matrix can be pruned in the
subsequent iterations. Such pruning can significantly speed
up the iterative graph computations while maintaining the
desired graph utility. An important challenge is to design
a graph storage data structure to flexibly support such
utility-aware progressive pruning techniques.

To address these new challenges, we develop GraphTwist,
an innovative graph parallel abstraction model with two-tier
optimizations for processing big graphs with skewed vertex
degree distribution and skewed edge weight distribution.
The main contributions of this paper are summarized below.

• We present a scalable two-tier graph parallel aggregation
framework, GraphTwist, for efficiently executing complex
iterative computation tasks over large-scale graphs on a
shared-memory multiprocessor computer.

• At storage and access tier, we propose a compact data
structure for big graphs augmented with three divide-and-
conquer graph parallel abstractions. We introduce the in-
dex structure, the basic algebra and its core operations to
support resource-adaptive graph partitioning by selecting
the right granularity of parallel abstractions based on both
the system capacity and the utility of graph algorithm.

• At computation tier, we present two utility-aware pruning
strategies: slice pruning and cut pruning, to further im-
prove the performance by removing non-contributing ver-
tices or edges while preserving the computational utility
with bounds on the introduced error.

• Empirical evaluation over real large graphs demonstrates
that GraphTwist outperforms existing representative graph
parallel models in terms of both effectiveness and efficiency.

2. ACCESS­TIER OPTIMIZATION
Large-scale graphs often have skewed vertex degree distri-

bution. Table 1 shows the vertex degree distributions of sev-
eral real graph datasets used in our experimental evaluation.
For example, the Yahoo dataset has average vertex degree
of 4.7 but maximum indegree of 7.6 million and maximum
outdegree of 2.5 thousand. Similar observations can be made
on several other datasets. Clearly, by replying on the simple
vertex block based graph partitioning (i.e., each vertex and
its adjacency list is in one partition), existing graph parallel
models may result in very poor parallel performance due

to substantial workload imbalance at vertex level in parallel
computation. In addition, the processing time for vertices
with small degree is very short compared to the in-memory
and on-disk access latency, leading to inefficient CPU uti-
lization in addition to poor workload balance.

Although many graph datsets (Yahoo, Twitter and Face-
book) originally have 0/1 edge weights or do not have explic-
it edge weights, some real graphs (DBLP) have skewed edge
weight distribution. In addition, in many iterative graph ap-
plications, we need to transform the original graphs into the
weighted graphs. A typical example is the transition matrix
of graph, which is widely applied to many real applications,
such as PageRank, graph clustering and graph classification.
Consider PageRank as an example, we need to iteratively
calculate the multiplication between the transition matrix
and the ranking vector. However, the transition matrix
often has skewed edge weight distribution and small weight
values may contribute little to the overall quality of the
PageRank ranking result. Thus, GraphTwist is designed to
address these issues by introducing two-tier optimizations
to speed up iterative graph computations. The low-tier
optimization, built on top of a scalable graph parallel engine
GraphLego [35], utilizes a compact and flexible data struc-
ture and enables access locality optimization (Section 2).
We introduce a graph utility-aware filtering method as the
high-tier optimization, while preserving the desired quality
with provable error bound (see Section 3 for detail). Our
two-tier optimization model is designed by enabling careful
interaction between access tier and computation tier for
fast iterative graph computation. The storage and access-
tier optimizations in GraphTwist enable us to exercise the
optimizations at computation tier more effectively.

2.1 Compact Storage Using 3D Cube
In GraphTwist, we use a 3D cube as the internal repre-

sentation of a graph. Let G=(V,E,W ) be a directed graph
where V is a set of n vertices (i.e., n=|V |), E is a set of
directed edges, and W is a set of weights of edges in E.
Each vertex is associated with one or more states. Each
edge e=(u, v)∈E is referred to as the in-edge of destination
vertex v and the out-edge of source vertex u respectively.
Two vertices may be connected by multiple parallel edges.
A graph G is modeled as a 3-dimensional representation of
G, called 3D cube, denoted as I=(S,D,E,W ) where S=V
represents the set of source vertices and D=V specifies the
set of destination vertices. If u∈S, v∈D and (u, v)∈E, then
(u, v).weight=w∈W and (u, v, w) represents a cell with u, v,
w as coordinates. Modeling a graph as a 3D cube allows us
to utilize four alternative types of graph partitioning [35]:
slice by dimension W , strip on slice by dimension S or
D, dice by all three dimensions, and vertex cut on dice.
Each represents an alterative partitioning granularity and
partitions a graph into multiple subgraphs such that the
edge sets of these subgraphs are disjoint and similar in size.

Dice Partitioning with DVPs and SVPs. The dice
partitioning method partitions a large graph G into multiple
dices along all three dimensions of its 3D cube I and stores
G in dice subgraph blocks. Let I=(S,D,E,W ) be the 3D
cube of a graph G=(V,E,W ), we sort the vertices in V
by the lexical order of their vertex IDs, and then parti-
tion the destination vertices D into q disjoint partitions,
called destination-vertex partitions (DVPs). Similarly,
we partition the source vertices S into r disjoint partitions,
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Figure 1: Dice Partitioning: An Example

called source-vertex partitions (SVPs). A dice of I is
a subgraph of G, denoted as H=(SH , DH , EH ,WH), sat-
isfying the following conditions: SH⊆S is a SVP, a sub-
set of source vertices, DH⊆D is a DVP, a subset of des-
tination vertices, WH⊆W is a subset of edge weights, and
EH={(u, v)|u∈SH , v∈DH , (u, v)∈E, (u, v).weight∈WH} is a
set of directed edges, each with its source vertex from SH ,
its destination vertex from DH and its edge weight in WH .
For an undirected graph, we model each undirected edge as
two directed edges with opposite directions.

Given that different graph applications often use either or
both of in-edges and out-edges, to provide efficient access
for different graph applications, we store an original graph
in two types of 3D cubes: in-edge cube and out-edge

cube by maintaining two types of dices for each vertex
v in G: one is in-edge dice (IED) containing only in-
edges of v and another is out-edge dice (OED) containing
only out-edges of v. Edges in each IED (OED) are stored
by the lexical order of their source (destination) vertices.
Unlike a vertex and its adjacency list (edges), a dice is
a subgraph block comprising a SVP, a DVP and the set
of edges that connect source vertices in the SVP to the
destination vertices in the DVP. Thus, a high-degree vertex
and its edges are typically partitioned into multiple dices
with disjoint edges but overlapping vertices. Also some
pairs of DVP and SVP may not form a dice partition when
EH=Ø. Figure 1 (b) shows a dice partitioning of an example
graph in Figure 1 (a), consisting of four dices with disjoint
edge sets and the vertices in multiple dices are highlighted.
Figure 2 shows the storage organization of the dice partitions
in Figure 1 (b), consisting of a vertex table, an edge table,
and the mapping of vertex ID to the list of in-edge partition
IDs and the list of out-edge partition IDs.

Slice Partitioning. The slice partitioning method is an
effective parallel abstraction to deal with the skewed edge
weight distribution. It partitions a 3D cube of a graphG into
p slices along dimension W . p is chosen such that edges with
similar weights are clustered into the same partition. We
can speed up iterative graph algorithms on a simple graph
(non-multigraph) by performing parallel computation on p
slices. Let I=(S,D,E,W ) denote a 3D cube of graph G =
(V,E,W ). We define a slice of I as J=(S,D,EJ ,WJ) where
WJ⊆W is a subset of edge weights, and EJ={(u, v)|u∈S, v∈D
, (u, v).weight∈WJ , (u, v)∈E} is a set of directed edges from
S to D with weights in WJ . We maintain two kinds of slices
for G: in-edge slices containing in-edges of destination
vertices in D and out-edge slices comprising out-edges of
source vertices in S.
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Figure 2: Dice Partition Storage (IEDs and OEDs)

Consider the DBLP coauthor multigraph as an example, it
allows for parallel edges between a pair of coauthor vertices,
each edge denoting the number of coauthored publications
in one of 24 computer research fields [9]: AI, AIGO, ARC,
BIO, CV, DB, DIST, DM, EDU, GRP, HCI, IR, ML, MUL,
NLP, NW, OS, PL, RT, SC, SE, SEC, SIM, WWW. Figure 3
shows an illustrative example of a coauthor multigraph with
three types of edges: AI, DB and DM, representing the
number of coauthored publications in AI conferences (IJ-
CAI, AAAI and ECAI ), DB conferences (SIGMOD, VLDB
and ICDE ), and DM conferences (KDD, ICDM and SDM ),
respectively. By slice partitioning, we obtain three slices,
one for each category in the bottom of Figure 3. Clearly,
to compute the coauthor-based social influence among re-
searchers in the area of DB, we only need to perform iterative
computation with joint publications on DB conferences by
using the DB slice in Figure 3.

Strip Partitioning. The strip partitioning method cuts
a slice of the 3D cube of a graph G along either dimension S
or dimension D to obtain out-edge or in-edge strips. Com-
pared to the dice partitioning method that cuts the 3D cube
of a graph (or a slice of graph) along both S and D, strips
represent larger partition units than dices. A strip can be
viewed as a sequence of dices stored physically together. By
cutting an in-edge slice J=(S,D,EJ ,WJ) along dimension
D into q in-edge strips, with q being the number of DVPs,
each strip is denoted as K=(S,DK , EK ,WJ), where DK⊆D
is a DVP, andEK={(u, v)|u∈S, v∈DK , (u, v).weight∈WJ , (u
, v)∈EJ} is a set of directed edges from S toDK with weights
in WJ . An in-edge strip contains all IEDs of a DVP.
Similarly, an out-edge strip can be defined as all OEDs of
a SVP. Figure 3 gives an example of strip partitioning over
the DB slice: (1) all coauthored DB links of Daniel M. Dias,
Michail Vlachos and Philip S. Yu, and (2) all coauthored DB
links of Jiawei Han, Sangkyum Kim and Tim Weninger.

Vertex Cut. A vertex cut is introduced in GraphTwist
as a logical partition unit. A dice partition can be viewed as
a subgraph composed of multiple vertex cuts, one per ver-
tex. Formally, given an IEDH=(SH , DH , EH ,WH), an out-

edge cut of H is denoted as L(u)=(u,DH , EL,WH) where
u∈SH and EL={(u, v)|v∈DH , (u, v)∈EH , (u, v).weight∈WH}.
L(u) contains all out-edges of u in this IED. Since edges
in each IED are stored by the lexical order of their source
vertices, we can easily split an IED into multiple out-edge
cuts. Similarly, an OED can be viewed as a set of in-edge
cuts, each containing the in-edges between a set of source
vertices and a destination vertex. One of the utility-aware
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Figure 3: Slice Partitioning and Strip Partitioning: A Real Example Extracted from DBLP

pruning optimization at the computation tier is vertex-based
pruning based on vertex cuts (see Section 3.2 for detail).

2.2 Fast Access and Optimization
We use our API function GraphLoad to load an input

graph into the GraphTwist store by building its 3D cube
representation. We then invoke the GraphPartition routine
to obtain the graph partitions at the chosen partition granu-
larity (slice, strip or dice), and build the partition-level index
and the vertex-to-partition index. The graph metadata is
collected during the building time, such as vertex degree,
directed or undirected graph, and so on.

We also provide a conventional Scatter and Gather like
vertex-oriented programming interface and a set of library
functions to facilitate users to write their iterative graph
applications. Users only need to define their iterative algo-
rithms in terms of vertex-level computation using the library
functions, such as Scatter and Gather. The Scatter function
on a vertex v sends its vertex state from the previous iter-
ation to a set of v’s neighbors, say the destination vertices
of the out-edges of v. The Gather function on a vertex v

works on a set of v’s neighbors, e.g., the source vertices of
the in-edges of v, to aggregate their vertex states in order to
update its vertex state. GraphTwist will compile the user-
provided code as a sequence of GraphTwist internal function
(routine) calls that understand the internal data structure
for accessing the graph by subgraph blocks. These routines
can carry out the iterative computations on each vertex in
the input graph slice by slice, strip by strip, dice by dice,
cut by cut. For example, Connected Components algorithm
can be written by simply proving the computation tasks for
a vertex, as shown in Algorithm 1.

Index-based Optimization. To enable fast access to
different kinds of partitions, we index slices, strips, dices
and cuts using a general index structure. For example,
we construct the dice-level index as a dense index, where
each index entry maps a dice ID and its SVP (or DVP)
to the chunks on disk where the dice block is physically
stored. Then we build the strip-level index as a two-level
sparse index, where each index entry maps a strip ID and
its DVP (or SVP) to the dice-level index entries relevant
to this strip and then maps each dice ID and its SVP (or
DVP) to the dice chunks in the physical storage. Similarly,
the slice-level index is a three-level sparse index with slice
index entries at the top, strip index entries at the middle

and dice index entries at the bottom, enabling fast retrieval
of dices with a slice-specific condition. We also maintain a
vertex-to-partition index that maps each vertex to the set
of partitions containing in-edges or out-edges of this vertex,
as shown in Figure 2.

Parallelism at Partition Level and Vertex Level.

GraphTwist supports parallel computation at two levels: (1)
the partition level (slice, strip or dice) and (2) the vertex
level. In GraphTwist, the edges in different partitions are
disjoint no matter whether the partition unit is slice, strip
or dice. In addition, the vertices in different in-edge (out-
edge) dices or strips by design belong to different DVPs
(SVPs), which are disjoint from each other (recall Figure 2),
even if a vertex may belong to both a DVP and a SVP.
Thus, we group the dice or strip partitions by their DVPs
(SVPs) such that the partitions associated to the same DVP
(or SVP) form a DVP (or SVP) specific partition group.
The iterative computation on a graph is implemented as
the iterative computation on each DVP (or SVP) specific
partition group. This ensures that the vertex update can be
safely executed on multiple strip or dice groups in parallel.
Moreover, the vertex update can also be safely executed on
multiple vertices within each strip or dice group in parallel
since each vertex within the same DVP (or SVP) is unique.
For slice partitions, each vertex within the same slice is
unique. Thus, GraphTwist can safely perform the parallel
computation at both the partition level and the vertex level.

By partitioning a big graph into multiple subgraphs based
on the chosen partition granularity (slice, strip, dice or cut),
we divide iterative computation on big graph into iterative
computations on multiple subgraphs in parallel with two
steps: (1) calculate partial vertex updates in each subgraph
in parallel; and (2) aggregate partial vertex updates from all
subgraphs to generate complete vertex update.

Handling High-degree Vertices with Partial Ver-

tex Update. However, when a DVP (or SVP) contains
too many high-degree vertices, we may need to perform
the parallel partial updates at both the partition level and
the vertex level. Figure 4 presents an example of partial
update at the partition level. There are k available threads
T1, · · · , Tk in the system and m associated edge partitions
P1, · · · , Pm in the partition group of SV Pj . One thread
processes only one edge partition at a time. We classify
vertices in each partition into three categories: (1) internal
vertices belonging to only one partition; (2) border vertices
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Algorithm 1 Connected Components

Initialize(v)
v.label = v.id;

Scatter(v, EP )
for each edge e of v in EP
//send messages to v’s neighbors in EP
msgs(e.neighbor) = msgs(e.neighbor) ∪ v.label;

Gather(v)
msg = min(msgs); //receive messages from v’s neighbors
if v.label > msg
v.label = msg; //choose the minimum label of v’s neighbors as its

component label
if v.changed == 0 //verify whether v’s component label has been

changed since the last iteration
v.changed = 1;

Apply(v, i)
if v.changed == 0 //aggregate the number of vertices with un-

changed component label since the last iteration
+ + i;

belonging to multiple partitions but their vertex updates
are confined to only one partition by the given graph algo-
rithm; and (3) critical border vertices belonging to multiple
partitions and their vertex updates depends on multiple
partitions. In the example of Figure 2, given the graph
application of PageRank, which only uses in-edges, the par-
tition group of DV P1 contains only one dice partition P1.
v2 and v4 are internal vertices, and v3, v5 and v6 are border
vertices. Similarly, the partition group of DV P2 contains
only one dice partition P3, v7, v8, v9, and v10 are internal
vertices, and v11 is border vertex. The partition group of
DV P3 contains two dice partitions: P2 and P4. Vertex v14
is internal vertex, and v13 and v15 are border vertices for P2.
Vertex v16 is internal vertex for P4. Vertex v12 is the only
critical border vertex for both P2 and P4, because only v12
receives partial updates from both partitions.

For internal vertices and border vertices, we can commit
their vertex updates upon the completion of the partition-
level parallel computation in each iteration. However, for
critical border vertices (e.g. vi in Figure 4), its associat-
ed edges may distribute into multiple edge partitions, say
P1, · · · , Pm. In order to avoid conflict, GraphTwist main-
tains a partial update list with an initial counter of 0 for each
critical border vertex in memory. If a thread Tx (1 ≤ x ≤ k)
processes an edge partition Py (1 ≤ y ≤ m) and needs to
update the state of vi, Tx first executes the Scatter process
to put the partial update vi,y by Py (a temporary local
copy of vertex vi) into the partial update list, and then
check if counter is equal to the number of vi’s associated
edge partitions from the vertex map, as shown in Figure 2.
If not, Tx performs counter++ and the scheduler assigns
an unprocessed edge partition to Tx. Otherwise, we know
that Py is the last processed edge partitions (e.g. Pm in
Figure 4). Thus, Tx continues to perform the Gather process
to aggregate all partial updates of vi in its partial update
list to generate a complete update of vi.

2.3 Optimization for Partitioning Parameters
Typically, we partition a large graph into p slices along di-

mension W with each slice of roughly the same size. The pa-
rameter p is determined based on the estimation of whether
each slice and its intermediate computation results will fit
into the available memory. If a slice and its intermediate
results are too big to fit into the working memory for a
given graph application, we continue to partition the slice
into q in-edge strips (or out-edge strips) along dimension D

T1 T2

Scatter, Check counter, counter++

Thread

Gather

P1 P2

Tk Tx

vi,1 vi,2 vi,k vi,m

PmPk

vi

T1 T2

Pk+1 Pk+2

Tk

vi,k+1 vi,k+2 vi,2k

P2k

counter

S
V

P
j

Figure 4: Multithreading Update and Asynchronization

(or S). The setting of q should ensure that each in-edge
strip (or out-edge strip) and its intermediate results will fit
into the available memory. Upon exceptions such as skewed
vertex degree distribution, we continue to partition the in-
edge strips (or out-edge strips) into r partitions with equal
size, resulting in q×r associated IEDs (or OEDs). r should
be chosen such that each IED (or OED) can be fully loaded
into the memory from disk.

However, such online simple estimation-based strategy for
setting the parameters p, q and r may not be optimal. This
motivates us to design an offline regression-based learning
method. First, we model the nonlinear relationship between
independent variables p, q or r and dependent variable T
(the runtime) as an nth order polynomial by utilizing multi-
ple polynomial regression [10]. We obtain a regression model
that relates T to a function of p, q, r, and the undetermined
coefficients α: T ≈ f(p, q, r, α) =

∑np

i=1

∑nq

j=1

∑nr

k=1 αijk

piqjrk + ǫ where np, nq and nr are the highest orders of
variables p, q or r, αijk are the regression coefficients, and
ǫ represents the error term of the model. We then select all
possible m samples of (pl, ql, rl, Tl) (1 ≤ l ≤ m) from the
existing experiment results, such as the points in Figure 16
(b), to generate m linear equations:

Tl =

np
∑

i=1

nq
∑

j=1

nr
∑

k=1

αijkp
i
lq

j
l r

k
l + ǫ, 1 ≤ l ≤ m (1)

We adopt the least squares approach [6] to solve the above
overdetermined linear equations and generate αijk and ǫ. Fi-
nally, we utilize a successive convex approximation method
(SCA) [16] to solve this polynomial programming problem
with the objective of minimizing the predicted runtime, i.e.,
minp,q,r

∑np

i=1

∑nq

j=1

∑nr

k=1 αijkp
iqjrk+ǫ s.t. 1 ≤ p ≤ |W |, 1 ≤

q ≤ n, 1 ≤ r ≤ n, to generate the optimal p, q and r.

3. COMPUTATION­TIER OPTIMIZATION
Many large-scale real-world graphs have millions of ver-

tices and billions of edges. Handling such big graphs in mem-
ory may require tens or hundreds of gigabytes of DRAM.
Popular iterative graph applications usually consist of a se-
ries of matrix-vector computations [7,17,34] or matrix-matrix
computations [18, 26, 31–33, 36]. Besides processing graphs
partition by partition, another way to address this problem
is to speed up the iterative computations by pruning some
insignificant vertices or edges based on a certain statisti-
cal measure. For example, PageRank needs to iteratively
calculate the multiplication between the transition matrix
M and the ranking vector R. In GraphTwist, we set rank
entries in R as vertex states and elements in M as edge
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Figure 5: PageRank with Slice Pruning

weights. Given that the core utility of PageRank is to
produce an ordered list of vertices by their PageRank scores,
we want to prune some insignificant edges to speed up the
PageRank computation while preserving the ranking order
of all vertices. Figure 5 presents the transition matrix M of
a given graph with 0/1 edge weights. According to the edge
weight distribution in M, we partition M into two slices:
M1 with edge weights of [0.3, 1] andM2 with edge weights of
(0, 0.3). Given an initial ranking vector R(0) and a damping
factor d, we utilize the transition matrix M to calculate the
exact ranking vector R(1) and use the selected slice M1

to compute the approximate ranking vector R1(1) since the
pruned edges in M2 have relatively small weights. Although
the corresponding ranking scores in R(1) and R1(1) are
somewhat different, the ranking orders in the two ranking
vectors are identical, indicating that the pruning of slice M2

preserves the utility of PageRank.
This motivates us to propose two utility-aware pruning

techniques: slice pruning and cut pruning, to speed up the
iterative graph computations while preserving the compu-
tational utility. Given that matrix multiplication is the
fundamental core for many iterative graph applications, we
use the matrix multiplication as an example to describe two
pruning techniques: (1) speed up matrix multiplication by
pruning insignificant slices with provable error bound, and
(2) accelerate strip multiplication by pruning trivial vertex
cuts in the strips with bounded error.

3.1 Slice Pruning (Subgraph­based Pruning)
The main idea is to reduce the computational cost by

pruning some insignificant slices based on a statistical mea-
sure while preserving the utility of the graph computation.
To speed up the iterative computations, one intuitive idea
is to prune those sparse slices with small weights. We intro-
duce the concept of slice density as a statistical measure to
evaluate the importance of a slice. For presentation conve-
nience, we use a symbol to represent a graph partition and
its matrix (or vector) representation interchangeably when
no confusion occurs. Cube, slice, strip and dice correspond
to matrices, and cut corresponds to vector.

Definition 1. [Slice Density] Let I=(S,D,E,W ) be a
3D cube of a directed graph G=(V,E,W ), and J=(S,D,EJ ,

WJ ) be a slice of I where S=V , D=V , WJ⊆W , and EJ

Algorithm 2 MatrixMultiply(A,B, x, y, q, z)

1: Initialize E[1 · · · ⌊n/q⌋][1 · · · ⌊n/q⌋];
2: for k = 1, · · · , s
3: for l = 1, · · · , t

4: ρ
kl

=
SliceDensity(Ak)∗SliceDensity(Bl)

s
∑

i=1

t
∑

j=1
SliceDensity(Ai)∗SliceDensity(Bj )

;

5: for h = 1, · · · , x∗y independently
6: Pick a, b, a ∈ {1, · · · , s}, b ∈ {1, · · · , t} with Prob(a = k, b = l)

= ρ
kl

, k = 1, · · · , s, l = 1, · · · , t;

7: Φ = Φ ∪ {a}; Ψ = Ψ ∪ {b};
8: parallel for i = 1, · · · , q
9: parallel for j = 1, · · · , q
10: for h = 1, · · · , x∗y
11: F = StripMultiply(A,Φ(h), i, B,Ψ(h), j, z);
12: parallel for each e ∈ F
13: E[e.source][e.destination].AddWeight(e.weight/(x∗y∗

ρ
Φ(h)Ψ(h)

));

14: Split E into p partitions in terms of weight distribution;
15: Write IED[j][i] in p in-edge slices of C̃ to disk;

16: Write OED[i][j] in p out-edge slices of C̃ to disk;

={(u, v)|u∈S, v∈D, (u, v).weight∈WJ , (u, v)∈E}, the densi-
ty of J is defined as follow.

SliceDensity(J) = ‖J‖F =

√

√

√

√

n
∑

u=1

n
∑

v=1

∑

(u,v)∈EJ

w(u, v)2 (2)

where J denotes the slice itself as well as its matrix repre-
sentation, F is the Frobenius norm, and w(u, v) represents
the weight of an edge (u, v). If a slice is dense and has large
edge weights, then it will have a large density.

Next we illustrate how to use the SliceDensity measure
for matrix multiplication with slice pruning to prune the
sparse slices with small weights. Given two matrices A
consisting of s out-edge slices A1, · · · , As and B comprising t
in-edge slices B1, · · · , Bt, we decompose a matrix multiplica-

tion C=A×B into s∗t slice multiplications, i.e., C=
s∑

k=1

t∑

l=1

Ak

×Bl. We propose a Monte-Carlo algorithm to compute
a multiplication approximation: choose “important” x∗y
(<< s∗t) of s∗t slice multiplications to calculate the multi-
plication, while the expectation of the approximate multi-
plication is equal to the exact multiplication. Slice pruning
strategy is two-fold: (1) pick slices according to the amount
of “information” the slices contain; (2) rescale the multipli-
cation to compensate for the slices that are not picked.

Concretely, we first compute the selection probability ρkl
of each pair of slices (Ak and Bl) in terms of their precom-
puted SliceDensity values. Then we independently do x∗y
selection trials and choose x∗y slice pairs from the original
s∗t slice pairs in terms of selection probabilities. The indices
of extracted slices of A and B in the hth trial are kept
in Φ(h) and Ψ(h) respectively. GraphTwist implements
the slice multiplication at the strip level by invoking the
StripMultiply method in Algorithm 3. We also rescale the
edges in F with rescaling factor 1

x∗y∗ρ
Φ(h)Ψ(h)

to compensate

for the slices that are not picked, where ρ
Φ(h)Ψ(h)

denotes

the selection probability of the Φ(h)th slice of A and the
Ψ(h)th slice of B. Thus, the multiplication approximation is

calculated as C̃=
x∗y∑

h=1

AΦ(h)×BΨ(h)

x∗y∗ρ
Φ(h)Ψ(h)

. The edges can be safely

updated in parallel at strip level since F (or E) corresponds

to a unique IED and a unique OED of C̃ such that the IEDs
(or OEDs) generated by different strip multiplications in the
same slice pair are irrelevant to each other.
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The following theorems state that our slice pruning strat-
egy can achieve a good approximation with bounded error.

Theorem 1. Given an actual multiplication C=
s∑

k=1

t∑

l=1

Ak

×Bl, a multiplication approximation C̃=
x∗y∑

h=1

AΦ(h)×BΨ(h)

x∗y∗ρ
Φ(h)Ψ(h)

,

then the expectation E(C̃(i, j))=C(i, j) for ∀i, j∈{1, · · · , n}.

Proof. Suppose that a random variable Xh=
AΦ(h)×BΨ(h)

x∗y∗ρ
Φ(h)Ψ(h)

(i, j)

=
n∑

m=1

AΦ(h)(i,m)∗BΨ(h)(m,j)

x∗y∗ρ
Φ(h)Ψ(h)

where h∈{1, · · · , x ∗ y}. Xh rep-

resents the entry in the ith row and jth column of multiplica-
tion between slice AΦ(h) and slice BΨ(h) with edge rescaling
of 1

x∗y∗ρ
Φ(h)Ψ(h)

, then all of Xhs are independent random

variables. Also, C̃(i, j)=
x∗y∑

h=1

Xh. Thus, E(C̃(i, j))=E(
x∗y∑

h=1

Xh)

=
x∗y∑

h=1

E(Xh) since all of Xhs are defined on the same proba-

bility space. In addition, E(Xh)=
s∑

k=1

t∑

l=1

ρkl
n∑

m=1

Ak(i,m)∗Bl(m,j)
x∗y∗ρ

kl

=
s∑

k=1

t∑

l=1

n∑

m=1

Ak(i,m)∗Bl(m,j)
x∗y

= 1
x∗y

C(i, j). In summary, E(C̃(i,

j))=
x∗y∑

h=1

E(Xh)=
x∗y∑

h=1

1
x∗y

C(i, j)=C(i, j).

Theorem 2. Given the same definitions in Theorem 1,

then the variance V ar(C̃(i, j))=
s∑

k=1

t∑

l=1

1
x∗y∗ρ

kl
(

n∑

m=1

Ak(i,m)∗

Bl(m, j))2− 1
x∗y

C(i, j)2 for ∀i, j∈{1, · · · , n}.

Proof. Since C̃(i, j) is the sum of x∗y independent random

variables, i.e., C̃(i, j)=
x∗y∑

h=1

Xh, then V ar(C̃(i, j))=V ar(
x∗y∑

h=1

Xh)

=
x∗y∑

h=1

V ar(Xh). Also, V ar(Xh)=E(X2
h)−E2(Xh)=

s∑

k=1

t∑

l=1

ρ
kl

(
n∑

m=1

Ak(i,m)∗Bl(m,j)
x∗y∗ρ

kl
)2−( 1

x∗y
C(i, j))2=

s∑

k=1

t∑

l=1

1
x2∗y2ρ

kl

(
n∑

m=1

Ak

(i,m)∗Bl(m, j))2− 1
x2∗y2C(i, j)2. Thus, V ar(C̃(i, j))=

x∗y∑

h=1

(
s∑

k=1
t∑

l=1

1
x2∗y2∗ρ

kl

(
n∑

m=1

Ak(i,m)∗Bl(m, j))2− 1
x2∗y2C(i, j)2) =

s∑

k=1

t∑

l=1

1
x∗y∗ρ

kl
(

n∑

m=1

Ak(i,m) ∗Bl(m, j))2− 1
x∗y

C(i, j)2.

Theorem 3. Given the same definitions in Theorem 1,

min
ρ
kl

{

E(‖C̄ − C‖2
F ) :

s
∑

k=1

t
∑

l=1

ρ
kl

= 1

}

=
1

x ∗ y
(

s
∑

k=1

t
∑

l=1

‖AkBl‖F )2

−
1

x ∗ y
‖C‖2

F when ρ
kl

=
‖AkBl‖F

s
∑

k=1

t
∑

l=1

‖AkBl‖F

(3)

Proof. According to Theorem 1, E(‖C̃−C‖2F )=
n∑

i=1

n∑

j=1

E((C̃

(i, j)−C(i, j))2)=
n∑

i=1

n∑

j=1

(E(C̃(i, j)2)−E2(C̃(i, j)))=
n∑

i=1

n∑

j=1

V ar

(C̃(i, j)) since E(C̃(i, j))=C(i, j)=E(C(i, j)). From Theo-

rem 2,
n∑

i=1

n∑

j=1

V ar(C̃(i, j))=
n∑

i=1

n∑

j=1

(
s∑

k=1

t∑

l=1

1
x∗y∗ρ

kl

(
n∑

m=1

Ak(i,m)

∗Bl(m, j))2− 1
x∗y

C(i, j)2)= 1
x∗y

s∑

k=1

t∑

l=1

1
ρ
kl
‖AkBl‖

2
F−

1
x∗y

‖C‖2F .
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Figure 6: Matrix Power with Slice Pruning

Let f(ρ
kl
)= 1

x∗y

s∑

k=1

t∑

l=1

1
ρ
kl
‖AkBl‖

2
F−

1
x∗y

‖C‖2F , non-zero

entries in Hessian f ′′(ρ
kl
) are diagonal entries 2

x∗y∗ρ3
kl

‖AkBl‖
2
F

such that hT f ′′(ρ
kl
)h≥0 for ∀st×1-vector h in R

st, i.e.,
f ′′(ρ

kl
) is positive-semidefinite. f(ρ

kl
) is thus a convex func-

tion. In addition, the constraint set {ρ
kl
|

s∑

k=1

t∑

l=1

ρ
kl
=1} is

both convex and concave. The minimization problem of a
convex function on a convex set is a convex programming
problem. Thus, there exists a verifiable sufficient and neces-
sary condition for global optimality. Let ρ = [ρ11 ; · · · ; ρ1t ; ρ21 ;
· · · ; ρ2t ; · · · ; ρs1 ; · · · ; ρst ], we calculate the global optimal so-
lution by solving the KKT condition.

∇ρ

(

1

x ∗ y

s
∑

k=1

t
∑

l=1

1

ρ
kl

‖AkBl‖
2
F −

1

x ∗ y
‖C‖2

F + λ(

s
∑

k=1

t
∑

l=1

ρ
kl

− 1)

)

= 0

s
∑

k=1

t
∑

l=1

ρ
kl

− 1 = 0

(4)

We get λ= 1
x∗y

(
s∑

k=1

t∑

l=1

‖AkBl‖F )
2 and the optimal solution

ρ
kl
= ‖AkBl‖F

s
∑

k=1

t
∑

l=1
‖AkBl‖F

. Therefore, the optimal value of E(‖C̃−

C‖2F ) is equal to 1
x∗y

(
s∑

k=1

t∑

l=1

‖AkBl‖F )
2− 1

x∗y
‖C‖2F .

However, AkBl represents the multiplication between s-
lices Ak and Bl. Thus, we can not get such ρkl before doing

slice multiplication. Notice that ‖AkBl‖
2
F=

n∑

i=1

‖AkBl(i, :

)‖22=
n∑

i=1

‖Ak(i, :)Bl‖
2
2≤

n∑

i=1

‖Ak(i, :)‖
2
2‖Bl‖

2
F=‖Ak‖

2
F ‖Bl‖

2
F⇒

‖AkBl‖F≤‖Ak‖F ‖Bl‖F where AkBl(i, :) represents the ith

row of multiplication between two slices, and Ak(i, :) denotes
the ith row of Ak. Thus, we use the SliceDensity measure

in Eq.(2) to generate a near-optimal ρ
kl
= ‖Ak‖F ‖Bl‖F

s
∑

i=1

t
∑

j=1
‖Ai‖F ‖Bj‖F

in line 4 in Algorithm 2.
Figure 6 presents an example of slice pruning for comput-

ing the square of the transition matrix A of a given graph.
We partition A into two equal-size slices: A1 with edge
weights of [0.25, 1] and A2 with edge weights of [0, 0.25).

The exact matrix power A2 is equal to
2∑

k=1

2∑

l=1

Ak×Al. If we
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Algorithm 3 StripMultiply(A, k, x,B, l, y, z)

1: Initialize E[1 · · · ⌊n/q⌋][1 · · · ⌊n/q⌋];
2: for m = 1, · · · , n

3: ρm =
CutDensity(Akxm)∗CutDensity(Blym )

n
∑

i=1
CutDensity(Akxi )∗CutDensity(Blyi )

;

4: for h = 1, · · · , z independently
5: Pick a ∈ {1, · · · , n} with Prob(a = m) = ρm ,m = 1, · · · , n;
6: Φ = Φ ∪ {a};

7: M̃ = PartitionLoad(A, k, x, out, strip,Φ);

8: Ñ = PartitionLoad(B, l, y, in, strip,Φ);

9: R = ParallelJoin(M̃, Ñ, M̃.D = Ñ.S)
10: for each record in R
11: E[a.source][b.destination].AddWeight(a.weight ∗ b.weight/

(z ∗ ρm )) where m is the index of a.destination and b.source;
12: return E;

want to use only one slice multiplication to approximate A2,
then it is very probable that A1×A1 is picked to approxi-
mate A2 with rescaling factor 1

x∗y∗ρ
11

since ρ11 is maximal.

3.2 Cut Pruning (Vertex­based Pruning)
Alternative to the slice pruning at the partition (sub-

graph) level, the cut pruning at the vertex level is to prune
some insignificant vertices with their associated edges by
using cut density as a statistical measure to evaluate the
significance of a vertex cut. Similar to matrix multiplication,
a fast Monte-Carlo approach is used to further improve the
performance of strip multiplications with bounded error.

Definition 2. [CutDensity] Let K=(S,DK , EK ,WJ) be
a strip of an in-edge slice J=(S,D,EJ ,WJ) defined in E-
q.(2) where DK⊆D and EK={(u, v)|u∈S, v∈DK , (u, v).weight
∈WJ , (u, v)∈EJ}, and L(u)=(u,DK , EL,WJ) be an out-edge
cut of K where u∈S and EL={(u, v)|v∈DK , (u, v)∈EK , (u, v).
weight∈WJ}, the density of L(u) is defined as follow.

CutDensity(L(u)) = |L(u)| =

√

∑

v∈DK

∑

(u,v)∈EL

w(u, v)2 (5)

where L(u) denotes the out-edge cut itself and its (row) vec-
tor representation, |L(u)| is the magnitude of vector L(u),
and w(u, v) denotes the weight of an edge (u, v). If an out-
edge cut has many edges with large weights, then it will have
a large density. The density definition of an in-edge cut,
corresponding to a column vector, is similar to Eq.(5).

Given an out-edge strip M (i.e., Akx: the x
th strip in slice

Ak) with n in-edge cutsM1, · · · ,Mn (i.e., cutsAkx1, · · · , Akxn

), and an in-edge strip N (i.e., strip Bly) with n out-edge
cuts N1, · · · , Nn (i.e., cuts Bly1, · · · , Blyn), we decompose
a strip multiplication O=M×N into n cut multiplications,

i.e., O=
n∑

m=1

Mm×Nm. Similarly, the strip multiplication

with cut pruning reduces the exact n cut multiplications
to the approximate z (<< n) cut multiplications, while
maintaining the utility with bounded error. The selection
probability ρm of each pair of cuts (Mm and Nm) is first
calculated in terms of their CutDensity. The algorithm
independently performs z trials to choose z “significant”
cut pairs from the original n cut pairs. Φ maintains the
z index entries for chosen cuts of M and N in z trials.
We then invoke the PartitionLoad routine to load and filter
the out-edge strip M and the in-edge strip N with the
chosen cuts. The ParallelJoin routine is executed at the cut
level to join in-edges (a) and out-edges (b) of z “significant”
vertices. The final edge set E is produced by summarizing
the pairwise-cut multiplications with rescaling factor 1

z∗ρm
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Figure 7: Matrix Power with Cut Pruning

to compensate for the cuts that are not picked. Thus, the

multiplication is approximated as Õ =
z∑

h=1

MΦ(h)×NΦ(h)

z∗ρ
Φ(h)

.

Similarly, the following theoretical results demonstrate
that our cut pruning strategy can achieve a good approx-
imation with bounded error.

Theorem 4. Given an actual multiplication O=
n∑

m=1

Mm×

Nm, a multiplication approximation Õ=
z∑

h=1

MΦ(h)×NΦ(h)

z∗ρ
Φ(h)

, then

the expectation E(Õ(i, j))=O(i, j) for ∀i, j∈{1, · · · , n}.

Theorem 5. Given the same definitions in Theorem 4,

then the variance V ar(Õ(i, j))=
n∑

m=1

M(i,m)2∗N(m,j)2

z∗ρm
− 1

z
O(i, j)2

for ∀i, j∈{1, · · · , n}.

Theorem 6. Given the same definitions in Theorem 4,

min
ρm

{

E(‖Õ − O‖2
F ) :

n
∑

m=1

ρm = 1

}

=
1

z
(

n
∑

m=1

|Mm||Nm|)2 −
1

z
‖O‖2

F

when ρm =
|Mm||Nm|

n
∑

m=1
|Mm||Nm|

(6)

The proof of Theorems 4-6 is omitted due to space limit.
The proof methods are similar to that used in Theorems 1-3.

Figure 7 shows an example of cut pruning for computing
the square of slice A1 in Figure 6. Slice A1 is organized
as 4 in-edge cuts and 4 out-edge cuts respectively. Ochre
edges, purple edges, green edges and red edges represent
in-edge cuts and out-edge cuts of vertices v1, v2, v3 and v4,
respectively. The exact A1

2 is equal to the sum of 4 cut mul-
tiplications: AI

11×AO
11 (ochre edge join), AI

12×AO
12 (purple

edge join), AI

13×AO

13 (green edge join), and AI

14×AO

14 (red
edge join) where AI

1m and AO

1m represent the mth in-edge
cut and the mth out-edge cut for vertex vm respectively. If
we want to use only two cut multiplications to approximate
A2

1, then it is highly probable that AI

11×AO

11 and AI

13×AO

13

are picked with rescaling factors 1
z∗ρ1

and 1
z∗ρ3

since ρ1 and
ρ3 are maximal. The cut pruning stops graph propagation
through low degree vertices and edges with small weights.

4. EXPERIMENTAL STUDY
We use several typical iterative graph applications to e-

valuate the performance of graph processing systems on a
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Graph #Vertices #Edges AvgDeg MaxIn MaxOut DegDist
RMAT 4.3B 17.2B 4 1.8M 737.4K power-law

ErdosRenyi 1.1B 13.0B 12.1 259.7K 434.8K Poisson
Random 330M 2.1B 6.5 100K 85.6K heavy-tailed

Kronecker 88M 1.5B 17.5 365.2K 19.3K multinomial

Table 2: Synthetic Simple Graph Datasets

Application Graph Type Core Computation

PageRank [7] single graph matrix-vector
SpMV [5] single graph matrix-vector

Connected Components [36] single graph graph traversal
Matrix Power two graphs matrix-matrix

Diffusion Kernel [18] two graphs matrix-matrix
AEClass [34] multigraph matrix-vector

Table 3: Graph Applications

set of real-world graphs in Table 1 and synthetic graphs in
Table 2. DBLPS is a single coauthor graph. DBLPM is
a coauthor multigraph, where each pair of authors have at
most 24 parallel coauthor links, each corresponding to one
of 24 research fields, as mentioned in Section 2.1. Simi-
larly, we build a friendship multigraph of Last.fm, where
each friendship edge is classified into a subset of 21 music
genres in terms of the same artists shared by two users.
Based on the Recursive Matrix (R-MAT) model [8], we uti-
lize the GTgraph suite [4] to generate a scale-free small-
world graph with power-law degree distribution. We al-
so use the GTgraph suite [4] based on the Erdos-Renyi
random graph model [11] to produce a large-scale random
network with Poisson degree distribution. The GenGraph
generator [28] is used to construct a large random simple
connected graph with heavy-tailed degree distribution. In
addition, we employ the SNAP Krongen tool [21] to gen-
erate a stochastic Kronecker graph through the Kronecker
product. All experiments were performed on a 4-core PC
with Intel Core i5-750 CPU at 2.66 GHz, 16 GB memory,
and a 1 TB hard drive, running Linux 64-bit. We com-
pare GraphTwist with three existing graph parallel models:
GraphLab [22], GraphChi [20] and X-Stream [25]. To
evaluate the effectiveness of pruning strategies, we evaluate
the following versions of GraphTwist: (1)GraphTwist with
only access tier abstractions; (2) GraphTwist-SP which
improves GraphTwist with slice pruning; (3) GraphTwist-

CP which enhances GraphTwist with cut pruning; and (4)
GraphTwist-DP which uses both pruning optimizations.

4.1 Evaluation Measures
We evaluate the performance of graph processing systems

by measuring the running time and the Throughput (the
number of edges processed per second). We adopt the root-
mean-square-percentage-error (RMSPE) between the actual
result and the approximate result to evaluate the quality of
three versions of GraphTwist with pruning strategies.

RMSPE(X, X̂) =

√

∑

n
i=1((xi − x̂i)/xi)2

n

RMSPE(X, X̂) =

√

∑

n
i=1

∑

n
j=1((xij − x̂ij)/xij)2

n2

(7)

where xi is a component in the resulted vector X by the
exact computation (matrix-vector computation) and x̂i is

an entry in the approximate vector X̂ by the computation
with pruning strategies. Similarly, xij is an element in the
actual result matrix X by matrix-matrix computation and
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Figure 8: PageRank on Four Simple Graphs
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Figure 9: SpMV on Four Simple Graphs

x̂ij is an entry in the approximate result matrix X̂ . A lower
RMSPE number indicates a better performance.

4.2 Execution Efficiency on Single Graph
Figures 8 and 9 present the quality and performance com-

parison of iterative algorithms on four single graphs by dif-
ferent graph processing systems with different scales: Yahoo,
Twitter, Facebook and DBLPS with #iterations=1, 5, 40, 30
respectively. Since GraphLab, GraphChi, X-Stream and
GraphTwist are the exact graph computations without prun-
ing optimizations, they always have a RMSPE value of zero.
Thus, we do not plot the RMSPE bars for four exact graph
computations. Figure 8 (a) shows the RMSPE values by
GraphTwist with different pruning strategies. GraphTwist-
DP achieves the highest RMSPE values since it adopts a du-
al pruning scheme to achieve the highest efficiency. GraphT-
wist-CP gains a much lower RMSPE than GraphTwist-SP.
The RMSPE values by three approximate systems are s-
maller than 7.8%, even with #iterations=40. This demon-
strates that applying pruning techniques to iterative graph
applications can achieve a good approximation.

Figure 8 (b) exhibits the throughput comparison on four
datasets. The throughput values by the exact GraphTwist
are larger than 1.53×107 and consistently higher than Graph-
Lab, GraphChi and X-Stream. All versions of GraphTwist
with pruning turned on significantly outperform the exact
GraphTwist, with the throughput by GraphTwist-DP as the
highest (>2.67×107). GraphTwist-SP and GraphTwist-CP
achieve slightly lower throughput than GraphTwist-DP.

Figure 8 (c) compares the running time by different graph
parallel models, from loading graph from disk to writing
results back to disk. The runtime comparison is consistent
with the throughput evaluation in Figure 8 (b). We make
two interesting observations. First, the exact GraphTwist
outperforms GraphLab, GraphChi and X-Stream in all ex-
periments. Second, GraphTwist with different pruning s-
trategies significantly outperform the exact GraphTwist in
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Figure 10: Matrix Power on Two Simple Graphs
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Figure 11: Diffusion Kernel on Two Simple Graphs

terms of throughput and runtime while maintaining very
good quality in terms of RMSPE.

Similar trends are observed for the performance compari-
son of SpMV in Figure 9. Compared to GraphLab, GraphChi
and X-Stream, the exact GraphTwist consistently performs
better in all throughput and efficiency tests. All versions
of GraphTwist with pruning significantly outperform the
exact GraphTwist thanks to the pruning optimizations while
maintaining a good approximation.

4.3 Execution Efficiency on Multiple Graphs
Figures 10 and 11 show the performance comparison of it-

erative applications on multiple graphs with different graph
parallel models. Since GraphLab, GraphChi and X-Stream
can not directly address matrix-matrix multiplications a-
mong multiple graphs, we thus modify the corresponding
implementations to run the above graph applications. As
the complexity of matrix-matrix multiplication (O(n3)) is
much larger than the complexity of matrix-vector multipli-
cation (O(n2)), we only compare the performance by dif-
ferent graph processing systems on two smaller datasets:
Facebook and DBLPS. We observe the very similar trends
as those shown in Figures 8 and 9. All versions of Graph-
Twist significantly prevail over GraphLab, GraphChi and
X-Stream in all efficiency tests, and GraphTwist-DP with
double pruning strategies obtains the highest throughput.

4.4 Execution Efficiency on Multigraph
Since existing representative graph processing systems can

not address iterative applications on multigraphs, we only
perform the efficiency comparison of PageRank on multi-
graphs by different GraphTwist versions, as shown in Figure
12. GraphTwist partitions the 3D cube of a multigraph into
p slices along dimension W . Each slice consists of parallel
edges with a unique semantics, say the DBLP coauthored
papers in the area of DB and the Last.fm user friendships
with respect to pop music genre. By hashing the paral-
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Figure 12: PageRank on Multigraph
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Figure 13: AEClass on Multigraph

lel edges with the same semantics into the same partition,
each slice corresponds to one partition, and represents a
subgraph with only those edges that have the correspond-
ing semantics included in the hash bucket for that parti-
tion. The PageRank algorithm is executed on each slice
with a unique semantics in parallel to compute the ranking
vector of authors (or users) in each research field (or mu-
sic genre). Figure 13 presents the performance comparison
of a multigraph algorithm (AEClass) with the GraphTwist
implementation. AEClass [34] transforms the problem of
multi-label classification of heterogeneous networks into the
task of multi-label classification of coauthor (or friendship)
multigraph based on activity-based edge classification. We
observe very similar trends as those shown in Figures 8-
11. All three GraphTwist versions with pruning achieve
relatively lower RMSPE (<14.0%). GraphTwist-DP obtains
the highest throughput (>2.6×107), while the throughput
by the exact GraphTwist is the lowest (>5.7×106). The
throughput values by GraphTwist-SP and GraphTwist-CP
stand in between (>1.1×107).

4.5 Execution Efficiency on Synthetic Graphs
Figure 14 shows the performance comparison of Graph-

Twist with other three systems by PageRank on four syn-
thetic graphs with #iterations=2, 2, 5, 5 respectively. We
observe similar trends to the performance on real-world graph-
s. GraphTwist consistently outperforms GraphLab, GraphChi
and X-Stream in both throughput and efficiency tests. Graph-
Twist with all versions of pruning significantly outperform
the exact GraphTwist thanks to the pruning optimizations
while maintaining a good approximation.

4.6 Impact of #Threads
Figure 15 presents the performance comparison of Graph-

Twist by running PageRank on two synthetic simple graphs
and two real simple graphs with #iterations=2, 2, 3, 5 re-
spectively. Figure 15 (a) shows the average utilization com-
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Figure 14: PageRank on Four Synthetic Simple Graphs
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Figure 15: PageRank by GraphTwist wrt Varying Threads

parison (computation/non-computation runtime percentage)
of each thread by varying #threads from 2, 4, 6, 8, to 12.
Recall Section 2.2, two levels of threads are used in Graph-
Twist: partition-level threads to process multiple partitions
(slices, dices or strips) in parallel. Within each partition
thread, we also execute multiple threads at vertex level. The
total number of threads is arranged by h∗l (h is #threads

at partition level and l is #threads at vertex level). For
example, for the setup of 8 threads, we use 2 threads at
partition level and 4 threads at vertex level. We compare the
total runtime to execute a task of iterative graph computa-
tion, including thread running time and thread idle runtime.
The thread idle runtime is measured when performing non-
computation operations, including thread waiting, disk I/O,
context switching and CPU scheduling. Figure 15 (a) shows
that the utilization rate on all four graphs with 4, 6 or 8
threads are better compared to 2 or 12 threads. When
#threads=2, the threads are busy at <57% of time and
when #threads=12, the threads are idle at >46% of time.
In both cases, the threads do not efficiently utilize CPU
resource. Figure 15 (c) (or Figure 15 (b)) measure the
performance impact of parallel threads by PageRank on
four simple graphs. We have observed that the runtime is
very long when the number of parallel threads is relatively
small (#threads=2) or very large (#threads=12) and it
is almost a stable horizontal line when #threads=4, 6, 8).
Also GraphTwist usually achieves the best performance by
spawning between #cores and 2∗#cores threads because
less #threads (<#cores) often lead to underutilization of
available CPU resource in graph parallel system. On the
other hand, more threads (>2∗#cores) may introduce addi-
tional non-computation overhead, such as context switching
and CPU scheduling, and thus hurt system performance.

4.7 Decision of #Partitions
Figure 16 measures the performance impact of different

numbers of strips on GraphTwist with PageRank over Twit-
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Figure 16: Impact of #Strips

ter, Diffusion Kernel on Facebook, and Matrix Power on
DBLPS. The x-axis shows different settings of the number
of strips. We vary #Strips from 1 to 10,000 and fix #Slices
and #Dices as 5 in each figure. It is observed that the
runtime curve (or the throughput curve) for each application
in each figure follows a similar “U” curve (inverted “U”
curve) with respect to the size of strip, i.e., the runtime
is very long when the unit size is relatively small or very
large and it is almost a stable horizontal line when the unit
size stands in between two borderlines. This is because
bigger strips often lead to substantial work imbalance in
graph applications. On the other hand, smaller strips may
result in frequent external storage access and lots of page
replacements between units lying in different pages. Figure
16 (c) measures the CPU utilization by GraphTwist for three
real applications. The CPU utilization rate of each appli-
cation increases quickly when #Strips is increasing. This
is because for the same graph, the larger number of strips
gives the smaller size per strip and the smaller strips in big
graphs often lead to better workload balancing for parallel
computations. Figure 16 (d) shows the memory utilization
comparison. The memory curves are totally contrary to
the corresponding CPU curves: the smaller the number of
strips, the larger size each strip will have, thus the larger
the memory usage. The performance impact of #Slices or
#Dices on GraphTwist have similar trends to Figure 16.

5. RELATED WORK
Graph parallel abstraction has been a heated topic in

recent years. Research activities can be classified into two
broad categories below [3,13–15,20,22–25,27,30].

Given that GraphTwist is a single PC based solution, it
is more relevant to the previous works in this category [15,
20, 22, 25, 30]. GraphLab [22] presented a new sequential
shared memory abstraction where each vertex can read and
write data on adjacent vertices and edges. It supports the
representation of structured data dependencies and flexible
scheduling for iterative computation. GraphChi [20] parti-
tions a graph into multiple shards by storing each vertex
and its all in-edges in one shard. It introduces a novel
parallel sliding window based method to facilitate fast access
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to the out-edges of a vertex stored in other shards. Turbo-
Graph [15] improves GraphChi by storing a large graph in
the slotted page list with each page containing a number of
adjacency lists. It utilizes the parallelism of both multi-core
CPU and Flash SSD I/O to improve the access efficiency. X-
Stream [25] is an edge-centric approach to the scatter-gather
model on a single shared-memory machine and it uses CPU
cache and multi-threading to improve the access efficiency.

Distributed graph systems have attracted active research
in recent years [3,13,14,23,24,27]. Pregel [24] is a bulk syn-
chronous message passing abstraction where vertices can re-
ceive messages sent in the previous iteration, send messages
to other vertices and modify its own state and that of its
outgoing edges or mutate graph topology. PowerGraph [13]
extends GraphLab [22] and distributed GraphLab [23] by
using the Gather-Apply-Scatter model of computation to
address the natural graphs with highly skewed power-law
degree distributions. GraphX [14] enables iterative graph
computation, written in Scala like API in terms of GraphX
RDG, to run on the SPARK cluster platform.

6. CONCLUSION
We present a scalable, efficient, provably correct two-tier

graph parallel processing system, GraphTwist. At storage
and access tier, GraphTwist employs three customizable
parallel abstractions: slice partitioning, strip partitioning
and dice partitioning, to maximize parallel computation ef-
ficiency. At computation tier, GraphTwist presents slice
pruning and cut pruning strategies. Our pruning methods
are utility-aware and can significantly speed up the com-
putational performance while preserving the computational
utility defined by the graph applications.
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