
Processing Moving kNN Queries Using Influential
Neighbor Sets

Chuanwen Li1, Yu Gu1, Jianzhong Qi2, Ge Yu1, Rui Zhang2, Wang Yi1
1College of Information Science and Engineering, Northeastern University, China

{lichuanwen, guyu,yuge,wangyi}@ise.neu.edu.cn
2Department of Computing and Information Systems, University of Melbourne

{jianzhong.qi, rui.zhang}@unimelb.edu.au

ABSTRACT
The moving k nearest neighbor query, which computes one’s k
nearest neighbor set and maintains it while at move, is gaining im-
portance due to the prevalent use of smart mobile devices such as
smart phones. Safe region is a popular technique in processing the
moving k nearest neighbor query. It is a region where the move-
ment of the query object does not cause the current k nearest neigh-
bor set to change. Processing a moving k nearest neighbor query is
a continuing process of checking the validity of the safe region and
recomputing it if invalidated. The size of the safe region largely de-
cides the frequency of safe region recomputation and hence query
processing efficiency. Existing moving k nearest neighbor algo-
rithms lack efficiency due to either computing small safe regions
and have to recompute frequently or computing large safe regions
(i.e., an order-k Voronoi cell) with a high cost.

In this paper, we take a third approach. Instead of safe regions,
we use a small set of safe guarding objects. We prove that, as long
as the the current k nearest neighbors are closer to the query ob-
ject than the safe guarding objects, the current k nearest neighbors
stay valid and no recomputation is required. This way, we avoid
the high cost of safe region recomputation. We also prove that,
the region defined by the safe guarding objects is the largest pos-
sible safe region. This means that the recomputation frequency of
our method is also minimized. We conduct extensive experiments
comparing our method with the state-of-the-art method on both real
and synthetic data sets. The results confirm the superiority of our
method.

1. INTRODUCTION
Smart mobile devices and location-based services (LBS) have

become prevalent. On-going efforts have been made to improve
the use experience of mobile LBS through improving moving query
processing efficiency. In this paper we revisit a major type of mov-
ing query, the moving k nearest neighbor (MkNN) query [4, 16, 21,
23]. Given a moving query object and a set of static data objects,
the MkNN query reports the k nearest neighbors of the query object

This work is licensed under the Creative Commons Attribution-
NonCommercial-NoDerivs 3.0 Unported License. To view a copy of this li-
cense, visit http://creativecommons.org/licenses/by-nc-nd/3.0/. Obtain per-
mission prior to any use beyond those covered by the license. Contact
copyright holder by emailing info@vldb.org. Articles from this volume
were invited to present their results at the 41st International Conference on
Very Large Data Bases, August 31st - September 4th 2015, Kohala Coast,
Hawaii.
Proceedings of the VLDB Endowment, Vol. 8, No. 2
Copyright 2014 VLDB Endowment 2150-8097/14/10.

continuously while it is moving. For example, an MkNN query can
be used to report the 3 nearest gas stations continuously while one
drives on highway, or the 5 nearest points of interest (POI) contin-
uously while a tourist is walking around the city.

Computing the kNN from a static data set for a static query ob-
ject has been studied extensively (e.g., [7, 19]). However, existing
techniques for the static kNN query is not directly applicable for
the MkNN query. This is because, when the query object is mov-
ing, keeping its kNN set up-to-date requires constant kNN recom-
putation if a static kNN query algorithm were used, which is too
expensive to complete in time.

Recent studies on the MkNN query have adapted the safe region
based approach [16, 18, 25]. The idea of safe region is based on
that objects at nearby positions often share the same kNN set. There
may be a region where all points have the same kNN set. Inside
such a region, an object is “safe” to move freely without causing
its kNN set to change. Thus, such a region is called a safe region.
Using the safe region significantly reduces the MkNN query pro-
cessing cost because the kNN set will only need to be recomputed
when the query object moves out the safe region. However, the safe
region also brings in some overhead: (i) construction overhead: the
safe region needs to be recomputed every time the kNN set is re-
computed; (ii) validation overhead: whether the query object is
still inside the current safe region needs to be checked every time
the query object location updates.

Existing methods either fall short in construction overhead or
validation overhead. Specifically, earlier studies [12, 18, 25] use
Voronoi cells [18] as the safe regions, which have high construction
overhead. A more recent study [16] uses relaxed safe regions to
reduce the construction overhead, but they have to recompute the
safe regions more frequently and have higher validation overhead.

A Voronoi cell based safe region is essentially an order-k Voronoi
cell. Given a kNN set, its order-k Voronoi cell is defined as a re-
gion where the kNN set stays valid [18]. Figure 1 (c) illustrates the
Voronoi cells on O = {p1, . . . , p11}, where the dashed lines indi-
cate boundaries of order-1 Voronoi cells, respectively. An object
that moves inside the order-1 Voronoi cell of p3 will always view
p3 as its nearest neighbor. Similarly, an object that moves inside the
order-2 Voronoi cell of {p4, p7} (denoted by the cross-lined region)
will always view {p4, p7} as its 2NN set. Here, an order-2 Voronoi
cell is computed by combining two order-1 Voronoi diagrams. To
compute the order-2 Voronoi cell of {p4, p7}, we first compute two
order-1 Voronoi diagrams, one ignoring p4 and the other p7, as
shown in Figures 1 (a) and (b), respectively. The overlapping region
of the Voronoi cells of p4 and p7 in these two Voronoi diagrams is
the order-2 Voronoi cell of {p4, p7}. When k becomes large, the
cost of computing order-k Voronoi cells becomes prohibitive. Pre-

113

computing the order-k Voronoi cells [12, 25] is also unpractical
due to the rapid increase in the number of order-k Voronoi cells as
k increases. Plus, precomputing the order-k Voronoi cells loses the
flexibility of setting k at query time, which is a significant disad-
vantage [18].

(b)

(a)

(c)

⇒
p1

p2

p3

p5

p6

p8 p9

p10

p11

p9

p13

p7

p4

Figure 1: Voronoi cells (order-1 and order-2)

The state-of-the-art MkNN algorithm, V*-Diagram [16], avoids
computing the exact order-k Voronoi cells and hence reduces the
construction overhead. It uses a safe region combined from safe
region w.r.t. a data object and fixed-rank region, which are simpler
to compute but are also less strict than the order-k Voronoi cells.
Thus, it has to recompute the safe regions more frequently and has
higher validation overhead.

In this paper, we propose a novel approach that validates kNN
sets as strict as the order-k Voronoi cells, but do not have to com-
pute the exact order-k Voronoi cells (or any safe region at all). Our
main idea is to use safe guarding objects instead of safe regions.
The intuition is that, since the query object moves continuously,
when the kNN set changes, some data object near the current kNN
objects must become one of the new kNNs. We call this type of
data objects (i.e., data objects near the current kNN objects) the
safe guarding objects. As long as no safe guarding object becomes
a kNN, the current kNN set stays valid and hence does not need re-
computation. Conceptually, the safe guarding objects define a safe
region as large as the order-k Voronoi cell. Thus, they guarantee
minimum kNN set recomputation and hence minimum communi-
cation between the query client and the query processor, which is
critical in LBS. For efficient computation we identify a special set
of safe guarding objects and call it the influential neighbor set. This
set guarantees the validity of the kNN set, while can be computed
and validated in time linear to k. Therefore, it can reduce both the
construction overhead and validation overhead at the same time.
In addition, we do not need to precompute the influential neighbor
sets, and hence we allow setting k at query time.

We further propose an MkNN algorithm based on the influential
neighbor set and make the following contributions:
• We analyze the existing Voronoi cell based techniques for the

MkNN query thoroughly and identify possible optimizations.
• Based on the analysis, we propose the influential set, a novel

concept that uses safe guarding objects instead of safe re-
gions, to validate kNN sets.
• We propose the influential neighbor set, which is a special

type of influential set that can be retrieved and validated ef-
ficiently, and further obtain an algorithm that overcomes the
drawbacks of the existing techniques. Our algorithm has the
following advantages:

– Efficient kNN set validation. We just need a single
scan on the kNN set and the small influential neighbor
set to validate the kNN set.

– Efficient influential set computation. We compute
the influential set when it becomes invalid. This is
much less costly than computing the order-k Voronoi
cell based safe regions, for that the influential set can be
computed in time linear to k (detailed in Section 3.2).

– Data update support. Our algorithm supports data
object updates on-the-fly. Insertion and deletion can
be processed with both space and time complexity at
O(k logk).

• We perform cost analysis and extensive experiments, and
the results confirm the superiority of our algorithm over the
state-of-the-art algorithm.

The remainder of the paper is organised as follows. We review
related studies in Section 2 and present the preliminaries in Sec-
tion 3. The concept of influential set and influential neighbor set
are introduced in Section 4 and Section 5, respectively. Our query
processing algorithm is described in Section 6. We analyse the
costs of our algorithm in Section 7, report the experimental results
in Section 8 and conclude the paper in Section 9.

2. RELATED WORK
As a major type of spatial query over moving objects, the MkNN

queries have attracted a large body of studies [8, 9, 16, 21, 23].
In an early study [21], a sampling based approach is used. This

approach samples objects from the query object’s trajectory and
processes a kNN query for each sampled position. To approximate
a continuous query, the sampling based approach has to recompute
kNN queries at a high frequency, which is very expensive.

Due to the high cost of the sampling based approach, recent
studies [16, 18, 25] on the MkNN query have adapted the safe re-
gion based approach. The safe region based approach maintains
a kNN set and an associated “safe region” where the query object
can move freely without invalidating this kNN set. The query pro-
cessor only needs to process a kNN query when the query object
moves out of the safe region. Thus, both the computation cost on
the query processor and the communication cost between the query
object and the query processor are reduced. For each kNN set, there
is an infinite number of safe regions which can guarantee the valid-
ity of the kNN set. The largest among these safe regions is the
order-k Voronoi cell built on the kNN set.

The order-k Voronoi diagram (kVD) [18] approach is an example
of using the order-k Voronoi cells as the safe regions. The prob-
lem of this approach is that it has to precompute too many order-
k Voronoi cells, which are expensive to compute and store. The
Retrieve-Influence-Set kNN algorithm (RIS-kNN) [25] avoids the
high precomputation cost of kVD by computing an order-k Voronoi
cell locally on-the-fly. Every time the kNN set is to be updated,
it requires issuing a number of (six on average) expensive time-
parameterized kNN queries to rebuild the safe region. A related
data structure, the VoR-tree [20], combines the Voronoi diagram
and the R-tree. Using the VoR-tree, a kNN query can be computed
by first finding the 1 nearest neighbor in the R-tree and then re-
trieving other nearest neighbors incrementally based on the neigh-
borhood relationship between the objects. This technique reduces
the cost of processing one kNN query. However, it does not help
improve the continuous processing efficiency of the MkNN query.

The state-of-the-art MkNN algorithm is V*-Diagram [16, 17].
We use this algorithm as the baseline algorithm in the experiments
and will detail it in Section 3.2.

Some other studies [22, 23] on the MkNN query assume a pre-
defined linear trajectory of the query object. In this case, the safe
region is reduced to a line segment on the predefined trajectory,
and can be determined by the bisectors between the query object

114

and its nearby data objects with low costs. In recent years, other
types of queries on moving objects have also been studied exten-
sively. These include the range queries [1, 26], the kNN queries
with two predicates [2], the density queries [10], the intersection
join queries [27, 28], the obstructed NN queries [5, 13], the visible
NN queries [6], the weighted NN queries [14] and the destination
prediction queries [24], etc. These studies have different problem
settings from ours and their solutions are inapplicable.

3. PRELIMINARIES
We first present a definition to the MkNN query and some basic

concepts. We summarize the frequently used symbols in Table 1.

Table 1: Frequently Used Symbols
Symbol Meaning

k The number of queried nearest neighbors.
ρ The prefetch ratio. (ρ ≥ 1)
O The set of data objects.
d(p1, p2) The distance between objects p1 and p2.
b(p1, p2) The bisector between objects p1 and p2.
NNk(q) The k nearest neighbors of q.
I(O′) The influential neighbor set of a set O′.
NO′(pi) The Voronoi neighbor set of pi in the Voronoi

diagram with respect to object set O′.
VO′(pi) The Voronoi cell of pi in the Voronoi diagram

with respect to object set O′.
V k(O′) The order-k Voronoi cell of object set O′ in the

Voronoi diagram with respect to object set O.
V k(O′) ‖V k(O′′) The two Voronoi cells share an edge.
A≺q B Any object in set A is nearer to q than any object

in set B.
A 	 B Set A is an influential set of set B.

We consider 2-dimensional point data in the Euclidean space.
Given a moving query object q, a set of static data objects O, where
each object can be seen as a point, and a query parameter k, the
MkNN query returns the kNN set (from O) of q continuously (i.e.,
at every timestamp). Let d(p1, p2) be a function that returns the
Euclidean distance between two objects p1 and p2. We have the
following formal query definition.

DEFINITION 1. (MkNN) Given a moving query object q, a set
of static data objects O = {p1, p2, ..., pn}, and a query parame-
ter k (n ≥ k), at every timestamp, the moving k nearest neighbor
(MkNN) query returns a subset O′ ⊆ O(|O′| = k): ∀p′ ∈ O′ ∀p ∈
O\O′, d(p′,q)≤ d(p,q).

The Voronoi diagram gives a basic safe region for processing the
MkNN query.

3.1 Voronoi Diagram

DEFINITION 2. (Voronoi Diagram) The Voronoi diagram [18]
of a set of n data objects O, is a subdivision of the plane into n
Voronoi cells, where each Voronoi cell corresponds to a data object
pi in O and it has the following property:

Let VO(pi) be the Voronoi cell of pi. Then for any point o within
VO(pi), pi is the nearest neighbor of o from the set O, i.e., ∀p j ∈
O\pi, d(o, pi)≤ d(o, p j).

Figure 1 (c) gives an example, where the dots denote the data
objects and the dashed lines denote the (order-1) Voronoi cells.

The Voronoi diagram is computed using the bisectors between
the data objects in O. However, not every bisector between the data
objects is needed. Only those between adjacent data objects will be
included in the Voronoi diagram. This is because the bisector be-
tween pi and a far away object p j will be shadowed by the Voronoi
cells of the objects between pi and p j anyway. For example, in Fig-
ure 1 (c), the bisector between p4 and p9 is shadowed by VO(p7).

Two adjacent data objects pi and p j whose bisector is included
in the Voronoi diagram are called the Voronoi neighbors, i.e., pi
and p j share an edge of their Voronoi cells, denoted by VO(pi) ‖
VO(p j). Okabe et al. [18] prove that, as stated in Lemma 1, if
there is a circle where pi and p j are on its boundary, while this
circle encloses no other data objects, then pi and p j are Voronoi
neighbors. For example, in Figure 2, the Voronoi cells of p10 and
p11 share an edge, and hence p10 and p11 are Voronoi neighbors.
We can see that there is a circle o1 where p10 and p11 are on its
boundary, and this circle does not enclose any other data objects.

p1

p2

p3

p4

p5

p6

p7

p8
p9

p10

p11

p12

p9

o2

o1

o3

Figure 2: Example of Lemma 1

LEMMA 1. Two data objects pi and p j are Voronoi neighbors if
and only if there exists a circle where pi and p j are on its boundary,
and no other data object is enclosed by the circle. [18]

The Voronoi cells defined above is also called order-1 Voronoi
cells. By definition they can be used as safe regions for 1NN (i.e.,
k= 1) queries. When k> 1, we need Voronoi diagrams and Voronoi
cells of higher order, which are defined as follows.

DEFINITION 3. (Order-k Voronoi Diagram) The order-k Voronoi
diagram [18] of a set of data objects O, is a subdivision of the plane
into order-k Voronoi cells, where each order-k Voronoi cell corre-
sponds to a subset O′ of k data objects in O and it has the following
property:

Let V k(O′) be the order-k Voronoi cell of O′. Then for any point
o within V k(O′), O′ is the kNN set of o, i.e.,

∀pi ∈ O′ ∀p j ∈ O\O′, d(o, pi)≤ d(o, p j). (1)

In Figure 1 (c), the cross-lined region denotes the order-2 Voronoi
cell of {p4, p7}, V 2(p4, p7). Any point in this cell will view {p4, p7}
as its 2NN set. Note that when k > 1, an order-k Voronoi cell does
not always enclose its corresponding data objects, e.g., V 2(p4, p7)
does not enclose either p4 or p7.

An order-k Voronoi cell V k(O′) can be computed from order-
1 Voronoi cells as follows. For a data object p ∈ O′, we com-
pute an order-1 Voronoi cell VO\O′∪{p}(p) using the data points
in O\O′∪{p}. This will give a region where objects view p as the
nearest neighbor (ignoring other objects in O′). We do this for every
data object in O′ and obtain k order-1 Voronoi cells where objects
view the k objects in O′ as the nearest neighbors, respectively. The
intersection of these k order-1 Voronoi cells is the order-k Voronoi
cell V k(O′). Formally,

115

DEFINITION 4. Given a set of data objects O and a subset O′

of O where |O′|= k, the order-k Voronoi cell of O′ is computed as:

V k(O′) =
⋂

p∈O′
V(O\O′∪{p})(p). (2)

Figure 1 illustrates the computation of the order-2 Voronoi cell of
O′ = {p4, p7}. We first compute two order-1 Voronoi cells, one for
p4 (with O\O′∪{p4} = O\{p7}) and the other for p7 (with O\O′∪
{p7} = O\{p4}), as shown in Figures 1 (a) and (b), respectively.
The intersection of the Voronoi cells of p4 and p7 is the order-2
Voronoi cell of {p4, p7}, V 2(p4, p7).

Discussion. By definition, the order-k Voronoi cell of O′ gives
the largest possible safe region for O′. The kNN set of a query
object is O′ if and only if the query object stays in the order-k
Voronoi cell of O′. Ideally the MkNN query can be processed by
precomputing the order-k Voronoi diagram, where the kNN sets are
reported as the query object moves into different order-k Voronoi
cells. However, as can be seen from Definition 4, computing an
order-k Voronoi cell requires computing k order-1 Voronoi cells,
where each Voronoi cell requires computing the bisectors between
the data objects in different object sets. This is prohibitive con-
sidering the number of possible order-k Voronoi cells, and is also
inflexible with regard to changes of k or the data set O, which is a
significant disadvantage [18].

3.2 V*-Diagram
V*-Diagram [16] is the state-of-the-art solution for MkNN queries.

It uses a safe region called the Integrated Safe Region (ISR), which
is the intersection of two types of regions: (i) the safe region w.r.t.
the kth nearest data object, and (ii) the fixed-rank region of the k+x
nearest data objects, where x is the number of auxiliary data objects
maintained to reduce safe region recomputation.

The V*-Diagram MkNN algorithm computes the integrated safe
region as follows. It first computes the query object’s (k+ x) near-
est data objects. Let qc be the current position of the query object
q and z be its (k+ x)th nearest data object. Then a known region is
computed as a disk centered at qc with the radius d(qc,z).

Step 1. The safe region w.r.t. a data object p, ω(qc, p,d(qc,z)),
is computed as a region that, when q stays in the region, p is nearer
to q than any data object p′ outside the known region. Formally,

ω(qc, p,d(qc,z)) = {q′|d(q′, p)≤ d(q′, p′)}. (3)

According to triangle inequality, d(qc,q′)+d(q′, p′)≥ d(qc, p′).
The definition of ω(qc, p,d(qc,z)) can be tightened by replacing
d(q′, p′) with d(qc, p′)−d(qc,q′):

ω(qc, p,d(qc,z)) = {q′|d(q′, p)≤ d(qc, p′)−d(qc,q′)}. (4)

Object p′ is outside the know region, i.e., d(qc, p′) ≥ d(qc,z).
Thus, the equation is further simplified to be:

ω(qc, p,d(qc,z)) = {q′|d(q′, p)≤ d(qc,z)−d(qc,q′)}
= {q′|d(q′, p)+d(qc,q′)≤ d(qc,z)}. (5)

This equation shows that the safe region w.r.t. p is essentially an
ellipse in the Euclidean space where qc and p are its two foci and
d(qc,z) is its major axis length.

As long as q is inside the intersection of the safe regions w.r.t. the
top k data objects in the known region, i.e.,

⋂k
i=1 ω(qc, pi,d(qc,z)),

it is guaranteed that any data object p′ outside the known region
cannot be closer to q than any of those k data objects.

Step 2. The V*-Diagram algorithm further computes a region
called the fixed-rank region where the order of distances of the k+x
data objects to q does not change, either. Formally, the fixed-rank
region of a list Lk+x of k+x ranked data objects, η 〈p1, p2, ..., pk+x〉,

is defined as the intersection of the dominant region of pi and pi+1,
H(pi, pi+1), where pi is nearer to q than pi+1 (i ∈ [1 · · ·k+ x−1]):

Step 3. The intersection of the safe regions w.r.t. the k data ob-
jects and the fixed-rank region is the Integrated Safe Region (ISR),
denoted by Ω(qc,Lk+x). Formally,

Ω(qc,Lk+x) = η(Lk+x)∩ (
k⋂

i=1
ω(qc, pi,d(qc,z))),

where pk denotes the kth nearest data object of q. This computation
can be simplified as follows [16]:

Ω(qc,Lk+x) = η(Lk+x)∩ω(qc, pk,d(qc,z)). (6)

Figure 3 shows an example where k = 2 and x = 2. When the
query object q is at the initial location qc, a 4NN search retrieves
the 4 nearest data objects 〈p1, p3, p2, p6〉. The ellipses filled with
horizontal lines and vertical lines denote ω(qc, p1,d(qc, p6)) and
ω(qc, p3,d(qc, p6)), respectively. Then as long as q remains in the
grey region η〈p1, p3, p2, p6〉 ∩ω(qc, p3,d(qc, p6)), the 2NN of q
will not change.

η〈p1, p2, ..., pk+x〉=
k+x−1⋂

i=1
H(pi, pi+1). (7)

qc
q′

p1

p2

p3
p6

b(p3, p2)

b(p2, p6)

b(p1, p3)

qc
q′

p1

p2

p3

p4
p5

p6

Figure 3: Integrated safe region (k = 2, x = 2)

Discussion. V*-Diagram still uses the distance difference be-
tween the objects in the current kNN set of q and the objects that
are not to define the safe region. It uses the safe region w.r.t. the
kth NN to replace the Voronoi cells, which reduces the safe region
computation complexity and saves time. However, the safe region
obtained is not as large as the order-k Voronoi cell. This means that
the safe regions and the kNN set have to be recomputed more fre-
quently, and will bring in unnecessary query processing overhead.
It motivates us to find a solution to process the MkNN query, such
that we achieve kNN recomputation frequency as low as that when
the order-k Voronoi cells are used as the safe regions.

4. INFLUENTIAL SET
The key idea of our MkNN query processing approach is to use

a set of safe guarding objects. As long as the query object is closer
to the current kNNs than the safe guarding objects, it is guaranteed
that the current kNN set is still valid, and therefore, we do not need
to recompute the kNN set.

We call a set of safe guarding objects an influential set, in the
sense that they are influential in determining whether a kNN set is
valid. Formally, an influential set is defined as follows.

DEFINITION 5. (Influential Set, IS) Given a set of data objects
O, a query object q and a kNN set O′ ⊂ O, we call a set S ⊆ O\O′
an influential set of O′, denoted by S 	 O′, if O′ stays as the kNN

116

set of q as long as the objects in O′ are closer to q than the objects
in S are, i.e.,

O′ = NNk(q) ⇐⇒ O′ ≺q S. (8)

Here, NNk(q) is a function that returns the kNN set of q, and
A ≺q B denotes that any object in a set A is closer to q than every
object in a set B.

Naively, O\O′ is an IS of O′, since by definition the kNN set O′

is closer to q than O\O′. However, using this set to validate the
kNN set requires a scan on all objects in O, which means that the
solution has fallen back to the naive scan method and is inefficient.

We aim to find the minimal influential set, which is the smallest
influential set that can guarantee the validity of the current kNN
set. We observe that, since the query object q moves continuously,
when the current kNN set O′ becomes invalid, q must have left the
order-k Voronoi cell of the current kNN set, V k(O′), and entered
a neighboring order-k Voronoi cell denoted by V k(O′′), where O′′

denote the corresponding objects (the new kNN set). We combine
the objects corresponding to all neighboring order-k Voronoi cells,
excluding those already in O′, Then by definition at least one of
these objects must become a new kNN when O′ becomes invalid.
These objects form the minimal influential set defined as follows.

DEFINITION 6. (Minimal Influential Set, MIS) Given a kNN set
O′, the minimal influential set (MIS) of O′ is

MIS(O′) = (
⋃

V k(O′)‖V k(O′′)

O′′)\O′. (9)

Here, V k(O′′) ‖V k(O′) means that the two order-k Voronoi cells
are Voronoi neighbors, i.e., they share an edge. Figure 4 (a) gives
an example, where O′ = {p4, p6, p7} and the cross-lined region de-
notes V 3(O′). There are five neighboring order-3 Voronoi cells, as
denoted by the horizontal-lined regions. The triples associated to
the neighboring cells denote the corresponding objects, e.g., (3,4,7)
is associated to V 3

O(p3, p4, p7). The union of the triples excluding
O′ is 3,5,10,12. Therefore, the MIS of O′, MIS(O′)= {p3, p5, p10,
p12}.

p1

p2

p3

p4

p5
p8 p9

p10

p11

p12

p9

p7

p6

(4, 6, 7)

(6, 7, 12)

(3, 6, 7)

(3, 4, 7)

(4, 5, 7)

(4, 7, 10)

(6, 7, 10)

(a) MIS(O′) by neighboring cells

p1

p2

p3

p5 p8 p9

p10

p11

p12

p9

p7

p4

p6

(b) MIS(O′) by bisectors

Figure 4: The minimal influential set (MIS) of O′ = {p4, p6, p7}

To prove that MIS is minimal, we need the following two lem-
mas. The first lemma suggests that for two neighboring order-k
Voronoi cells, their corresponding sets of data objects differ by only
one object, e.g., in Figure 4 (a), V 3

O(p4, p6, p7) and a neighboring
order-k Voronoi cell V 3

O(p3, p4, p7) share 2 data objects p4 and p7
and differ in that the former has p6 while the latter p3.

LEMMA 2. If V k(O′) ‖V k(O′′), then |O′\O′′|= 1.

PROOF. We prove by contradiction. Suppose |O′\O′′|> 1. Then
we can find {pa, pb} ⊆ O′\O′′ and {pc, pd} ⊆ O′′\O′.

Let H(pm, pn) be the half plane on pm’s side when the space is
divided by the bisector b(pm, pn) of two objects pm and pn. Then,

V k(O′)⊂ H(pa, pc)∩H(pa, pd)∩H(pb, pc)∩H(pb, pd)

V k(O′′)⊂ H(pc, pa)∩H(pc, pb)∩H(pd , pa)∩H(pd , pb).

We also have V k(O′) ‖V k(O′′). Thus, the four bisectors b(pa, pc),
b(pa, pd), b(pb, pc) and b(pb, pd) must overlap with each other,
which means that pa and pb must overlap with each other, and that
pc and pd must overlap with each other. Therefore, O′ and O′′

differ by only one object and |O′\O′′|= 1.

The second lemma suggests that each data object in MIS(O′)
contributes at least one edge of V k(O′).

LEMMA 3. MIS(O′) contains and only contains the data ob-
jects that each contributes at least one bisector to form V k(O′).

PROOF. By definition, the boundary of the order-k Voronoi cell
V k(O′) consists of a series of bisectors between a data object in O′

and a data object in O\O′. These bisectors are shared by V k(O′)
and its neighboring order-k Voronoi cells. The bisector shared by
V k(O′) and a neighboring order-k Voronoi cell V k(O′′) must be
defined by an object p′ ∈ O′\O′′ and an object p′′ ∈ O′′\O′. Since
the corresponding object sets of two neighboring order-k Voronoi
cells differ by only one object, we know that O′′\O′ contains and
only contains the object that contribute to a bisector to form V k(O′).
MIS(O′) is the union of O′′\O′ for all O′′s. Therefore, MIS(O′)
contains and only contains the data objects that each contributes at
least one bisector to form V k(O′).

Figure 4 (b) illustrates the lemma. The horizontal-lined, vertical-
lined and light gray regions denote VO\O′∪{p4}(p4), VO\O′∪{p6}(p6)

and VO\O′∪{p7}(p7) respectively. Their intersection, enclosed by
the solid line boundary, is V 3(O′). The boundary of V 3(O′) is
comprised of b(p4, p3), b(p4, p12), b(p4, p10), b(p6, p3), b(p6, p5)
and b(p6, p10). The objects which contribute to these bisectors are
paired up and linked together. We can see that these objects (ex-
cluding those in O′) are {p3, p5, p10, p12}= MIS(O′).

Now we can prove that MIS is minimal by proving that any IS
must contain MIS.

THEOREM 1. Given a kNN set O′ and a set S⊆ O\O′,
S 	 O′ ⇐⇒ S⊇MIS(O′). (10)

PROOF. (i) S 	 O′ ⇒ S ⊇ MIS(O′): Suppose S 6⊇ MIS(O′),
which means that there exists an object p∈MIS(O′), p 6∈ S. Let the
query object q be in V k+1(O′∪{p})\V k(O′), we have O′ ≺q S and
O′ 6= NNk(q), thus, S is not an IS of O′. Here, V k+1(O′ ∪{p}) is
not empty because an edge of V k(O′) is the bisector between p and
some data object in O′, and this edge must be in V k+1(O′∪{p}).

(ii) S ⊇MIS(O′)⇒ S 	 O′: Given S ⊇MIS(O′), then (a) when
O′ = NNk(q), by the definition of kNN query we have O′ ≺q S; (b)
when O′ ≺q S, since S contains all data objects that contributes a
bisector to form the boundary of V k(O′), q must be in V k(O′).

Discussion. The idea of influential sets essentially replaces the
safe regions with safe guarding objects in processing MkNN queries.
Similar to computing the strict safe region (i.e., an order-k Voronoi
cell), computing the MIS is an expensive operation1. To reduce the
computational cost, we compute an influential set that is slightly
larger than the MIS while can be computed much more efficiently
instead. By definition of the influential set, this will not affect the
strictness in validating the kNN sets. This is an important advan-
tage of our influential set based method over the safe region based
methods as an approximated safe region will not be as strict.
1Constructing an order-k Voronoi diagram, which contains O(k(n−
k)) cells [18], needs O((n+min{k(n− k),(n− k)2}) logn) time [15].

117

Various influential sets may be used to approximate the MIS,
which may bring a series of new studies on the MkNN query. In
this study we propose the influential neighbor set, a type of IS that
can be constructed and validated efficiently.

5. INFLUENTIAL NEIGHBOR SET
The influential set we use is the influential neighbor set (INS),

which is defined based on the Voronoi neighbors.

DEFINITION 7. (Voronoi neighbor set) Given a Voronoi dia-
gram on data object set O, we call an object p j a Voronoi neigh-
bor of another object pi if the two Voronoi cells of the two objects
share an edge, i.e., V (pi) ‖V (p j). We call O′ ⊂O that contains all
Voronoi neighbors of pi the Voronoi neighbor set of pi, denoted by
NO(pi).

For an order-1 Voronoi diagram, the Voronoi neighbor sets can
be precomputed and stored with little overhead [20]. The influential
neighbor set is the union of the order-1 Voronoi neighbor sets of
all current kNNs. In this section, a Voronoi neighbor refers to an
order-1 Voronoi neighbor unless specified otherwise.

DEFINITION 8. (Influential neighbor set, INS) Given a kNN set
O′, an object p is an influential neighbor of O′ if p is not in O′ while
it is a Voronoi neighbor of an object p′ in O′, i.e., for p /∈O′,∃p′ ∈
O′ : V (p) ‖V (p′). We call the set of all influential neighbors of O′

the influential neighbor set (INS) of O′, denoted by I(O′),

I(O′) = (
⋃

p′∈O′
NO(p′))\O′. (11)

Next we prove that an INS is an IS. We first rewrite the definition
of the INS such that it is similar to the definition of an order-k
Voronoi cell as shown in Equation 2 based on the following lemma.

LEMMA 4. If a data object p is on the boundary of a circle C
and this circle encloses some other data objects, let this set of other
data objects be N. Then there exists a data object in N that is one
of p’s Voronoi neighbors.

PROOF. We use Figure 5 (a) to illustrate the proof of the lemma.
Let o be the center of C (the larger circle in the figure). We first
prove that, for any data object p′ in N, the bisector b(p, p′) inter-
sects the line segment between o and p, denoted by op. Let the line
segment between p and p′ be pp′. We extend pp′ such that it in-
tersects C at p′′. Then pp′′ is a chord of C. By property of a chord,
the bisector b(p, p′′) passes o. Since p′ is nearer to p than p′′ is,
b(p, p′′) intersects op. We call this the intersection point of p′.

Let pn be the data object whose intersection point in is the nearest
to p among all the intersection points of the data objects in N. We
prove that pn is a Voronoi neighbor of p. We draw a circle with in as
the center and d(p, in) as the radius (the smaller circle in the figure).
Then this circle satisfies Lemma 1 for pn and p. In particular, (i) p
and pn are on the boundary of the circle; (ii) any other object in N
will not be enclosed by the circle, as otherwise its intersection point
would be nearer to p than in is; (iii) any object not in N will not be
enclosed by this circle as this circle is inside C while an object not
in N is not enclosed by C. Therefore, pn is an object in N that is a
Voronoi neighbor of p.

This lemma states that, if a data object p is on the boundary of a
circle, and this circle encloses some other objects, then at least one
of these objects must be a Voronoi neighbor of p. For example, in
Figure 5 (b), p12 is on the boundary of a circle (the largest circle
C2). This circle also encloses {p6, p7}. We can see from the figure
that p6 and p7 are both Voronoi neighbors of p12.

Now we rewrite the definition of INS.

LEMMA 5. Given a data set O and a subset O′, we have:

I(O′) = (
⋃

p′∈O′
NO(p′))\O′ =

⋃
p′∈O′

NO\O′∪{p′}(p′). (12)

PROOF. (i) (
⋃

p′∈O′ NO(p′))\O′ ⊆ ⋃
p′∈O′ NO\O′∪{p′}(p′). An

object p ∈ (
⋃

p′∈O′ NO(p′))\O′ indicates that, in the Voronoi dia-
gram of O, there is an object p′ ∈O′ where p is a Voronoi neighbor
of p′. From Lemma 1 we know that there is a circle C having p and
p′ on its boundary while enclosing no other data objects from O.
Since (O\O′)∪{p′} ⊂ O, we know that in the Voronoi diagram of
(O\O′)∪{p′}, the circle C will still have p and p′ on its boundary
while enclosing no other data objects. Thus, p is still a Voronoi
neighbor of p′, i.e., p ∈⋃

{p′}∈O′ NO\O′∪{p′}(p′).
(ii)

⋃
p′∈O′ NO\O′∪{p′}(p′) ⊆ (

⋃
p′∈O′ NO(p′))\O′. Let p and p′

be Voronoi neighbors in the Voronoi diagram of O\O′∪{p′}, p′ ∈
O′. According to Lemma 1, there is a circle C having p and p′ on
its boundary while enclosing no other objects from O\O′∪{p′}. In
the Voronoi diagram of O, there are two cases:

(a) The circle C encloses no other data objects. Then p is also
a Voronoi neighbor of p′ in the Voronoi diagram of O, i.e., p ∈
(
⋃

p′∈O′ NO(p′))\O′.
(b) The circle C encloses other data objects. Then the data ob-

jects enclosed in the circle must be those in O′, since only data
objects in O′ have been introduced to the Voronoi diagram. By
Lemma 4, p must be a Voronoi neighbor of anther data object in
O′. Thus, p ∈ (

⋃
p′∈O′ NO(p′))\O′.

p1

p2

p3

p5

p′

pn

p8

p

o

in

p′′

b(p′, p)
b(pn, p)

b(p′′, p)

C

(a) Lemma 4

p1

p2

p3

p4

p5

p6

p7

p8 p9

p10

p11

p12

p9

o2
i7

o1

C1

C2
C3

(b) Lemma 5

Figure 5: INS redefinition

Figure 5 (b) illustrates Lemma 5, where O = {p1, . . . , p12} and
O′ = {p4, p6, p7}. We take p5 and p12 as an example to show how
data objects in

⋃
p′∈O′ NO\O′∪{p′}(p′) are also in (

⋃
p′∈O′ NO(p′))\O′,

where p′ ∈O′. These two objects both belong to N(O\O′)∪{p4}(p4),
and hence we can draw two circles on (p4, p5) and (p4, p12), re-
spectively. These two circles do not contain any other data objects
in (O\O′)∪{p4}, as shown by the two dotted circles C1 and C2
centered at o1 and o2, respectively.

When considering the neighbors in the Voronoi diagram with re-
gard to O, C1 remains empty, and hence p5 will still be in NO(p4)\O′;
C2 now becomes non-empty since p6 and p7 are also used in the
Voronoi diagram construction and are enclosed by the circle. How-
ever, by Lemma 4 we know that a circle C3 inside C2 with i7 as
its center and d(p12, i7) as its radius has only p12 and p7 on its
boundary, and encloses no other objects. Therefore, p12 belongs to
NO(p7)\O′, and hence p12 is still in (

⋃
p′∈O′ NO(p′))\O′.

Comparing Equation 2 with Equation 12, we can see that an INS
and the corresponding order-k Voronoi cell are defined based on the
same set of data objects. Next we formalize the computation of the
order-k Voronoi cell of O′ from the INS of O′.

LEMMA 6. Given a set of data objects O and a kNN set O′, we
have that each edge of V k(O′) is a segment of the bisector b(p, p′)
of two data objects p and p′, where p ∈ I(O′) and p′ ∈ O′.

118

PROOF. By definition, V k(O′) is the intersection of the (order-
1) Voronoi cells of each data object p′ in O′ in the Voronoi diagram
of O\O′ ∪{p′}. Since the edges of these cells are segments of the
bisectors of the data objects in O′ and their Voronoi neighbors, the
order-k Voronoi cell of O′ also consists of these bisectors. There-
fore, each edge of the order-k Voronoi cell of O′ is the bisector of an
object p′ in O′ and an object in N(O\O′)∪{p′}(p′), which according
to Lemma 5, belongs to I(O′).

The above lemmas lead to the fact that an INS is an IS, as for-
malized by the following theorem.

THEOREM 2. Given a kNN set O′, I(O′)	 O′.

PROOF. According to Lemma 3 and Lemma 6, we have I(O′)⊇
MIS(O′) and hence I(O′) is an IS.

Next, we detail our MkNN algorithm based on INS.

6. QUERY PROCESSING
When an MkNN query is issued, we compute an initial bρkc

NN set, denoted by R, and the INS of R, I(R). Here, ρ ≥ 1 is a
system parameter to balance the query result communication and
recomputation costs. We call it the prefetch ratio and will evaluate
its impact on the system performance in the experimental study.
To improve the efficiency of computing I(R), we precompute the
Voronoi diagram of O and index it with an VoR-tree [20]. Since
we do not need to compute the order-k Voronoi cells, our algorithm
can answer kNN queries where k is determined at query time.

We return the set R and I(R), where the top k objects of R are
marked as the kNN set (NNk(q)) and I(R)∪R\NNk(q) are marked
as the IS. Then query maintenance starts. At each timestamp, we
check whether the current kNN set is nearer to q than the IS: (i) if
it is, then the current kNN set is still valid, as guaranteed by Theo-
rem 2; (ii) if it is not, we perform the kNN set update procedure. If
there are data object updates, we also update the kNN set and the
IS according to the data object updates. Algorithm 1 summarizes
the query maintenance process.

Algorithm 1: Query Maintenance
input : query object q, prefetched set R, current kNN set O′ and its

influential set IS
output: kNN set at each timestamp

1 while true do
2 r←Validation(q, O′, IS)
3 if r.isValid = false then
4 Update(q, R, O′, IS, r.candidate, r.delete)

5 Process updates of O

6.1 kNN Set Validation
In Algorithm 1, we use the function Validation to test whether

the current kNN set is nearer to q than the IS is. In the simplest
way, this function can be implemented as a sequential scan on the
kNN set and the IS, and find one data object in each of the two
sets. In the kNN set we find the one that is the farthest from q,
denoted by r.delete; in the IS we find the one that is the nearest
to q, denoted by r.candidate. If r.candidate is closer to q than
r.delete, the current kNN set has become invalid and we need to
use the function Update to update the kNN set and IS.

6.2 kNN Set Update
When the kNN set validation fails, we need to update the kNN

set and the corresponding IS: (i) If q has entered a neighboring

order-k Voronoi cell, as Lemma 2 suggests, the new kNN set will
differ from the current one by only one data object. In this case,
we do not need to recompute the entire kNN set but can use the
existing kNN set to compose the new kNN set. (ii) If q is not in a
neighboring order-k Voronoi cell, we first check whether the new
kNN set is still in R. If yes, then we just need to return this new
kNN set. If not, we compute the new sets of R and I(R) and return
the new kNN set and IS.

Algorithm 2: Update
input : query object q, prefetched set R, current kNN set O′ and its

influential set IS, r.candidate, r.delete
output: new prefetched set R, kNN set O′′ and its influential set IS′

1 O′′← O′\{r.delete}∪{r.candidate}
2 IS′← (IS∪{r.delete}∪NO(r.candidate))\O′′
3 if O′′ ≺q IS′ then return (R, O′′, IS′)
4 else
5 O′′← kNN in R, IS′← IS∪O′\O′′
6 if O′′ ≺q IS′ then return (R, O′′, IS′)
7 else
8 Recompute R, I(R)
9 O′′← top k in R, IS′← R∪ I(R)\O′′

10 return (R, O′′, IS′)

Since we do not compute the order-k Voronoi cells, we cannot
determine whether q has entered a neighboring order-k Voronoi
cell. However, we observe that, if the validation fails, we will ob-
tain an object r.delete to be removed from the current kNN set and
an object r.candidate to be added to the new kNN set. This gives
us a candidate new kNN set O′′ = O′ ∪{r.candidate}\{r.delete}.
We test whether it is indeed the new kNN set by testing whether it
is closer to q than its IS.

According to Lemma 5, the INS of O′′ consists of the Voronoi
neighbors of all objects in O′′. We know that O′ only differs from
O′′ by {r.candidate, r.delete}. Thus, we can derive an IS of O′′ from
the IS of O′ as IS(O′′)= IS(O′)∪{r.delete}∪NO(r.candidate)\O′′.
Then we test whether IS(O′′)	 O′′ holds. (i) If yes then we know
that O′′ is the new kNN set, and we just need to return it as well as
its IS. (ii) If not then we need to update the kNN set as described in
the last paragraph. Algorithm 2 summarizes the procedure.

Note that we have precomputed the Voronoi diagram of O and
stored an object with its Voronoi neighbors. When transferring
the set R to the query object, we also transfer the corresponding
Voronoi neighbors. Thus, no communication cost will incur unless
IS needs to be updated with the Voronoi neighbors of r.candidate
(line 2) if r.candidate 6∈ R, or the sets R and I(R) need to be recom-
puted (line 8).

6.3 Data Object Update
When there are data object updates, we first update the Voronoi

diagram and index structures on the data objects and then update
the kNN set and the IS. We will focus on insertion and deletion,
since a data object position update can be done by first deleting the
data object and re-inserting the updated data object.

We use the standard R*-tree update algorithms [3] for updating
the R*-tree index on the data objects and the VoR-tree update algo-
rithms [20] for updating the Voronoi cells on the data objects. The
kNN set and the IS are updated as follows.

6.3.1 Insertion
When a new data object p is added to the data set, there are two

cases: (i) if it is nearer to the query object q than some current kNN,
then we add it to the kNN set and update IS from the current kNN
set, the current IS and p; (ii) otherwise, we simply add p to the IS

119

as this will not affect the correctness of the kNN set and the extra
data objects in the IS will be filtered out next time the kNN set and
IS are recomputed. Algorithm 3 summarizes the process.

Algorithm 3: Insertion
input : new data object p, prefetched set R, query object q, kNN set

O′ and its influential set IS
output: updated prefetched set R, kNN set O′ and influential set IS

1 if not R≺q {p} then
2 R← R∪{p}
3 pk ← the kth nearest neighbor of q in O′
4 if d(p,q)< d(pk,q) then
5 return (R, O′ ∪{p}\{pk}, IS∪{pk})

6 return (R, O′, IS∪{p})

Note that in the above insertion procedure, we do not need to add
the Voronoi neighbors of p to IS when p is added to O′. Instead,
we add pk to IS. The correctness of doing so is guaranteed by the
following theorem.

THEOREM 3. Given the kNN set O′ of the query object q with
pk as the kth nearest neighbor, and a new data object p satisfying
d(p,q)< d(pk,q), then for the set O′′ = O′∪{p}\{pk},

I(O′)∪{pk}	 O′′. (13)

PROOF. According to Lemma 5, the INS of O′′ consists of the
Voronoi neighbors of all objects in O′′, which suggests that we
should add the Voronoi neighbors of p, NO∪{p}(p), to the new IS.
However, for each object o∈NO∪{p}(p), we prove that if o 6∈ I(O′)
then it does not contribute to the edges of V k(O′′).

V k(O′′) =
⋂

pi∈O′′
V(O\O′′)∪{pi}(pi)

= (
⋂

pi∈(O′\{pk})
V(O\O′′)∪{pi}(pi))∩V(O\O′′)∪{p}(p).

1. In
⋂

pi∈(O′\{pk})V(O\O′′)∪{pi}(pi), for each pi, o 6∈ I(O′) im-
plies that o 6∈ NO\O′∪{pi}(pi). By definition of the Voronoi
cell we know that b(o, pi) will not be any edge of the Voronoi
cell V(O\O′′)∪{pi}(pi).

2. In V(O\O′′)∪{p}(p), suppose b(o, p) contributes as an edge of
V k(O′′). We can place a circle centered at a point o′ on the
edge with the radius being d(o′,o). Then, by Definition 3 we
know that the data objects in O′\{pk} are all enclosed by the
circle while no data object in O\O′ is. Thus, by Lemma 4, o
must be a Voronoi neighbor of at least one data object in O′,
which contradicts to the assumption that NO∪{p}(p)* I(O′).

Therefore, the Voronoi neighbors of p which are not in I(O′)
do not contribute to the edges of V k(O′′) and hence can be safely
discarded.

6.3.2 Deletion
When a data object p is to be deleted, there are three cases: (i) p

is in the current kNN set; (ii) p is in the current IS; (iii) p is not in
either the current kNN set or the IS. Case (iii) does not involve kNN
set or IS update and hence will not be discussed further. Processing
of Cases (i) and (ii) is summarized in Algorithm 4.

(i) Deletion from the current kNN set: If p ∈ O′, then both O′

and its IS need to be updated (lines 2 to 4). We find the nearest data
object in the current IS to replace p in O′ (line 3), the correctness
of which is guaranteed by the following theorem.

THEOREM 4. Given a kNN set O′ and a set IS⊇ I(O′), if a data
object p in O′ is deleted, then the new kNN set O′ should be

O′ = O′\{p}∪{p′}, p′ ∈ IS. (14)

PROOF. Kolahdouzan and Shahabi [11] prove that the (k+1)th

nearest neighbor of q must be a Voronoi neighbor of at least one
data object in NNk(q). This means that the (k+1)th nearest neigh-
bor of q is in I(O′) and hence in IS. When an object p in O′ is
removed, the (k + 1)th nearest neighbor becomes the kth nearest
neighbor, which means that the new kNN set is formed by O′\{p}∪
{p′}, where p′ is an object in IS.

After p′ is added to O′, according to Definition 8, its Voronoi
neighbors are add to the IS to guarantee its completeness (line 4).

Algorithm 4: Deletion
input : data object to be deleted p, prefetched set R, query object q,

current kNN set O′ and its influential set IS
output: updated prefetched set R, kNN set O′ and influential set IS

1 if p ∈ R then R← R\{p}
2 if p ∈ O′ then
3 p′← nearest neighbor to q in IS
4 return (R, O′\{p}∪{p′}, IS∪NO(p′)\O′\{p′})
5 else if p ∈ IS then
6 return (R, O′, IS∪NO(p)\O′\{p})

(ii) Deletion from the current IS: If p belongs to the IS, then we
can update the IS by first removing p and then adding all Voronoi
neighbors of p which are not currently in O′ or the IS (lines 6), as
supported by the following theorem.

THEOREM 5. Given a kNN set O′ and a set IS⊇ I(O′), if a data
object p in IS is deleted, we have

IS∪NO(p)\O′\{p}	 O′. (15)

PROOF. Intuitively, when a data object p in IS is to be removed,
we need its Voronoi neighbors to replace p to be the safe guarding
objects. We omit the full proof due to space limit.

7. COST ANALYSIS
In this section we present a comparative cost analysis on our

method, denoted by INS-kNN, and the V*-Diagram algorithm [16].
Following V*-Diagram [16], we assume uniform data distribution
in the analysis. We also assume that the query processor holds the
set of data objects and reports the kNN sets to the query issuer.

Communication cost: We first analyze the communication fre-
quency between the query processor and the query issuer, denoted
by fINS and fVD for INS-kNN and V*-Diagram, respectively.

INS-kNN only needs to re-send the kNN set to the query issuer
when NNk(q) 6⊆ R2. This happens only when the query object q
moves out of the region defined by R, which consists of the order-
k Voronoi cells of the data objects in R. According to [16], the
communication frequency is inversely proportional to the root of
the area of the safe region, which is the region defined by R in
our case. Further, according to [18], there are O(k(n− k)) order-k
Voronoi cells on a set of n data objects. Thus, there are O(k(bρkc−
k)) order-k Voronoi cells on the data objects in R (recall that ρ ≥ 1
is the prefetch ratio, and R contains bρkc data objects). Let the size
of the data space be 1. Then the area of the region that consists
2There are two cases, (i) the neighbors of r.candidate are sent
(line 2 in Algorithm 2 when r.candidate 6⊂ R), and (ii) updated sets
of R and IS are sent (line 8 in Algorithm 2).

120

of all the order-k Voronoi cells of data objects in R is O(k(bρkc−
k)/(k(n− k))), where n denotes the total number of data objects.
Therefore, we have

fINS = O(
√

(n− k)/(bρkc− k)). (16)

On the other hand, the updating frequency of V*-Diagram, fVD,
is O(

√
kn/x) according to [16]. Note that bρkc− k has the same

meaning in INS-kNN as x in V*-Diagram. Therefore,

fINS/ fVD = O(

√
n− k

nk
)< O(1/

√
k). (17)

From this inequality we can see that our algorithm is expected to
have a smaller communication frequency than that of V*-Diagram.
This is because the set R used in our algorithm conceptually de-
fines a strict safe region while V*-Diagram uses an approximate
safe region. However, in our experiments we observe that the actual
communication cost of our algorithm may not always be smaller,
especially when k is small and we do little prefetching, where the
advantage of our algorithm becomes less significant. This is be-
cause that to maintain the strict safe region we need to send a larger
number data objects to the query issuer each time the kNN set is
recomputed and sent.

kNN set recomputation cost: Every time the kNN set is to be
recomputed, the query processor needs to compute in two steps, (i)
the new set of R, which consists of the top bρkc NNs, and (ii) its
corresponding influential set IS.

(i) For the first step, using the Best-first [7] kNN algorithm, we
can obtain the new set of R in O(logn+ bρkc) time on average.

(ii) For the second step, we have precomputed the Voronoi dia-
gram on O, and stored the Voronoi cells in a VoR-tree [20]. Using
this tree, the IS (INS, actually) of a data set can be obtained in time
linear to its size [20].

From Equation 11 and Lemma 5, it can be seen that the size
of an INS relies on the number of Voronoi neighbors of each data
object p′ in O′. Okabe et al. [18] proved that the average number
of edges per Voronoi cell does not exceed 6, which means there
are 6 Voronoi neighbors for each data object on average. Since R
only have bρkc data objects, the total number of Voronoi neighbors,
and hence the size of IS, is within 6bρkc on average. Note that
data objects nearby tend to share the same Voronoi neighbors, the
actual size of the IS is expected to be even smaller than 6bρkc.
Therefore, we can update R in O(logn+bρkc) time on average and
its corresponding IS in O(bρkc) time.

Since the recomputation happens every time there is a kNN set
update request from the query client, the recomputation frequency
is the same as the communication frequency. Therefore, the overall
kNN set recomputation cost of INS-kNN, denoted by cINS, is

cINS = O(fINS(logn+ bρkc)) . (18)

On the other hand, since V*-Diagram retrieves (k+ x) data ob-
jects with a BF-kNN call for kNN set recomputation, its recompu-
tation cost cVD = O(fVD(logn+ k+ x)).

kNN set validation cost: At each timestamp we validate the
kNN set. As discussed in Section 6.1, the kNN set validation pro-
cess is simply done by comparing the farthest object in the current
kNN set to the query object, and the nearest object in the IS. By a
sequential scan, INS-kNN needs O(bρkc) time for each validation.
There is possible optimization here to devise new structures for
maintaining the IS and achieve higher validation efficiency, which
is left as future work.

V*-Diagram validates the safe region w.r.t. the kth NN and scans
a list of bisectors sequentially to validate the fixed rank region,
which requires O(k+ x) time [16].

Effect of ρ: From the discussion above, we have that the com-
munication frequency, kNN recomputation cost and kNN validation
cost are proportional to O(1/

√
ρ−1), O(ρ/

√
ρ−1) and O(ρ), re-

spectively. Thus, we know that a larger ρ may results in smaller
communication cost but larger kNN recomputation and validation
costs. In the following section, we will quantify the effect of ρ by
experiments.

8. EXPERIMENTS
In this section, we compare our algorithm with the state-of-the-

art algorithm V*-Diagram [16] empirically. We present the experi-
mental settings in Section 8.1, and the results in Section 8.2.

8.1 Settings
All experiments3 are implemented using Scala programming lan-

guage and conducted on a computer running OS X 10.9.3 with a 2.4
GHz Intel i5 CPU and 8GB memory.

Data sets. Both real and synthetic data sets are used in the ex-
periments. We use two real data sets4 called the Canadian Postal
Codes data set and the Crowd Sourced Street Address data set,
which contain 935,124 and 12,232,909 data objects, respectively.
We also use two real trajectory sets5 for the query object, called the
Trucks data set and the Buses data set, respectively. They consist
of 276 and 145 trajectories, respectively. Each trajectory consist of
location information for a truck/bus within a day, collected every
30 seconds.

The synthetic data sets are generated with uniform distribution.
We also generate two types of query objects: random (denoted by
“R”) and directional (denoted by “D”). A random query object
updates its moving direction randomly at each timestamp; a di-
rectional query object randomly chooses a moving direction, and
keeps moving along the direction until it hits the data space bound-
ary, where it randomly chooses a new moving direction that will
keep it inside the data space. We vary the speed of the query object
from 1 to 256 units per timestamp, where the default value is 32.

We map the data sets on to a space of 20,000 × 20,000 square
units. The VoR-tree [20] is used to index the data objects in each
data set, where each data entry contains a data object and its Voronoi
neighbors.

Parameters. To evaluate the algorithms under various settings,
we vary the value of k from 5 to 50, the value of ρ from 1.5 to 5 and
the size of the data set from 0.25 million to 1.5 million. By default,
we set k at 10, ρ at 1 and use the two real data sets. The parameters
are summarized in Table 2.

Table 2: System parameters
Parameter Default Range

Speed of the query issuer 32 1, 2, 4,· · · , 256
k, number of query objects 10 5, 10, 15,· · · , 50
x, number of auxiliary objects 9 3, 6, 9,· · · , 18
ρ , prefetch ratio 1 1.5, 2, 2.5,· · · ,5
Data set size (million) - 0.25, 0.5, 0.75, 1, 1.5

Baseline algorithm. We compare our method with the state-of-
the-art algorithm V*-Diagram [16], as described in Section 3.2.

In the experiments, we use the client-server model, where the
server holds the data set and is responsible for generating the kNN

3https://github.com/chiewen/CkNN.git
4http://geocoder.ca
5http://www.chorochronos.org/

121

https://github.com/chiewen/CkNN.git
http://geocoder.ca
http://www.chorochronos.org/

sets, while the clients are the query objects and they have the cur-
rent kNN sets and IS. When the client updates its location, it first
validates its kNN set, and only reports the update if the kNN set
has become invalid. Changing the implementation to a centralized
model can be done straightforwardly by moving the kNN set and
IS to the server. We implemented both disk-based and memory-
based versions of the proposed algorithm. In the experiments, we
run the system for 300 timestamps and record the response time
(on both the clients and the server, respectively), the number of
page accesses (if disk-based implementation) and the communica-
tion cost between the query issuer and the query processor. Here,
the communication cost is counted as the number of objects trans-
ferred from the query processor to the query issuer. We run each
experiment 20 times and report the average recorded value.

8.2 Results
In this subsection we report the experimental results. In the fig-

ures we denote the proposed algorithm by “INS” and the baseline
algorithm by “V*”, respectively.

Parameter optimization for V*-Diagram. V*-Diagram has a
parameter x, the number of auxiliary data objects used in safe re-
gion computation. We first find the optimal value of x empirically.
Figure 6 shows the algorithm performance where x is varied from
3 to 18 on the Postal Codes data set with a Random query object.

 100

 1000

 10000

 100000

1 2 4 8 16 32 64 128 256

p
a
g
e
 a

cc
e
ss

speed

V* x=3
V* x=6
V* x=9
V* x=12
V* x=15
V* x=18
INS

(a) Page access

 0

 0.5

 1

 1.5

 2

1 2 4 8 16 32 64 128 256

cl
ie

n
t
tim

e
 (

m
ili

se
co

n
d
)

speed

V* x=3
V* x=6
V* x=9

V* x=12

V* x=15
V* x=18

INS

(b) Client response time

0

1000

2000

3000

4000

5000

1 2 4 8 16 32 64 128 256

s
e
rv

e
r

ti
m

e
 (

m
ili

s
e
c
o
n
d
)

speed

V* x=3
V* x=6
V* x=9

V* x=12
V* x=15
V* x=18

INS

20

40

60

80

100

120

140

1 2 4 8

se
rv

er
 ti

m
e

(m
ilis

ec
on

d)

(c) Server response time

0

100

200

300

400

500

600

700

800

900

1000

1 2 4 8 16 32 64 128 256

co
m

m
u

n
ic

a
tio

n

speed

V* x=3
V* x=6
V* x=9

V* x=12
V* x=15
V* x=18

INS

5

10

15

20

25

30

35

1 2 4 8

(d) Communication cost

Figure 6: Optimal value of x

From the figure we can see that for all values of x tested, the
proposed method outperforms V*-Diagram in terms of the page
access number and the server response time. This is because the
conceptual safe region defined by the IS of the proposed method is
guaranteed to be as large as possible while the safe region of V*-
Diagram is not. Meanwhile, we can compute the new IS from the
current IS, which saves the server response time.

On the client side, the proposed method outperforms V*-Diagram
in all cases, except for x = 3,6 and the query object speed is below
8. This is because when x and the query object speed are both
small, the safe region verification of V*-Diagram is relatively sim-
ple. However, as can be seen in Figure 6 (c), the server response

time of V*-Diagram in these cases are higher, and the total response
time of V*-Diagram is higher.

From Figure 6 we see that when x = 9 V*-Diagram shows the
best overall performance. Experiments on other data sets show a
similar pattern. We omit the figures due to space limit. In the fol-
lowing experiments, we will use x = 9 as the default value.

8.2.1 Varying Query Object Speed
We now compare the INS algorithm with the optimized V*-

Diagram algorithm. We first vary the query object speed from 1
to 256 units per timestamp.

Disk-based implementation. Figure 7 shows the comparative
performance of INS and V*-Diagram when the data reside on a
hard disk for the Street Address data set. From Figure 7 (a) we
see that as the query object speed increases, the number of page
accesses increases for both algorithms. This is expected as higher
query object speed means that the query object moves out of the
safe regions more frequently. INS outperforms V*-Diagram con-
stantly, and the advantage is up to 5 times. As predicted in the
cost analysis, this due to a stricter safe region and simpler kNN set
validation/update procedures.

 0
 2000
 4000
 6000
 8000

 10000
 12000
 14000
 16000
 18000
 20000
 22000

1 2 4 8 16 32 64 128 256

p
a
g
e
 a

c
c
e
s
s

speed

V* (R)
INS (R)
V* (D)
INS (D)

(a) Page access

 0

 1000

 2000

 3000

 4000

 5000

1 2 4 8 16 32 64 128 256

s
e

rv
e

r
ti
m

e
 (

m
ili

s
e

c
o

n
d

)

speed

V* (R)
INS (R)
V* (D)
INS (D)

(b) Server response time

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

1 2 4 8 16 32 64 128 256

c
lie

n
t

ti
m

e
 (

m
ili

s
e

c
o

n
d

)

speed

V* (R)
INS (R)
V* (D)
INS (D)

(c) Client response time

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

 1800

1 2 4 8 16 32 64 128 256

c
o

m
m

u
n

ic
a

ti
o

n
s

speed

V* (R)
INS (R)
V* (D)
INS (D)

(d) Communication cost

Figure 7: Varying query object speed

Since kNN computation causes most of the page accesses, which
in turn causes most of the query processing time, Figures 7 (b) and
(c) have similar patterns to that of Figure 7 (a) and INS outper-
forms V*-Diagram constantly in these figures. Note that Figure 7
(d) shows that the communication cost of INS is slightly higher
than that of V*-Diagram. This is because, as discussed in the cost
analysis, when both the prefetch ratio ρ and k are small (ρ = 1,
k = 10), INS has a similar communication frequency to that of V*-
Diagram. Meanwhile, INS has to transfer more data objects in each
communication. Therefore, its communication cost is higher. We
omit figures on other data sets as they show similar patterns. We do
the same for the following subsections unless stated otherwise.

Memory-based implementation. Figure 8 shows the algorithm
response time when the data reside in the memory for the Postal
Codes data set. Again, INS outperforms V*-diagram in both server
and client response time constantly. This is expected as INS shows
lower CPU cost in the cost analysis due to simpler kNN set valida-
tion/update procedures.

8.2.2 Varying k

122

 0

 5

 10

 15

 20

 25

 30

 35

1 2 4 8 16 32 64 128256

ti
m

e
 (

m
ili

s
e
c
o
n
d
)

speed

V* client
V* server
INS client
INS server

(a) Postal Codes (Random)

 0

 5

 10

 15

 20

 25

 30

 35

1 2 4 8 16 32 64 128256

ti
m

e
 (

m
ili

s
e
c
o
n
d
)

speed

V* client
V* server
INS client
INS server

(b) Postal Codes (Directional)

Figure 8: Response time vs. query object speed (memory)

Next we evaluate the algorithms by varying k from 5 to 50. Fig-
ure 9 and 10 shows the results. We observe that while the costs
of V*-Diagram increases quickly with the value of k, those of INS
stay relatively stable. This is because INS computes the largest safe
region possible and can utilize the current kNN set to derive the
new kNN set, and hence it can constrain the number of kNN com-
putation to the minimum. The results also show that, even though
the communication cost of the proposed method is slightly higher
when k is small, it increases more slowly than that of V*-Diagram.
In Figure 10 we show the algorithm performance when the real tra-
jectories are used. We can see that the they have similar patterns
as those in Figure 9. These demonstrate the scalability of INS with
respect to the change of the value of k as well as the trajectory of
the query object.

 0

 2000

 4000

 6000

 8000

 10000

 12000

5 10 15 20 25 30 35 40 45 50

p
a

g
e

 a
c
c
e

s
s

k

V* (R)
INS (R)
V* (D)
INS (D)

(a) Page access

 0
 100
 200
 300
 400
 500
 600
 700
 800
 900

 1000

5 10 15 20 25 30 35 40 45 50

s
e
rv

e
r

ti
m

e
 (

m
ili

s
e
c
o
n
d
)

k

V* (R)
INS (R)
V* (D)
INS (D)

(b) Server response time

 0

 1

 2

 3

 4

 5

 6

5 10 15 20 25 30 35 40 45 50

c
li
e

n
t

ti
m

e
 (

m
il
is

e
c
o

n
d

)

k

V* (R)
INS (R)
V* (D)
INS (D)

(c) Client response time

 0
 100
 200
 300
 400
 500
 600
 700
 800
 900

 1000

5 10 15 20 25 30 35 40 45 50

c
o

m
m

u
n

ic
a

ti
o

n

k

V* (R)
INS (R)
V* (D)
INS (D)

(d) Communication cost

Figure 9: Varing k with generated trajectories

8.2.3 Varying Data Set Cardinality
In this set of experiments, we use synthetic data sets of different

sizes, ranging from 0.25 million to 1.25 million, to evaluate the
scalability of INS with respect to data set cardinality. The results
in Figure 11 show that the performance of INS is much more stable
compared with that of V*-Diagram with various values of x. This
again confirms the superiority of the proposed algorithm.

8.2.4 Effect of ρ

In our proposed method we have a parameter ρ ≥ 1 to balance
the computation and communication costs. In kNN set recomputa-
tion, we compute bρkc NNs and use the extra (bρkc− k) objects
as a kNN “cache”. We evaluate the effect of ρ by varying its value

 0

 2000

 4000

 6000

 8000

 10000

 12000

5 10 15 20 25 30 35 40 45 50

p
a

g
e

 a
c
c
e

s
s

k

V* (Buses)
INS (Buses)
V* (Trucks)
INS (Trucks)

(a) Page access

 0
 200
 400
 600
 800

 1000
 1200
 1400
 1600
 1800
 2000

5 10 15 20 25 30 35 40 45 50

s
e

rv
e

r
ti
m

e
 (

m
ili

s
e

c
o

n
d

)

k

V* (Buses)
INS (Buses)
V* (Trucks)
INS (Trucks)

(b) Server response time

 0

 1

 2

 3

 4

 5

 6

5 10 15 20 25 30 35 40 45 50

c
li
e

n
t

ti
m

e
 (

m
il
is

e
c
o

n
d

)

k

V* (Buses)
INS (Buses)
V* (Trucks)
INS (Trucks)

(c) Client response time

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

5 10 15 20 25 30 35 40 45 50

c
o

m
m

u
n

ic
a

ti
o

n

k

V* (Buses)
INS (Buses)
V* (Trucks)
INS (Trucks)

(d) Communication cost

Figure 10: Varing k with real trajectories

 0

 1000

 2000

 3000

 4000

 5000

 6000

 7000

0.25 0.5 0.75 1 1.5

p
a
g
e
 a

c
c
e
s
s

dataset size (million points)

V* x=3
V* x=6
V* x=9
V* x=12
V* x=15
V* x=18
INS

(a) Page access

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

0.25 0.5 0.75 1 1.5

ti
m

e
 (

m
ili

s
e

c
o

n
d

)

dataset size (million points)

V* x=3
V* x=6
V* x=9
V* x=12
V* x=15
V* x=18
INS

(b) Server response time

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

 1.8

0.25 0.5 0.75 1 1.5

ti
m

e
 (

m
ili

s
e

c
o

n
d

)

dataset size (million points)

V* x=3
V* x=6
V* x=9
V* x=12
V* x=15
V* x=18
INS

(c) Client response time

 0

 50

 100

 150

 200

 250

0.25 0.5 0.75 1 1.5

c
o
m

m
u
n
ic

a
ti
o
n
s

dataset size (million points)

V* x=3
V* x=6
V* x=9
V* x=12

V* x=15
V* x=18
INS

(d) Communication cost

Figure 11: Varying data set cardinality

from 1.5 to 5. Correspondingly, we set the auxiliary object number
x of V*-Diagram to be bρkc− k so that INS and V*-Diagram have
that same size of kNN “cache”.

Figure 12 shows the result on the Street Address data set. It
shows that INS outperforms V*-Diagram under various values of
ρ . As expected, when ρ increases, the communication cost of INS
decreases. Meanwhile, the other costs of INS increase but with a
much slower speed.

9. CONCLUSIONS
In this paper, we revisited the moving k nearest neighbor (MkNN)

query and presented an algorithm that processes the MkNN query
efficiently. This algorithm takes advantage of the order-k Voronoi
cell to the full extent but avoids the high cost of building and vali-
dating the order-k Voronoi cell. This is achieved by using a concept
called the influential neighbor set, which contains a small number
(no more than 6k on average) of data objects and can be used to
validate the current kNN set. We replace the computation of order-
k Voronoi cells with the computation of influential neighbor sets,

123

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

1.5 2 2.5 3 3.5 4 4.5 5

p
a

g
e

 a
cc

e
ss

ρ

V* (D)
INS (D)
V* (R)
INS (R)

(a) Page access

 100

 150

 200

 250

 300

 350

 400

 450

 500

 550

1.5 2 2.5 3 3.5 4 4.5 5

ti
m

e
 (

m
ill

is
e

c
o

n
d

)

ρ

V* (D)
INS (D)
V* (R)
INS (R)

(b) Server response time

 0

 0.5

 1

 1.5

 2

 2.5

 3

1.5 2 2.5 3 3.5 4 4.5 5

ti
m

e
 (

m
ill

is
e

c
o

n
d

)

ρ

V* (D)
INS (D)
V* (R)
INS (R)

(c) Client response time

 0

 50

 100

 150

 200

 250

 300

 350

 400

1.5 2 2.5 3 3.5 4 4.5 5

c
o

m
m

u
n

ic
a

ti
o

n

ρ

V* (D)
INS (D)
V* (R)
INS (R)

(d) Communication cost

Figure 12: Effect of ρ

which is much more efficient. Our influential neighbor set based
algorithm also supports data object updates as well as setting k at
query time since we do not need to precompute any order-k Voronoi
cell. We conducted extensive experiments using both real and syn-
thetic data sets. The results show that our algorithm outperforms
the state-of-the-art algorithm on both I/O and computational costs
consistently.

Acknowledgement. This work is supported by the National Ba-
sic Research Program of China under Grant No. 2012CB316201,
the National Natural Science Foundation of China under Grant No.
61300021 and 61033007, Australian Research Council (ARC) Dis-
covery Project DP130104587, Australian Research Council (ARC)
Future Fellowships Project FT120100832, the Fundamental Re-
search Funds for the Central Universities of China No. N120304003,
National Key Technology R&D Program of China 2012BAK24B01
and China Scholarship Council.

10. REFERENCES

[1] M. E. Ali, E. Tanin, R. Zhang, and L. Kulik. A motion-aware
approach for efficient evaluation of continuous queries on 3D
object databases. VLDBJ, 19(5):603–632, 2010.

[2] A. M. Aly, W. G. Aref, and M. Ouzzani. Spatial queries with
two knn predicates. PVLDB, 5(11):1100–1111, 2012.

[3] N. Beckmann, H.-P. Kriegel, R. Schneider, and B. Seeger.
The r*-tree: an efficient and robust access method for points
and rectangles. In SIGMOD, pages 322–331, 1990.

[4] R. Benetis, C. S. Jensen, G. Karĉiauskas, and S. Ŝaltenis.
Nearest and reverse nearest neighbor queries for moving
objects. VLDBJ, 15(3):229–249, 2006.

[5] Y. Gao and B. Zheng. Continuous obstructed nearest
neighbor queries in spatial databases. In SIGMOD, pages
577–590, 2009.

[6] Y. Gao, B. Zheng, W.-C. Lee, and G. Chen. Continuous
visible nearest neighbor queries. In EDBT, pages 144–155,
2009.

[7] G. R. Hjaltason and H. Samet. Ranking in spatial databases.
In SSD, pages 83–95, 1995.

[8] H. Hu, J. Xu, and D. L. Lee. A generic framework for
monitoring continuous spatial queries over moving objects.
In SIGMOD, pages 479–490, 2005.

[9] X. Huang, C. S. Jensen, and S. Šaltenis. The islands
approach to nearest neighbor querying in spatial networks. In
SSTD, pages 73–90. 2005.

[10] C. S. Jensen, D. Lin, B. C. Ooi, and R. Zhang. Effective
density queries on continuously moving objects. In ICDE,
pages 71–82, 2006.

[11] M. Kolahdouzan and C. Shahabi. Voronoi-based k nearest
neighbor search for spatial network databases. In VLDB,
pages 840–851, 2004.

[12] L. Kulik and E. Tanin. Incremental rank updates for moving
query points. In GIS, pages 251–268. 2006.

[13] C. Li, Y. Gu, F. Li, and M. Chen. Moving k-nearest neighbor
query over obstructed regions. In Asia-Pacific Web
Conference (APWEB), pages 29–35. IEEE, 2010.

[14] C. Li, Y. Gu, G. Yu, and F. Li. wneighbors: a method for
finding k nearest neighbors in weighted regions. In DASFAA,
pages 134–148. Springer, 2011.

[15] C.-H. Liu, E. Papadopoulou, and D.-T. Lee. An output
sensitive approach for the L1/L∞ k-nearest-neighbor voronoi
diagram. In Algorithms–ESA 2011, pages 70–81. 2011.

[16] S. Nutanong, R. Zhang, E. Tanin, and L. Kulik. The
v*-diagram: a query-dependent approach to moving knn
queries. PVLDB, 1(1):1095–1106, 2008.

[17] S. Nutanong, R. Zhang, E. Tanin, and L. Kulik. Analysis and
evaluation of v*-knn: an efficient algorithm for moving knn
queries. VLDBJ, 19(3):307–332, 2010.

[18] A. Okabe, B. Boots, K. Sugihara, and S. N. Chiu. Spatial
tessellations: concepts and applications of Voronoi
diagrams, volume 501. Wiley. com, 2009.

[19] N. Roussopoulos, S. Kelley, and F. Vincent. Nearest neighbor
queries. In SIGMOD Rec., volume 24, pages 71–79, 1995.

[20] M. Sharifzadeh and C. Shahabi. Vor-tree: R-trees with
voronoi diagrams for efficient processing of spatial nearest
neighbor queries. PVLDB, 3(1-2):1231–1242, 2010.

[21] Z. Song and N. Roussopoulos. K-nearest neighbor search for
moving query point. In SSTD, pages 79–96, 2001.

[22] Y. Tao and D. Papadias. Time-parameterized queries in
spatio-temporal databases. In SIGMOD, pages 334–345,
2002.

[23] Y. Tao, D. Papadias, and Q. Shen. Continuous nearest
neighbor search. In VLDB, pages 287–298, 2002.

[24] A. Y. Xue, R. Zhang, Y. Zheng, X. Xie, J. Huang, and Z. Xu.
Destination prediction by sub-trajectory synthesis and
privacy protection against such prediction. In ICDE, pages
254–265, 2013.

[25] J. Zhang, M. Zhu, D. Papadias, Y. Tao, and D. L. Lee.
Location-based spatial queries. In SIGMOD, pages 443–454,
2003.

[26] R. Zhang, H. V. Jagadish, B. T. Dai, and K. Ramamohanarao.
Optimized algorithms for predictive range and knn queries
on moving objects. Information Systems, 35(8):911–932,
2010.

[27] R. Zhang, D. Lin, R. Kotagiri, and E. Bertino. Continuous
intersection joins over moving objects. In ICDE, pages
863–872, 2008.

[28] R. Zhang, J. Qi, D. Lin, W. Wang, and R. C.-W. Wong. A
highly optimized algorithm for continuous intersection join
queries over moving objects. VLDBJ, 21(4):561–586, 2012.

124

	Introduction
	Related Work
	Preliminaries
	Voronoi Diagram
	V*-Diagram

	Influential Set
	Influential Neighbor Set
	Query Processing
	kNN Set Validation
	kNN Set Update
	Data Object Update
	Insertion
	Deletion

	Cost Analysis
	Experiments
	Settings
	Results
	Varying Query Object Speed
	Varying k
	Varying Data Set Cardinality
	Effect of

	Conclusions
	References

