
Progressive Approach to Relational Entity Resolution

Yasser Altowim Dmitri V. Kalashnikov Sharad Mehrotra

Department of Computer Science
University of California, Irvine

ABSTRACT
This paper proposes a progressive approach to entity reso-
lution (ER) that allows users to explore a trade-off between
the resolution cost and the achieved quality of the resolved
data. In particular, our approach aims to produce the high-
est quality result given a constraint on the resolution bud-
get, specified by the user. Our proposed method monitors
and dynamically reassesses the resolution progress to deter-
mine which parts of the data should be resolved next and
how they should be resolved. The comprehensive empirical
evaluation of the proposed approach demonstrates its sig-
nificant advantage in terms of efficiency over the traditional
ER techniques for the given problem settings.

1. INTRODUCTION
Entity resolution (ER) is a well-known data quality chal-

lenge that arises when real-world objects are referred to us-
ing entities or descriptions that are not always unique iden-
tifier of the objects [3, 5, 8, 23, 24]. The task of ER is to
determine which entities refer to the same real-world ob-
ject. A typical ER process consists of two phases: (a) a
pruning phase that uses strategies, such as blocking [14,18],
to partition the dataset into a set of (possibly overlapping)
blocks such that entities in different blocks are unlikely to
co-refer, and (b) a (potentially expensive) resolution phase
that determines duplicate entities within each block.

Traditionally, the ER problem has been studied in the
context of data warehousing as an offline pre-processing step
prior to data analysis. Such an offline strategy is not suit-
able for many emerging applications that require (near) real-
time analysis, especially if it involves big, fast, or streaming
data [22]. To address the needs of such applications, in-
stead of cleaning data fully, a preferred approach is to clean
data progressively in a pay-as-you-go fashion, while contin-
ually/periodically analyzing the partially cleaned data to
progressively compute better analysis results.

Such a progressive approach is a new paradigm for entity
resolution. It aims to identify and resolve as many dupli-

This work is licensed under the Creative Commons Attribution-
NonCommercial-NoDerivs 3.0 Unported License. To view a copy of this li-
cense, visit http://creativecommons.org/licenses/by-nc-nd/3.0/. Obtain per-
mission prior to any use beyond those covered by the license. Contact
copyright holder by emailing info@vldb.org. Articles from this volume
were invited to present their results at the 40th International Conference on
Very Large Data Bases, September 1st - 5th 2014, Hangzhou, China.
Proceedings of the VLDB Endowment, Vol. 7, No. 11
Copyright 2014 VLDB Endowment 2150-8097/14/07.

cate entities in the dataset as possible while trying to avoid
resolving non-duplicate entities. For this purpose, a progres-
sive ER approach prioritizes/ranks which parts of the data
to resolve first in order to maximize the number of resolved
duplicate entities.

The work on progressive data cleaning [9, 15, 22] is at an
early stage with [22] being the first to explore it in the con-
text of ER. In [22], the authors focus on maximizing the
quality of the cleaned data given a user-defined resolution
budget (e.g., 5 minutes). They propose several concrete
ways of constructing resolution “hints” that can be then
used by a variety of existing ER algorithms as a guidance
for which entities to resolve first.

While [22] addresses the problem of progressive ER, their
solution considers resolving only a single entity-set contain-
ing duplicates. In this paper, we study the problem in
the case of relational ER [6, 11, 12, 23]. In relational ER,
the dataset consists of multiple entity-sets and relationships
among them. In such a dataset, a resolution of some entities
might influence the resolution of other entities. For exam-
ple, deciding that two research papers are the same may
trigger the fact that their venues are also the same. Prior
research [6, 11, 12] has shown that such decision propaga-
tion via relationships can significantly improve data quality
in datasets where such relationships can be specified. Our
challenge in this paper is to make such ER techniques that
use decision propagation (e.g., [11,12]) progressive.

The dependency between resolution decisions in relational
ER influences our design in two ways. First, as more parts
of the dataset are resolved, new information about which en-
tities tend to co-refer becomes available. Thus, an adaptive
strategy that dynamically revises its ranking is more suited
for progressive relational ER. Second, unlike a single entity-
set situation where there may not be a strong reason to pre-
fer one block over another to resolve first, such a block-level
prioritization is significantly more important when resolving
relational datasets. For instance, resolving a block that in-
fluences many other parts of the dataset might significantly
improve the performance of a progressive approach.

Motivated by the two factors, we develop an adaptive pro-
gressive approach to relational ER that aims to generate a
high-quality result using a limited resolution budget. To
achieve adaptivity, our approach continually reassesses how
to solve two key challenges: “which parts of the dataset to
resolve next?” and “how to resolve them?”. For that, it
divides the resolution process into several resolution win-
dows and analyzes the resolution progress at the beginning
of each window to generate a resolution plan for the current

999

Block P Id Title Abstract Keywords Authors Venue

P1
p1 Transaction Support in Read Optimized and {File System, Transactions} {a1, a2} u1

p3 Transaction Support in Read Optimized and {File System, Transactions} {a3, a4} u3

P2
p2 Read Optimized File System Designs: A performance {File System, Database} {a1} u2

p4 Berkeley DB: A Retrospective ... {File System, Database} {a3} u4

(a) Entity-set Papers.

Block A Id Name Email Papers

A1
a1 Margo Seltzer margo@harvard.edu {p1, p2}
a3 Margo I. Seltzer seltzer@gmail.com {p3, p4}

A2
a2 Michael Stonebraker stonebraker@mit.edu {p1}
a4 M. Stonebraker stonebraker@ucb.edu {p3}

(b) Entity-set Authors.

Block V Id Name Papers

U1
u1 Very Large Data Bases {p1}
u3 VLDB {p3}

U2
u2 ICDE Conference {p2}
u4 IEEE Data Eng. Bull {p4}

(c) Entity-set Venues.
Table 1: Toy Publication Dataset.

window. A resolution plan specifies which blocks and which
entity pairs within blocks need to be resolved during the plan
execution phase of that window. Furthermore, our approach
associates with each identified pair of entities a workflow –
the order in which to apply the similarity functions on the
pair. Such an order plays a significant role in reducing the
overall cost because applying the first few functions in this
order might be sufficient to resolve the pair.

While an adaptive approach may help quickly identify du-
plicate pairs in the dataset, such a technique must be imple-
mented carefully so that the benefits obtained are not over-
shadowed by the associated overheads of adaptation. We
achieve this by designing efficient algorithms, appropriate
data structures, and statistics gathering methods that do
not impose high overheads. Our results in Section 7 show
how our approach can generate a high-quality result using
a limited amount of resolution budget.

Overall, the main contributions of this paper are:

• We propose an adaptive progressive approach to the prob-
lem of relational entity resolution (Section 3).

• We present a benefit and a cost models for generating a
resolution plan (Section 4).

• We show that the problem of generating a resolution plan
is NP-hard, and thus propose an efficient approximate
solution that performs well in practice (Section 5).

• We define the concept of the contribution of similarity
functions, and then show how the cost and contribution
of multiple similarity functions can be exploited to reduce
the resolution cost (Section 6).

• We experimentally evaluate our approach using publica-
tion and synthetic datasets and demonstrate the efficiency
of the proposed solution (Section 7).

2. NOTATION AND PROBLEM DEFINITION
In the following subsections, we first develop notation, and

then define the problem of progressive ER.

2.1 Relational Dataset
Let D be a relational dataset that contains a number of

entity-sets D = {R,S, T, . . . }. Each entity-set R contains
a set of entities of the same type R = {r1, r2, . . . , r|R|}.
Entity-set R is considered dirty if at least two of its entities
ri and rj represent the same real-world object, and hence
ri and rj are duplicate. We denote the attributes in R as
R.A = {R.a1, R.a2, . . . , R.a|R.A|}. An attribute R.a can be
a reference attribute, i.e., its values are references to other
entities in other entity-sets.

Table 1 shows an example of a relational publication dataset.
It contains three entity-sets: papers P , authors A, and
venues U . Entity-set P contains one duplicate pair 〈p1, p3〉.
Entity-set A contains two duplicate pairs 〈a1, a3〉 and 〈a2,
a4〉, and entity-set U contains one duplicate pair 〈u1, u3〉.

2.2 Standard Phases of ER
A typical ER process consists of several standard phases

of data transformations. We list these phases below and
explain how we instantiate some of them.

• Blocking [14,18] that partitions each entity-set into (pos-
sibly overlapping) smaller blocks such that entities in dif-
ferent blocks are unlikely to co-refer. The goal of block-
ing is to reduce the (often quadratic) process of applying
ER on the entire entity-set to that of applying ER on
the small blocks. In our approach, we also assume that
each entity-set R ∈ D is partitioned into a set of blocks
BR = {R1, R2, . . . , R|BR|}

1.

• Problem Representation that maps the data into an inter-
nal data representation of the ER algorithm. We repre-
sent our problem as a graph, as detailed in Section 2.3.

• Similarity Computation that computes the similarity be-
tween entities in the same block. This phase is often
computationally expensive as it might require resolving
O(n2) pairs of entities per cleaning block of size n. Each
resolution might apply several similarity functions on the
pair of entities. A high-quality similarity function can be
expensive in general as it may require invoking compute-
intensive algorithms, consulting external data sources, on-
tology matching, and/or seeking human input through
crowdsourcing [19,21].

Correspondingly, in our approach, each entity-set R ∈
D is associated with multiple similarity functions FR =
{fR

1 , f
R
2 , . . . , f

R
|FR|}. These similarity functions are as-

sumed to be “black-boxes” [5,8]. Each function fR
i takes

as input a pair of entities 〈rj , rk〉 and returns a normalized
similarity score for rj and rk – a value from the [0, 1] inter-
val. This score is computed by fR

i by analyzing the values
of rj and rk in some of the non-reference attributes A(fR

i)
of R. For instance, function fP

1 in Table 2 is defined on
the Title attribute of entity-set P , i.e., A(fP

1) = {Title}.
Given two titles of two papers, fP

1 returns their title sim-
ilarity using the standard Edit-Distance algorithm.

Each similarity function fR
i in turn is associated with a

cost cRi , which represents an average cost of applying fR
i

1
For clarity, we will present the paper as if blocks do not overlap.

Extending our approach to overlapping blocks is straightforward, see
[1] for details. In fact, our experiments on the publication dataset
use overlapping blocks.

1000

Function Attributes Similarity Algorithm

fP1 P .Title Edit Distance

fP2 P .Abstract TF.IDF

fP3 P .Keywords Edit Distance

fA1 A.Name Edit Distance

fA2 A.Email JaroWinkler Distance

fU1 U .Name Edit Distance

Table 2: Description of the Similarity Functions.

on a pair of entities. Our approach is agnostic to the
way this cost is set. For instance, we set it as the average
execution time of fR

i learned from the dataset. But it also
could be a unit-based cost set by the domain analysts, etc.

In the case where multiple similarity functions are used on
an entity-set R, there could be a resolve function whose
task is to combine the values of these multiple functions
into a single value. We explain our resolve functions in
Section 2.3.

• Clustering that groups duplicate entities into clusters based
on the values computed by similarity/resolve functions
such that each cluster represents one real-world object,
and each real-world object is represented by one clus-
ter [5, 12,19].

• Merging that combines entities of each individual cluster
into a single representative entity that will represent the
cluster to the end-user or application in the final result.

2.3 Relational Entity Resolution
The task of relational ER is to resolve all entity-sets of a

given relational dataset. In addition to exploiting the sim-
ilarity between entity attributes as in traditional ER, rela-
tional ER also utilizes the relationships among the entity-
sets to further improve the quality of the result [6, 12].

To illustrate, consider the paper pair 〈p1, p3〉 in Table 1.
By applying the similarity functions on it, we can decide
that p1 and p3 co-refer. This decision can be propagated to
the pair of their venues 〈u1, u3〉. Based on that, we might
then decide that 〈u1, u3〉 co-refer, which might not have been
achievable had we relied only on the similarity function of
U since their venue names are spelled very differently.

Influence. In relational ER, there is an influence LR→S

from entity-set R to S if resolving some pairs from R can
influence (provide evidence) for resolving some pairs from S.
For example, the dataset in Table 1 has an influence LP→U

since if two papers are the same, their venues are likely to
be the same as well. We denote the set of influences of D
as L(D). For instance, if D corresponds to the dataset in
Table 1, then L(D) = {LP→A, LP→U , LA→P , LU→P }.

In an influence LR→S , R is called the influencing entity-
set and S is the dependent entity-set. Inf(R) is the set of
all LR→X influences for any X, and Dep(S) is the set of
all LX→S influences for any X. In the example in Table 1,
Inf(P) = {LP→A, LP→U} and Dep(P) = {LA→P , LU→P }.
ER Graph. To capture decision propagation, it is often
convenient to model the problem as a graph [11,12].

Graph G = (V,E) is a directed graph, where V is a set
of nodes and E is a set of edges. A node vi is created for
a pair of entities 〈rj , rk〉 iff there exists at least one block
Rl that contains both rj and rk. The node vi represents
the fact that 〈rj , rk〉 could be the same, which needs to be
further checked. An edge is created from node vi = 〈rj , rk〉

u2, u4

p1, p3

p2, p4a1, a3

a2, a4 u1, u3

v1 v3 v5

v2 v4 v6

Figure 1: Graph Representation.

to node vl = 〈sm, sn〉 iff there exits an influence LR→S and
the resolution of vi can influence the resolution of vl.

Figure 1 shows the graph corresponding to the publica-
tion dataset in Table 1. Node v3 represents the possibility
that entities p2 and p4 could be the same. An edge from v1
to v3 indicates that the resolution of v1 influences the reso-
lution decision of v3 via LA→P . Therefore, node v3 has one
influencing node v1 via LA→P . Node v1 has two dependent
nodes v3 and v4 via LA→P .

Having defined the graph, we now can develop some use-
ful auxiliary notation that relates this graph to blocks. Let
BK(vi) be the function that, given a node vi, returns the
block that contains both of the two entities that vi repre-
sents. Let V (Ri) be the set of all nodes of block Ri. Note

that V (R) =
⋃|BR|

i=1 V (Ri).
From the graph representation point of view, the task of

relational ER can be viewed as that of determining whether
each node vi ∈ V represents a duplicate pair of entities or
not. That resolution decision is based on the outputs of ap-
plying the similarity functions of R on vi and the resolution
decisions of vi’s influencing nodes. Such a decision can be
made after the application of a “black-box” resolve function
on the node vi.

Resolve Functions. Each entity-set R is associated with
a resolve function <R. When <R is applied on a node vi ∈
V (R), it outputs a pair of confidence values: a similarity
value simi ∈ [0, 1] and a dissimilarity value disi ∈ [0, 1] that
represent the collected evidence that the two entities in vi
co-refer and are different respectively. Initially, both values
are set to 0. After calling <R on vi, the node vi is marked
as duplicate if simi = 1, as distinct if disi = 1, or as
uncertain otherwise. A node is said to be certain if it is
marked as either duplicate, or distinct. We will denote
the set of duplicate nodes of block Ri as V +(Ri) and of
entity-set R as V +(R).

As common, our resolve function <R takes as input a
feature vector fi that corresponds to node vi = 〈rj , rk〉. The
vector fi is of size |fi| = |FR| + |Dep(R)| and encodes in
itself two types of features: (1) the outputs of applying the
similarity functions of R on the pair 〈rj , rk〉 and (2) the sets
of confidence value pairs of all nodes that influence vi, where
a set is included per each influence in Dep(R). For example,
consider node v3 in Figure 1. Suppose that the outputs of
applying the functions fP

1 , fP
2 , and fP

3 on v3 are 0.2, 0.1,
and 0.9 respectively, and that 〈sim1, dis1〉 = 〈1.0, 0.0〉 and
〈sim5, dis5〉 = 〈0.0, 1.0〉. The input to <P is therefore the
feature vector f3 = (0.2, 0.1, 0.9, {〈1.0, 0.0〉}, {〈0.0, 1.0〉}).

The above discussed model of resolve functions is generic
to capture a wide range of possible implementations of re-
solve functions. In our experiments on the publication dataset,
we implement the resolve function as a binary Naive Bayes
classifier that classifies each input feature vector into either
of the two classes “duplicate” or “distinct” and returns the
probability that the input vector belongs to each class.

1001

2.4 Progressive Entity Resolution
Given a relational dataset D along with a set of similarity

functions FR and a resolve function <R for each entity-set
R ∈ D, and a resolution budget BG, our goal is to develop a
progressive ER approach that produces a high quality result
by using no more than BG units of cost.

Developing an optimal progressive approach is infeasible
in practice as it would require an “oracle” that knows in
advance the set of pairs that, when resolved, will have the
highest influence on the quality of the result. Thus, our goal
translates into finding a good strategy that best utilizes the
given budget by saving cost at two different levels. First,
our strategy should clean only the parts of the dataset that
have higher influence on the quality of the result. That is,
it should aim to find and resolve as many duplicate pairs
as possible, because the more duplicate pairs it correctly
identifies, the higher the quality of the result is expected to
be2. Second, it should resolve those identified pairs with the
least amount of cost.

3. OVERVIEW OF OUR APPROACH
Our progressive ER approach resolves the dataset D by

incrementally constructing the ER graph and resolving its
nodes. At any instance of time, the approach maintains a
partially constructed ER graph Gp = (V p, Ep) which is a
subgraph of the ER graph G(V,E) that corresponds to the
entire dataset D; i.e., V p ⊆ V and Ep ⊆ E. We refer to
the nodes and edges in Gp as instantiated nodes and edges
of G. The instantiated nodes in Gp are further separated
into resolved nodes, denoted as RV, and unresolved nodes,
denoted as UV, based of whether the approach has already
resolved the node (i.e., applied the similarity functions on
it and then marked it as duplicate, distinct, or uncertain)
or not. Figure 2 depicts an example of a graph G and a
partially constructed graph Gp.

Resolution Windows. To incrementally build and resolve
the graph GP , we divide the total budget BG into several
resolution windows. Each window consists of two phases:
plan generation followed by plan execution. In the plan gen-
eration phase, our approach determines the activities that
should be performed in the next W units of cost. The pa-
rameter W is the duration of the plan execution phase and
it is of the same cost unit as BG; e.g., if the unit of cost is
the execution time, then BG could be, say, 1 hour and W
could be 3 minutes. Generating a plan for a window involves
identifying a set of nodes to be resolved during the plan exe-
cution phase of that window. This set is chosen from the set
of candidate nodes CV = V −RV (which are the nodes that
have not been resolved yet) based on a trade-off between the
benefit and cost of resolving these nodes.

Before we explain the plan generation and execution phases,
let us first describe how our approach incrementally builds
the graph Gp. If a node vi is chosen to be resolved and it is
not currently instantiated in Gp, then it is first instantiated.
Instantiation is performed in unit of blocks; that is, if a node
vi needs to be instantiated in a window, then we instantiate
the entire block BK(vi).

Block Instantiation. The process of instantiating a block
Ri involves reading all entities of Ri, creating a node for

2
We operate under the condition that most of the pairs in the dataset

are distinct [22], which is often the case in real-world datasets.

v9

v6

v1

v2

v7

v10

v11v3

v8

Unresolved Node Duplicate Node Distinct Node

 R1 T1

 S2

 S1

 R2

v4

Instantiated Block Uninstantiated Block

v5

v12

 T2

Gp

Figure 2: A Partially Constructed Graph Gp.

each pair of entities of Ri, and adding edges based on de-
pendency. In addition, we also determine, for each entity
in Ri, the set of its dependent entities via each influence
LR→S ∈ Inf(R), and the blocks to which those dependent
entities belong. For example, when instantiating the block
A2 in Table 1, we determine that entity p1 depends upon
entity a2 via LA→P , entity p3 depends upon entity a4 via
LA→P , and entities p1 and p3 belong to the block P1. Such
information is essential to create the outgoing edges from
the nodes in V (Ri) to their dependent instantiated nodes,
and to infer their uninstantiated dependent nodes which can
be useful in determining which nodes to resolve in the next
windows. Instantiating at the granularity of a block helps
bring significant savings since the cost of reading the nodes
(possibly from disk/storage) is only incurred once per block.
Thus, prior to the beginning of a window, the blocks in D
can be classified as instantiated blocks, which are the blocks
that have been instantiated in previous windows, and unin-
stantiated blocks, denoted as UB.

Plan Generation. During the plan generation phase of a
window, our approach generates a resolution plan P̄ that
specifies the set of blocks to be instantiated in the window,
denoted as P̄B, and the set of nodes to be resolved in the
window, denoted as P̄V. A resolution plan is said to be
valid only if, for every uninstantiated node vi ∈ P̄V, the
block BK(vi) ∈ P̄B. For example, suppose that the graph
Gp at the beginning of the current window is as depicted
in Figure 2. If P̄V = {v3, v8} and P̄B does not contain S2,
then the generated plan is not valid as the resolution of v8
will not be applicable without instantiating S2.

Each possible resolution plan is associated with a notion
of cost and benefit. The cost of a plan P̄ is the summation of
the instantiation cost of every block in P̄B and the resolution
cost of every node in P̄V. To estimate the resolution cost of
a node vi, we need to associate a workflow with that node
which specifies how vi is to be resolved (explained next).
The benefit of a plan P̄ measures the value of resolving the
nodes in P̄V. Note that instantiating a block Ri ∈ P̄B, by
itself, does not provide any benefit to the resolution process
but it may be required to ensure the validity of the plan.
The benefit and cost models are presented in Section 4.

The process of plan generation starts by ensuring that ev-
ery block in UB is associated with an updated instantiation
cost value and every node in CV is associated with updated
resolution cost and benefit values. Then, it enumerates a
small set of alternative valid plans whose estimated cost is
less than or equal to W , and chooses the plan with the high-
est estimated benefit. Note that the process of generating a

1002

plan itself consumes some cost from the budget BG. Thus,
a key challenge is to generate a beneficial plan in a small
amount of cost. The process of generating a valid resolution
plan is explained in Section 5.

Plan Execution. The process of executing a plan P̄ starts
by instantiating the blocks in P̄B, and then iterates over all
the nodes in P̄V to resolve them3. One naive strategy for
resolving a node vi ∈ V (R) is to apply all the similarity
functions of R on that node, and then call the resolve func-
tion <R on vi to determine its resolution decision. However,
in practice, it is often sufficient to apply a subset of these
functions to resolve the node to a certain decision. Thus,
our approach follows a lazy resolution strategy that delays
the application of a similarity function on a node until it is
needed. To resolve a node vi ∈ V (R) using this strategy,
we apply the similarity functions of R on vi in a specific
order, referred to as the workflow of vi (the details of how
workflows are generated and associated with nodes are pre-
sented in Section 6). After the application of each similarity
function, we call the resolve function <R on vi to determine
if it is certain or not. If the node is uncertain, we apply
the next similarity function in the workflow on vi, and then
call <R on the node again. This process continues until the
node is certain, or there is no more similarity function to
apply on the node.

After resolving all nodes in P̄V, their resolution decisions
are propagated to their dependent nodes in GP that are still
uncertain. To do so, our approach stores those dependent
nodes into a set H, and then iterates over them. For each
node vj ∈ H, our approach calls the corresponding resolve
function on vj , and then inserts its uncertain dependent
nodes into H to further propagate the decision of that node.
To ensure that the propagation process terminates, we insert
those dependent nodes into H only when vj was resolved to
a certain decision, or when the increase in simj or disj due
to the last application of the resolve function on vj exceeds
a small constant.

Early Termination. On the completion of the budget BG,
all uncertain and unresolved nodes in the graph G are de-
clared to be distinct. Although there can be sophisticated
approaches to making decisions about those nodes, such ap-
proaches add to the overall computational complexity. Since
our approach finds duplicate entities early, declaring those
nodes to be distinct is expected to perform well.

4. BENEFIT AND COST MODELS
In this section, we discuss how we estimate the benefit

and cost of a resolution plan.

4.1 Benefit Model
We will first describe how we compute the benefit of a

node vi and then show at the end of this section how we es-
timate the benefit of a plan. In relational ER, the resolution
decision of a node vi depends upon the resolution decisions
of other nodes in the graph G. Thus, the probability of
vi to be duplicate at any instance of time can be inferred
from the state of the graph G (i.e., which nodes have been
resolved to duplicate so far), denoted as S. Therefore, the
benefit of a node vi can be determined based on whether vi

3
The actual cost of executing a plan might be different from its esti-

mated cost since we can never accurately determine the exact cost of
instantiating a block or resolving a node.

is duplicate or not (direct benefit) and how useful declaring
vi to be duplicate is in identifying more duplicate nodes in
G (indirect benefit or the impact of vi). More formally, the
benefit of a node vi is defined as follows:

Benefit(vi) = P(vi|S) + P(vi|S) ∗ Imp(vi) (1)

where P(vi|S) is the probability that the node vi is du-
plicate given the current state of the graph G, and Imp(vi)
is the impact of vi which is defined as follows:

Imp(vi) =
∑

vj∈Topvi

P(vj |Svi)−
∑

vk∈Top

P(vk|S) (2)

where Svi is the state of the current graph after declar-
ing vi to be duplicate, Top is a set of unresolved nodes that
can be resolved within the remaining cost of our budget BG
(i.e., the total of their resolution costs and the instantiation
costs of their blocks, if needed, is less than or equal to the
remaining budget) such that the summation of their prob-
ability values given S is maximized, and Topvi is a set of
unresolved nodes that can be resolved within the remaining
cost of our budget minus the resolution cost of vi such that
the summation of their probability values given Svi is max-
imized. For simplicity, we will denote the value P(vi|S) as
P(vi) henceforth.

Computing the exact benefit of a node vi is infeasible in
practice for two reasons. First, computing the probability
value of a node given a state requires the graph G to be fully
instantiated to infer the dependency between the nodes (in
contrast, we construct G progressively), and is also equiv-
alent to the belief update problem in Bayesian Networks,
which is known to NP-hard [10]. Second, identifying each of
the Top and Topvi sets can be easily proved to be NP-hard
as it contains the traditional knapsack problem as a special
case. Therefore, we use heuristics to compute Benefit(vi).
The values of P(vi) and Imp(vi) are estimated as below.

Probability Estimation. We estimate the value of P(vi)
using the Noisy-Or model [20] which models the interaction
among several causes on a common effect. We model the
node vi being duplicate as an effect yi that can be pro-
duced by any members of a set of binary causes Xi =
{xi1, xi2, . . . , xin}. These causes in our case correspond to
the direct influencing nodes of vi and the block BK(vi).
That is, the probability value P(vi) is estimated based on
which of vi’s influencing nodes are duplicate and/or on the
percentage of duplicate nodes in the block BK(vi).

Each cause xij can be either present or absent, and has a

probability P(yi|xij) of being capable of producing the ef-

fect when it is present and all other causes in Xi are absent.
The Noisy-Or model assumes that the set of causes Xi are
independent of each other4, and therefore computes the con-
ditional probability P(vi) = P(yi|Xi) as follows:

P(vi) = 1− (1− δ)
∏

xi
j∈Xi

p

1− P(yi|xij)
1− δ (3)

where the parameter δ is a leak value (explained later)
and Xi

p is the set of present causes in Xi. If a cause xij cor-

responds to a node vk that influences vi via LS→R, then xij
4
One could also use a more advanced model such as the Recursive

Noisy-Or model [17] to allow for dependent causes to be used in es-
timating the probability of an effect. However, such dependency be-
tween causes is rarely observed in datasets and often requires signifi-
cant effort to be identified.

1003

is present only if vk was resolved to duplicate in a previous
window, and thus we set P(yi|xij) to the value PS→R. This
value refers to the probability that a node vl ∈ V (R) is du-
plicate given that there exists a duplicate node vm ∈ V (S)
that influences vl via LS→R, and all other causes of yl are
absent. Such a probability value can be specified by a do-
main expert or learned from a training dataset. On the other
hand, if xij corresponds to the block BK(vi) = Rk, then we

set P(yi|xij) to the value |V
+(Rk)|

|V ∗(Rk)|
, where V ∗(Rk) is the set

of nodes of Rk that have been resolved in previous windows,
but we require that xij be present only if the fraction of re-
solved nodes in Rk is at least α, i.e., |V ∗(Rk)| ≥ α∗|V (Rk)|,
where α is a predefined threshold. Such a requirement is not
necessary to our approach, but rather helps improve the ac-
curacy of estimating the probability value of nodes.

As an example, consider the graph in Figure 2. Suppose
that PR→S = 0.4 and α = 0.3. Then, X5

p consists of three
causes that correspond to the nodes v1 and v2 and the block
S1, whereas X8

p consists of one cause that corresponds to the
node v2. Therefore, P(v5) = 1−(1−0.4)∗(1−0.4)∗(1− 1

2
) =

0.82 and P(v8) = 1− (1− 0.4) = 0.4.
The above model states that if all influencing nodes of vi

are either distinct, uncertain, or unresolved, and the fraction
of resolved nodes in BK(vi) is less than α, then the node vi
can not be duplicate. To overcome this limitation, the Leaky
Noisy-Or model [13] allows us to assign a non-zero leak
probability value δ to P(vi). This leak value represents the
probability that vi is duplicate in the absence of all explicitly
modeled causes of yi, and it can be different for different
entity-sets. For instance, the leak value δ assigned to nodes
of R can be different from that assigned to nodes of S.

Impact Estimation. To estimate the value of Imp(vi),
instead of considering all nodes in Top and Topvi , we restrict
the impact computation to a small subset of nodes, denoted
as N (vi), and hence define the impact of vi as follows:

Imp(vi) =
∑

vj∈N (vi)

[P(vj |Svi)− P(vj |S)] (4)

where the probability values in Equation 4 are computed
as in Bayesian Networks (not using our approximation model
(Equation 3)). Clearly, the set N (vi) should include the
nodes that will be affected the most by the resolution of vi.
Thus, we include in N (vi) the unresolved nodes that can be
reached from vi by following at most β edges (the parameter
β is explained later).

Even after restricting the impact computation to the set
N (vi) only, computing an impact value for every candidate
node vi is still infeasible for two reasons. First, computing
P(vj |Svi) is in general an NP-hard problem [10]. Although
there are approximation algorithms for this problem [16],
such algorithms are still expensive for our real-time settings.
Second, identifying N (vi) might not be possible in certain
cases unless the graph G is fully instantiated.

Thus, we instead compute a single estimated impact value,
denoted as Imp(R), for every entity-set R and use that single
value as the impact value of every candidate node vi ∈ V (R).
This value is computed based on statistics that we collect
prior to and throughout the execution of our approach.

To estimate the value of Imp(R), we first define U(k, LR→S)
as the function that computes, for k nodes of entity-set R,
the estimated number of their unresolved direct dependent

Compute-Impact(R, β)
1 if β = 0 then
2 return 0
3 imp← 0
4 V isited← {R}
5 foreach LR→S ∈ inf(R) do
6 k ← U(1, LR→S) // Equation 5
7 〈m,V isited〉 ← Compute-Prob-Inc(R,S, k, V isited, β)
8 imp← imp+m
9 return imp

Compute-Prob-Inc(R,S, k, V isited, β)
1 V isited← V isited ∪ {S}
2 n← PR→S ∗ k
3 if β − 1 = 0 then
4 return 〈n, V isited〉
5 foreach LS→T ∈ inf(S) s.t. T 6∈ V isited do
6 k ← U(k, LS→T) // Equation 5
7 〈m,V isited〉 ← Compute-Prob-Inc(S, T, k, V isited, β − 1)
8 n← n+ PR→S ∗m
9 return 〈n, V isited〉

Figure 3: Impact Computation.

nodes via LR→S . That is, this function estimates the num-
ber of the direct dependent nodes via LR→S that will be
impacted by the resolution of the k nodes. The output of
this function can be computed as follows:

U(k, LR→S) = dk ∗ degree(LR→S) ∗ (1− |V
∗(S)|
|V (S)|)e (5)

where degree(LR→S) is the average number of direct de-
pendent nodes that a node vi ∈ V (R) can have via LR→S .
Such a value can be initially set by a domain expert or
learned from a training dataset, and can then be adjusted
as our approach proceeds forward.

Now, the impact value Imp(R) can be estimated by calling
the Compute-Impact(.) function in Figure 3 with these val-
ues (R, β) (the value of β is explained next). As an example,
let D correspond to the dataset whose ER graph is depicted
in Figure 2. Suppose that L(D) = {LR→S , LS→T }. Let
us further assume that PR→S = 0.4 and PS→T = 0.5, and
that degree(LR→S) = 2 and degree(LS→T) = 1. Assume we
want to compute the value of Imp(R) and that the value of β
is 2. In this case, the value of U(1, LR→S) = 1∗2∗(1− 2

4
) = 1,

and the value of U(1, LS→T) = 1∗1∗ (1− 0
4
) = 1. Thus, the

value of Imp(R) = PR→S ∗ U(1, LR→S) + PR→S ∗ PS→T ∗
U(1, LS→T) = 0.4 ∗ 1 + 0.4 ∗ 0.5 ∗ 1 = 0.6.

Using this model allows the impact computation to be
performed very efficiently (as we need to compute only a
single impact value for each entity-set R ∈ D) and works
very well as we show in Section 7.

The parameter β has the same value for all entity-sets, but
that value is updated throughout the execution. Intuitively,
such a value should be continually reduced to limit the im-
pact computation to only the dependent nodes that have a
high chance of being resolved in the remaining budget RM .
Thus, we update the value of β at the beginning of each
window to

⌊
γ ∗ RM

BG
+ 0.5

⌋
, where γ is the number of edges

in the longest non-cyclic path between any two nodes in the
influence graph whose nodes correspond to the entity-sets in
D and whose direct edges correspond to the influences L(D).
For example, the influence graph of the dataset whose ER
graph is depicted in Figure 2 consists of |D| = 3 nodes (that
correspond to the entity-sets R, S, and T) and two edges
(R→ S and S → T), and thus γ = 2. Decreasing the value

1004

of β will cause the impact computation of a node vi ∈ V (R)
to be restricted to only the dependent nodes of the entity-
sets that are close to R in the influence graph, which are the
nodes that will be affected the most by the resolution of vi
and thus have a high chance of being resolved later.

Plan Benefit. We measure the benefit of a plan P̄ as the
summation of the benefit of resolving each node in P̄V:

Benefit(P̄) =
∑

vi∈P̄V

Benefit(vi) (6)

4.2 Cost Model
The cost of a resolution plan P̄ is computed as follows:

Cost(P̄) =
∑

Ri∈P̄B

Cins(Ri) +
∑

vj∈P̄V

Cres(vj) (7)

where Cins(Ri) is the cost of instantiating the block Ri,
and Cres(vj) is the cost of resolving the node vj . The cost
Cins(Ri) typically consists of the cost of reading the block
Ri, plus the cost of creating nodes for the pairs of enti-
ties of Ri. The instantiation cost depends upon where the
blocks are stored. In practice, blocks could be stored on a
local machine, on the cloud, or anywhere else. In Section 7,
we provide a model for estimating the instantiation cost of
blocks that are stored on a local machine’s disk.

The resolution cost Cres(vj) depends upon the order in
which the similarity functions of R are applied on the node
vj ; i.e., the workflow of vj . Associating a workflow with
a node depends upon the probability of that node to be
duplicate. Thus, to estimate the resolution cost of a node
vj , we first need to estimate the value of P(vj), use that
value to associate a workflow with vj , and then estimate the
value of Cres(vj) based on the associated workflow. The
details of how the resolution cost of a node is estimated
given its associated workflow are presented in Section 6.

5. PLAN GENERATION
In order to generate a resolution plan in a window, our

approach first needs to perform a benefit-vs-cost analysis
on the uninstantiated blocks and candidate nodes to ensure
that every block in UB is associated with an updated in-
stantiation cost value and every node in CV is associated
with updated resolution cost and benefit values. This anal-
ysis step is discussed in details in Section 5.1. Given the
benefit and cost values of the candidate nodes, and the in-
stantiation cost values of the uninstantiated blocks, our ap-
proach needs to generate a valid resolution plan P̄ such that
Cost(P̄) ≤ W , and Benefit(P̄) is maximized. Generating
such a plan can be proved to be NP-hard [7]. Thus, we pro-
pose in Section 5.2 an efficient approximate solution for this
problem that performs very well in practice.

5.1 Benefit-vs-Cost Analysis
The algorithm that performs the benefit-vs-cost analysis

is illustrated in Figure 4.

Instantiation Cost. The algorithm starts by passing the
blocks UB to the Update-Inst-Cost(.) function to update
their instantiation cost values. This function needs to com-
pute the instantiation cost of every block in UB at the be-
ginning of the first window. These cost values do not need
to be updated in any subsequent window unless the blocks

Perform-Analysis(UV,UB,D, L(D), β)
1 Update-Inst-Cost(UB)
2 Update-Impact(D, L(D), β)
3 Update-Prob-And-Cost(UV)
4 AV← Get-Affected-Nodes(UB)
5 Update-Prob-And-Cost(AV)
6 for i← 1 to |UB| do
7 Compute-Single-Prob-And-Cost(UB[i])

Figure 4: Benefit-vs-Cost Analysis.

can overlap. More details on when we should update these
values can be found in [1].

Impact. The algorithm then calls the Update-Impact(.)
function to compute a single impact value for each entity-set
R ∈ D using the Compute-Impact(.) function in Figure 3.

Probability And Cost. Next, the algorithm passes the
set of nodes UV to the Update-Prob-And-Cost(.) func-
tion that updates the probability and resolution cost values
of only the nodes whose values may have changed due to
the resolution in the last window. That is, the probability
value of a node vi ∈ UV is updated only if (a) at least one
of its influencing nodes has been resolved to duplicate in
the previous window, or (b) some of the nodes resolved in
the previous window belong to the block BK(vi) and that
BK(vi) is a present cause in estimating the probability of vi.
Once the probability of a node vi ∈ UV is updated, we use
the new probability to reassociate a workflow with vi and
then recompute the cost of vi based on the new workflow.

Before we describe how the algorithm updates the proba-
bility and cost values of the uninstantiated nodes, we need to
classify those nodes into affected and unaffected nodes. An
uninstantiated node is said to be affected if it has at least
one duplicate influencing instantiated node. For instance,
the node v8 in Figure 2 is affected because v2 influences
v8 via LR→S and v2 was resolved to duplicate in a previ-
ous window. To update the probability and cost values of
the affected uninstantiated nodes, the algorithm passes the
set of blocks UB to the Get-Affected-Nodes(.) function
to retrieve those nodes and then passes them to the same
Update-Prob-And-Cost(.) function. To compute/update
the probability of affected uninstantiated nodes, our ap-
proach maintains a set of counter values for each affected
uninstantiated node vi ∈ V (R). Each counter value corre-
sponds to an influence LS→R ∈ Dep(R), and it denotes the
number of duplicate instantiated nodes influencing vi via
LS→R. In Figure 2, the set of counter values for v8 consists
of a single counter that corresponds to the influence LR→S

and whose value is 1.
Since the set of present causes of any unaffected uninstan-

tiated node can not contain any influencing node (accord-
ing to the definition of the unaffected nodes), all unaffected
uninstantiated nodes of a block in UB have the same prob-
ability value. Thus, the algorithm iterates over the blocks
in UB and, for each block Ri, assigns a single probabil-
ity value (the leak value) for all unaffected uninstantiated
nodes of Ri. It then computes a single resolution cost for
them. If the leak value is not to be updated throughout
the execution of our approach, the algorithm will call the
Compute-Single-Prob-And-Cost(.) function at the be-
ginning of the first window only. It is important to note
that, except for their count, a probability and a cost val-
ues, our approach does not store any information about the
unaffected uninstantiated nodes of block Ri ∈ UB.

1005

Generate-Plan(UV,UB,W,D)
1 BlockSet P̄B ← ∅
2 NodeSet P̄V ← ∅, M ← ∅
3 Double max, t
4 〈P̄V,max〉 ← Select-Nodes(UV,W,D)
5 BlockList List← Sort-Blocks(UB,D)
6 for i← 1 to |List| do
7 Block B ← List[i]
8 〈M, t〉 ← Select-Nodes(P̄V ∪ V (B), W − Cins(B),D)
9 if t > max then

10 P̄B ← P̄B ∪ {B}
11 P̄V ←M
12 max← t
13 W ←W − Cins(B)
14 else
15 break
16 return 〈P̄B, P̄V〉

Figure 5: Generating A Valid Resolution Plan.

5.2 Algorithm
Our algorithm that generates a valid resolution plan is

illustrated in Figure 5. The algorithm initially calls the
Select-Nodes(.) function (Line 4) to compute the maxi-
mum benefit that can be obtained by considering only the
instantiated unresolved nodes UV. The input to this func-
tion is a set of nodes, a cost budget, and the dataset D (the
impact values are associated with the entity-sets of D). This
function first identifies a subset of the input nodes whose to-
tal resolution cost is less than or equal to the input budget
and their total benefit is as large as possible, and then re-
turns this subset of nodes along with their total benefit. The
implementation of this function is discussed later. Then, the
algorithm sorts the blocks in UB in a non-increasing order
based on their benefit that they are expected to add to the
current window once they are instantiated (Line 5). To sort
these blocks, the Sort-Blocks(.) function first computes,
for each block Ri ∈ UB, a usefulness value as follows:

U(Ri) =

∑
vj∈V (Ri)

Benefit(vj)

Cins(Ri) +
∑

vj∈V (Ri)

Cres(vj)
(8)

Then, the function sorts the blocks in a non-increasing
order based on their usefulness values and returns the sorted
list of blocks.

Next, the algorithm iterates over the sorted list of blocks,
and for each block, checks if the total benefit that can be
obtained in the window will increase if that block is instan-
tiated (Lines 8-9). If so, the algorithm adds the block to the
set of selected blocks P̄B, and updates the values of the set
P̄V and the other helper variables (Lines 10-13). Otherwise,
it exists the while loop. Finally, the algorithm returns the
sets P̄B and P̄V (Line 16).

Select Nodes. The Select-Nodes(.) function chooses a
subset of nodes from the input set such that their total ben-
efit is maximized and their total cost is less than or equal to
the input budget. In general, the benefit of some nodes in
the input set might be dependent upon whether some other
nodes in the input set have been added to the output set of
nodes or not. For example, consider the graph in Figure 2.
For simplicity, suppose that the input set to this function
consists of all candidate nodes. Let us further assume that
the impact of each candidate node is computed using Equa-

tion 4 and that the node v8 ∈ N (v3). This means that the
node v8 was used in computing the current impact value of
v3, and thus the impact of v3 needs to be updated once v8
is added to the output set of nodes.

Accounting for such dependency among the input nodes
is infeasible in practice. To illustrate, suppose that the
Select-Nodes(.) function in the example above added v12
to the output set. Since v12 belongs to an uninstantiated
block and none of its influencing nodes is instantiated, de-
termining which nodes to update as a result of this addition
might not be applicable unless the sets of influencing nodes
of all nodes in G are known. Even if such information is
available, accounting for the dependency among the nodes
might be unnecessary since the set of output nodes usually
constitutes a small percentage of the nodes in V , and hence
the likelihood that they will be dependent upon each other
is in general low. Such a likelihood will even decrease as the
value of β decreases until it becomes zero at the later stages
of the execution when the benefit of nodes are restricted to
their direct benefit, i.e., their probability values.

Therefore, we do not account for such dependency among
the nodes when determining the output set of nodes of the
Select-Nodes(.) function, viewing the problem as a tra-
ditional knapsack problem. Hence, we use the greedy al-
gorithm that first sorts the nodes in the input set in a de-
creasing order based on their benefit per cost unit, and then,
starting from the head of the sorted list, it proceeds to insert
the nodes into the output set until the budget is consumed.
This greedy algorithm works very well in the cases where the
items’ weights (i.e., nodes’ resolution costs) are very small
relative to the knapsack size.

Initialization Step. In the initial few resolution windows,
our approach might not have adequate knowledge about
which nodes tend to be duplicate and which blocks contain
a high number of duplicate nodes. To obtain such knowl-
edge may require that our approach explores several blocks
in the initial few windows. To address this requirement,
the approach needs to employ a different strategy for gen-
erating a resolution plan. Using the algorithm in Figure 5
in such cases might result in instantiating a lesser number
of blocks than desired, and thus unnecessarily resolving a
large number of nodes of these blocks. To illustrate, sup-
pose that the first two blocks in the sorted list returned
from the Sort-Blocks(.) function at the beginning of the
first window belong to the same entity-set, i.e., all nodes of
these two blocks have the same benefit per cost value. In
this case, the algorithm in Figure 5 will not consider instan-
tiating the second block unless the budget W is sufficient for
instantiating and resolving all nodes of the first block. How-
ever, our approach may want to instantiate several blocks
in each of the initial few windows and explore those blocks
by resolving a few nodes from each of them.

The plan generation algorithm that we use in each of these
initial windows is a modification of the algorithm shown in
Figure 5. It first starts by sorting the blocks in UB us-
ing the same Sort-Blocks(.) function. Then, it iterates
over the blocks in the sorted list, starting from the head
of the list. For each block Ri, the algorithm checks if the
instantiation cost of this block plus the cost of resolving
k randomly chosen nodes of Ri, denoted as Cr(Ri, k), is
less than or equal to the remaining budget of the current
window, where k = dα ∗ |V (Ri)|e and the value α is the
threshold described in Section 4.1. If so, the algorithm in-

1006

serts Ri and the k nodes into the sets P̄B and P̄V respec-
tively, and then updates the window budget accordingly;
i.e., W = W −Ci(Ri)−Cr(Ri, k). Otherwise, the algorithm
considers the next block in the sorted list and performs the
same steps on it. This process continues until the budget W
is consumed or we have iterated over all blocks in the sorted
list. Finally, if W is not fully consumed, the algorithm ran-
domly chooses extra nodes from the blocks in P̄B and adds
them to the set P̄V to fill the budget W . This algorithm
can be viewed as an initialization step of our approach and
therefore be employed in the initial few windows.

6. WORKFLOWS
Given |FR| similarity functions associated with entity-set

R, there are |FR|! different orders of function application
that could be employed to resolve a node vi ∈ V (R). We,
however, should apply these functions in the order that leads
to a certain resolution decision with the least amount of cost.
To generate such an order, we need to differentiate between
these functions in terms of their costs and their contribu-
tions to the resolution decision of a node. In this section,
we first define our concept of the contribution of similarity
functions, then describe how workflows are generated and
associated with nodes, and finally show how we can estimate
the resolution cost of a node given its associated workflow.

Function Contribution. In order to resolve a node vi, we
need to obtain sufficient positive or negative evidence. Each
similarity function fR

j , when applied on a node vi, provides
positive and/or negative evidence to the resolution of vi.
Evidence is considered positive (negative) if it will increase
the chance that the resolve function will return 1 as the
similarity (dissimilarity) confidence of vi. The amounts of
the positive and negative evidence of fR

j are measured by
the resolve function <R when it is applied later on vi.

Similarity functions differ from each other in terms of the
amount of evidence that they provide to the resolution deci-
sion. Therefore, in order to generate a workflow for a node
vi ∈ V (R), we need to estimate the amount of positive and
negative evidence that the similarity functions in FR pro-
vide w.r.t. the function <R. Hence, we define for each
function fR

j , a positive contribution tR+
j ∈ [0, 1], and a neg-

ative contribution tR−j ∈ [0, 1]. The positive contribution of
a function is the amount of positive evidence that the func-
tion is expected to provide when it is applied on a duplicate
node. Similarly, the negative contribution of a function is
the amount of negative evidence that the function is ex-
pected to provide when it is applied on a distinct node.

Workflow Generation. The process of generating a work-
flow for a node vi ∈ V (R) proceeds as follows. First, we
compute for each similarity function fR

j ∈ FR a utility value

as follows: [θ∗tR+
j +(1−θ)∗tR−j]/cRj , where θ is set to P(vi).

Then, we sort the functions in FR in a non-increasing order
based on their utility values. This order of functions is the
workflow of vi. This sorting will place the functions with
the highest contribution per unit cost of resolution first in
the workflow, maximizing the chance of resolving vi to a
certain decision with the least amount of cost.

Workflow Association Strategy. As explained in Sec-
tion 5, to estimate the resolution cost of a node requires
knowing the workflow that will be used to resolve that node.
One naive strategy of associating a workflow with a node vi
is to instantly generate a workflow for vi as discussed above.

Such a strategy can be inefficient as we will have to sort the
similarity functions every time we need to estimate the reso-
lution cost of a node. Thus, we follow a more efficient strat-
egy for associating a workflow with a node. This strategy
requires that we maintain a set of w pre-generated workflows
WR

1 ,W
R
2 , . . . ,W

R
w for each entity-set R ∈ D. Each workflow

WR
k is generated as described above with the value of θ set

to k−1
w−1

. For example, if w = 5, then the θ values that we use
to generate these w workflows will be: 0, 0.25, 0.5, 0.75, and
1.0 respectively. Now, to associate a workflow with a node
vi ∈ V (R), we can simply map the node vi to the workflow
WR

k whose θ value, i.e., k−1
w−1

, is the closet (among all the

workflows’ of R) to the value of P(vi).

Resolution Cost. Given a node vi ∈ V (R) and its work-
flow WR

k , we estimate the value of Cres(vi) as follows:

Cres(vi) = P(vi) ∗Cr+(WR
k) + (1−P(vi)) ∗Cr−(WR

k) (9)

where Cr+(WR
k) is the expected cost that should be in-

curred to resolve a duplicate node using the workflow WR
k ,

and Cr−(WR
k) is the expected cost that should be incurred

to resolve a distinct node using the workflow WR
k . Such

values can be easily learned from a training dataset.

7. EXPERIMENTAL EVALUATION
In this section, we evaluate the quality and efficiency of

our approach on publication and synthetic datasets.

7.1 Experimental Setup
Block Instantiation Cost. In our experiments, the pub-
lication and synthetic datasets are initially stored on disk.
Each block Ri is stored in a single file that contains the en-
tities of Ri along with their dependency information, i.e.,
which entities are dependent upon the entities of Ri via in-
fluence LR→S ∈ Inf(R)5. However, the information of which
blocks those dependent entities belong to is stored in differ-
ent files. Thus, the instantiation/loading cost of block Ri

can be estimated as follows:

Cins(Ri) = Cf (Ri) + |V (Ri)| ∗ cc+
∑

LR→S∈Inf(R)

Cb(S) (10)

where Cf (Ri) is the cost of reading the file that contains
the block Ri from disk and it is a function of the number
and the size of entities in Ri, cc is the cost of constructing a
node for a pair of entities, and Cb(S) is the cost of reading
the blocking information of the referenced entities of S.

Algorithms. In our experiments, we compare our solution
with the DepGraph algorithm proposed in [12]. Although
this algorithm is not a progressive solution, it is one of
the few algorithms that resolve entities of multiple different
types simultaneously without having to divide the resolu-
tion based on the entity type. In addition, we compare our
solution with three variants of our approach. The first one,
referred to as Static, differs from our approach only in how
the Sort-Blocks(.) function in Figure 5 sorts the blocks.
In this variant, the order of the blocks is statically deter-
mined at the beginning of the execution as follows. First,
we sort the entity-sets based on their influences according
to [23]. For example, if Inf(R) = {LR→T }, Inf(S) = ∅, and

5
Each entity-set R has as many reference attributes as the number

of influences in Inf(R). The value of a reference attribute (that cor-
responds to an influence LR→S) for entity ri contains the IDs of the
entities of S that are dependent upon ri via LR→S (as in Table 1).

1007

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 40 80 120 160 200 240 280 320 360 400 440 480 520 560

D
up

lic
at

e
R

ec
al

l

Execution Time (Sec)

Our Approach
Static

DepGraph

Figure 6: Time vs. Recall.

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 5 10 15 20 25 30 35 40 45 50 55 60 65

D
up

lic
at

e
R

ec
al

l

Execution Time (Sec)

Our Approach
Static

DepGraph

(a) z = 0.

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 5 10 15 20 25 30 35 40 45 50 55 60 65

D
up

lic
at

e
R

ec
al

l

Execution Time (Sec)

Our Approach
Static

DepGraph

(b) z = 0.15.

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 5 10 15 20 25 30 35 40 45 50 55 60 65

D
up

lic
at

e
R

ec
al

l

Execution Time (Sec)

Our Approach
Static

DepGraph

(c) z = 0.3.
Figure 7: Effects of Zipfian Distribution Exponent Value.

Inf(T) = {LT→S}, then R’s blocks will appear first in the
sorted list of blocks, then T ’s blocks, and finally S’s blocks.
Then, blocks of the same entity-set are sorted in a random
fashion. The second variant, referred to as All, does not use
the lazy resolution strategy. That is, when resolving a node
vi ∈ V (R), it applies all the similarity functions of R on that
node and then calls the resolve function to determine its res-
olution decision. The third variant, referred to as Random,
uses the lazy resolution strategy but applies the similarity
functions on a node in a random order.

Quality Metric. Since the goal of our approach is to find
and resolve as many duplicate pairs as possible using the
budget BG, we use the duplicate pairwise recall as our qual-
ity metric. Duplicate recall is the ratio of the correctly re-
solved duplicate pairs to the total number of duplicate pairs
in the ground truth. We do not use the duplicate preci-
sion (the ratio of the correctly resolved duplicate pairs to
the total number of resolved duplicate pairs) because our
approach always achieves more than 0.99 precision.

7.2 Publication Dataset Experiments
In this section, we evaluate the efficacy of our approach

on a real publication dataset called CiteSeerX [2]. We ob-
tained a subset of 30, 000 publications from the entire col-
lection, and then extracted from those publications infor-
mation regarding Papers (P), Authors (A), and Venues (U)
according to the following schema: Papers (Title, Abstract,
Keywords, Authors, Venue), Authors (Name, Email, Affil-
iation, Address, Papers), and Venue (Name, Year, Pages,
Papers). The cardinalities of the resultant entity-sets are
|P | = 30, 000, |A| = 83, 152 and |U | = 30, 000. We com-
puted the ground truth by simply running the DepGraph
algorithm on the obtained dataset.

Each entity-set is divided into a set of blocks. We use
two blocking functions to partition entity-set P into a set of
overlapping blocks. The first function partitions the entities
based on the first three characters of their titles, whereas the
second function partitions them based on the last three char-
acters of their titles. Also, we use a blocking function that
partitions entity-set A into blocks based on the first char-
acter of the author’s first name appended with the first two
characters of his/her last name. Similarly, we use a block-
ing function that partitions entity-set U into blocks based
on the first two characters of the venue name appended with
the first two digits of the venue year.

For this dataset, we use the same set of similarity func-
tions given in Table 2 with the addition of four functions
fA
3 , fA

4 , fU
2 , and fU

3 . These four functions are defined on
the A.Affiliation, A.Address, U .Year, and U .Pages respec-
tively, and use the edit distance algorithm to compute the
similarity between their input values. The resolve function

of each entity-set is implemented as a Naive Bayes classifier.

Experiment 1 (Cost-vs-Recall). Figure 6 plots the du-
plicate recall as a function of the resolution cost (measured
as the end-to-end execution time) for various ER algorithms.
In the Static approach, P ’s blocks appear first in the sorted
list of blocks, then A’s blocks, and finally U ’s blocks. In
this experiment, we do not study the benefit of using the
lazy resolution strategy in resolving nodes. Therefore, when
resolving a pair of entities, all algorithms in Figure 6 apply
all the corresponding similarity functions on that pair even
if some of them are sufficient to resolve the pair.

To plot the curve of our approach, we ran the approach
with different budget values (correspond to the points on
the curve). For each budget value, we ran the approach ten
times, recorded the achieved recall of each run, and then re-
ported the average recall of the ten recall values. The curve
of the Static approach is plotted in the same way as we plot-
ted the curve of our approach. For the DepGraph approach,
we ran it to completion ten times, recorded the completion
time of each run, and then took the average completion time
of the ten values. Then, the recall corresponding to any bud-
get value is set to zero if that budget value is less than the
average completion time, or to one otherwise.

The results in Figure 6 show how our approach can achieve
high duplicate recall values using limited budget values. The
performance gap between our approach and the Static ap-
proach demonstrates the importance of employing a good
strategy for selecting which blocks to load into memory
next. The DepGraph approach is not progressive, and thus
it reaches the maximum recall only after resolving the en-
tire dataset. Note that the two progressive approach need
more time, compared to the DepGraph algorithm, to reach
the maximum recall. This amount of extra time represents
the overhead that these approaches need to incur to perform
progressive resolution.

Experiment 2 (Lazy Resolution and Execution Time
Phases). This experiment studies the benefit of resolving
the nodes using the lazy resolution strategy with workflows.

Our Approach Random All

Execution Time (sec) 300.33 396.55 542.43
Plan Generation 4.76% 3.81% 2.58%
Graph Creation 8.40% 6.25% 4.72%
Reading Blocks 4.70% 3.75% 2.90%
Node Resolution 82.01% 86.17% 89.78%

Table 3: Phases of Execution Time.

To conduct this experiment, we ran each of the three ap-
proaches shown in Table 3 ten times with the minimum bud-
get value (the end-to-end execution time) that is sufficient
for the approach to resolve all pairs in the dataset (i.e., ap-
ply the similarity functions on every pair). For each run,

1008

we recorded the exact total execution time (the first row in
Table 3) along with the breakdown of that execution time
(the times spent on generating plans, on reading blocks, on
creating the graph, and on resolving nodes). Next, we took
the average of those values, and reported them in Table 3.
For example, we ran our approach with BG = 310 seconds
ten times, and found that on average our approach finishes
in 300.33 seconds and that the plan generation process (Sec-
tion 5) takes on average 4.76% of the total exact execution
time, whereas the plan execution process takes on average
95.11% (4.7% for reading blocks from disk, 8.4% for incre-
mentally creating the graph, and 82.01% for resolving the
nodes). The achieved recall of each approach using the spec-
ified time is 1.0.

This experiment demonstrates the following. First, using
the lazy resolution strategy with workflows can significantly
reduce the cost of applying the similarity functions on the
nodes. This, in turn, offers the flexibility for developers to
plug in multiple similarity functions of various cost and con-
tribution values without having to worry about the cost of
applying those functions as our approach can systematically
resolve the nodes with the least amount of cost. Second, the
percentage of the plan generation process decreases as the
cost of resolving the nodes increases. In general, modern
ER solutions employ more computationally expensive simi-
larity functions, e.g., [19, 21], and therefore the overhead of
generating resolution plans in such cases can be even lower.

Parameter n s b d z l k

Value 4 20, 000 100 0.2 0.15 0.3 2

Table 4: Parameters of Synthetic Datasets.

7.3 Synthetic Dataset Experiments
In order to evaluate our approach in a wider range of

various scenarios, we built a synthetic dataset generator that
allows us to generate datasets with different characteristics.
The parameters that this generator takes as input along with
their default values are shown in Table 4.

In each synthetic dataset, we generate n entity-sets, each
contains s entities. The s entities of each entity-set are di-
vided evenly into b non-overlapping blocks. The parameter
d is the fraction of duplicate pairs in each entity-set, and it
is computed as the number of duplicate pairs divided by the
total number of pairs after applying blocking. The dupli-
cate pairs of an entity-set are distributed across the blocks
of that entity-set using a zipfian distribution with an expo-
nent of z. The parameter l ∈ [0, 1] determines the number of
influences in the dataset. For each two entity-sets R and S,
there is an influence from entity-set R to entity-set S with
probability l. Thus, the higher the value of l is, the higher
the number of influences in the dataset will be. Finally, the
parameter k represents the average number of direct depen-
dent nodes that each node vi ∈ V (R) can have via each
influence LR→S ∈ Inf(R). We require the direct dependent
nodes of a duplicate node to be also duplicate, and the direct
dependent nodes of a distinct node to be also distinct.

Each entity-set R has one non-reference twenty-five char-
acter long string attribute, and is associated with a single
similarity function that is defined on that attribute. This
function uses the edit-distance algorithm to compute the
similarity between the values of that attribute. The resolve
function of each entity-set employs a simple decision-making

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75

D
up

lic
at

e
R

ec
al

l

Execution Time (Sec)

Our Approach
Static

DepGraph

(a) l = 0.

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75

D
up

lic
at

e
R

ec
al

l

Execution Time (Sec)

Our Approach
Static

DepGraph

(b) l = 0.6.
Figure 8: Effects of the Number of Influences.

process; it returns 1 as the similarity (dissimilarity) confi-
dence of a pair only if the associated similarity function has
been applied on the pair and indicated that the two values
of the string attribute are similar (distinct).

Experiment 3 (Effects of Duplicate Distribution). In
this experiment, we study the performance of various ER
algorithms when varying the value of the exponent z while
fixing the other parameters to their default values. When
z = 0, all blocks have the same effect on the duplicate recall
because the duplicate pairs are uniformly distributed across
all blocks of the dataset. However, in the cases where the
duplicate pairs are not uniformly distributed, resolving the
blocks with high duplicate percentage will have higher in-
fluence on the duplicate recall than resolving those with low
duplicate percentage. Therefore, the higher the value of z
is, the smaller the number of blocks that have the highest
influence on the duplicate recall. In Figure 7, we vary the
value of z from 0 to 0.3. Each figure in Figure 7 was plotted
in the same way as we plotted Figure 6. As shown in these
figures, the higher the value of z is, the better our approach
performs compared to the other algorithms.

This experiment demonstrates the following. First, our
approach performs well even when the resolution cost is rel-
atively cheap (involves applying a single similarity function
on two twenty-five character long string values). Second, our
approach can adapt itself to datasets with various duplicate
distributions and therefore quickly identify and resolve the
blocks with high duplicate percentage values. Third, our
approach is more effective when the duplicate pairs are not
uniformly distributed across the blocks which is almost al-
ways the case in real-world datsets.

Experiment 4 (Effects of Influences). In this experi-
ment, we study the effects of the number of influences on
the performance of various ER approaches. In Figure 8, we
vary the value of l from 0 to 0.6. The result when l = 0.3 is
plotted in Figure 7(b). Each figure in Figure 8 was plotted
in the same way as we plotted Figure 6.

As expected, when l = 0, our approach behaves very sim-
ilarly to the Static approach because there exists no influ-
ences that our approach can utilize to identify which blocks
to load and which nodes to resolve next. In fact, the Static
approach performs slightly better than our approach be-
cause it does not need to compute the usefulness values
of the blocks and then sort them in each window. How-
ever, as the value of l increases, our approach starts to per-
form better than the Static approach because the number of
influences increases and that therefore implies that declar-
ing a node to be duplicate can guide us towards findings
more duplicate nodes in the dataset. On the other hand,
the increase in the number of influences introduces a little
overhead in performing the benefit-vs-cost analysis in the

1009

two progressive approaches (as more influences are involved
when computing the probability and impact values), and
in loading the blocks into memory in the three approaches.
This, therefore, causes the approaches to run a little slower.

This experiment also emphasizes the importance of em-
ploying a proper block selection strategy because even when
l is 0.6, the Static approach can achieve only around 0.77%
recall with the same amount of time that the DepGraph al-
gorithm needs to resolve the entire dataset.

8. RELATED WORK
Entity resolution is a well-known data quality problem

and has received significant attention in the literature over
the past few decades, e.g., [5, 8, 23, 24]. Most prior work in
this area has focused on improving either the efficiency of the
ER algorithms [14,18] or the quality of their results [4,6,24].
However, only a few research efforts have considered the
problem of exploring a trade-off between the quality of the
result and the resolution cost [9, 15,22].

The most related work to our paper is that of [22]. As
stated in Section 1, the context/type of datasets for which
the two approaches have been developed differs. In fact,
this difference raises an interesting question. To resolve a
relational dataset D using a limited budget, should we use
our approach, or should we resolve each entity-set in isola-
tion using a single entity-set ER algorithm (that does not
exploit the relationships in D) with the help of one of the
hints proposed in [22]? Our approach is intended for situ-
ations where exploiting those relationships is important in
resolving D. If those relationships are not important (i.e.,
the similarity between the attribute values is sufficient to
achieve high-quality results), then using our approach may
not provide any significant advantage over [22]. A full char-
acterization of under what circumstances one should choose
which approach is an interesting direction of future work.

Furthermore, the problem of relational entity resolution
has been studied in the literature. Reference [11] proposes
a probabilistic model that uses Conditional Random Fields
(CRF) to capture the dependencies between different entity-
sets. In [12], the algorithm performs the resolution process
on different entity-sets simultaneously. The relationships
among entity-sets are leveraged to propagate the similarity
increases of some pair to its dependent pairs. Moreover, the
authors in [23] propose a joint ER framework for resolving
multiple datasets in a parallel fashion using custom ER al-
gorithms. This proposed framework is not designed to be
a progressive solution; thus the order in which the datasets
are resolved is determined at the beginning of the joint ER
algorithm. Our solution, however, dynamically specifies the
order in which the blocks are resolved based on the estimated
amount of data quality issues in these blocks.

9. CONCLUSIONS
In this paper, we have proposed a progressive approach

to relational ER wherein the input dataset is resolved using
only a limited budget with the aim of maximizing the quality
of the result. Our approach follows an adaptive strategy that
periodically monitors the resolution progress to determine
which parts of the dataset should be resolved next and how
they should be resolved. We showed empirically how our
approach can quickly identify and resolve the duplicate pairs
in the dataset, and thus generate a high quality result using
limited amounts of resolution budget.

10. ACKNOWLEDGMENTS
This work was supported in part by NSF grants III-1429922,

III-1118114, CNS-1059436, and by DHS grant 206-000070.
Yasser Altowim was supported by KACST’s Graduate Stud-
ies Scholarship.

11. REFERENCES
[1] http://ics.uci.edu/~yaltowim/ProgER.pdf.

[2] http://csxstatic.ist.psu.edu/about/data.
[3] H. Altwaijry, D. V. Kalashnikov, and S. Mehrotra.

Query-driven approach to entity resolution. In VLDB, pp.
1846–1857, 2013.

[4] R. Ananthakrishna, S. Chaudhuri, and V. Ganti.
Eliminating fuzzy duplicates in data warehouses. In VLDB,
pp. 586–597, 2002.

[5] O. Benjelloun, H. Garcia-Molina, D. Menestrina, Q. Su,
S. E. Whang, and J. Widom. Swoosh: a generic approach
to entity resolution. VLDB J., pp. 255–276, 2009.

[6] I. Bhattacharya and L. Getoor. Collective entity resolution
in relational data. TKDD, pp. 1–36, 2007.

[7] J. J. Burg, J. Ainsworth, B. Casto, and S.-D. Lang.
Experiments with the oregon trail knapsack problem.
Electronic Notes in Discrete Mathematics, 1:26–35, 1999.

[8] Z. Chen, D. V. Kalashnikov, and S. Mehrotra. Exploiting
context analysis for combining multiple entity resolution
systems. In SIGMOD, pp. 207–218, 2009.

[9] R. Cheng, E. Lo, X. S. Yang, M.-H. Luk, X. Li, and X. Xie.
Explore or exploit?: effective strategies for disambiguating
large databases. In VLDB, pp. 815–825, 2010.

[10] G. F. Cooper. The computational complexity of
probabilistic inference using bayesian belief networks.
Artificial intelligence, 42(2):393–405, 1990.

[11] A. Culotta and A. McCallum. Joint deduplication of
multiple record types in relational data. In CIKM, pp.
257–258, 2005.

[12] X. Dong, A. Halevy, and J. Madhavan. Reference
reconciliation in complex information spaces. In SIGMOD,
pp. 85–96, 2005.

[13] M. Henrion. Practical issues in constructing a bayes’ belief
network. In UAI, pp. 132–139, 1987.

[14] M. Hernandez and S. Stolfo. The merge/purge problem for
large databases. In SIGMOD, pp. 127–138, 1995.

[15] S. R. Jeffery, M. J. Franklin, and A. Y. Halevy.
Pay-as-you-go user feedback for dataspace systems. In
SIGMOD, pp. 847–860, 2008.

[16] F. V. Jensen and T. D. Nielsen. Bayesian networks and
decision graphs. Springer, 2007.

[17] J. F. Lemmer and D. E. Gossink. Recursive noisy or - a
rule for estimating complex probabilistic interactions.
Trans. Sys. Man Cyber. Part B, pp. 2252–2261, 2004.

[18] A. K. McCallum, K. Nigam, and L. Ungar. Efficient
clustering of high-dimensional data sets with application to
reference matching. In SIGKDD, pp. 169–178, 2000.

[19] R. Nuray-Turan, D. V. Kalashnikov, and S. Mehrotra.
Exploiting web querying for web people search. In TODS,
pp. 7:1–7:41, 2012.

[20] J. Pearl. Probabilistic reasoning in intelligent systems:
networks of plausible inference. Morgan Kaufmann, 1988.

[21] J. Wang, T. Kraska, M. J. Franklin, and J. Feng. Crowder:
Crowdsourcing entity resolution. In VLDB, pp. 1483–1494,
2012.

[22] S. Whang, D. Marmaros, and H. Garcia-Molina.
Pay-as-you-go entity resolution. In TKDE, pp. 1111–1124,
2013.

[23] S. E. Whang and H. Garcia-Molina. Joint entity resolution.
In ICDE, pp. 294–305, 2012.

[24] M. Yakout, A. K. Elmagarmid, H. Elmelegy, M. Ouzzani,
and A. Qi. Behavior based record linkage. In VLDB, pp.
439–448, 2010.

1010

http://ics.uci.edu/~yaltowim/ProgER.pdf
http://csxstatic.ist.psu.edu/about/data

	Introduction
	Notation and Problem Definition
	Relational Dataset
	Standard Phases of ER
	Relational Entity Resolution
	Progressive Entity Resolution

	Overview of our approach
	Benefit and cost models
	Benefit Model
	Cost Model

	Plan Generation
	Benefit-vs-Cost Analysis
	Algorithm

	Workflows
	Experimental Evaluation
	Experimental Setup
	Publication Dataset Experiments
	Synthetic Dataset Experiments

	Related Work
	Conclusions
	Acknowledgments
	References

