
ConfluxDB: Multi-Master Replication for Partitioned
Snapshot Isolation Databases

Prima Chairunnanda, Khuzaima Daudjee, M. Tamer Özsu
Cheriton School of Computer Science, University of Waterloo
prima.ch@gmail.com, {kdaudjee, tamer.ozsu}@uwaterloo.ca

ABSTRACT
Lazy replication with snapshot isolation (SI) has emerged as a pop-
ular choice for distributed databases. However, lazy replication of-
ten requires execution of update transactions at one (master) site
so that it is relatively easy for a total SI order to be determined for
consistent installation of updates in the lazily replicated system.
We propose a set of techniques that support update transaction ex-
ecution over multiple partitioned sites, thereby allowing the mas-
ter to scale. Our techniques determine a total SI order for update
transactions over multiple master sites without requiring global co-
ordination in the distributed system, and ensure that updates are
installed in this order at all sites to provide consistent and scalable
replication with SI. We present ConfluxDB, a PostgreSQL-based
implementation of our techniques, and demonstrate its effective-
ness through experimental evaluation.

1. INTRODUCTION
Snapshot Isolation (SI) has become a popular isolation level in

database systems. Scaling-up a database system usually involves
placing the data at multiple sites, thereby adding system resources
over which the workload can be distributed to improve performance.
Providing SI over such a distributed system is challenging since a
global, total order for update transactions needs to be determined
so that updates can be installed in this order at every site. While it
is relatively easy to determine a total SI order for consistent instal-
lation of updates in a lazily replicated system, this usually requires
execution of update transactions at only one (master) site.

There have been proposals to provide global SI for both parti-
tioned and replicated databases [5, 12, 30, 27, 18, 1, 19, 13, 26,
22]. However, these proposals do not consider how to scale-up un-
der lazy replication a primary (single-site) database system without
relying on physical clock synchronization or a centralized site or
component to determine a global update order in the distributed
system.

Having a single site or centralized component at which all update
transactions execute is a restriction with significant drawbacks. As
the workload scales-up, an increasing update load is placed on the

This work is licensed under the Creative Commons Attribution-
NonCommercial-NoDerivs 3.0 Unported License. To view a copy of this li-
cense, visit http://creativecommons.org/licenses/by-nc-nd/3.0/. Obtain per-
mission prior to any use beyond those covered by the license. Contact
copyright holder by emailing info@vldb.org. Articles from this volume
were invited to present their results at the 40th International Conference on
Very Large Data Bases, September 1st - 5th 2014, Hangzhou, China.
Proceedings of the VLDB Endowment, Vol. 7, No. 11
Copyright 2014 VLDB Endowment 2150-8097/14/07.

single site. This leads to performance degradation as this site be-
comes a bottleneck, which can be seen in our experimental results
in Section 6.

Prior work that addresses this bottleneck problem partitions the
update workload a priori or restricts transactions to updating data
at a single site [6, 7, 10]. A more conservative approach is the
prediction of conflicts between transactions to partition the pri-
mary database a priori into conflict classes [17]. In this paper, we
propose techniques to provide global SI over partitioned and dis-
tributed databases. To the best of our knowledge, this is the first
proposal that avoids the above restrictions.

We present ConfluxDB, a PostgreSQL-based prototype that (i)
implements a set of techniques that support scaling-up a database
through partitioning while providing global SI by determining a
global order for distributed update transactions (ii) uses a novel log
merging based replication scheme of the partitioned database that
allows transactions to see snapshots consistent with global SI at the
replicas.

In ConfluxDB, distributed update transactions can execute on
a database partitioned over multiple primary sites and are not re-
stricted to updating data at a particular site. ConfluxDB’s novel
log-merging replication solution merges multiple update streams
from the partitioned sites into a single, unified stream that is con-
sistent with the SI ordering over the partitioned primary sites. The
unified stream is then used to install updates in the same order at
sites that hold database replicas to achieve global SI ordering for
all transactions in the distributed system. Update transactions exe-
cute under the well-known two-phase commit (2PC) protocol at the
primary sites and updates are propagated lazily to secondary sites.
Our choice of 2PC stems from it being the most widely used pro-
tocol for coordinating transactions in distributed database systems
[3]. Using the TPC-C and TPC-W benchmarks, we conduct perfor-
mance experiments that demonstrate the scalability and efficiency
of ConfluxDB.

2. SYSTEM OVERVIEW & BACKGROUND

2.1 System Architecture
In ConfluxDB, the master or primary database is partitioned

over one or more sites (called primary sites), as shown in Figure
1. No restrictions are placed on how the primary database is parti-
tioned. The primary sites comprise the primary cluster. A replica
of each primary database partition is held at each secondary site (in
Section 4.1.3 we show that this is not a strict requirement, but it
greatly simplifies the presentation). Each site in ConfluxDB hosts
an autonomous DBMS in a shared-nothing environment that locally
guarantees SI.

947

Figure 1: ConfluxDB Architecture

Clients connect to a secondary site and submit transactions for
processing [11, 10]. We assume that a client’s read-only transac-
tions can be distinguished from its update transactions. Read-only
transactions are executed at the secondary site to which they are
submitted. Update transactions are forwarded by the secondary
sites to the primary cluster for execution.

Update transactions execute at the primary sites using the 2PC
protocol [3]. Update information can be extracted from the database
logs, e.g. through log sniffing [16]. The updates from each log are
merged into a single stream using the log merging algorithm de-
scribed in Section 4 after which they are propagated lazily to the
secondary sites in an order consistent with the order at the primary
sites. At each secondary site, propagated updates are placed in a
FIFO update queue. An independent process at each secondary
site removes propagated updates from the update queue and applies
them to the local database copy.

The architectural separation of responsibility between the pri-
maries and secondaries gives users more flexibility to play to each
of their strengths. The primaries can process update transactions
common in OLTP applications while secondaries can serve OLAP-
like queries [21, 25]. Popular benchmarks such as TPC-W and
TPC-C that are modeled after real-world scenarios also contain
such mixed workloads. A nice property of the ConfluxDB archi-
tecture is that more secondary sites can be added as the read-only
workload scales up. With higher update transaction ratios, as is
the case with OLTP workloads such as TPC-C, more primaries can
be added to scale-up the system thereby increasing scalability and
performance through this increase in system resources.

2.2 Terminology and Background
We now define the terminology relevant to update transactions at

the primary cluster presented in Section 3. We introduce terminol-
ogy relevant to read-only transactions and transactions that apply
updates at secondary sites later in Section 4.

Transaction i will be denoted as Ti. The participating sites of
Ti is the collection of sites Ti reads data from or writes data to.
Throughout the paper, we use the term participating site s as any
site from among the participating sites of a specified transaction. If
there is only one participating site, then Ti is a local transaction;
otherwise, it is a global transaction. Transaction Ti will have a
subtransaction T s

i at each participating site s.
The coordinator site for a transaction Ti is denoted as coordi,

and this will be the first participating primary site that starts its
subtransaction of Ti. If Ti is a global transaction then coordi will
also coordinate the 2PC.

We are specifically interested in the following events in the data-
base system: begin transaction, read (item), write (item), and com-
mit transaction. As is common, the begin transaction and commit
transaction events are totally ordered at each site and we capture

this order using the happened-before relation, where e ≺ e′ means
that event e happened before event e′. Existing mechanisms, such
as Lamport timestamps [20], can be used to derive this order.

The begin and commit events of a subtransaction T s
i are denoted

as begin(T s
i) and commit(T s

i) respectively. A transaction Ti is
said to have happened-before Tj (Ti ≺ Tj) if and only if Tj sees
Ti’s effects but Ti does not see Tj ’s effects, i.e., T s

i ≺ T s
j if and

only if commit(T s
i) ≺ begin(T s

j). If neither Ti ≺ Tj nor Tj ≺
Ti is true, then these transactions are concurrent with respect to
each other.

In considering pairs of transactions, we use the notion of whether
one transaction is dependent on another to derive an ordering of
these transactions. We will use this definition to formulate global
SI and to describe our protocol in Section 3.

Definition 1. Let s be some participating site of Ti, and RS(T s
i)

and WS(T s
i) be the read-set and write-set, respectively, of T s

i . The
predicate dependents(Ti, Tj) is true if and only if (RS(T s

i) ∩
WS(T s

j) ̸= ∅) ∨ (WS(T s
i) ∩ RS(T s

j) ̸= ∅) ∨ (WS(T s
i) ∩

WS(T s
j) ̸= ∅).

Since at times we will be interested to know whether we have a
dependent pair of transactions Ti and Tj at any of their participat-
ing sites, we define the non site-specific version of the dependent
predicate as follows:

Definition 2. The predicate dependent(Ti, Tj) is true if there
exists some site t participating in Ti and Tj where dependentt(Ti,
Tj) is true.

ConfluxDB relies on the update transactions in the workloads (in
particular, TPC-C and TPC-W used for our experiments) to touch
only rows with a particular key (e.g. customer id, warehouse id,
etc.) making it straightforward to extract the read and write sets
from their SQL statements during runtime. Techniques have been
proposed if more sophisticated read/write set extraction is desired,
e.g., [34].

2.3 Snapshot Isolation
Snapshot Isolation originates from multiversion concurrency con-

trol (MVCC) where multiple versions of the same data item may
exist at any one time [2]. We use xi to refer to the version of
database item x installed by transaction Ti. A write operation
by transaction Ti will always write its own version of x into the
database (i.e. wi[xi]), but it may read data from any transaction,
including itself (i.e. ri[xj]).

Under SI, a transaction Ti is guaranteed throughout its lifetime
to read data items from the snapshot (or database state) Si obtained
when Ti starts. Specifically, this includes only changes made by all
transactions Tj such that commit(Tj) ≺ begin(Ti). Any modi-
fications made to the data items after Si is read will not be visible
to Ti, unless of course if Ti made the changes itself. All modifi-
cations made by a transaction become visible when the transaction
commits. Concurrent transactions are not allowed to write into the
same items, and when that happens, only the first commit is suc-
cessful. This is called the “First-Committer Wins” rule1 [2].

In practice, most implementations use the relative order of be-
gin and commit events to decide whether two transactions are con-
current. More specifically, Ti and Tj are concurrent if and only
if begin(Tj) ≺ commit(Ti) and begin(Ti) ≺ commit(Tj).
1Our implementation follows a variant rule used by PostgreSQL
where the first updater to commit wins. In this rule, if Ti tries
to update a row that has been updated by a concurrent transaction
Tj , then Ti will be blocked until Tj’s outcome is known, thereby
guaranteeing that Tj is given chance to commit first.

948

Since concurrent transactions under SI do not see each other’s ef-
fects, Ti will see the effects of some transaction Tk if and only
if commit(Tk) ≺ begin(Ti). While systems that employ multi-
versioning by definition store multiple versions of data items, the
default is for Ti to see the latest committed version of data item
x at the time Ti begins. In other words, Ti cannot request to see
arbitrary older versions of a data item.

3. COLLABORATIVE GLOBAL SNAPSHOT
ISOLATION

In this section, we present our proposal, Collaborative Global
Snapshot Isolation (CGSI) to extend SI to a distributed environ-
ment. The CGSI protocol allows global transactions to see con-
sistent snapshots while guaranteeing global snapshot isolation to
transactions executing over the primary sites.

3.1 Global Snapshot Isolation
When a database is partitioned over multiple sites, the challenge

is to ensure that SI holds globally for concurrent, distributed, trans-
actions executing over the partitioned database sites. These transac-
tions will independently issue begin and commit events at multiple
autonomous sites. It is undesirable to rely on global clock synchro-
nization, which can be expensive to achieve, to assign a total order
on events in the distributed system.

In particular, for any transaction pair Ti and Tj running at sites
s and t, if T s

i does not see T s
j ’s effects, we do not want T t

i to
see T t

j ’s effects either. Selecting a snapshot Si for Ti to access at
all sites that host the partitioned database is a challenge. For ex-
ample, it is possible that when Ti starts at site s, Tj is executing,
thus begin(T s

i) ≺ commit(T s
j) and T s

i will not see T s
j ’s effects.

Meanwhile, when Ti starts at site t, Tj may have executed and
committed, which means that when T t

i starts, it will not see the ef-
fects of T t

j . In this context, we formalize the concept of a consistent
snapshot through the following definition:

Definition 3. Snapshot Si seen by transaction Ti is a consistent
snapshot if for any transaction pair Ti and Tj executed at different
sites s and t, it is not the case that dependent(Ti, Tj) ∧ (T s

i ≺
T s
j) ∧ (T t

i ⊀ T t
j).

Thus, before Ti is allowed to commit, the system needs to ensure
that snapshot Ss

i read by Ti at site s is consistent with snapshot St
i

read by Ti at site t, i.e. both snapshots should have been installed
by the same committed transaction at all sites before Ti starts. In
doing so, we exclude from consideration the set of transactions Tj

where ¬dependent(Ti, Tj) as in that case it is irrelevant whether
one transaction can or cannot see the effect of the other. There
are SI variants that allow transactions to request a snapshot of the
database as of a specific time in the past [24]. However, they usu-
ally use real (physical) time to define a snapshot, which is challeng-
ing to enforce, manage, and synchronize in a distributed system.

The database state seen and committed by update transactions at
the primary sites corresponds to the transactions’ begin and commit
events. Further, as can be seen from Definition 3, the consistency
of these events’ ordering across the primary sites also directly de-
termines whether transactions see consistent snapshots. In general,
to ensure that each and every committed transaction in the system
sees a consistent snapshot, the following conditions (or invariants)
must hold for each transaction pair Ti and Tj :
I1. If dependent(Ti, Tj) ∧ (begin(T s

i) ≺ commit(T s
j)), then

begin(T t
i) ≺ commit(T t

j) at all participating sites t.
I2. If dependent(Ti, Tj) ∧ (commit(T s

i) ≺ begin(T s
j)), then

commit(T t
i) ≺ begin(T t

j) at all participating sites t.

I3. If commit(T s
i) ≺ commit(T s

j), then commit(T t
i) ≺

commit(T t
j) at all participating sites t.

I1 and I2 are important to consistently determine whether Tj

that satisfies dependent(Ti, Tj) should be visible to a transac-
tion Ti. For example, if site s observes the order begin(T s

i) ≺
commit(T s

j) while another site t observes the order commit(T t
j) ≺

begin(T t
i), then Tj happened before Ti at site t, but they are either

concurrent at site s, or Ti happened before Tj at site s.
I3 is important to prevent two different snapshots from seeing

partial commits that are incompatible with each other. Assume
that the value of data items x and y are originally x0 and y0, re-
spectively. Consider the order commit(T s

j) ≺ begin(T s
p) ≺

wk[xk] ≺ commit(T s
k) ≺ begin(T s

q) at site s, and the order
commit(T t

k) ≺ begin(T t
q) ≺ wj [yj] ≺ commit(Tj) ≺ begin(T t

p)
at site t. Supposing that both Tp and Tq want to read x and y, Tp

will read x0 and yj , implying Tj ≺ Tk. On the other hand, Tq

will read xk and y0, implying Tk ≺ Tj . Clearly, both conditions
cannot be true at the same time, and at least one of them needs to
be aborted. I3 avoids the occurrence of such aborts.

If ¬dependent(Ti, Tj), any possible ordering of begin(T s
i) and

commit(T s
j) will not cause inconsistency in Si or Sj . This is triv-

ially true in the absence of any other transactions in the system.
When there is some other transaction Tk such that dependent(Ti, Tk)
and dependent(Tk, Tj), but ¬dependent(Ti, Tj), we need to make
sure that at least one of them is aborted. We do this by detecting
the inconsistency between Si and Sk, and also between Sk and Sj

(details about this detection are covered in Section 3.2.1).
An important consequence of the absence of dependencies is

that if the majority of transactions touch only a small number of
non-intersecting tuples, it allows their begin events to be executed
in any relative order with respect to other transactions’ commit
events, greatly increasing parallelization opportunities. Note that
the relative order among commit events is still important even if
the transactions involved are data-independent for the same reason
discussed for condition I3.

3.2 CGSI Algorithms
We now describe how CGSI enforces global snapshot isolation

through consistent snapshots. Without loss of generality, consider
a global transaction Ti running at two sites s and t. CGSI does not
require a priori knowledge of the participating sites of Ti. CGSI
lets begin(T s

i) proceed independently from begin(T t
i). Before Ti

can commit, checks are made to verify that the snapshot seen by
T s
i is consistent with the snapshot seen by T t

i and vice versa. We
refer to this check as certification. If an inconsistency is found, Ti

is aborted.
CGSI performs certification over all participating sites of Ti since

each participating site s knows only about the snapshot seen by T s
i

but not the snapshot seen by T t
i running at another participating

site t. With this strategy, CGSI is able to avoid having a potential
bottleneck in a centralized certifier. Moreover, the distribution of
the certification process spreads the load across the sites.

3.2.1 Distributed Certification Algorithm
To provide a consistent snapshot, I1–I3 need to hold. We de-

scribe the enforcement of I1 and I2 next, followed by how I3 holds.
To preserve I1 and I2, it is necessary for CGSI to know which
transactions have been committed, and which are still active. At
each site s, CGSI keeps sets of active and committed transactions,
and their begin and commit timestamps respectively. We call these
sets actives and committeds. Prior to committing T s

i , CGSI con-
ducts the certification at site s in the following manner. Each of

949

the transactions in actives and committeds is categorized into
one of two sets with respect to Ti: concurrent transactions or serial
transactions, denoted as concurrents(Ti) and serials(Ti) respec-
tively. Concurrent transactions are those Tj where begin(T s

i) ≺
commit(T s

j); otherwise they are serial. Thus, Ti completely sees
the effects of Tj if and only if Tj ∈ serials(Ti). If there exists a
Tk such that dependent(Ti, Tk) ∧ (Tk ∈ serials(Ti)) ∧ (Tk ∈
concurrentt(Ti)) for some participating sites s and t, certification
will fail as Si is deemed to be inconsistent.

The distributed certification algorithm is shown in Algorithm
1. For clarity, we present the algorithm independently from the
commit protocol, and defer the discussion of its integration with
2PC.

Algorithm 1 Distributed Certification Algorithm

1. coordi requests each participating site s to send the transac-
tions in concurrents(Ti).

2. Participating site s responds to coordi with its
concurrents(Ti).

3. All responses of concurrents(Ti) are merged by
coordi into a single set gConcurrent(Ti). If
Tj ∈ gConcurrent(Ti), then T t

j is concurrent with
T t
i for at least one participating site t.

4. coordi sends gConcurrent(Ti) to all participating sites.

5. Each participating site s checks if there exists a Tj , such that
dependents(Ti, Tj) ∧ (Tj ∈ gConcurrent(Ti)) ∧ (Tj ∈
serials(Ti)). If such Tj is found, it is proven that Ti is
seeing an inconsistent snapshot Si, and site s should send
a negative certification response. Otherwise, site s sends a
positive certification response.

6. coordi aggregates the certification results from all participat-
ing sites. If any participating site replies negatively, it means
at least one pair of Ti’s subtransactions see an inconsistent
snapshot, and Ti should be aborted. Otherwise, Ti can pro-
ceed to commit.

THEOREM 3.1. For a committing transaction Ti, if there exists
a transaction Tj satisfying dependent(Ti, Tj), such that (Tj ∈
concurrents(Ti)) ∧ (Tj ∈ serialt(Ti)) for some sites s and t,
the distributed certification algorithm (Algorithm 1) will detect Ti

as seeing an inconsistent snapshot.

PROOF. Let us assume that there is a transaction Tj where (Tj ∈
concurrents(Ti)) ∧ (Tj ∈ serialt(Ti)) for some sites s and t,
but the algorithm determines that Ti sees a consistent Si. If the
algorithm does not detect the inconsistency, it means that all cer-
tification responses from the sites are positive. Now recall that
Tj ∈ serialt(Ti). If site t responded positively during the certi-
fication, it means site t could not find a data-dependent Tj , such
that (Tj ∈ gConcurrent(Ti)) ∧ (Tj ∈ serialt(Ti)). Then,
in order to avoid the inconsistency from being detected, it needs
to be the case that Tj /∈ gConcurrent(Ti). However, because
gConcurrent(Ti) is the union of all concurrents(Ti) from all
participating sites s, there cannot be some site s such that Tj ∈
concurrents(Ti), a contradiction.

The distributed certification algorithm is integrated into 2PC as
part of “preparing” the transaction for commit. Step 1 of Algorithm

1 is initiated with the prepare message to the participants, while the
certification response in Step 5 is piggybacked with the prepare ack
message to the coordinator. Step 6 is performed in conjunction
with the 2PC global decision. The remaining steps (Steps 2-4) are
internal to CGSI and do not change the 2PC state of the transaction.

A new transaction Tj that starts at site s after the site executed
Step 2 of Algorithm 1 but before Ti commits is not required to be
added to concurrents(Ti). This is because at that point in time,
Ti is already in prepared state and thus Tj could not have affected
the snapshot Si seen by Ti at site s. Though, Ti still needs to be
added to concurrents(Tj).

Several MVCC based systems, including PostgreSQL, already
track the list of concurrent transactions to determine tuple visibility
in a snapshot. What remains is to track the full set of committed
transactions, which typically needs to be recovered from the logs.
To avoid the need to consult the logs, CGSI keeps track of this set
separately. To prevent the set from growing forever, we employ an
expiration strategy which limits the size of the committed transac-
tions set at each site and evicts the oldest transactions in the set if its
size exceeds the limit. We describe this expiration strategy in more
detail in [9] with the necessary modifications to the certification
algorithm and the proof of its correctness.

The participating sites of Ti need not be known beforehand, be-
cause coordi will include in the set of participating sites each pri-
mary when data at that site is accessed by Ti. This is also when
coordi can infer that Ti is a global transaction. Once the com-
mit request is made to coordi, 2PC is initiated and all participating
sites vote on whether Ti can be safely committed without violat-
ing global SI. coordi makes the final decision and all participating
sites commit or abort in accordance with this decision. Another im-
portant characteristic of ConfluxDB is that the outcome of a trans-
action Ti is determined only by the sites that are participating in
executing it. Our protocol obviates the need for a single, central-
ized, coordinating site to decide whether a transaction should be
committed or aborted.

Table 1: Some Frequently Used Notation
Notation Description
actives Active transactions at site s
committeds Committed transactions at site s
serials(Ti) Transactions happened before Ti at site s
concurrents(Ti) Transactions concurrent to Ti at site s
gConcurrent(Ti) Transactions that are concurrent to Ti at

at least one participating site
event clocks The event clock at site s
gct(Ti) The global commit timestamp of Ti

3.2.2 Transaction Commit Ordering
We now consider how CGSI preserves I3. In systems with a

centralized controller, the responsibility to assign a deterministic
global order usually falls to that controller. Since we do not rely
on such a centralized component, all sites collaboratively work
to achieve a global ordering. To avoid communication overhead
between sites, we piggyback information onto existing messages
where possible.

Under CGSI, each site s stores a monotonically increasing event
clock (denoted as event clocks), which is communicated and up-
dated with each 2PC message in the following manner (we omit
database actions to focus on the clock manipulation):

1. When the coordinator c sends the prepare message for a global
transaction, the coordinator piggybacks its event clockc value
onto the broadcasted prepare messages.

950

2. On a participant p receiving prepare message from coordina-
tor, the participant updates its event clockp with the maxi-
mum value from event clockp and the one carried by the
prepare message. Then, the participant sends back a pre-
pare ack piggybacking the updated event clockp .

3. On coordinator c receiving prepare ack message from par-
ticipants, the coordinator updates its event clockc with the
maximum value from event clockc and the one carried by
the prepare ack message. Once all participants have replied
with positive prepare ack, the coordinator atomically increases
its event clockc and globally decides to commit the trans-
action. The incremented event clockc becomes the commit
timestamp of the transaction.

4. On a participant p receiving commit message from coordina-
tor, the participant updates its event clockp with the max-
imum value from event clockp and the one carried by the
commit message.

All global transactions coordinated by a particular site will have
a total order defined on them by virtue of atomically increasing the
event clock. Thus, there cannot be two global transactions coordi-
nated by site s with the same commit timestamp. Across sites, two
global transactions may still be assigned the same commit times-
tamp. To break ties, we can choose some identifier unique to each
transaction coordinator, such as IP or hostname. This scheme is
not unlike the timestamp generation methodology used in [32]. To-
gether, the commit timestamp and the coordinator’s identifier form
the global commit timestamp of a transaction.

Definition 4. The global commit timestamp of a transaction Ti,
denoted as gct(Ti), is an ordered pair ⟨commit ts(Ti), id(Ti)⟩,
where commit ts(Ti) is the commit timestamp of Ti, and id(Ti)
is the identifier of coordi.

Definition 5. For every two distinct transactions Ti and Tj , we
define Ti ≺ Tj if and only if commit ts(Ti) < commit ts(Tj),
or commit ts(Ti) = commit ts(Tj) and id(Ti) < id(Tj).

The second case in Definition 5 is used to break ties in the case
of assigned commit timestamps that are the same. The database
commit actions are executed strictly in the order of the commit
timestamps. If each site locally commits its global transactions in
the order defined by ≺, then for any global transaction Ti, there
will always exist a snapshot of the database such that a transaction
{Tk|Tk ≼ Ti} has been committed and no transaction {Tk|Ti ≺
Tk} has been committed. As a consequence of this ordering re-
quirement, there may be times when some transaction commits
need to be postponed. More formally, site s has to postpone the
commit of global transaction Ti until site s is sure that there can-
not be any other uncommitted global transaction Tj in which s is a
participating site with Tj ≺ Ti.

To accomplish this, CGSI maintains a priority queue data struc-
ture called PreparedQueue that contains prepared global transac-
tions. Each prepared global transaction has a highest clock at-
tribute, which stores the highest event clock value ever received re-
garding the global transaction. Additionally, a ready to commit
flag is used to indicate whether the site has received global-commit
decision about the transaction from the coordinator, at which point
the transaction is ready to be written to the database. When this flag
is true, the stored highest clock value corresponds to the transac-
tion’s commit ts because the event clock value carried by a trans-
action’s global commit message will always be at least one greater
than the highest event clock value carried by any of its prepare

or prepare ack messages. The identifier of the coordinator is also
saved so that the priority queue can order the global transactions
by their global commit timestamps using the≺ total ordering. This
way, the root of PreparedQueue will be the transaction with the
lowest global commit timestamp.

PROPOSITION 3.2. When the global transaction Ti present at
the root of the priority queue of site s has ready to commit flag
set to true, there cannot be any other uncommitted global transac-
tion Tj with participating site s where Tj ≺ Ti.

PROOF. There are four cases to consider, depending on whether
site s is the coordinator of Tj , and whether 2PC has been started
for Tj :

1. Suppose s = coordj and Tj has been prepared. Hence, we
know that commit ts(Ti) ≤ event clocks . As the coordinator
increases its event clock value on commit, it will be the case that
commit ts(Tj) ≥ event clocks +1. Regardless of the coordina-
tor’s identifier, Ti ≺ Tj .

2. Suppose s ̸= coordj and Tj has been prepared. Since we
find Ti at the root of the priority queue, it means for every other
global transaction Tk in the queue, its highest clock value must
be at least commit ts(Ti). As Tj has been prepared, then Tj

must be in the queue, and its highest clock value must refer to
the event clock piggybacked in the prepare ack message. Because
the coordinator updates its event clock with the piggybacked one,
the coordinator will eventually assign a commit ts(Tj) value of at
least highest clock+1. Regardless of the coordinator’s identifier,
Ti ≺ Tj .

3. Suppose s = coordj and Tj has not been prepared yet. When
site s prepares Tj , the highest clock will be at least event clocks.
Following the same argument as case (1), commit ts(Tj) will be
at least event clocks + 1, thus Ti ≺ Tj .

4. Suppose s ̸= coordj and Tj has not yet been prepared. Then,
commit ts(Ti) ≤ event clocks. When the prepare message for
Tj arrives, site s will piggyback an event clock value of at least
event clocks . Eventually, the value of commit ts(Tj) will be at
least event clocks + 1, thus Ti ≺ Tj .

Transaction Ti is not immediately committed after the global de-
cision to commit has been made under 2PC. First, CGSI records
the commit timestamp in highest clock, flips ready to commit
flag to true, and then inserts Ti into the PreparedQueue. The ac-
tual commit operations are issued from a separate committer thread
which continuously monitors the root of PreparedQueue for any
transaction with the ready to commit flag set to true.

THEOREM 3.3. If each primary site runs CGSI and enforces SI
locally, update transactions will run under global SI.

PROOF. The committer thread enforces I3 across all sites by
processing commit in a deterministic order of the transactions’ global
commit timestamp. Therefore, two sites participating in the same
transactions cannot commit them in different orders. Furthermore,
the First-Committer Wins rule at each site will ensure there is no
concurrent write by two different transactions to the same item. On
a shared-nothing database, this also holds globally.

Next, since the local concurrency control enforces SI locally, a
transaction T s

i at site s reads from snapshot Ss
i obtained when T s

i

starts. By Theorem 3.1, T s
i is allowed to commit only if every sub-

transaction T t
i reads from a consistent snapshot that satisfies I1 and

951

I2, where t is in the set of participating sites of Ti. Consequently,
globally, Ti sees a consistent snapshot Si that satisfies SI.

Since both of these are true for all committed transactions2 at the
primaries, these transactions execute under global SI.

Normally, 2PC participants are notified of the global decision
after the transaction has been successfully committed at the coordi-
nator site. In CGSI, the global decision and the coordinator commit
do not necessarily happen at the same time. The coordinator sends
the global commit message immediately after the global decision
has been made without waiting for the actual commit at the coordi-
nator’s site. The coordinator must also durably log the global com-
mit decision separately from the actual commit operation so that in
the event that the coordinator fails to commit, we can recover from
the coordinator’s transaction failure using the same error handling
mechanism as when a participant fails to commit.

4. REPLICATION AND LOG MERGING
In this section, we describe how updates of committed transac-

tions over the primary sites that hold the partitioned database are
captured in the database logs. We then present an algorithm for
merging the updates from these database logs to generate a single
stream of updates that is consistent with the global SI order over
the partitioned primary database sites.

We use a physical log-based approach for maintaining replicas,
where log information of updates from committed transactions are
transferred to the replicas. Typically, database systems store the se-
quence of operations performed for a transaction in the log so that
the operations can be undone or redone to preserve ACID proper-
ties in the event of failure. Log records can be appended only to
the end of the log so that it represents a valid sequential execution
of operations. In general, it is not safe to replay log records out
of order, even if they concern different transactions. This comes
as a consequence of the tight coupling with the physical database
layout.

4.1 Merging Log Streams from Multiple Mas-
ters

A straightforward solution to replicate a partitioned database is
to replicate each partition at some secondary site. A disadvantage
of this approach, however, is that running analytical or multi-join
read-only queries involving multiple partitions will incur commu-
nication and coordination overhead as transactions will need to ac-
cess multiple secondary sites. To avoid incurring this cost, we fully
replicate the set of primary database partitions at each secondary
site, i.e. each secondary site holds a copy of all the tables from
every primary partition. We propose a novel log stream merging
solution to maintain replicas of all partitions under one database in-
stance per secondary site so that queries involving these partitions
can be serviced locally. Our solution merges log streams from all
masters though it can also be used to merge log streams selectively
from only a subset of them if desired.

A table can be split over multiple partitions so that each partition
hosts a distinct, non-overlapping chunk of the table. The chunk still
appears as an ordinary table to the partition, but we can do global
queries and updates by utilizing the “table group” feature available
in popular database systems (e.g. MySQL and PostgreSQL [29]).

Our solution merges multiple log streams into a single unified
stream, as shown in Figure 2. Each master server, which processes
update transactions, generates a log stream. The log streams are

2Aborted transactions cannot cause any visible changes, thus we
can safely exclude them from consideration.

Figure 2: Log Merger Modules

then transferred to the log merger component, which reads log
streams from all master servers and merges them into the unified
stream. It consists of three main modules with distinct responsi-
bilities. The log fetcher module uses multiple log fetcher threads
to continuously fetch log records from the master servers. There
is one log fetcher thread for each master server, and each thread
operates independently from the other. This allows us to exploit
parallelism in reading the log records from multiple master servers.
Next, these log streams are fed into the log transformer to be pro-
cessed, reordered, and merged into the unified stream, which is
then durably written to the local persistent storage. Finally, the
log sender module reads the unified stream from persistent storage
and sends it to the replicas, one log sender thread per replica.

Each replica that receives the unified stream of updates is a data-
base instance that continually replays log records as they become
available. As the replicas serve only read-only transactions, they
do not produce log records of their own. We have considered the
option where a log merger exists at each replica, thus each replica
can fetch and merge logs independently. However, we found this to
be less scalable as it removes a portion of resources on each replica
to repeat the log merging.

Our log merging solution has the following characteristics. First,
replicas can replay the unified stream successfully as if it came
from a single master. Second, we ensure that the replayed log
records will not violate global SI. Finally, we avoid transaction
inversion [12] such that subsequent transactions submitted by the
same client see at least the preceding transaction’s effects.

4.1.1 Forming A Unified Stream
The log streams are processed in round robin fashion. We take

one record from a stream, process the record and then proceed to
the next stream. Since a log record describes an operation per-
formed by a transaction, it contains the transaction identifier (TId)
of the transaction performing the operation, the type of operation
itself, and the object identifier (OId) on which the operation is ap-
plied. Although identifiers are unique within a stream, they may
collide between different streams. We resolve this collision in the
unified stream as follows.

Each record in the unified stream has a TId field. To avoid am-
biguity, we use the term ReplicaTId when specifically referring to
the TId used in the unified stream. To resolve TId collision, for
each master server, we maintain a mapping from the TId appearing
in the source stream to its ReplicaTId. Each local transaction will
have a unique ReplicaTId mapped for it. For a global transaction,
it will appear as different TId on each stream, but those TIds must
all be mapped to the same ReplicaTId.

As for OIds, we choose to avoid them from colliding in the first
place. Each database item is assigned a unique OId when it is cre-
ated. We avoid the collision by ensuring each master server assigns
the same OId to the same object, that is by populating each master

952

server with the union of tables, indexes, and other database items
from all master servers, but they are all empty. This way, we can
simply leave the OIds as they are since the replicas will have con-
sistent references to objects.

4.1.2 Ensuring Snapshot Consistency
We now describe the types of log records that are important to

ensure snapshot consistency at the replicas. The master log stream
contains a begin record to mark the start of a transaction, and a
commit or an abort record to mark the end of a transaction. In ad-
dition, a global transaction may also have prepare, abort prepared,
and commit prepared (instead of commit) records. In the unified
stream, however, all global transactions will be reflected as local
transactions, i.e. only abort and commit records will be present.
Also, there will be only one commit record in the unified stream for
a global transaction, even though there are multiple commit pre-
pared records. Since a global transaction can update data items
at multiple sites, the log merger must wait until it sees a commit
prepared record from each of the participating sites before it can
produce the equivalent commit record in the unified stream.

As the CGSI and local concurrency control at each master server
guarantee snapshot consistency for update transactions, the multi-
ple log streams can always be merged into a unified stream with
a consistent global order. The log transformer needs to infer this
order and then ensure that the commit records from various streams
are replayed in the correct commit order. Recall that CGSI assigns a
global commit timestamp to each transaction, and the transactions
are committed in order of their timestamps. The log transformer
can simply follow the same order for the unified stream; we simply
tag the commit records with the global commit timestamps of the
transactions.

Algorithm 2 Log Transformer Flushing Committed Queue
1: procedure FLUSHCOMMITTEDQUEUE
2: oldestMaster← the master with the oldest state
3: while CommittedQueue not empty do
4: gTrans← the root of CommittedQueue
5: if oldestMaster.state ≺ gTrans.gct then
6: break
7: end if
8: Place the combined gTrans.commitRec in

unified stream
9: Remove gTrans from CommittedQueue

10: end while
11: end procedure

Sometimes, the log transformer may need to delay producing a
commit record for transaction Ti if there is still some other site that
can commit a transaction Tj with a lower global commit times-
tamp. This is because if gct(Tj) < gct(Ti), then commit record of
Tj must appear before commit record of Ti in the unified stream.
To handle this, the log records of the master servers contain CGSI
state information, such as the event clock and lowest global com-
mit timestamp in the server’s commit queue. Also, the log merger
will queue all transactions eligible to be committed into a priority
queue called the CommittedQueue. The root of CommittedQueue
is the transaction Ti that has the lowest global commit timestamp
among those eligible to commit. By comparing gct(Ti) with the
CGSI states of the master servers, the log transformer will be able
to determine when it can safely produce the commit record of Ti.
Pseudocode for this algorithm is shown in Algorithm 2.

Each participating site in a global transaction Ti may assign dif-
ferent TIds for Ti in their respective streams. To correlate among

these TIds, coordi will generate a globally unique transaction id
(gTransId) for Ti and communicate it to all participants. This value
is then included in Ti’s begin record in each of the participating
sites’ log streams. Since the gTransId is only used for log merging,
it can be stripped off when writing the record to the unified stream.

Algorithm 3 Log Transformer Handling Transactional Records
1: Let GTransList be a list of all global transactions known to

the merger
2: procedure PROCESSTXNLOG(master, rec)
3: if rec.type is begin then
4: Let gTrans be the entry in GTransList

where gTrans.gT ransId= rec.gT ransId
5: if no such gTrans in GTransList then
6: Create new entry gTrans in GTransList
7: gTrans.gT ransId← rec.gT ransId
8: gTrans.replicaT id← next available ReplicaTId
9: gTrans.commitRec← ∅

10: end if
11: gTrans.tidByMaster[master]← rec.tid
12: return
13: end if
14: Let gTrans be the entry in GTransList

where gTrans.tidByMaster[master] = rec.tid
15: if rec.type is commit or commit prepared then
16: gTrans.commitRec← gTrans.commitRec∪ rec
17: if this is the last commit record for gTrans then
18: gTrans.gct← rec.gct
19: Insert gTrans into CommittedQueue
20: end if
21: else if rec.type is abort or abort prepared then
22: if this is the last abort record for gTrans then
23: Place abort record in the unified stream
24: end if
25: else ◃ Other record types
26: Place rec in the unified stream
27: end if
28: end procedure

Our overall algorithm3 for processing transactional log records
by the Log Transformer (described in Algorithm 3) works as fol-
lows. First, the record type is examined. If the type is not one
we are interested in, the record is simply placed in the stream. If
it is the begin record, the gTransId and its TId equivalent will be
noted. If it is the first time we see this gTransId, we also initialize
the gTrans data structure.

For all other record types, we look up the transaction first by the
TId appearing in the record. If it is a commit or commit prepared
record, we combine the data from new commit records with any
previously-seen commit records for this transaction. This is neces-
sary because each commit record contains actions related to only
one particular site but the commit record in the unified stream must
contain the aggregate of all these data. We also count the num-
ber of commit records we have seen for this transaction, and if this
record is the last one, we update the global commit timestamp of
the transaction and place it in the CommittedQueue.

A transaction abort can produce either an abort or an abort pre-
pared record depending on whether the transaction had entered the
“prepared” state. There is no need to combine abort records be-
cause the purpose of an abort operation is to rollback previous

3We omit details of handling other record types as they do not affect
snapshot consistency.

953

changes. We also delay placing the record in the unified stream
until it is the last abort record of the transaction.

THEOREM 4.1. Read-only transactions running at the secondary
execute under global SI.

PROOF. The merged unified stream contains a sequence of com-
mit records ordered by the same deterministic total order used to
enforce I3 at the primaries. As updates made by a transaction are
visible only after that transaction commits, the secondary’s database
state will go through the same sequence of states as the primaries,
a property called completeness [35].

Now, supposing a read-only transaction Ti starts at the secondary
and the last replayed committed update transaction at that secondary
is transaction Tj . Since the local concurrency control at the sec-
ondary guarantees SI locally, Ti will see a snapshot Si that in-
cludes the effects of all committed update transactions up to Tj and
none other. As the secondary goes through the same sequence of
database states as the primaries, this is equivalent to running Ti at
the primaries right after Tj is committed. Consequently, there can-
not be a transaction Tk where (Tk ∈ concurrents(Ti)) ∧ (Tk ∈
serialt(Ti)) for some sites s and t participating in Tk, and there-
fore Si is a consistent snapshot that satisfies global SI. Further, Ti

is a read-only transaction that cannot have write-write conflict, and
thus running Ti at the secondary will execute under global SI.

4.1.3 Parallelizing Log Merging
It is possible to enhance our system to have multiple log mergers,

each one responsible for merging a subset of the tables. This is use-
ful for both scalability and fault tolerance. As mentioned earlier, a
log record contains the OId to which the log applies. Therefore, we
can enhance the log merger so that it processes log records pertain-
ing to only some OId values, effectively restricting the log merger
to process only updates related to some subset of the database ta-
bles and indexes. Consequently, the generated unified stream will
contain only records related to those tables and indexes, and the
secondaries will contain only items in those tables and indexes as
well. We can then designate those secondaries to answer read-only
transactions that touch only those tables, freeing up other secon-
daries to service other transaction types. This setting also allows
us to allocate more secondaries to serve more popular transaction
types. Finally, a client no longer submits the request to a secondary,
but rather to a router that will choose the appropriate secondary in-
stance to execute the client’s transaction type.

4.1.4 Fault Tolerance
Three failure scenarios can occur: (i) failure of a primary site

(ii) failure of a secondary site (iii) failure of the log merger. We
address each of these in turn. Global transaction failure at the pri-
maries can be handled in accordance with the provisions of the 2PC
protocol [3]. Also, the log merger keeps track of the last success-
fully received record from each primary (primary markers). When
a primary goes down and then recovers, the log merger can recon-
nect back to the primary and simply resume to fetch log records
starting from that primary’s marker, and the log merging then re-
sumes as usual. Failure of a secondary site has minimal impact
on the client, which can always retry the read-only transaction at
a different secondary. If a secondary fails, it can first perform lo-
cal recovery and then bring its database state to the present time by
fetching any missing log records from the log merger. Finally, if the
log merger goes down, the log merger can resume the log merging
from the persistent primary markers.

5. CONFLUXDB IMPLEMENTATION
We implemented our techniques using the ConfluxDB architec-

ture described in Section 2 using PostgreSQL version 9.1.2 as the
database system running at each primary and secondary site. We
also implemented the log merger modules as described in Section
4.

In ConfluxDB, we build a layer, which we call Conflux Agent
¯

on
top of PostgreSQL. PostgreSQL guarantees local SI, while the Con-
flux Agent guarantees global SI by running CGSI and performing
distributed certification. We are able to precisely control the trans-
actions while having access to system and transactional state. A
nice feature of our approach is that the techniques we propose are
built on top of PostgreSQL and require only small modifications,
mostly to gather metadata from the internals of the PostgreSQL en-
gine itself. This also allows us to instrument the system to generate
a consistent stream of updates that can be installed on replicas at
other sites in the distributed system. Another nice property is that
it can be similarly layered on top of other database systems that
provide local SI concurrency controls.

The Conflux Agent at each individual site coordinates global
transactions with the help of Conflux Agents at the other sites. To
initiate a global transaction Ti, the client can contact the Conflux
Agent at any site. The site (or Conflux Agent) that is contacted will
become the coordinator of Ti (coordi).

We now discuss our implementation of the log merger in Con-
fluxDB. Each replica receiving the unified stream of updates is a
PostgreSQL instance running in hot standby mode. In this mode,
the database continually fetches and replays log records from a
source (which we configured to be the log merger), while still being
able to serve read-only transactions. The Write Ahead Log receiver
component in PostgreSQL is responsible for fetching log records,
while the Startup process will replay log records as they become
available. The Startup process is also involved in initial database
recovery by replaying log records from the last successful check-
point. This Startup process is central to the progress of the replica
in keeping up with the primaries because the updates are installed
by replaying log records.

We also need to make the following modifications to implement
Algorithm 3 for PostgreSQL. First, PostgreSQL does not have an
explicit begin record; a transaction Ti does not appear in the log
until after Ti updates a data item. Therefore we introduce a new as-
signTId record type that is inserted whenever PostgreSQL assigns
a new TId for a transaction. As TId assignment is required before
any log record related to a transaction Tj can be written, assignTId
is guaranteed to be the first record seen to mention Tj . The assign-
Tid record will simply contain the gTransId of the transaction and
the equivalent TId used on that stream. Second, we extend Post-
greSQL commit and commit prepared records to include the global
commit timestamp of the transaction.

While read-only transactions never conflict with update trans-
actions under SI, read-only transactions may interfere with update
log installation at a replica at a secondary. The first type of inter-
ference is when an update will cause a read-only transaction to lose
its consistent snapshot, such as when the log record wants to drop a
table the read-only transaction is using. We can abort the read-only
transaction, but doing so may significantly increase the occurrence
of read-only transaction aborts. We can also block the update in-
stallation but doing so for a prolonged period of time may hamper
the progress of update installation. There is a fine balance between
the two, and the best combination may very well be workload de-
pendent. The second type of interference is caused by resource
contention. The higher the number of read-only transactions run-
ning at a secondary, the more resources they will consume, and

954

consequently, less resources will be available to the Startup pro-
cess to install updates. Again, we want to balance the number of
read-only transactions served with the update replay progress.

We deal with both these possible interferences by combining
several PostgreSQL options with thread scheduling. On the Post-
greSQL side, we activate the PostgreSQL “vacuum deferral” and
“maximum streaming delay” features. The former avoids the first
type of interference by postponing in-place vacuum while the latter
imposes a limit on how long a read-only transaction can block an
update replay. Thread scheduling boosts the progress of the Startup
process. PostgreSQL creates one worker process for every con-
nected client session. When the secondary is serving a lot of clients,
there will be many more worker processes competing against the
Startup process. To overcome this, we isolate the Startup process
to one processor core in the system, while ensuring that all worker
processes are not scheduled to use that processor core. The goal is
to ensure that for most of the time, the Startup process will always
have an idle core to run on.

6. PERFORMANCE EVALUATION
We use ConfluxDB described in Section 5 to evaluate the perfor-

mance of our proposed techniques. We use two workloads, TPC-W
and TPC-C, in our experiments.

6.1 Experimental Setup
We use the TPC-W workload Ordering mix (50% update transac-

tions, 50% read-only transactions)4 and the Shopping mix (20% up-
date transactions, 80% read-only transactions). The initial database
contains 1,000,000 items and 100,000 customers, resulting in a
physical database size of approximately 1GB though this size grows
over the experimental run. We used the default values specified in
the TPC-W specification for client think time and session time. As
TPC-W does not specify a particular partitioning scheme to follow,
we partition the database as follows. Read-only tables are fully-
replicated on all master servers. Each of the ITEMS, CUSTOMER,
ADDRESS, SHOPPING CART, and SHOPPING CART LINE ta-
bles are split into equal-sized partitions, and then spread over the
primary sites. Thus, each primary will have a chunk of each of
those five tables. To ensure that not all TPC-W update transac-
tions are global transactions, the CC XACTS, ORDER, and OR-
DER LINE tables are hosted under one partition. The goal of our
partitioning is to distribute the tables as evenly as possible over the
primary sites since skewed partitioning is usually not the desired
layout that any database system administrator would strive for. If
a distribution proportional to the availability of hardware resources
is desired, the partitioning could be changed accordingly. How-
ever, our techniques can support any arbitrary partitioning, i.e., they
place no restrictions on how the database is partitioned. The default
ratio for global transactions is about 30% of the update transaction
workload. Note however that as the client workload containing up-
date transactions scales up, this will result in an increasing update
load serviced by the primaries so this parameter is simply for se-
lecting an initial ratio.

We also use the TPC-C workload, which models store order pro-
cessing across a number of warehouses, making it naturally parti-
tionable. Transactions involving more than one warehouse (e.g. or-
dering an item or processing payment from a different warehouse)
are natural candidates for global transactions. We set up our initial
database with 12 warehouses, resulting in an initial database size of
approximately 1.6GB that grows over the experiment measurement
interval. We partition the warehouses such that each partition hosts
4We represent each web interaction by default as a transaction.

the same number of warehouses, and each warehouse is hosted by
exactly one partition. All of the TPC-C tables are split into equal
partitions. All partitions contain the same tables but each one stores
only data pertaining to its respective set of warehouses. In TPC-
C, the remote warehouse probability refers to the probability that
an update transaction is a global transaction. The standard TPC-
C workload is update intensive with 92% of the transactions being
update transactions. While we can use this mix to demonstrate the
scalability of the primaries, the secondaries will not receive enough
load. To demonstrate the scalability of the secondaries, we increase
the proportion of read-only transactions so that it has a ratio of 70%
read-only to 30% update transactions.

We ran the experiments on a dedicated cluster of 16 machines,
each equipped with dual-core AMD Opteron 280 (2.4GHz) pro-
cessors, 8GB of RAM and running PostgreSQL version 9.1.2 on
Linux. For all experiments, we limit the amount of memory avail-
able for each PostgreSQL instance to 512MB to emulate a memory-
constrained environment in which the initial database size does not
fit in memory. The machines are connected by a router providing
dedicated high-speed networking. Each machine in the 16-node
cluster is utilized as follows. Each primary and secondary is hosted
on a different machine. The log merger from Figure 2 is also hosted
on a separate machine. All of the clients are hosted on another
machine, separate from the primaries, the secondaries, and the log
merger. All of the graphed experimental results are averages over at
least 5 independent runs computed with 95% confidence intervals
shown as error bars around each data point.

6.2 Experimental Results
We conduct the following experiments. First, we want to ver-

ify that scaling-up the primary through partitioning while providing
global SI improves the performance of update transactions. Figures
3, 4, 5, and 6 confirm this, showing the total throughput (for all
update transactions) achieved without partitioning by having one
primary (1P) database, and by partitioning the database over 4 pri-
maries (4P) and 12 primaries (12P) as the workload (number of
clients) is scaled-up while guaranteeing global SI. As the database
is partitioned over more sites, the performance gains over an unpar-
titioned primary database increase. With 12 primaries, ConfluxDB
can produce almost 12 times the throughput of a single primary for
the TPC-W workload. The TPC-C workload is highly update inten-
sive so the contention at the single primary (1P) bottlenecks the sys-
tem. When the primary is scaled-up through partitioning, two fac-
tors, i.e., alleviation of contention and the distribution of data and
workload (through partitioning) combine to produce larger gains in
performance where the 12P system has 12 times the throughput of
the 1P system. The average response time observed for TPC-W
(Figure 4) shows that the 12P system can handle at least 7 times
more clients for a response time of 0.3s than the 1P system while
the TPC-C response time results vastly outstrip the performance of
1P and 4P systems. While we plot all response time data, in prac-
tice, a response time above 3s is undesirable, and we include those
for completeness only.

The second goal of our experiments is to measure the perfor-
mance of the replicated system as both the workload and system
resources scale-up. We measured the average read-only transac-
tion response time for 3 ConfluxDB configurations: (i) 1 primary
with y secondaries (labeled 1PyS), (ii) 2 primaries with y secon-
daries (labeled 2PyS), and (iii) 4 primaries with y secondaries (la-
beled 4PyS). During experiments, we observed that for the TPC-W
workload, 1 secondary could support 150 clients at moderate load
while for TPC-C, 1 secondary could serve 500 clients at moderate
load and we use these ratios to scale-up the number of clients and

955

 0

 5000

 10000

 15000

 20000

 25000

 30000

 1000 5000 10000 15000 20000 25000

Th
ro

ug
hp

ut
 (t

xn
s/

m
in

)

Number of clients

 1P Throughput
4P Throughput

12P Throughput

Figure 3: 1P/4P/12P Throughput (TPC-
W 80/20)

 0

 500

 1000

 1500

 2000

 2500

 1000 5000 10000 15000 20000

R
es

po
ns

e
tim

e
(m

s)

Number of clients

 1P Update Resp Time
4P Update Resp Time

12P Update Resp Time

Figure 4: 1P/4P/12P Response Time
(TPC-W 80/20)

 0

 5000

 10000

 15000

 20000

 25000

 30000

 35000

 40000

 1000 5000 10000 15000

Th
ro

ug
hp

ut
 (t

xn
s/

m
in

)

Number of clients

 1P Throughput
4P Throughput

12P Throughput

Figure 5: 1P/4P/12P Throughput (TPC-
C 8/92)

 0

 200

 400

 600

 800

 1000

 1000 5000 10000 15000 20000

R
es

po
ns

e
tim

e
(m

s)

Number of clients

 1P Update Resp Time
4P Update Resp Time

12P Update Resp Time

Figure 6: 1P/4P/12P Response Time
(TPC-C 8/92)

 2000

 4000

 6000

 8000

 10000

 12000

 4 6 8 10

Th
ro

ug
hp

ut
 (t

xn
s/

m
in

)

Number of secondaries (150 clients/secondary)

 1PyS Throughput
2PyS Throughput
4PyS Throughput

Figure 7: xPyS Throughput (TPC-W
50/50)

 0

 1000

 2000

 3000

 4000

 5000

 6000

 4 6 8 10

R
es

po
ns

e
tim

e
(m

s)

Number of secondaries (150 clients/secondary)

 1PyS Update Resp Time
2PyS Update Resp Time
4PyS Update Resp Time

Figure 8: xPyS Update Trans Resp
Time (TPC-W 50/50)

secondaries accordingly. Results of these experiments are shown in
Figures 7, 8, 9 and 10.

For both workloads, scaling up the number of primary sites re-
sults in significant throughput gains and a reduction in update trans-
action response time for the whole system (Figures 7 and 8; due to
space constraints, we omit showing the same trends on graphs ob-
served for TPC-C experiments). The 1PyS curves in Figures 9 and
10 are flat because the single primary saturates quickly, thereby
choking the rate at which read-only transactions are processed at
the secondaries. As the number of primaries is doubled from 2 to
4, the log merging and protocol overhead is more than offset by
increased parallelism in reading more primary log records. More-
over, this continued addition of primary system resources through
partitioning spreads the load over more sites, contributing to a sig-
nificant reduction in read-only transaction response time. In the
case of TPC-W, the read-only transaction response time curve flat-
tens out all the way to 8 secondaries (1200 clients) while in the case
of TPC-C, it does the same (but to 4000 clients). This demonstrates
that scaling-up the primary by increasing the number of partitions
significantly alleviates the resource bottleneck for the complete sys-
tem.

The throughput, update transaction response time and read-only
transaction response time curves shown in Figures 7, 8, 9 and 10
demonstrate that large performance gains can be achieved by scaling-
up the primary while providing global SI, and that these gains far
outweigh the cost of this provision.

We also measure abort rates for both workloads. For TPC-W,
the abort rates are low; none of the primary configurations abort
more than 3% of transactions submitted for execution. For TPC-
C, the abort rates are shown in Figure 11. With only 1P, resource
contention results in a very high response time as the workload
scales-up. This, in turn, results in a high abort rate on the 1P sys-

tem compared to 4P and 12P as in TPC-C, a majority of update
transactions contend on writing to the same set of rows. However,
as seen in Figure 11, the abort rate halves with the addition of 4P
from 1P, and is 6 times lower with 12P as the addition of more
primary resources significantly reduces the contention window by
reducing transaction lifetimes.

We also measure the sensitivity of performance to the percentage
of global transactions in the workload. As expected, lower propor-
tions of global transactions lead to better performance while higher
proportions result in lower performance. Our performance stud-
ies show that irrespective of the proportion of global transactions,
increased contention at the primaries ultimately limits the perfor-
mance of update transactions and the system. Across all experi-
ments, we did not encounter the log merger site to be a bottleneck,
which can be alleviated by parallelizing log merging (described in
Section 4.1.3) to increase performance if required.

6.3 CGSI and Log Merging Latency
We measure latencies due to enforcing CGSI and log merging

in ConfluxDB. For these experiments, we modified several TPC-C
and TPC-W benchmark parameters to isolate and measure specific
aspects of the system. Since these modify the benchmarks, we will
refer to their workloads as “queries” when discussing these results.

To measure the latency of CGSI, we augment Conflux Agent to
record the duration that a transaction takes to (i) execute its state-
ments, (ii) perform 2PC, and (iii) perform distributed certification.
We set the proportion of global transactions to 100% forcing all
update transactions to be global and to go through 2PC and CGSI
protocols. We then run TPC-W and TPC-C queries on 2 primaries
so that every global transaction will involve every primary. Ex-
perimentally, we determined from 1P results that having between
400 to 800 clients for TPC-C and 250 to 500 clients for TPC-W

956

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 4 6 8 10

R
es

po
ns

e
tim

e
(m

s)

Number of secondaries (150 clients/secondary)

 1PyS Read Resp Time
2PyS Read Resp Time
4PyS Read Resp Time

Figure 9: xPyS Read-only Trans Resp
Time (TPC-W 50/50)

 0

 100

 200

 300

 400

 500

 600

 2 4 6 8

R
es

po
ns

e
tim

e
(m

s)

Number of secondaries (500 clients/secondary)

 1PyS Read Resp Time
2PyS Read Resp Time
4PyS Read Resp Time

Figure 10: xPyS Read-only Trans Resp
Time (TPC-C 70/30)

No. 1P 4P 12P
Clients (%) (%) (%)

800 12.54 6.99 1.90
4800 59.47 32.88 10.15

Figure 11: TPC-C Abort Rates

generates load without underloading or overloading the primaries.
Our measurements show that at both the lower bound and upper
bound number of clients for both workloads, 2PC consumes ap-
proximately 55% of the total update transaction response time, the
certification algorithm takes only about 4% while the remainder is
attributed to executing the SQL statements themselves. CGSI cer-
tification adds not more than 7% overhead to 2PC as it leverages
2PC effectively to provide global SI over the primary sites.

Next, to determine the latency introduced by log merging as a
proportion of the total replication latency, we set think time to zero
to ensure that the read-only transaction response time reflects the
replication latency. This forces read-only transactions to block un-
til updates corresponding to the snapshot of the preceding update
transaction in the same session have been propagated and installed.
This change means that the number of active clients needs to be re-
duced to ensure that the system is not underloaded or overloaded to
remove any load imbalance/skew effects. Experimentally, we de-
termined this number to be 300 clients and 100 clients respectively
for TPC-C and TPC-W uniformly distributed over eight secondary
sites.

Log merging for transaction Ti ends once Ti’s commit record is
placed into the unified stream. The difficult question is to deter-
mine when log merging for Ti starts. Given that a transaction’s log
record may arrive before the transaction has committed globally,
we cannot simply measure it from the arrival of first record of Ti

at the log merging site as this would overlap with actual execution
time at the primaries. On the other hand, we also cannot measure it
from the arrival of last commit record of Ti as it would not include
the delay from waiting to collect all records from all participating
sites. Experimentally, we found that measuring the time taken from
the arrival of the first commit record of global update transactions
at the log merging site to the time that their commit records were
placed into the unified stream fell in the middle of these two delays
and was representative of both of these cases occurring. Thus, we
ran experiments to measure this log merging delay using TPC-C
and TPC-W queries. For TPC-W queries, this log merging delay
was about 25% of the total latency. For TPC-C queries, this de-
lay was about 15% of the total latency. In general, since response
times for TPC-C update transactions are lower than TPC-W update
transactions, our expectations that the log merging delay will also
be lower (as the timespan of the TPC-W transactions is longer)
is confirmed. The replay time, which is the time taken to trans-
actionally apply the log record using the unmodified PostgreSQL
hot standby feature constituted about 70% of the total latency for
TPC-W queries while it is about 80% for TPC-C. Given the higher
number of clients submitting TPC-C queries, this is expected as
there would be more contention at the secondaries between these

queries and the update records being installed there. The remain-
der of the time is network latency and transaction execution at the
secondaries that together constituted about 5% of the total latency.
This shows that the log merger is not the bottleneck for maintaining
database replicas at the secondaries.

7. RELATED WORK
Schenkel et al. [30] propose algorithms to achieve global SI on

federated databases. They outline pessimistic and optimistic algo-
rithms to ensure global SI, but these depend on a centralized coor-
dinator to issue begin and commit operations to the database. Their
approach requires correct timing and serialization of all begin and
commit operations at each participating site by the centralized co-
ordinator, with possibly prolonged delays due to synchronization
of all transaction starts and commits.

Bornea et al. [5] show how local SI concurrency controls can be
used to provide global serializability on fully replicated databases
using a central certifier. They do not consider partitioned databases.

Session-based SI guarantees have been proposed [12, 14, 19]
but none of these consider scaling up through partitioning. Parallel
SI [31] supports multiple primary sites but each primary site can
install updates in different orders and does not provide global SI.
Clock-SI [13] uses physical clocks at each primary sites to produce
consistent snapshots of key-value store data that satisfy SI, but it
relies on physical clock synchronization. Further, it requires the
underlying database system to support obtaining a snapshot older
than the latest installed one.

The problem of partitioning an SI database has also gained in-
terest from the open source community, as is evident with the re-
lease of Postgres-XC (http://postgres-xc.sourceforge.net/), which is
a transparent synchronous solution for partitioned SI databases us-
ing Postgres as the underlying DBMS. Postgres-XC uses a central-
ized global transaction manager to assign transaction identifiers and
snapshots [28]. C-JDBC [8] is an open-source system that allows
a cluster of database instances to be viewed as a single database.
However, it only allows one update, commit, or abort executing at
any point in time on a virtual database, and uses a single scheduler
to handle concurrency control and isolation level.

In [26], the authors proposed replication over a multi-owner sys-
tem by ensuring consistent commit of update transactions that relies
on physical clock synchronization. In contrast, our solution pro-
vides replication over a partitioned database and we depend only
on logical timestamps instead of physical clock synchronization.

Calvin [33] proposes to use a “deterministic” approach to im-
prove the performance of distributed transactions. It relies on ac-
quiring advance knowledge about the workload before transaction
execution can start, examples of which include workload analysis

957

and development of storage system API to support Calvin calls for
multi-operation transactions for every workload. ConfluxDB does
not require such advance knowledge and it does not belong to the
domain of deterministic systems. Moreover, our work is not related
to comparing non-deterministic systems against systems from the
deterministic domain. Hyder [4] on the other hand adopts a shared
storage design for scale out that works with only solid-state storage
devices such as flash. It uses log-structured store that is mapped
to shared flash storage but does not hold a database system like
ConfluxDB. Since the transactional and indexed storage layers are
not implemented with a flash-based log implementation, a com-
bination of system and simulation techniques are used to predict
performance.

Log records are commonly used by database systems to provide
durability and fault tolerance. DB2 uses a form of log merging to
assist recovery of its partitioned database [15]. Using log records
in database replication has been implemented in PostgreSQL, but
it only supports full replication of one database instance. [11, 23]
explored the feasibility of merging multiple log streams to infer a
global serialization order. In contrast, our work focuses on parti-
tioned SI databases.

8. CONCLUSION
In this paper, we show how to provide global SI for a partitioned

database and to lazily maintain its replicas. Our techniques remove
the single-site bottleneck previously faced by updating transactions
without relying on a centralized component to order them. Dis-
tributed update transactions are free to update multiple data items
since no restrictions are placed on how the primary database is par-
titioned. We propose a scheme that merges multiple update streams
from the partitioned database sites into a single stream that is con-
sistent with global SI ordering to lazily maintain replicas of the
database at secondary sites. We demonstrate the effectiveness of
our approach through ConfluxDB, a PostgreSQL-based implemen-
tation of our techniques. Our experimental results show that Con-
fluxDB significantly improves the performance of update transac-
tions while maintaining global SI for read-only transactions in the
distributed system.

9. REFERENCES
[1] C. Amza, A. L. Cox, and W. Zwaenepoel. Distributed

versioning: Consistent replication for scaling back-end
databases of dynamic content web sites. In Middleware ’03.

[2] H. Berenson, P. Bernstein, J. Gray, J. Melton, E. O’Neil, and
P. O’Neil. A critique of ansi sql isolation levels. In SIGMOD,
1995.

[3] P. Bernstein and E. Newcomer. Principles of transaction
processing. Morgan Kaufmann Publishers Inc., 1997.

[4] P. A. Bernstein, C. W. Reid, and S. Das. Hyder - a
transactional record manager for shared flash. In CIDR,
2011.

[5] M. A. Bornea, O. Hodson, S. Elnikety, and A. Fekete.
One-copy serializability with snapshot isolation under the
hood. In ICDE ’11.

[6] Y. Breitbart, R. Komondoor, R. Rastogi, S. Seshadri, and
A. Silberschatz. Update propagation protocols for replicated
databases. In SIGMOD ’99.

[7] Y. Breitbart and H. F. Korth. Replication and consistency:
Being lazy helps sometimes. In PODS ’97.

[8] E. Cecchet. C-jdbc: A middleware framework for database
clustering. IEEE Data Eng. Bull., 27(2):19–26, 2004.

[9] P. Chairunnanda. Multi-Master Replication for Snapshot
Isolation Databases. Master’s thesis, University of Waterloo,
2013.

[10] K. Daudjee and K. Salem. A Pure Lazy Technique for
Scalable Transaction Processing in Replicated Databases. In
ICPADS ’05.

[11] K. Daudjee and K. Salem. Inferring a serialization order for
distributed transactions. In ICDE ’06.

[12] K. Daudjee and K. Salem. Lazy database replication with
snapshot isolation. In Proceedings of the 32nd International
Conference on Very Large Data Bases (VLDB), pages
715–726, 2006.

[13] J. Du, S. Elnikety, and W. Zwaenepoel. Clock-si: Snapshot
isolation for partitioned data stores using loosely
synchronized clocks. In SRDS ’13.

[14] S. Elnikety, W. Zwaenepoel, and F. Pedone. Database
replication using generalized snapshot isolation. SRDS ’05.

[15] IBM. Log stream merging and log file management in a DB2
pureScale environment.

[16] IBM. DB2 Universal Database Replication Guide and
Reference, 2000. version 7.

[17] R. Jimenez-Peris, M. Patino-Martinez, G. Alonso, and
B. Kemme. Improving the scalability of fault-tolerant
database clusters. In ICDCS ’02.

[18] B. Kemme and G. Alonso. A new approach to developing
and implementing eager database replication protocols. ACM
Transactions on Database Systems, 2000.

[19] K. Krikellas, S. Elnikety, Z. Vagena, and O. Hodson.
Strongly consistent replication for a bargain. In ICDE ’10.

[20] L. Lamport. Time, clocks, and the ordering of events in a
distributed system. CACM, 21(7), 1978.

[21] P.-A. Larson, J. Goldstein, and J. Zhou. MTCache: Mid-Tier
Database Caching in SQL Server. In ICDE ’04.

[22] Y. Lin, B. Kemme, M. Patiño-Martı́nez, and
R. Jiménez-Peris. Middleware based data replication
providing snapshot isolation. In SIGMOD Conference, pages
419–430, 2005.

[23] C. Liu, B. G. Lindsay, S. Bourbonnais, E. Hamel, T. C.
Truong, and J. Stankiewitz. Capturing global transactions
from multiple recovery log files in a partitioned database
system. In VLDB ’03.

[24] D. B. Lomet, R. S. Barga, M. F. Mokbel, G. Shegalov,
R. Wang, and Y. Zhu. Transaction time support inside a
database engine. In ICDE ’06.

[25] Q. Luo, S. Krishnamurthy, C. Mohan, H. Pirahesh, H. Woo,
B. G. Lindsay, and J. F. Naughton. Middle-tier database
caching for e-business. In SIGMOD ’02.

[26] E. Pacitti, M. T. Özsu, and F. Coulon. Preventive
multi-master replication in a cluster of autonomous
databases. In Euro-Par 2003.

[27] C. Plattner and G. Alonso. Ganymed: Scalable replication
for transactional web applications. In Middleware ’04.

[28] Postgres-XC Development Group. GTM and Global
Transaction Management.

[29] The PostgreSQL Global Development Group. PostgreSQL:
Documentation: 9.1: Partitioning, 2012.

[30] R. Schenkel, G. Weikum, N. Weissenberg, and X. Wu.
Federated transaction management with snapshot isolation.
In TDD ’99.

[31] Y. Sovran, R. Power, M. K. Aguilera, and J. Li. Transactional
storage for geo-replicated systems. In SOSP ’11.

[32] R. H. Thomas. A majority consensus approach to
concurrency control for multiple copy databases. TODS,
1979.

[33] A. Thomson, T. Diamond, S.-C. Weng, K. Ren, P. Shao, and
D. J. Abadi. Calvin: fast distributed transactions for
partitioned database systems. In SIGMOD, 2012.

[34] P. S. Yu, M. Chen, H. Heiss, and S. Lee. On workload
characterization of relational database environments. IEEE
TSE, 1992.

[35] Y. Zhuge, H. Garcia-Molina, and J. L. Wiener. Consistency
algorithms for multi-source warehouse view maintenance.
DAPD, 1998.

958

