
Ibex—An Intelligent Storage Engine
with Support for Advanced SQL Off-loading

Louis Woods Zsolt István Gustavo Alonso
Systems Group, Department of Computer Science, ETH Zurich, Switzerland

{firstname.lastname}@inf.ethz.ch

ABSTRACT
Modern data appliances face severe bandwidth bottlenecks
when moving vast amounts of data from storage to the query
processing nodes. A possible solution to mitigate these bot-
tlenecks is query off-loading to an intelligent storage engine,
where partial or whole queries are pushed down to the stor-
age engine. In this paper, we present Ibex , a prototype of an
intelligent storage engine that supports off-loading of com-
plex query operators. Besides increasing performance, Ibex
also reduces energy consumption, as it uses an FPGA rather
than conventional CPUs to implement the off-load engine.
Ibex is a hybrid engine, with dedicated hardware that evalu-
ates SQL expressions at line-rate and a software fallback for
tasks that the hardware engine cannot handle. Ibex supports
GROUP BY aggregation, as well as projection- and selection-
based filtering. GROUP BY aggregation has a higher impact
on performance but is also a more challenging operator to
implement on an FPGA.

1. INTRODUCTION
Data warehousing and a move to the more service-oriented

business model of cloud computing have led to the rise of
so-called database appliances. By combining hardware and
software in a single closed box, vendors can carefully tune
both aspects of the system for maximum efficiency. In these
appliances, specialized hardware components together with
large scale parallelism are often used to improve perfor-
mance. Oracle’s Exadata [23] or IBM’s Netezza [17] are
commercial examples of this trend. These systems use het-
erogeneous architectures to different degrees, all having the
notion of an intelligent storage engine in common.

An intelligent storage engine is a specialized component
that turns the classical storage engine of a database into
an active element capable of processing query operators, al-
lowing the database to off-load partial or entire queries to
the storage engine for more efficient processing in terms of
both performance and energy consumption. For instance,

This work is licensed under the Creative Commons Attribution-
NonCommercial-NoDerivs 3.0 Unported License. To view a copy of this li-
cense, visit http://creativecommons.org/licenses/by-nc-nd/3.0/. Obtain per-
mission prior to any use beyond those covered by the license. Contact
copyright holder by emailing info@vldb.org. Articles from this volume
were invited to present their results at the 40th International Conference on
Very Large Data Bases, September 1st - 5th 2014, Hangzhou, China.
Proceedings of the VLDB Endowment, Vol. 7, No. 11
Copyright 2014 VLDB Endowment 2150-8097/14/07.

J. Do et al. have recently explored this idea [11], by using
the processor inside SSD devices for query off-loading.

Executing an SQL query can be a fairly complex process,
involving many different components of a DBMS, ranging
from query parsing and query plan generation/optimization
to actual data retrieval. For many of these tasks, the flex-
ibility of a general-purpose CPU is needed. Nevertheless,
scanning, filtering and aggregating large volumes of data at
high throughput rates can be more efficiently implemented
using dedicated hardware. Thus, a hybrid database system,
composed of specialized hardware and commodity hardware
can provide the best of both worlds.

In this paper, we explore the implementation of an intelli-
gent storage engine using FPGAs and SSDs. Our prototype,
Ibex [34, 35], supports query off-loading to an FPGA-based
accelerator. This first version of Ibex has been implemented
as a pluggable storage engine for MySQL as a proof of con-
cept, with the goal of creating an open research platform for
hardware/software co-design in a database context. Com-
pared with the little public information on commercial sys-
tems [17], we provide an exhaustive description of the ar-
chitecture and design trade-offs behind intelligent storage
engines that opens up interesting research directions. More-
over, Ibex supports more complex operators (such as multi-
predicate WHERE clauses and GROUP BY aggregation) that are
significantly more expensive when performed in software
[26], and that have so far not been sufficiently addressed in
both commercial [17] and related research systems [6,7,28].
In Ibex , these operators are implemented in an efficient and
generic way.

Contributions. (i) We present a first prototype of an intel-
ligent storage engine implemented with FPGAs. Both the
software and hardware code of Ibex will be released as open
source to facilitate research in this field. (ii) We discuss
several new techniques that advance the state of the art of
SQL query processing in hardware. In previous work, only
projection- and selection-based filtering is being pushed to
specialized hardware [6, 17, 28]. By contrast, Ibex also eval-
uates complex WHERE clause expressions and GROUP BY aggre-
gation queries at line-rate. (iii) Our experiments show sev-
eral advantages of Ibex compared to well-established MySQL
storage engines such as MyISAM and INNODB, both in
terms of performance and energy consumption. (iv) Finally,
our results prove that hardware accelerators can be inte-
grated into a real DBMS, complex SQL operators can be
pushed down and accelerated, and that an intelligent stor-
age engine can improve performance, as well as lower power
consumption.

963

2. RELATED WORK
Databases have a long history of exploring tailor-made

hardware, dating back to the idea of a database machine [8,
9] in the seventies. But in those times the rapid evolution of
commodity CPUs rendered such approaches uneconomical.
However, in the last ten years, after clock frequency scaling
has more or less come to an end [4], hardware awareness
has become an increasingly important topic. This has lead
to a number of novel approaches that exploit specialized
hardware to accelerate data processing, using, for example,
GPUs [14,16], network processors [13], or FPGAs [20,21,25].

2.1 Intelligent Storage Engines
In the big data era, databases are spending an increasing

amount of CPU cycles on scanning vast amounts of data. To
produce a query result, often gigabytes of data are moved to
the CPU although most of this data is either irrelevant to the
final query result or will contribute to it only in the form of
aggregates. Thus, intelligent storage engines such as in Or-
acle’s Exadata [23] have recently been suggested to support
early filtering of data to both increase query performance
and reduce energy consumption. J. Do et al. [11] evaluated
pushing query processing into smart SSDs, concluding that
the idea has a lot of potential but that the hardware inside
current SSDs is too limited, and that the processor quickly
becomes a bottleneck. As another example, with the NDB1

storage engine for cluster environments, MySQL changed
the storage engine interface to allow pushing WHERE clause
predicates down to the storage layer because moving entire
tables between nodes of a cluster is too costly.

2.2 Data Processing with FPGAs
To accelerate data-intensive applications, FPGAs are in-

teresting because they allow building custom hardware at
relatively low development cost. Furthermore, FPGAs have
the potential to improve performance and at the same time
reduce energy consumption. It has already been shown that
FPGA-based solutions excel at a number of data processing
tasks, e.g., XML pattern matching [20], network intrusion
detection [37], traffic control information processing [32], or
algorithmic trading [24], to name a few. While these solu-
tions demonstrate the potential of FPGAs, they all focus
on accelerating only very specific tasks, not on supporting a
general-purpose database engine.

2.3 SQL Acceleration with FPGAs
Initial approaches that used FPGAs for database tasks

were mostly targeted at stream processing, e.g., Glacier [21]
is a compiler that translates SQL queries into VHDL code.
Similarly, Takenaka et al. [29] developed a synthesis frame-
work that generates complex event processing (CEP) engines
for FPGAs from an SQL-based language. Stream processing
applications typically have long-running, standing queries,
which justifies invoking a time-consuming synthesis and re-
configuration step of the FPGA for every new query.

In contrast to stream processing, in a data warehouse sce-
nario the query workload is unpredictable and queries are
not always long-running. Thus, several minutes (or even
hours) of synthesis time for every query is unacceptable.
Dennl et al. address this problem in [6], by applying a special

1The Network DataBase (NDB) storage engine is used to
enable the MySQL Cluster distributed database system.

SSD raw data FPGA
filtered

data

host
system

(MySQL)

Figure 1: Data path architecture of Ibex .

FPGA technique called partial reconfiguration, which allows
them to build query plans from pre-compiled components at
runtime. Partial reconfiguration is useful to time-multiplex
multiple circuits that would otherwise not fit on the same
FPGA. In our case, however, the entire circuit fits onto one
FPGA, and we use runtime parameterization instead to load
new queries, using techniques similar to the ones proposed
in several other systems [17,22,28].

2.4 State of the Art
In IBM’s data warehouse appliance Netezza [17], simple

selection- and projection-based filtering is pushed to mul-
tiple parallel FPGAs. However, more complex operations
such as GROUP BY aggregation are handled by the CPU. Two
different solutions to handle multi-predicate WHERE clause
expressions in an FPGA have been proposed in [6,28]. How-
ever, both approaches have unnecessary limitations, as we
show in Section 4.2, where we present our solution. The
only attempt to accelerate GROUP BY aggregation queries with
FPGAs that we know of is [7] but note that the proposed
approach only works with pre-sorted tuples. In this paper,
we present a novel algorithm for implementing GROUP BY ag-
gregation in an FPGA that does not require sorting. Fur-
thermore, we provide a holistic solution for both GROUP BY

and multi-predicate WHERE clauses that also handles the case
where the intermediate state of the operator exceeds the ca-
pacity of an FPGA.

3. SYSTEM OVERVIEW
To give a high-level overview of the system, we first dis-

cuss physical architecture options before we cover challenges
of integrating an FPGA with a database, such as interfac-
ing with the DBMS, operator pushdown, accessing data via
FPGA, and the implementation of an FPGA driver.

3.1 Architecture Options
FPGAs can be integrated into a system in many ways,

e.g., via PCIe [28], Ethernet [17], or even by putting the
FPGA in a socket using the frontside bus [5]. The way the
FPGA is integrated determines the type of data processing
that can later be efficiently performed using that FPGA.

Explicit Co-Processor. One option is to incorporate the
FPGA as a PCIe-attached co-processor, i.e., the same way
GPUs are typically integrated. This is done in systems like
Microsoft’s Cipherbase [1]2 and IBM’s database analytics
accelerator [28]. The drawback is that data needs to be
copied to and from the FPGA explicitly. Thus, it only pays
off to use the co-processor for workloads that are compute-
intensive enough to justify the data transfer.

2Note that in Cipherbase [1] data confidentiality and not
performance is the goal, as the FPGA is used as a trusted
computing base and not as an accelerator.

964

Implicit Co-Processor. Alternatively, the FPGA-based
co-processor can be inserted in the data path between stor-
age and host CPU, as illustrated in Figure 1. The FPGA cir-
cuits can be designed to operate on the data in a stream pro-
cessing manner such that routing data through the FPGA
does not hurt throughput and adds only negligible latency.
The advantage of this design is that there are no additional
transfer costs since the FPGA only operates on data that
is being transmitted to the CPU anyway. In Ibex , we are
interested in this type of integration and place the FPGA
between SSD and MySQL (cf. Figure 1). An interesting al-
ternative would be to insert an FPGA directly into the mem-
ory bus between CPU and main memory, applying the same
techniques that we present here to main memory databases.
We leave this option to future work.

3.2 Integration Challenges

3.2.1 Interfacing with the DBMS
To extend a database with an intelligent storage engine,

the parts of the code base that communicate with the disk
driver need to be replaced by code that interfaces with the
FPGA. MySQL features a pluggable storage engine (since
version 5.1) that allows multiple storage engines to co-exist
in a single database instance, and even combining differ-
ent storage engines. For example, in an existing database,
one could migrate several tables, for which query off-loading
makes sense, to Ibex , and leave other tables unchanged.
While the migrated tables now would benefit from hardware
acceleration, higher-level operations like joins across tables
associated with different engines would still be possible.

MySQL implements the Volcano iterator model [15]. The
query processor communicates with its storage engines at a
tuple granularity, e.g., when a table is scanned the query
processor repeatedly calls rnd_next(...) until the storage
engine does not return any more tuples. Inserting into a
table follows a similar pattern. Hence, the storage engine
has complete freedom as of where to fetch or store tuples,
e.g., on a local storage media or—as in the case of Ibex—via
database-aware hardware implemented on an FPGA.

3.2.2 Operator Pushdown
The main purpose of the storage engine is to translate

pages stored on disk into tuples (and vice versa), i.e., query
processing typically takes place in the upper layers of a
database. However, as mentioned earlier, MySQL intro-
duced a mechanism to push WHERE clause conditions to the
storage engine. In Ibex , we take this approach one step
further—we have extended the existing MySQL storage en-
gine interface to also allow pushing projection and GROUP BY

aggregation down to the storage engine.
To implement SQL operators on an FPGA, an important

challenge is to find the right balance between flexibility and
performance [24]. To give an example, best performance
is achieved if we implement each query on the FPGA as a
hard-wired circuit. However, this approach would allow us
to only execute a limited set of known queries. On the other
hand, the most flexible solution would be to implement a mi-
croprocessor on the FPGA to execute queries, resulting in a
slow solution because all of the benefits of dedicated hard-
ware would be lost. Ibex is in between these two extremes,
where for every component we had to carefully decide how
to divide the work between the flexible CPU on the host and

S
A

T
A

C
o
re

T
u
p
le

P
a
rser

&
P

ro
jectio

n

S
electio

n

G
ro

u
p

B
y

M
y
S
Q

L
S
o
ftw

a
re

reg
.

fi
le

raw data

FPGA Host

SATA

SSD

Figure 2: Hardware SQL engine embedded in the
data path between an SDD and MySQL, supporting
block-level access (raw data) and a tuple-level query
pipeline, which is parameterizable via register file.

our FPGA engine to get the best of both worlds. Further-
more, all major components (Parser, Selection, GROUP BY)
are runtime-parameterizable to the right degree to allow us
to execute a wide range of queries without costly reconfig-
uration of the FPGA, as will be discussed in more detail in
Section 4.

3.2.3 Data Access Modes
In Ibex , the FPGA has a direct SATA link to an SSD. The

hardware engine transfers data to/from the SSD via a SATA
IP core instantiated on the FPGA. Thus, the hardware
engine has to operate on blocks of raw data. In answering
block requests for an upstream system, it is not immediately
clear how an accelerator could filter or modify individual
tuples within those blocks.

Tuple-Level versus Block-Level Operation. The se-
mantics of any filtering or aggregation task have to be ex-
pressed on the tuple level, which is why these tasks are typ-
ically handled above the storage engine. To let the hard-
ware engine perform query processing tasks, the mismatch
problem between block-oriented disk access and the tuple-
oriented semantics of these tasks needs to be solved. Since
Ibex is designed for hybrid query processing, the Ibex hard-
ware supports both block-level and tuple-level access to base
tables. Figure 2 illustrates on a high level how we designed
the hardware part of Ibex internally to support block- and
tuple-level access modes.

Tuple-Level Access. When sub-queries are off-loaded to
the FPGA, the hardware switches to a tuple-based interface,
i.e., disk blocks are parsed in hardware and processed by
a parameterizable query pipeline, and the result tuples are
forwarded to the host system as a sequence of tuples, which
are directly fed into the query evaluation pipeline of the
database. Tuples provide the right abstraction here in a
Volcano-style execution engine like the one of MySQL.

Block-Level Access. In all other cases, data is accessed
in the conventional block-oriented mode, i.e., using the raw
data path in Figure 2. This includes not only un-predicated
table scans, as in the above example, but also any operation
that does not require hardware acceleration can use block-
level access just like an off-the-shelf system would, e.g., up-
date operations, maintenance tasks (backup/recovery, etc.),

965

P
a
rser

.
selection

component

column 1

column 2

column 3

>α

=β

<> γ

combine
predicates

match

Figure 3: Selection component with three base
predicate circuits parameterized for the expression
WHERE (col1 >α AND col2 =β) OR col3 <> γ.

or index-based plans. However, note that the focus of this
paper is the tuple-level access path, for which we consider
solely read-only workloads, at this stage.

3.2.4 FPGA Driver
For communication with the FPGA, we implemented a

driver, which is accessible from within the MySQL source
code. The communication abstraction is based on three fun-
damental components that reside on the FPGA: (a) an input
buffer, (b) an output buffer, (c) and a bi-directional regis-
ter file. C++ functions allow writing to the input buffer
and reading from the output buffer, as well as reading and
writing individual registers of the register file. The incentive
is to use the input and output buffers to transfer data be-
tween host system and FPGA, while the register file is used
to control the hardware accelerators. Under the hood, com-
munication to the FPGA is implemented over Gigabit Eth-
ernet. Unfortunately, Gigabit Ethernet provides less band-
width (125 MB/s) than SATA II (300 MB/s), i.e., with fast
SSDs the Ethernet bandwidth could become the bottleneck
if the FPGA does not filter out enough data. However, this
limitation is due to the FPGA board that we are currently
using. In a production system, a higher bandwidth connec-
tion is realistic, e.g., PCIe, 10G Ethernet, or InfiniBand.

4. QUERY PIPELINE
This section covers the three main components enabling

query processing on the FPGA (cf. Figure 2): (1) Parsing
& Projection, (2) Selection, and (3) GROUP BY Aggregation.

4.1 Parsing and Projection
Before fetching a table from disk, the corresponding cat-

alog information is loaded from the host into a small local
RAM on the FPGA. For each column, we also store a pro-
jection flag (that indicates whether the column is part of
the projection). We then use standard techniques to parse
the raw data stream coming from the SATA link at line-rate
and annotate it with catalog information. Furthermore, an
additional signal is generated, indicating which parts of the
data stream are part of the projection.

4.2 Selection-based Filtering
After the parsing stage, the annotated data stream is

loaded into the selection component. The selection compo-
nent processes this data in a pipelined manner and forwards
it to the GROUP BY component. In the selection component an
additional signal (match) is generated (cf. Figure 3), which
is set to logic high, whenever a tuple matches a given WHERE

>α

=β

<> γ

and

or

0 0 0 0

0 0 1 0

0 1 0 0

0 1 1 1

1 0 0 1

1 0 1 1

1 1 0 1

1 1 1 1

0/1

>α

=β

<> γ

Figure 4: Hard-wired circuit (left) for combined
predicate WHERE (col1 >α AND col2 =β) OR col3 <> γ versus
truth table approach (right).

clause. Subsequent components will use this signal to ignore
tuples not satisfying the WHERE clause condition. For queries
without a WHERE clause, match will be set to logic high for
every tuple.

4.2.1 Base Predicates
The selection component can be configured to support

np base predicates. We refer to a base predicate as simple
comparison between a column value and a constant, e.g.,

WHERE column θ constant .

All three parts of every base predicate are parameterizable,
i.e.: (1) the column, which is set by specifying the corre-
sponding column ID, (2) the comparator, for which one out
of six possibilities is selected (θ ∈ {=, <>,<,>,<=, >=}),
and (3) a constant value. Currently, our selection compo-
nent only supports predicates on fixed-length columns such
as integers. That is, base predicates with string comparisons
still need to be handled in software. However, one could
implement such functionality on an FPGA in a streaming
manner, similar to how Teubner et. al implemented XPath
matching [30]. Thus, the higher-level architecture would not
change much if we added this functionality.

Data is loaded into each base predicate circuit in a pipe-
lined fashion, i.e., the data stream passes by all base pred-
icate circuits, as illustrated in Figure 3. If the column ID
of the annotated stream matches the column ID parame-
ter of a particular base predicate circuit, the corresponding
part of the data stream will participate in the comparison
of that base predicate. This even allows evaluating several
base predicates on the same column, e.g., WHERE clause ex-
pressions of the following form are also possible:

WHERE col1 =α OR col1 = β .

Hence, we can evaluate np arbitrary base predicates in par-
allel, independent of which columns will participate in the
comparisons. Notice that np only limits the number of base
predicates that can be handled by the FPGA, np does not
in any way limit the number of columns that an Ibex table
can have, nor does it constrain queries to only consist of np

base predicates—for more complex WHERE clauses there still
exists the option of partial filtering, i.e., only the part of the
WHERE clause that fits on the FPGA is handled in hardware,
and the rest of the expression is evaluated in software.

4.2.2 Combined Predicates
Combined predicates are composed of base predicates and

connected via Boolean operators, e.g.:

WHERE (col1 >α AND col2 =β) OR col3 <> γ .

966

To implement combined predicates in hardware, intuitively
we would like to use logic AND and OR gates, as illustrated
on the left of Figure 4. However, it would take too long to
synthesize the corresponding hard-wired circuit at runtime.

Existing Approaches. In [6] the WHERE clause expression
is dynamically mapped to an operator pipeline using partial
reconfiguration. Unfortunately, “spare chunks” need to be
inserted into every tuple beforehand so that intermediate
results can be stored. The number of spare chunks depends
on the complexity of the WHERE clause, and it is not clear
how these chunks are inserted at runtime. Moreover, in-
serting spare chunks into a data stream reduces its actual
bandwidth. In [28] a hard-wired reduction tree with param-
eterizable operators (tree nodes) is instantiated. However,
this tree introduces additional latency, i.e., for an n-byte
long tuple, it takes n + log2(#predicates) cycles to qualify
a tuple. Furthermore, no details are given of how to map an
arbitrary WHERE clause expression to such a tree.

Truth Tables. Fortunately, a much simpler solution ex-
ists to support combined predicates, which does not have
the shortcomings discussed above. Namely, we can use a
method of parameterization that resembles the implemen-
tation of the FPGA hardware itself: lookup tables. With
np base predicates, there can be at most 2np different eval-
uation results for those base predicates. Thus, 2np bits of
storage are sufficient to materialize the output of the oper-
ator tree for every possible input bit vector. Note how this
is independent of the complexity of the Boolean expression.

In Ibex , we use on-chip block memory (BRAM) to store
operator trees as explicit truth tables. Each base predicate
circuit has one output signal that carries the result of the
base predicate evaluation. The output signals of all base
predicates together compose the lookup address in the truth
table, and are directly connected to the respective BRAM
block, as depicted on the right of Figure 4.

A single BRAM block can hold up to 36×210 bits of data,
which is enough to store truth tables for up to np = 15 base
predicates. To support np > 15 there are several possibili-
ties. First of all, multiple BRAM blocks can easily be com-
bined to form larger BRAMs, using the Xilinx tool chain.
However, BRAM consumption grows exponentially with the
number of predicates. Therefore, a better solution would
be to split the Boolean expression of the WHERE clause into
groups and assign each group a separate smaller truth table.
The results from those truth tables could then be combined
via lookup in a subsequent, higher-level truth table.

Generating the Truth Table. Before executing a query,
the Ibex software computes the truth tables values corre-
sponding to the operator tree of the WHERE clause, and then
loads them into the corresponding BRAM on the FPGA.
Computation of the truth table in software is simple. First,
the Boolean expression is converted into disjunctive normal
form (DNF). Then, starting with a truth table that has
all bits set to zero, the corresponding bits are set to one
iteratively for every conjunctive clause. Finally, the truth
table is transmitted to the FPGA, which can also be done
efficiently, e.g., transfer time of 36 Kbit (for np ≤ 15) over
Gigabit Ethernet is only 36µs.

4.3 GROUP BY Aggregation
The GROUP BY component handles grouping, using a spe-

cially designed hardware hash table, the implementation of
which we are going to discuss separately, in Section 5. For

Data
stream

key1 /
32

key2 /
32

key3 /
32

val4 /
32

val5 /
32

val6 /
32

val7 /
32

val8 /
32

Hash Table

key1/
32

key2/
32

key3/
32

agg4/
32

agg5/
32

agg6/
32

agg7/
32

agg8/
32

Figure 5: High-level architecture of the GROUP BY

component. Data is loaded in a pipelined fashion
(pipeline registers →).

now, we treat the hash table as a black box and focus on
the GROUP BY component on a high level. A typical GROUP BY
query is illustrated below.

SELECT col2, col7, MAX (col1), MIN (col1)
FROM table

GROUP BY col2, col7;
(Q1)

The grouping criteria that defines the individual groups is
specified in the GROUP BY clause. This can be a single col-
umn or a combination of several columns, as in Q1. In the
following, we refer to this grouping criteria as the group key.

In the presence of a GROUP BY clause, only columns that
are part of the GROUP BY clause can be projected without an
aggregation function, all other columns need to be part of an
aggregate since for every group there will be a single result
tuple. Notice that the same column can appear in multiple
aggregates, e.g., MAX (col1) and MIN (col1) in Q1.

Group Keys and Aggregates. The high-level design of
the GROUP BY component is depicted in Figure 5. After the
selection stage, relevant data is loaded into a wide input
buffer (here, 256 bits wide), which is divided into multiple
32-bit slots. If the match signal from the selection compo-
nent indicates that a tuple did not satisfy the WHERE clause,
the data in the buffer will be invalidated and overwritten by
the next tuple.

At runtime, a bit mask determines how many slots belong
to the group key and how many slots are used for aggrega-
tion. In Figure 5, the first three slots are used for the group
key and the remaining five for aggregation. Notice that we
do not require all slots to be used. It is perfectly valid to
use, say, only the first two slots, one for the group key, and
the other for a single aggregate. Our design exhibits flexi-
bility not only to support combined group keys, as in Q1,
but also group keys on columns that are wider than 32 bits.
For group keys that are smaller than 32 bits, we simply add
a padding of zeros to the 32-bit slot.

Input Buffer Loading. Besides assigning slots for group-
ing and aggregation, each slot can be mapped to a column at
runtime. Furthermore, also the type of aggregation (COUNT,
SUM, MIN, MAX)3 can be set for every slot. Data is loaded
into the slots in a pipelined fashion, using the same tech-
nique that we described earlier, in Section 4.2.1, to load data
into the base predicate circuits of the selection component.
This allows us to compute multiple aggregates on the same
column. Moreover, even the order of aggregates can be spec-
ified already in hardware, i.e., reordering in software is not

3For the average, we compute SUM and COUNT in hardware,
and perform the division AVG ≡ SUM/COUNT in software.

967

1 2 34

hash update/
16

memory (BRAM/DRAM)

Figure 6: Abstract view of our hash table with the
four fundamental operations: 1 hash, 2 read, 3

update, and 4 write.

necessary. Another advantage is the scalability of the tech-
nique. Here, we set the buffer width to 256 bits (eight slots),
because it matches the DRAM word-width used in the hash
table later. However, wider buffers to support more aggre-
gates are also possible since the pipelined loading mecha-
nism easily scales to wider buffers, without causing timing
or routing problems on the FPGA.

Hash Collisions and Bypass Tuples. Once the match
signal from the selection component asserts that the data
in the input buffer is valid, all slots are read out from the
buffer in parallel. The group key slots are used to probe the
hash table, upon which the hash table returns an entry the
size of the input buffer, containing the group key, as well as
the current running aggregates. All aggregates are updated
in parallel and the entry is written back to the hash table.

As discussed in more detail in Section 5, we only detect
but do not resolve hash collisions in hardware. When a col-
liding tuple is detected we simply bypass the hash table and
forward it to the host instead. Thus, during query process-
ing bypassed tuples of the form {key1, . . . , keyi, vali+1, . . .
, valn} are forwarded to the output buffer. After the entire
table has been read, the hash table contents are flushed and
aggregated tuples of the form {key1, . . . , keyi, aggi+1, . . .
, aggn} are forwarded to the output buffer.

5. GROUP BY WITH HASHING
At the heart of our GROUP BY component is a hardware im-

plementation of a hash table. While hash tables on FPGAs
have been studied in prior work [10, 18, 27, 31], the hash ta-
ble design we present here is specially tailored at supporting
GROUP BY queries at line-rate. The hash table allows us to
execute GROUP BY aggregation in a single pass, without hav-
ing to first sort the input data. Figure 6 illustrates how this
works: 1 First, the group key is hashed. 2 The bits of
the hash value (or a subset thereof) serve as the memory
address, and the corresponding memory word is read from
that address. 3 A special flag indicates whether we are
processing a particular group for the first time. If this is
the case, we perform an insert, i.e., we completely overwrite
the just read memory word. Otherwise, we simply update
the running aggregates in the memory word. 4 Finally, the
processed memory word is written back to memory.

As mentioned previously, our goal is to achieve line-rate
performance for GROUP BY aggregation inside the FPGA (i.e.,
300 MB/s or 16 bits per clock cycle at 150 MHz). However,
to do so we face several challenges. First of all, constant time
lookup is only guaranteed if there are no hash collisions, i.e.,
if no two groups map to the same memory address. Instead
of stalling the input stream to perform collision resolution
on the FPGA, we choose to bypass colliding tuples to host

Hash Read Update Write

Memory

1 2 3 4

Figure 7: Pipelined hash table hides latencies, al-
lowing concurrent processing of four tuples.

software, and implement a first-come-first-served policy in
our hash table. Getting rid of collision resolution, however,
only partially solves the problem since the four steps de-
picted in Figure 6, each require at least one clock cycle.
Performing these four steps in a sequential way would again
cause stalling of the input stream. Therefore, we propose a
fully-pipelined hash table that hides these latencies.

5.1 Fully-pipelined Hash Table
The pipelined version of the hash table is displayed in

Figure 7. The four stages hash, read, update, and write
can now be executed in parallel for different tuples in the
pipeline. The number of clock cycles that we are allowed
to spend in each stage depends on the size of the tuples in
the database table—the larger the tuples the more time we
have. The smallest tuple that our database engine supports
is 32 bits wide. This means that in the most extreme case
we have only two clock cycles in every stage.

The multiplicative hash function that we use is itself fully
pipelined, and consumes 16 bits per clock cycle matching the
input rate. Using BRAM, reading and writing each take one
cycle (we will discuss the DRAM case separately). Finally,
updating all the aggregates of a tuple is done in parallel and
can also be handled in a single cycle. Thus, with BRAM we
can guarantee line-rate processing. Nevertheless, care needs
to be taken when two tuples of the same group follow closely
after each other since this could lead to data hazards.

5.2 Avoiding Data Hazards
When two consecutive tuples access the same memory lo-

cation because they belong to the same group, it is essential
that the second tuple sees the modifications of the preceding
one, otherwise updates will get lost. The design in Figure 7
cannot guarantee this when tuples are small.

One approach is to detect situations where potential data
hazards could occur, and then stall the pipeline for an ap-
propriate amount of time. However, such stalling is only
acceptable if it happens infrequently. Unfortunately, tuples
of the same group stored close together is not an unlikely sce-
nario. Moreover, pre-sorted tables would exhibit the worst
performance, which is counter-intuitive.

To solve this problem, we introduce a caching layer be-
tween memory and the pipelined hash table. This layer im-
plements a write-through cache that holds the n last writes
to memory. As shown in Figure 8, all read requests are
logged temporarily in a queue, and the following writes to
memory are cached during the write stage. When a new
read is performed, the address of the key is first checked in
the queue of recently accessed memory locations. For this
purpose, the queue exposes a CAM-like4 interface for read-

4Content-addressable memory (CAM) is a storage device in
which the information is identified by content rather than
by an address.

968

Hash Read Update Write

Memory

W
ri

te
-t

h
ro

u
g
h

C
a
ch

e

Figure 8: Pipelined hash table with write-through
cache to avoid data hazards.

ing, which returns the index inside the queue of the most
recent access to the memory address in question. Using this
index, the write cache, holding the data recently written to
memory, can be accessed. Thus, in the read stage, actual
read requests to memory are only issued for memory ad-
dresses that have not been accessed in the recent past. The
logic in the read stage then instructs the subsequent update
stage to either fetch the next tuple from the write cache, or
wait for it to be delivered from memory.

5.3 DRAM-based Hash Table
Using BRAM to store the hash table has the advantage of

very low access latencies but BRAM is also a scarce resource
on the FPGA. A hash table that can store a few thousand
groups in BRAM takes up a big portion of the available
BRAM blocks. Thus, for workloads with many different
groups, using on-board DRAM (in the order of hundreds of
megabytes) could be a preferable option.

Thanks to the caching layer, discussed above, DRAM can
be used instead of BRAM transparently with our hash table
pipeline. The only required modification to the hash table
logic is the correct sizing of the memory access cache. The
size of the cache depends on the actual memory latency, be-
cause items in the cache can be evicted only once they have
been written to memory for effective protection against the
data hazards discussed earlier. For instance, with BRAM a
capacity of eight is sufficient, while with the DRAM on our
platform the cache needs to hold at least 32 entries.

A side effect of the caching layer for the DRAM-based
hash table is that it not only helps avoiding data hazards
but also may increase performance. With DRAM it is not
always possible to completely hide the memory latency since
it is significantly higher than for BRAM but the caching
layer at least mitigates the impact of memory read latency.

6. PERFORMANCE EVALUATION
In this section, we compare the performance of MyISAM

and INNODB (two common MySQL storage engines) to
Ibex , running the same queries with each engine, and com-
paring the execution times reported directly by MySQL.
Our main focus is to thoroughly evaluate one of the key con-
tributions of this paper—the GROUP BY acceleration compo-
nent. Furthermore, at the end of this section, we also show
experiments that illustrate performance gains of selection-
based filtering and how Ibex can impact more complex queries
such as those in the TPC-H benchmark.

0

100

200

300

1 200 400 600 800 1000

P
er

fo
rm

a
n
ce

(M
B

/
s)

Table size (MB)

Ibex (4 MB pages)
Ibex (16 KB pages)
MyISAM
INNODB (16 KB pages)

Figure 9: Performance (table size/execution time) of Ibex
versus MyISAM and INNODB for table sizes rang-
ing from one to 1024 megabytes.

6.1 Experimental Setup
All experiments were conducted on a Desktop PC featur-

ing a Quad-Core Intel (i7-2700K, 3.50 GHz) processor with
8 GB of main memory. We ran MySQL 5.5.25 on a 64-bit
Windows 7 platform, which was installed on a 256 GB OCZ
Vertex 4 SATA III 2.5” SSD. An identical SSD was con-
nected directly to the FPGA (Virtex 5, XC5VLX110T)5.

6.2 GROUP BY Aggregation Queries
In this first experiment, we want to compare how fast My-

ISAM, INNODB, and Ibex can execute GROUP BY queries. In
particular, we want to show how far MyISAM and INNODB
are from SATA II (300 MB/s) line-rate query processing. To
this end, we ran the following simple GROUP BY query on a
synthetic workload:

SELECT col1, COUNT (∗)

FROM table
GROUP BY col1;

(Q2)

We varied the table size between one and 1024 megabytes
and every table always consisted of exactly 16 groups, each
containing an equal amount of tuples stored in unsorted or-
der. In Figure 9, on the x-axis we plot the table size and on
the y-axis performance as tablesize/executiontime.

MyISAM stores tables in files managed by the operat-
ing system, i.e., a notion of database pages does not exist.
By contrast, INNODB has all the bells and whistles of a
full-fledged storage engine, including a buffer pool to cache
database pages, with a default page size of 16 KB6.

As can be seen in Figure 9, MyISAM performs better
than INNODB. In all of our experiments, MyISAM always
exhibited better performance than INNODB, which is due
to its simplicity compared to INNODB. For example, My-
ISAM does not support database transactions and therefore

5The OCZ Vertex 4 SSD is SATA III compatible but we used
it exclusively in SATA II mode since our FPGA only sup-
ports SATA II, allowing a theoretical maximum bandwidth
of 300 MB/s.
6According to the documentation, by recompiling the code,
one can set the page size to values ranging from 8 KB to
64 KB. However, this is not officially supported, and for our
version of MySQL, we could not compile the INNODB code
with pages larger than 16 KB.

969

0

2

4

6

8

10

12

0 10 20 30 40 50 60 70 80 90

E
x
ec

u
ti

o
n

ti
m

e
(s

ec
o
n
d
s)

Bypass tuples (% of all tuples)

Ibex (4 MB pages)
Ibex (16 KB pages)

MyISAM
Ibex (opt)

Figure 10: Impact of bypasses on execution time.

employs a simpler locking mechanism. Since our goal is to
compare performance of Ibex against the fastest common
MySQL storage engines, we sometimes omit INNODB re-
sults in the following plots for readability reasons.

Ibex , configured to use 16 KB pages (), performs signif-
icantly better than both MyISAM () and INNODB ().
However, the throughput is still far below the 300 MB/s
of SATA II. Throughput can be increased by using larger
database pages. Thus, Ibex with 4 MB pages () pretty
much saturates the SATA II link, and shows that Ibex can
sustain SATA II wire speed. Though the maximum band-
width of SATA II is 300 MB/s, note that actual transfer
rates of stored data are around 280 MB/s due to protocol
overhead and latencies within the SSD.

6.2.1 The Impact of Bypass Tuples
The previous experiment assumed that the entire GROUP BY

aggregation could be off-loaded to the FPGA. However, for
other workloads hash collisions may occur, or the predeter-
mined size of the hash table may be chosen too small to hold
all groups. Thus, we need to quantify how bypass tuples im-
pact performance. For this purpose, we ran query Q3

SELECT col1, SUM (col2)
FROM table

GROUP BY col1;
(Q3)

on a table from the previous experiment with modified group
keys for each run to produce a varying number of collisions
and bypass tuples.

If there are bypass tuples we need to do a separate GROUP BY
and aggregation step in software. Our first attempt to achieve
this was to rewrite query Q3 as follows for the FPGA case:

SELECT col1, SUM (s)
FROM (SELECT col1, SUM (col2) AS s

FROM table
GROUP BY col1) AS t1

GROUP BY col1;

(Q′3)

The inner query is executed by the Ibex storage engine, re-
turning a result table that contains bypass tuples, as well as
partial aggregates. The outer query, on the other hand, is
evaluated completely by the MySQL query processor. The

0

10

20

30

40

50

60

1 2 3 4 5 6 7

E
x
ec

u
ti

o
n

ti
m

e
(s

ec
o
n
d
s)

Number of aggregates

Ibex
MyISAM

INNODB

Figure 11: Varying the number of aggregates.

results are depicted in Figure 10. The y-axis shows execu-
tion time, and the x-axis displays the percentage of tuples
that are bypassed and aggregated in software.

MyISAM. When running query Q3 with MyISAM, there
are of course no bypass tuples but since we modified the
group keys for every run, we show a separate measurement
for each workload also for MyISAM. Not surprisingly, exe-
cution time is relatively constant for all workloads and takes
roughly 8.5 seconds ().

Ibex . When running query Q′3 with Ibex , the execution time
depends on the number of bypass tuples. With no bypasses
and 4 MB pages () query execution takes only 0.26 seconds,
which is 32 times faster than MyISAM. Execution time then
increases linearly with respect to the number of tuples by-
passed. At 90% bypassed tuples, the performance of Ibex is
slightly worse than that of MyISAM since query Q′3 actually
consists of two queries, while query Q3 is a single query.

We ran query Q′3 both with 4 MB pages () and 16 KB
pages (). Figure 10 shows that the page size here does not
significantly affect execution time. Hence, execution time is
dominated by the overhead of software. We confirmed this
observation also using the query profiler built into MySQL.

Ibex : Handling Bypass Tuples Natively. To avoid the
high cost of running the outer query of Q′3 in MySQL we
extended Ibex to deal with bypass tuples directly in the
software part of the storage engine such that we could run
query Q3 using Ibex even with bypass tuples. To this end,
we used a software hash table to deal with the bypass tuples,
which lead to a significantly more efficient implementation,
depicted in Figure 10 (). Thus, even the workload with
90% bypass tuples executed in 1.83 seconds, which results
in a speedup of roughly 4.5X, compared to MyISAM. This
performance difference is due to known inefficienes (e.g.,
high tuple interpretation overhead and low IPC efficiency)
of Volcano-style database engines such as MySQL [3].

6.2.2 Increasing the Number of Aggregates
In software, not only grouping is an expensive operation

but also the computation of aggregates itself. This can be
seen by running query Q4 with a varying number of SUM()

aggregates.

SELECT col1, SUM (col2), SUM (col3), · · ·
FROM table

GROUP BY col1;
(Q4)

970

101

102

103

1 2 3 4 5 6 7 8 9 10 11 12

E
x
ec

u
ti

o
n

ti
m

e
(s

ec
o
n
d
s)

Number of 32-bit INT columns

Ibex (BRAM)

Ibex (DRAM, cache hit)

Ibex (DRAM, cache miss)

MyISAM

Figure 12: Varying tuple width. Wider tuples allow
for better hiding of memory latencies.

We executed this query on a table with eight INT columns
and two million rows, and computed between one and seven
SUM() aggregates. The results, plotted in Figure 11, show
how total execution time significantly increases with every
additional aggregate when run with MyISAM () or INN-
ODB (). The added overhead for every additional aggre-
gate is similar for both MyISAM and INNODB, which is
expected since the aggregates are computed outside of the
storage engines. By contrast, execution time remains con-
stant in the case of Ibex () because each aggregate is com-
puted by a separate parallel unit on the FPGA.

A similar effect, though not quite as pronounced, can be
observed when several columns are used to form the group
key, i.e., execution time remains constant with Ibex , whereas
it increases for MyISAM and INNODB linearly with the
complexity of the combined keys.

6.2.3 BRAM- versus DRAM-Hash Table
To analyze the performance characteristics of the BRAM-

based hash table versus the DRAM-based hash table, we
varied the number of columns of a 1 GB database table and
then executed query Q2 on it. Hence, a 1 GB table with a
single-column consisted of 268,435,456 rows (1 GB÷ 4 bytes),
whereas a 1 GB table with eight columns consisted of only
33,554,432 rows (1 GB ÷ 32 bytes).

BRAM Version. As can be seen in Figure 12, execution
time of the BRAM version () is independent of the ta-
ble schema and is determined solely by the amount of data
transferred. The execution time is constant, with 3.8 sec-
onds for a 1 GB table corresponding to roughly 280 MB/s.

DRAM Version. The DRAM version behaves differently.
For narrow tables, performance is worse than that of the
BRAM version. The reason is that DRAM can handle less
operations per second than BRAM due to the higher latency
of DRAM. For wide tables, on the other hand, our pipelined
hash table architecture can completely hide the DRAM la-
tency.

Write-through Cache. Depending on whether there is
a cache hit or a cache miss in the write-through cache of
the hash table, each tuple causes one DRAM access or two,
respectively. To measure the impact of the write-through
cache we generated a workload with little enough groups

20 2

40 4

60 6

80 8

100 10

E
x
ec

u
ti

o
n

ti
m

e
(s

ec
)

S
p

ee
d
u
p

SF=1 SF=5 SF=10

Q5.1 Ibex Q5.1 MyISAM Q5.1 Speedup

Q5.2 Ibex Q5.2 MyISAM Q5.2 Speedup

Figure 13: Performance of filter queries on TPC-H
lineitem table for scale factors (SF) one, five and ten.

that the cache is always hit (), as well as a workload,
where the cache is never hit (), i.e., every tuple needs to
first read from DRAM and then write back to it. In the
worst case (a single-column table), the query executes in
41.3 seconds when the cache is always missed, and about
twice as fast (23.4 seconds) when the cache is always hit. In
the former case, line-rate speed is reached at eleven columns
(44 bytes wide tuples), whereas in the later case already at
seven columns (28 bytes wide tuples).

MyISAM. For comparison, we also plotted MyISAM per-
formance () for the same query and workloads. The exe-
cution time is substantially higher than that of both FPGA
versions (BRAM and DRAM). Observe that also for My-
ISAM the table schema matters. This is because the per-
tuple overhead in MySQL is significant [3]. Thus, for the
same amount of data, more tuples result in slower execu-
tion. With MyISAM, on the single-column table query Q2

executed in 535.6 seconds and on the 12-column table in
45.2 seconds. Thus, we could always measure a speedup of
at least one order of magnitude compared to MyISAM, even
for workloads where the write-through cache was ineffective.

6.3 Filter Queries
Running GROUP BY queries with Ibex benefits from two ef-

fects: (1) filtering and (2) an efficient GROUP BY implemen-
tation in hardware. In this section, we discuss the impact
of pure filtering queries. To do so, we ran query Q5.1 and
query Q5.2 below on the TPC-H lineitem table. Q5.1 invokes
a simple selection filter (a single predicate on a date field),
as well as a projection filter that keeps only three out of a
total of 16 columns. Q5.2, on the other hand, has a more
complex WHERE clause but the same projection filter. Both
queries also have similar selectivity, i.e., the filtering effect
is the same but the evaluation complexity is higher for Q5.2.

SELECT l orderkey, l shipdate, l linenumber
FROM lineitem
WHERE l shipdate = ’1995-1-17’

(Q5.1)

SELECT l orderkey, l shipdate, l linenumber
FROM lineitem
WHERE (l shipdate = ’1995-1-17’ OR

l shipdate = ’1995-1-18’)

AND

(l linenumber = 1 OR l linenumber = 2)

(Q5.2)

971

In Figure 13, we show the results. On the y-axis execu-
tion time and speedup are displayed and on the x-axis we
show the scale factor used to generate workloads of different
sizes for both queries. Since Ibex evaluates WHERE clause
expressions at line-rate, independent of their complexity,
there is no performance difference between query Q5.1 and
query Q5.2. Conversely, for MyISAM and INNODB the
more complex query Q5.2 causes a slight decrease in perfor-
mance because evaluating the complex WHERE clause requires
more instructions. Nevertheless, for selection and projection
it is mainly the amount of data that affects performance and
not query complexity. Moreover, note that the speedup of
roughly 2.5X is similar for all three scale factors.

6.4 Putting It All Together
While Ibex already supports running a wide range of que-

ries with hardware acceleration in MySQL, there are still
missing parts in the current version of our prototype (op-
timizer modifications, indices, etc.) that would allow us to
efficiently run all queries of a sophisticated benchmark such
as TPC-H. Nevertheless, to give a glimpse of the impact that
Ibex can have on more complex queries, we used Query 13
of the TPC-H benchmark (cf. Q13 below)7 and handcrafted
the missing parts to run this query.

1 SELECT c count, COUNT (∗) AS custdist
2 FROM

3 (SELECT c custkey, COUNT (o orderkey) AS c count
4 FROM customer LEFT OUTER JOIN orders ON
5 c custkey = o custkey AND

6 o comment LIKE ‘%express%packages%’

7 GROUP BY c custkey) AS c orders
8 GROUP BY c count
9 ORDER BY custdist DESC, c count DESC;

(Q13)

Eager Aggregation. Q13 involves two base tables: cus-
tomer and orders. We store customer as a MyISAM table and
orders as an Ibex table. By default, Ibex will push projec-
tion (line 3) and selection (line 6) to the FPGA. The GROUP

BY clause (line 7), however, would not be pushed because
of the preceding join (line 4), which is computed outside of
the storage engine. Fortunately, it is possible to evaluate
the GROUP BY clause before the join by replacing the orders
table (line 4) with the following inner query:

(SELECT o custkey, COUNT (o orderkey) AS c count
FROM orders

WHERE o comment LIKE ‘%express%packages%’

GROUP BY o custkey) AS orders2

Furthermore, the COUNT (line 3 in Q13) and GROUP BY clause
(line 7 in Q13) of the outer query can now be removed. This
technique is known as eager aggregation and has been stud-
ied in detail, e.g., in [36].

On-the-fly Index Creation. A storage engine with index
support (e.g., MyISAM), will solve the join (line 4 in Q13)
using the index given by the foreign key relationship. While
Ibex does not support indices yet, it is possible to use the
hash table that is created on behalf of the GROUP BY query
as an index for the subsequent join. For this to work, the
optimizer needs to be tweaked to use an index-based access
path even though an explicit index does not exist. Here we

7We took the liberty to replace the NOT LIKE of the origi-
nal TPC-H query with LIKE in Q13 (line 6) to increase the
selectivity of the WHERE clause.

Ibex
MyISAM

Speedup

2 2

4 4

6 6

8 8

10 10

E
x
ec

u
ti

o
n

ti
m

e
(s

ec
)

S
p

ee
d
u
p

16 groups 1000 groups unmodified

Figure 14: Execution time and speedup for Q13 of
the TPC-H benchmark (Ibex versus MyISAM).

scratch the surface of a topic beyond the scope of this paper:
the implications of Ibex for the optimizer.

Performance. Figure 14 shows our measurements for Q13

and scale factor = 1.0. We executed three experiments: “un-
modified” refers to the original orders table (14,730 groups
after selection), for “1000 groups” and “16 groups” we mod-
ified o custkey to reduce the number of groups to one thou-
sand and sixteen, respectively. Since there are no bypass
tuples here, the performance of Ibex is consistent, indepen-
dent of the number of groups, whereas MyISAM is faster for
a smaller number of groups, resulting in speedups between
7X and 11X. The increased speedup compared to Figure 13
can be attributed to the effect of the additional GROUP BY

pushdown (as opposed to mere selection and projection).

7. ENERGY EFFICIENCY
An important limiting factor in many systems today is

energy consumption. A key appeal to design heterogeneous
systems thus lies in achieving lower energy consumption and
a good performance/watt ratio. Off-loading queries to spe-
cialized hardware naturally reduces the load on the host
CPU, which in turn may significantly reduce the overall en-
ergy consumption of the system. Hardware accelerators, on
the other hand, consume only a fraction of the 40–130 watts
that commodity processors consume today.

Power Consumption Characteristics. The maximum
thermal design power (TDP) of our Intel Quad-Core CPU
is 95 watts. By contrast, one Vertex 4 SSD only consumes
2.5 watts of power when active, and 1.3 watts otherwise. We
measured the wall power of our entire system with a power
meter. The power consumption of the system is 39 watts
when MySQL is idle and the FPGA board is turned off.
With one core under full load the power consumption in-
creases to 54 watts, and with all 4 cores under full load
total power consumption amounts to 105 watts.

The FPGA chip itself configured with Ibex requires only
2.9 watts.8 Power consumption of our FPGA board (includ-
ing the FPGA) is roughly 8 watts, i.e., the system consumes
47 watts when idle with the FPGA board connected and
powered on. However, much of the 8 watts are spent on the
FPGA board (i.e., an energy in-efficient, general-purpose
development board) and not the FPGA chip itself.

8FPGA power consumption was estimated using the Xilinx
Power Analyzer tool.

972

Table 1: Energy and power consumption during
query execution of different queries.

Query / Engine Energy Exec Time ∅ Power ∆ Power

Q2 / MyISAM 3,888 J 66.7 s 58.3 W 19.3 W
Q2 / Ibex 216 J 4.4 s 49.1 W 2.1 W

Q13 / MyISAM 576 J 10.4 s 55.4 W 16.4 W
Q13 / Ibex 47 J 0.95 s 49.8 W 2.8 W

Energy Consumption During Query Execution. We
measured energy consumption (joules) of the host system
during execution of the following two queries from the pre-
vious section: (i) Q2 discussed in Section 6.2, (ii) Q13

discussed in Section 6.4. The average power consumption
(∅ Power) can be computed by dividing the measured en-
ergy consumption by the execution time. ∆ Power rep-
resents the increase of power consumption versus the sys-
tem being idle (for MyISAM measurements idle power is 39
watts, whereas for Ibex it is 47 watts, as explained above).
The results are displayed in Table 1.

Our measurements indicate that power consumption in-
creases significantly for commodity storage engines when
executing queries, whereas when the queries are off-loaded
to the FPGA there is only a minimal increase of power.
The overall amount of energy consumed is the product of
power and time. Since the queries execute much faster on
the FPGA, energy consumption is improved even more dra-
matically, e.g., for the GROUP BY query Q2, Ibex requires only
216 joules, whereas MyISAM consumes 3,888 joules.

Future Outlook. Notice that the energy consumption
measurements for Ibex include power consumption of the
FPGA board, and yet we see significant improvements com-
pared to MyISAM. It is conceivable that in an appliance the
FPGA would be integrated directly into the SSD itself for
query off-loading, in the spirit of [11], leading to a further
reduction in power consumption and as a result even better
energy efficiency. Furthermore, since Ibex rarely uses the
full power of the CPU at all, overall energy consumption is
likely to improve when we exchange our high-performance
Intel CPU with less powerful but more energy-efficient pro-
cessor, e.g., an ARM or Atom.

8. RESOURCE CONSUMPTION
In Table 2, we display resource consumption for differ-

ent circuit components of our complete system. To com-
municate with the host that runs the MySQL database we
used Microsoft’s communication framework SIRC [12] and
for SATA we used our open source core Groundhog [33].
Together these components consume slightly less than 10 %
of the available resources. Furthermore, we distinguish two
versions of Ibex , one using the BRAM-based hash table for
the GROUP BY component, and the other using DRAM to
store hash table entries.

Ibex (BRAM). Excluding SIRC and the SATA core, Ibex
consumes roughly 25 % slices independent of how big the
hash table is. The number of BRAM blocks n depends on
the size of the hash table. Here the word width was set to
256 bits (8 × 32 bit), i.e., one 36-Kbit BRAM block can
hold k = 144 entries. However, the actual hash table size is
restricted to powers of two, i.e., k = 2blog2(n∗36)c+2 entries.

Table 2: Chip utilization on our Virtex-5 FPGA.

Module Slices BRAMs

Available 17,280 100.0 % 148 100.0 %

SIRC [12] 1027 5.9 % 11 7.4 %
SATA core [33] 725 4.2 % 2 1.4 %

Ibex (BRAM) 4188 24.2 % 1 + n ≥1.4 %

DRAM core [2] 1651 10.0 % 4 2.7 %
Ibex (DRAM) 5047 29.2 % 1 0.7 %

Ibex (DRAM). The advantage of DRAM is that we can
support a large number of groups without having to spend
precious BRAM blocks for the hash table. Nevertheless,
using DRAM incurs other resource consumption costs. The
DRAM core [2] consumes additional 10 % of slices, as well
as four BRAM blocks. Moreover, the use of DRAM also
affects resource consumption of Ibex since additional logic
such as clock bridges and a more complex control flow are
required. Thus, in total, we measured that Ibex consumes
roughly 40 % of all available slices when using DRAM, i.e.,
15 % more than the BRAM version.

9. FUTURE WORK
Ibex opens up several interesting lines of research beyond

query processing. One example is online gathering of data-
base statistics. The trade-off between statistics accuracy
and maintenance cost is a long-standing database problem.
The embedding of Ibex in the data path of a DBMS would
allow additional hardware units to eavesdrop on the regular
traffic, as data is read from secondary storage. While doing
so, such units could compute, e.g., relevant histograms on-
the-fly, as a side effect of regular query processing without
any runtime or CPU overhead (as in [19]).

Moreover, additional functionality could be placed within
the processing pipeline of Figure 2, e.g., to perform data
(de)compression to increase throughput to and from the
FPGA (as in [17]), or to perform encryption/decryption
to implement confidentiality and other security features (as
in [1]). The only overhead would be additional chip space
for the add-on functionality, which is available, even for the
small FPGA used in this paper, as we showed in Section 8.

10. CONCLUSION
In this paper, we presented Ibex—a prototype of an in-

telligent storage engine—that uses FPGAs to implement
hardware accelerators close to the storage medium, in the
data path of a DBMS. We integrated Ibex with MySQL
but we believe that the concepts presented are more gen-
eral, and that most existing database systems would benefit
from an intelligent storage engine such as Ibex . To the best
of our knowledge, Ibex is the first storage engine that al-
lows combining hardware acceleration with an existing open-
source DBMS in a seamless manner. Ibex is also the first
FPGA-based accelerator that supports complex operators
like GROUP BY rather than mere filtering of rows. Finally, we
intend to release the source code of Ibex in the near future.

Acknowledgments.
This work was supported by the Enterprise Computing Cen-
ter (ECC) of ETH Zurich (http://www.ecc.ethz.ch).

973

11. REFERENCES
[1] A. Arasu et al. Orthogonal Security with Cipherbase.

In Proc. 6th CIDR, Asilomar, CA, USA, 2013.

[2] R. Bittner. The Speedy DDR2 Controller For FPGAs.
In Proc. ERSA, pages 205–211, Las Vegas, NV, USA,
2009.

[3] P. Boncz, M. Zukowski, and N. Nes. MonetDB/X100:
Hyper-Pipelining Query Execution. In Proc. 2nd
CIDR, pages 225–237, Asilomar, CA, USA, 2005.

[4] S. Borkar and A. Chien. The Future of
Microprocessors. Commun. ACM, 54(5), 2011.

[5] C. Computer. Convey HC-2, 2012.
http://www.conveycomputer.com.

[6] C. Dennl, D. Ziener, and J. Teich. On-the-fly
Composition of FPGA-Based SQL Query Accelerators
Using a Partially Reconfigurable Module Library. In
Proc. 20th FCCM, pages 45–52, Toronto, ON,
Canada, 2012.

[7] C. Dennl, D. Ziener, and J. Teich. Acceleration of SQL
Restrictions and Aggregations through FPGA-Based
Dynamic Partial Reconfiguration. In Proc. 21st
FCCM, pages 25–28, Seattle, WA, USA, 2013.

[8] D. Dewitt. DIRECT—A Multiprocessor Organization
for Supporting Relational Database Management
Systems. IEEE Trans. on Comp., 28(6):395–406, 1979.

[9] D. Dewitt et al. The Gamma Database Machine
Project. IEEE Trans. on Knowl. and Data Eng.,
2(1):44–62, 1990.

[10] U. Dhawan and A. DeHon. Area-Efficient
Near-Associative Memories on FPGAs. In Proc. 21st
FPGA, pages 191–200, Monterey, California, USA,
2013.

[11] J. Do et al. Query Processing on Smart SSDs:
Opportunities and Challenges. In Proc. SIGMOD,
pages 1221–1230, New York, NY, USA, 2013.

[12] K. Eguro. SIRC: An Extensible Reconfigurable
Computing Communication API. In Proc. 18th
FCCM, pages 135–138, Charlotte, NC, USA, 2010.

[13] B. Gold et al. Accelerating Database Operations
Using a Network Processor. In Proc. 1st DaMoN,
Baltimore, MD, USA, 2005.

[14] N. Govindaraju et al. GPUTeraSort:
High-Performance Graphics Co-Processor Sorting for
Large Database Management. In Proc. SIGMOD,
pages 325–336, Chicago, IL, USA, 2006.

[15] G. Graefe. Volcano—An Extensible and Parallel
Query Evaluation System. IEEE Trans. on Knowl.
and Data Eng., 6(1):120–135, 1994.

[16] B. He et al. Relational Joins on Graphics Processors.
In Proc. SIGMOD, pages 511–524, Vancouver, BC,
USA, 2008.

[17] IBM/Netezza. The Netezza Data Appliance
Architecture: A Platform for High Performance Data
Warehousing and Analytics, 2011. White paper:
http://www.redbooks.ibm.com/abstracts/redp4725.html.

[18] Z. István et al. A Flexible Hash Table Design for
10GBPs Key-Value Stores in FPGAs. In Proc. 23rd
FPL, pages 1–8, Porto, Portugal, 2013.

[19] Z. István, L. Woods, and G. Alonso. Histograms as a
Side Effect of Data Movement for Big Data. In Proc.
SIGMOD, Snowbird, UT, USA, 2014.

[20] R. Moussalli et al. Accelerating XML Query Matching
through Custom Stack Generation on FPGAs. In
Proc. 5th HiPEAC, pages 141–155, Pisa, Italy, 2010.

[21] R. Müller, J. Teubner, and G. Alonso. Streams on
Wires—A Query Compiler for FPGAs. PVLDB,
2(1):229–240, 2009.

[22] M. Najafi, M. Sadoghi, and H.-A. Jacobsen. Flexible
Query Processor on FPGAs. PVLDB,
6(12):1310–1313, 2013.

[23] Oracle. A Technical Overview of the Oracle Exadata
Database Machine and Exadata Storage Server, 2012.
White paper: http://www.oracle.com/technetwork/
database/exadata/exadata-technical-whitepaper-
134575.pdf.

[24] M. Sadoghi et al. Efficient Event Processing through
Reconfigurable Hardware for Algorithmic Trading.
PVLDB, 3(2):1525–1528, 2010.

[25] M. Sadoghi et al. Multi-Query Stream Processing on
FPGAs. In Proc. 28th ICDE, pages 1229–1232, 2012.

[26] A. Shatdal, C. Kant, and J. Naughton. Cache
Conscious Algorithms for Relational Query
Processing. In Proc. 20th VLDB, pages 510–521,
Santiago de Chile, Chile, 1994.

[27] I. Sourdis et al. A Reconfigurable Perfect-Hashing
Scheme For Packet Inspection. In Proc. 15th FPL,
pages 644–647, 2005.

[28] B. Sukhwani et al. Database Analytics Acceleration
using FPGAs. In Proc. 21st PACT, pages 411–420,
Minneapolis, MN, USA, 2012.

[29] T. Takenaka, M. Takagi, and H. Inoue. A Scalable
Complex Event Processing Framework for
Combination of SQL-based Continuous Queries and
C/C++ Functions. In Proc. 22nd FPL, pages
237–242, Oslo, Norway, 2012.

[30] J. Teubner, L. Woods, and C. Nie. Skeleton Automata:
Reconfiguring without Reconstructing. In Proc.
SIGMOD, pages 229–240, Scottsdale, AZ, USA, 2012.

[31] T. Thinh, S. Kittitornkun, and S. Tomiyama.
Applying Cuckoo Hashing for FPGA-based Pattern
Matching in NIDS/NIPS. In ICFPT, pages 121–128,
2007.

[32] P. Vaidya et al. Symbiote: A Reconfigurable Logic
Assisted data Stream Management System
(RLADSMS). In Proc. SIGMOD, pages 1147–1150,
Indianapolis, IN, USA, 2010.

[33] L. Woods and K. Eguro. Groundhog—A Serial ATA
Host Bus Adapter (HBA) for FPGAs. In Proc. 20th
FCCM, pages 220–223, 2012.

[34] L. Woods, Z. István, and G. Alonso. Hybrid
FPGA-accelerated SQL Query Processing. In Proc.
23rd FPL, page 1, Porto, Portugal, 2013.

[35] L. Woods, J. Teubner, and G. Alonso. Less Watts,
More Performance: An Intelligent Storage Engine for
Data Appliances. In Proc. SIGMOD, pages 1073–1076,
New York, NY, USA, 2013.

[36] W. Yan and P.-A. Larson. Eager Aggregation and
Lazy Aggregation. In Proc. 21th VLDB, pages
345–357, Zurich, Switzerland, 1995.

[37] Y.-H. Yang, W. Jiang, and V. Prasanna. Compact
Architecture for High-Throughput Regular Expression
Matching on FPGA. In Proc. ANCS, 2008.

974

