
SK-LSH : An Efficient Index Structure for Approximate
Nearest Neighbor Search

Yingfan Liu‡, Jiangtao Cui‡, Zi Huang§, Hui Li‡, Heng Tao Shen§
‡School of Computer, Xidian University, China

yfliu1989@gmail.com, {cuijt,hli}@xidian.edu.cn
§School of Information Technology and Electrical Engineering, University of Queensland, Australia

{huang, shenht}@itee.uq.edu.au

ABSTRACT
Approximate Nearest Neighbor (ANN) search in high di-
mensional space has become a fundamental paradigm in
many applications. Recently, Locality Sensitive Hashing
(LSH) and its variants are acknowledged as the most promis-
ing solutions to ANN search. However, state-of-the-art LSH
approaches suffer from a drawback: accesses to candidate
objects require a large number of random I/O operations. In
order to guarantee the quality of returned results, sufficient
objects should be verified, which would consume enormous
I/O cost.

To address this issue, we propose a novel method, called
SortingKeys-LSH (SK-LSH), which reduces the number of
page accesses through locally arranging candidate objects.
We firstly define a new measure to evaluate the distance
between the compound hash keys of two points. A linear
order relationship on the set of compound hash keys is then
created, and the corresponding data points can be sorted
accordingly. Hence, data points that are close to each oth-
er according to the distance measure can be stored locally
in an index file. During the ANN search, only a limited
number of disk pages among few index files are necessary
to be accessed for sufficient candidate generation and ver-
ification, which not only significantly reduces the response
time but also improves the accuracy of the returned results.
Our exhaustive empirical study over several real-world da-
ta sets demonstrates the superior efficiency and accuracy of
SK-LSH for the ANN search, compared with state-of-the-art
methods, including LSB, C2LSH and CK-Means.

1. INTRODUCTION
Nearest Neighbor (NN) search is an important problem in

many multimedia applications. The majority of multimedia
data, such as images, audio and video clips can be repre-
sented as high-dimensional local/global feature vectors [3].
Thus, finding a multimedia object that is similar to a giv-
en query is converted to an NN search in the corresponding
feature vector space, which aims at returning the closest

This work is licensed under the Creative Commons Attribution-
NonCommercial-NoDerivs 3.0 Unported License. To view a copy of this li-
cense, visit http://creativecommons.org/licenses/by-nc-nd/3.0/. Obtain per-
mission prior to any use beyond those covered by the license. Contact
copyright holder by emailing info@vldb.org. Articles from this volume
were invited to present their results at the 40th International Conference on
Very Large Data Bases, September 1st - 5th 2014, Hangzhou, China.
Proceedings of the VLDB Endowment, Vol. 7, No. 9
Copyright 2014 VLDB Endowment 2150-8097/14/05.

vector (or point) to the query vector according to a partic-
ular distance measure (usually Euclidean distance). Due to
the notorious “Curse of Dimensionality”, the performance
of most existing methods [1, 11, 21] for exact NN search de-
generates as the dimensionality increases and is eventually
outperformed by the brute-force approach, linear-scan [20].
To find an efficient solution to NN search, many researchers
have recently focused on approximate nearest neighbor (AN-
N) search, which aims to return a point close enough to a
query point instead of the closest one.

Locality Sensitive Hashing (LSH) has been shown to be
the most promising solution to ANN search. It employs
distance-preserving hash functions to project nearby points
into the same bucket with high probability [5, 8]. Formal-
ly, a hashing function is defined as h : Rd → Z, where Z
denotes the domain of integers. In order to improve the
hashing effect, state-of-the-art hashing algorithms [2, 4, 19]
utilize m randomly-chosen LSH functions together to gen-
erate a compound hash key with m elements for each point
to distinguish them from each other.

After a few years’ development, several approaches based
on LSH have been proposed, including the basic LSH [2,
8, 5], Multi-Probe LSH [10, 12], LSB [19], C2LSH [4], etc.
They use different strategies to organize the compound hash
keys of points to determine candidate points. The basic
LSH [2] determines the candidate points in a straightfor-
ward way, which only considers the points sharing the same
compound hash key with the query point over a compound
LSH function. In compensation for the loss of candidate
points because of its strict filtering policy, hundreds of or
even more hash tables are constructed, which causes a huge
space requirement. To reduce the number of hash tables,
Multi-Probe LSH [12] was proposed, which could find more
similar points from a single hash table by exploring the buck-
ets near the one into which the query point falls.

LSB [19] takes a complicated but effective strategy to e-
valuate the similarity between points with their correspond-
ing compound hash keys. Points in the original space are
projected into a new space Zm associated with m random-
ly selected LSH functions, then the corresponding point in
Zm is converted into a string of bits, called z-order. Thus,
the points will be accessed according to the similarities of
their z-orders to that of the query point. C2LSH [4] propos-
es an interesting method to collect candidate points, called
dynamic collision counting. At first, a base containing m
(usually hundreds of) LSH functions is built, where each
LSH function corresponds to a hash table. C2LSH selects
points frequently colliding with the query point among the

745

base as candidate points. However, both LSB and C2LSH
collect their candidates among a large number of hash struc-
tures, and their candidates are distributed among different
disk (or data) pages. Thus, a large number of I/Os are
unavoidable in order to obtain sufficient candidates to guar-
antee the satisfactory accuracy of the returned results.

Intuitively, the number of I/O accesses can be reduced
if the candidates to be accessed are distributed locally. In
other words, similar objects should be stored in consecutive
disk pages. For this purpose, we propose a novel distance
measure to estimate the distance (i.e. dissimilarity) between
the compound hash keys of two points. We also prove that
the distance measure guarantees the similarity between two
points, in the sense that the probability of a close pair hav-
ing a small distance between their corresponding compound
hash keys is larger than that for a far pair. To further im-
prove the probability, L compound LSH functions are em-
ployed, each of which corresponds to an index file, such that
the number of false negatives can be reduced significantly.
L is as small as 3 in our experiments. Then, a linear order
relationship on compound hash keys is created to sort all
compound hash keys as well as their corresponding points,
which makes it possible that points with close compound
hash keys according to our distance measure are distributed
locally. Furthermore, based on our new distance measure
and the linear order relationship of compound hash keys,
we propose a novel index structure, called SortingKeys-LSH
(SK-LSH), which verifies candidates in the unit of disk page.
As points with close compound hash keys are arranged to-
gether in the disk space, only a small number of disk page
accesses are required to find enough candidate points and
return precise neighbors. By reducing random I/Os consid-
erably, SK-LSH accelerates the search process significantly.
In addition, SK-LSH is simple yet effective.

Empirical results on several real-life data sets (ranging
from low- to high-dimensional data) show that SK-LSH ex-
hibits the best performance with respect to the result quality,
response time and space requirement comparing with state-
of-the-art LSH methods, including LSB and C2LSH. Ac-
cording to our experiments, SK-LSH speeds up ANN search
by an order of magnitude compared with LSB and C2LSH.
In addition, we also compare SK-LSH with Cartesian k-
means (CK-Means) [14], the state-of-the-art method based
on Product Quantization (PQ), which is very popular in the
community of computer vision. As shown in Section 5.5,
SK-LSH costs far less time than CK-Means when returning
results with similar accuracy.

Our contributions are summarized as follows:

• We propose a new method to measure the distance
between the compound hash keys of two points, which
can be used to estimate the actual distance of two
points. We also prove the effectiveness of our distance
measure.

• We propose a linear order relationship on the set of
compound hash keys to sort the compound hash keys
and their corresponding points. We also prove that
points with close compound hash keys according to
our distance measure can be distributed locally based
on the proposed linear order.

• We propose a novel index structure called SK-LSH,
which is able to consume a very small number of page
accesses for high-quality results.

• We demonstrate the superiority of SK-LSH over state-
of-the-art approaches by extensive experiments con-
ducted on real-life data sets.

The rest of this paper is organized as follows. We review
some related work in Section 2. In Section 3 we introduce
LSH functions and propose a novel distance measure be-
tween the compound hash keys of two points and discuss the
linear order relationship. In Section 4 we show the details
of SK-LSH. Section 5 presents the experimental evaluation.
Finally, we conclude this paper in Section 6.

2. RELATED WORK
There are a large number of methods proposed for AN-

N search. Among all those methods, three categories of
approaches attract the most attention, including methods
based on Dimensionality Reduction (DR), LSH, and PQ.

DR based methods [7, 16, 17] first project high-dimensional
points into a much lower-dimensional space and then build
indices in the projected space. Since NN search has been
solved well in low-dimensional spaces, DR based methods
could gain its efficiency by using those well-built approaches
for low-dimensional spaces [1, 11, 21].

LSH based methods are the most popular methods in the
communities of database and computer vision due to their
efficiency and error guarantee. The basic LSH method was
first proposed by M. Datar [2], but it is too space-consuming.
Several methods were proposed to reduce the space require-
ment, including Entropy-based LSH [15] and Multi-Probe
LSH [10, 12]. LSB [19] is the first LSH method that is de-
signed for disk-resident data, followed by C2LSH [4], which
improves the efficiency and accuracy and reduces the space
requirement. Note that there also exist many machine learn-
ing based hashing methods [6, 18]. However, they usually
require an expensive learning process to learn hash functions
which could be highly data-dependent.

PQ based methods [9, 14] are increasingly popular in the
community of computer vision. They assume that the main
memory is large enough to contain the whole data set and
its index file. They encode each point into a short string
of bits with a product quantizer and compute asymmetric
quantizer distances (AQD) between codes of points and that
of the query during the search process. Finally, the point
with the smallest AQD value is returned as the ANN of the
query. The basic PQ method was proposed by H. Jegou [9]
and has been improved by a few researchers. Among them,
M. Norouzi [14] proposed CK-Means, which uses Cartesian
k-means to improve the accuracy of the returned results.

3. DISTANCE AND LINEAR ORDER OVER
COMPOUND HASH KEYS

In this section, we first give a brief introduction to the
ANN problem and (compound) LSH functions, followed by
the distance measure and linear order over compound hash
keys based on the compound LSH functions.

Given a data set D ⊂ Rd and a query point q, the target
of NN problem is to find the point o∗ ∈ D satisfying that
for any point p ∈ D, ‖ o∗, q ‖≤‖ p, q ‖, where ‖ ·, · ‖ denotes
the Euclidean distance between two points. In this paper,
we focus on c-ANN, the popular approximate version of NN
problem, which aims at finding a point o ∈ D that satisfies
‖ o, q ‖≤ c ‖ o∗, q ‖. Here, c is the approximation ratio,
which exceeds 1.

746

3.1 Locality Sensitive Hashing
To solve the c-ANN problem, Indyk and Motwani pro-

posed the idea of LSH [8], which is formally defined as fol-
lows.

Definition 1. (Locality Sensitive Hashing) Given a
distance R, an approximate ratio c and two probability val-
ues P1 and P2, a hash function h : Rd → Z is called
(R, c,P1,P2)-sensitive if it satisfies the following condition-
s simultaneously for any two points p1, p2 ∈ D:

• If ‖ p1, p2 ‖≤ R, then Pr[h(p1) = h(p2)] ≥ P1;

• If ‖ p1, p2 ‖≥ cR, then Pr[h(p1) = h(p2)] ≤ P2;

To make sense, both c > 1 and P1 ≥ P2 hold. In ad-
dition, a compound LSH function is denoted as G =
(h1, . . . , hm), where h1, . . . , hm are randomly selected LSH
functions. Specifically, for ∀p ∈ D, K = G(p) = (h1(p),
. . . , hm(p)) is defined as the compound hash key of point
p under G.

According to Definition 1, LSH ensures that a close pair
collides with each other with a high probability (P1) and a
far pair with a low probability (P2). This property of LSH
is also called distance-preserving.

The LSH function commonly used in Euclidean Space,
which was proposed by Datar [2], is shown as the following:

h(p) = ba · p+ bW

W
c (1)

Here, a is a random vector with each dimension indepen-
dently chosen from Guassian distribution and p is an ar-
bitrary point in D. b is a real number uniformly drawn
from the range [0,1]. W is also a real number represent-
ing the width of the LSH function. For two points p1, p2
and an LSH function h, if ‖ p1, p2 ‖= r, the probability of
h(p1) = h(p2) can be computed as follows [2].

p(r,W) = Pr[h(p1) = h(p2)]

=
∫W
0

1
r
f2(t

r
)(1− t

W
)dt

= 2norm(W/r)− 1− 2√
2π

r
W

(1− e−
W2

2r2)

(2)

Here, f2(x) = 2√
2π
e−

x2

2 and norm(·) represents the cumu-

lative distribution function of a random variable following
Gaussian Distribution. According to Equation 2, the proba-
bility p(r,W) decreases monotonically when r increases but
grows monotonically when W rises.

Due to the distance-preserving property of LSH, it is ra-
tional to use the hash values to estimate the distance be-
tween two points. Therefore, if two points have similar hash
values, it is believed that they are close to each other with
certain confidence. Based on this idea, several approaches
have been proposed for c-ANN [2, 4, 5, 12, 19]. However,
it is obvious that Equation 1 exhibits poor performance in
filtering irrelevant points, as many pairs, which are distant
from each other, may share the same hash value under a sin-
gle hash function as Equation 1. In other words, numerous
false positives may be returned. To remove the irrelevan-
t points (i.e. false positives), a compound LSH function
G = (h1, h2, . . . , hm) is employed so as to improve the dis-
tinguishing capacity. Note that each element of a compound
LSH function, hi, is randomly selected as defined in Equa-
tion 1. Only points sharing all the m hash values with the
query point are taken into account as candidate points, as

suggested by the basic LSH [2]. However, c-ANN search al-
gorithms should ensure that data points having similar com-
pound hash keys to the query point are taken into account as
candidates. Hence, a distance measure over compound hash
keys is required. In the following, we propose a novel mea-
sure to evaluate the distance between a pair of compound
hash keys.

3.2 Distance over Compound Hash Keys
Given a compound LSH function G and two points p1, p2
∈ D, we have compound hash keys K1 = G(p1) and K2 =
G(p2), where both K1 and K2 are tuples containing m hash
values. Let k1,i (resp. k2,i) be the i-th element of K1 (resp.
K2), that means k1,i = hi(p1) and k2,i = hi(p2).

Definition 2. (Prefix of a Compound Hash Key)
Given a point p ∈ D and its compound hash key K =
G(p) = (k1, k2, . . . , km). The l-length prefix of K, de-
noted as pref(K, l), consisting of the first l elements of K
where 1 ≤ l ≤ m, is formally defined as follows.

pref(K, l) = (k1, k2, . . . , kl) (3)

Particularly, we denote pref(K, 0) as K∅, which is actually
an empty hash key.

Here, we are inspired by the prefix of a character string
and treat a compound hash key as a string of elements.
Therefore, its prefix is the substring constituted by its first
several elements. For example, for a compound hash key
K = (1, 2, 3, 4), pref(K, 3) = (1, 2, 3), pref(K, 2) = (1, 2)
and pref(K, 0) = K∅.

Definition 3. (Non-prefix Length of Compound Hash
Keys) Given two compound hash keys K1 = (k1,1, k1,2, . . . , k1,m)
and K2 = (k2,1, k2,2, . . . , k2,m), if pref(K1, l) = pref(K2, l)
and pref(K1, l + 1) 6= pref(K2, l + 1), where 0 ≤ l < m,
then the non-prefix length between K1 and K2, denoted as
KL(K1,K2), is formally defined as follows:

KL(K1,K2) = m− l (4)

If pref(K1,m)=pref(K2,m), then KL(K1,K2) = 0.

A smaller non-prefix distance between two compound hash
keys indicates that they share a longer common prefix with
each other. For instance, given two compound hash keys
K1 = (1, 2, 3, 4) and K2 = (1, 2, 3, 5), KL(K1,K2) = 1 since
pref(K1, 3) = pref(K2, 3) and pref(K1, 4) 6= pref(K2, 4).

Definition 4. ((l+ 1)-th Element Distance of Com-
pound Hash Keys) Given two compound hash keys K1 =
(k1,1, k1,2, . . . , k1,m) and K2 = (k2,1, k2,2, . . . , k2,m), if
KL(K1,K2) = m− l, where 0 ≤ l < m, then the (l + 1)-th
element distance between K1 and K2 is defined as the ab-
solute value of the distance between their (l+ 1)-th elements
as follows:

KD(K1,K2) = |k1,l+1 − k2,l+1| (5)

If l = m, we denote KD(K1,K2) as 0 by default.

Though the notion of non-prefix length can be used to
measure the distance between two compound hash keys, we
employ the (l+1)-th element distance to further distinguish
two compound hash keys. Let us consider the following three
compound hash keys, K1 = (1, 2, 3, 4), K2 = (1, 2, 3, 5) and

747

K3 = (1, 2, 3, 2). If only the non-prefix length is applied,
we cannot determine which of K2 and K3 is more similar
to K1 since KL(K1,K2) = KL(K1,K3) = 1. However,
by using the (l + 1)-th element distance, it is rational to
conclude that K2 is more similar to K1 than K3 according
to the fact that KD(K1,K2) < KD(K1,K3). Thus, for
two compound hash keys, we use a linear combination of
the non-prefix length and the (l+ 1)-th element distance to
reflect the overall distance. The formal definition of which
is shown as follows.

Definition 5. (Distance of Compound Hash Keys)
Given two compound hash keys K1 and K2, the distance
between them, denoted as dist(K1,K2), is defined as follows:

dist(K1,K2) = KL(K1,K2) +
KD(K1,K2)

C
(6)

Here, C is a normalization factor which satisfies for any

pair of compound hash keys K
′

and K
′′

, KD(K
′
,K

′′
) < C

holds.

It can easily be proved that the distance measure is a
metric, which satisfies nonnegativeness, symmetry and tri-
angle inequality simultaneously. For any pair of compound
hash keys, a smaller distance between them indicates that
they are more similar to each other. For example, sup-
pose there are three compound hash keys, K1 = (1, 2, 3, 4),
K2 = (1, 2, 3, 5) and K3 = (1, 2, 3, 2). Here, C is set to 10,
a large enough value. Hence, we have dist(K1,K2) = 1.1
and dist(K1,K3) = 1.3. Therefore, K2 is more similar to
K1 than K3.

Moreover, there exists a link between the distance mea-
sure and the Euclidean distance, which is shown as follows.

Lemma 1. For two points p1, p2 ∈ D and ‖ p1, p2 ‖= r,
the distance dist(G(p1), G(p2)) is less than m − l + 1 (0 ≤
l ≤ m) with probability [p(r,W)]l.

Proof. According to Definition 5, if dist(G(p1), G(p2)) <
m − l + 1, we have KL(G(p1), G(p2)) ≤ m − l and further
G(p1) and G(p2) at most shares l common prefix. It means
that hi(p1) = hi(p2) holds for 1 ≤ i ≤ l. Due to the fact
that each LSH function is independently and randomly se-
lected according to Equation 1, the probability is correctly
obtained as shown in Equation 7.

Pr[dist(G(p1), G(p2)) < m− l + 1]

=
∏l
i=1 Pr[hi(p1) = hi(p2)]

= [p(r,W)]l
(7)

According to Equation 2 and Equation 7, when W and l
are fixed, the probability of dist(G(p1), G(p2)) < m − l + 1
decreases monotonically with the increase of r. For any dis-
tance value m − l + 1, the smaller ‖ p1, p2 ‖ is, the larger
the probability of dist(G(p1), G(p2)) < m − l + 1. Hence,
Lemma 1 guarantees that p1 and p2 are close to each oth-
er when dist(G(p1), G(p2)) is sufficiently small. Besides, a
point with a sufficiently close compound hash key to that
of a query according to Equation 6 could be seen as a high-
quality candidate for the query.

Notably, LSH functions preserve the distance between points
after hashing with a certain probability according to Equa-
tion 2. That may cause a number of false negatives: the

points which are close to the query point but exhibit a long
distance with respect to the hash values. In fact, for most
existing methods in ANN search, the basic idea is to verify
a set of high-quality candidates so as to find as many true
positives as possible with as little cost as possible. More-
over, it is unavoidable for each approach of ANN to lose
false negatives.

In line with state-of-the-art approaches in ANN search,
false negative is also a big challenge in our approach, espe-
cially when we define the distance between compound hash
keys using prefix, as described in Definition 5.

In practice, it seems that simply counting the number of
common values among m hash values of two points under a
compound LSH function makes more sense than our distance
measure, which will be proved by experiments in Section 5.3.
However, as will be shown in Section 3.3, simply counting
the number of collisions cannot be formed as a linear order
so as to improve the probability of local distribution of can-
didates, which can further reduce random I/Os. Moreover,
for two compound hash keys, the length of their common
prefix can be seen as a lower bound of their total number of
common hash values.

According to Lemma 1, the probability [p(r,W)]l may be
very small when l is large enough, which may lead to a large
number of false negatives. In order to reduce the loss of
false negatives, we use a set G of L (L > 1) compound LSH
functions, G = {G1, G2, . . . , GL}, to measure the distance
among compound hash keys of p1, p2 as follows.

Dist(G(p1),G(p2)) =
L

min
i=1

dist(Gi(p1), Gi(p2)) (8)

In Equation 8, for any two points p1 and p2, there are L
distance values dist(Gi(p1), Gi(p2)) for 1 ≤ i ≤ L, in respec-
t to L compound LSH functions and we use the minimum
one as the final distance between their corresponding com-
pound hash keys. For a close pair, they may fail to have
a small distance under a compound LSH function in G but
they could have small distances under other compound LSH
functions in G. It reduces the possibility that close pairs
do not have a small distance and hence reduces the num-
ber of lost false negatives. Recall that each compound LSH
function, Gi(1 ≤ i ≤ L), is independently and randomly
generated. Therefore, the probability that the distance be-
tween the corresponding compound hash keys of p1, p2 is at
most m− l + 1 is significantly enlarged as follows.

Lemma 2. For two points p1, p2 ∈ D, ‖ p1, p2 ‖2= r and
a set G of L (L > 1) compound LSH functions, the distance
Dist(G(p1),G(p2)) is less than m − l + 1 (0 ≤ l ≤ m) with
probability 1− [1− p(r,W)l]L.

Proof. As each Gi(1 ≤ i ≤ L) is independently and
randomly generated, under which the distance in hash values
between p1 and p2 is guaranteed by Lemma 1. Then the
probability of Dist(G(p1),G(p2)) less than m − l + 1 can be
computed as follows.

Pr[Dist(G(p1),G(p2)) < m− l + 1]

= 1−
∏L
i=1(1− Pr[dist(Gi(p1), Gi(p2)) < m− l + 1])

= 1− [1− p(r,W)l]L

(9)

3.3 Linear Order over Compound Hash Keys

748

To improve the probability for finding candidates within
a neighborhood in one single hash table, we introduce a lin-
ear order over compound hash keys. For a single compound
LSH function, the linear order guarantees that points with
close compound hash keys to that of a query according to
the distance measure in Equation 6 are stored in consecu-
tive areas. Recall that we assume that there is only one
compound LSH function in this subsection for the sake of
discussion.

For a data set D and a compound LSH function G, let
K = {G(p) |p ∈ D}. First, we define an algebra system K
and a binary relation ≤G for compound hash keys. Then,
< K,≤G> is proved to be a linear order set, such that state-
of-the-art sorting algorithms (e.g., quick sort, heap sort) can
be employed to sort the compound hash keys. Moreover, we
prove that for a compound hash key Ki in the set of sorted
compound hash keys, the similar compound hash keys to Ki

are in its neighborhood.

Definition 6. (Relation between Compound Hash
Keys) Given two compound hash keys with m elements, K1

and K2, we define their relation as follows: K2 <G K1 if l < m and k1,l+1 > k2,l+1

K1 =G K2 if l = m
K1 <G K2 if l < m and k1,l+1 < k2,l+1

where l = m−KL(K1,K2).

We denote a binary relation K1 ≤G K2 if and only if
K1 <G K2 or K1 =G K2. We prove that the relation ≤G on
K is in a linear order in Lemma 3.

Lemma 3. Compound hash keys in the algebra system <
K,≤G> is a linear order set.

Proof. For ∀K1,K2,K3 ∈ K, four properties of a linear
order, including reflexivity, antisymmetry, transitivity, and
totality, are proved sequentially as follows.

• Reflexivity: K1 ≤G K1. As K1 =G K1 according to
the definition of ≤G, K1 ≤G K1.

• Antisymmetry: if K1 ≤G K2 and K2 ≤G K1, then
K1 =G K2. Assume that K1 6=G K2, according to the
definition of ≤G, K1 <G K2 and K2 <G K1. They
are contradictory according to Definition 6. Therefore,
K1 =G K2.

• Transitivity, which indicates that if K1 ≤G K2 and
K2 ≤G K3, then K1 ≤G K3. Without loss of gener-
ality, we have l1 = m − KL(K1,K2) and l2 = m −
KL(K2,K3). First, let us consider two special cases
listed as follows.

(1) l1 = m. Then, it is concluded that K1 =G K2

and thus K1 ≤G K3.

(2) l2 = m. Then, it is acquired that K2 =G K3 and
thus K1 ≤G K3.

For the other cases where 0 ≤ l1, l2 < m, there are 3
cases with respect to the relationship between l1 and l2
as follows:

(1) l1 < l2. It is obvious that pref(K1, l1) = pref(K2,
l1) = pref(K3, l1) and k1,l1+1 < k2,l1+1, k2,l1+1 =
k3,l1+1. Moreover, k1,l1+1 < k3,l1+1. Hence, K1 ≤G
K3.

(2) l1 = l2. It is obvious that pref(K1, l1) = pref(K2,
l1) = pref(K3, l1) and k1,l1+1 < k2,l1+1, k2,l1+1 <
k3,l1+1. Moreover, k1,l1+1 < k3,l1+1. Hence, K1 ≤G
K3.

(3) l1 > l2. It is obvious that pref(K1, l2) = pref(K2,
l2) = pref(K3, l2) and k1,l2+1 = k2,l2+1, k2,l2+1 <
k3,l2+1. Moreover, k1,l1+1 < k3,l1+1. Hence, K1 ≤G
K3.

• Totality, representing that K1 ≤G K2 or K2 ≤G K1,
also holds, which can be easily proved according to Def-
inition 6.

Therefore, ≤G is a linear order on K.

As ≤G on K is a linear order according to Lemma 3, ex-
isting sorting algorithms can be employed to sort the com-
pound hash keys of all points in D. Recall from the afore-
mentioned discussion, an efficient index structure should s-
tore similar points in consecutive space, so that the number
of random I/O accesses when performing a query is min-
imized. Thus, we prove that the new order system over
compound hash keys guarantees that the closest compound
hash keys to that of a query point q (i.e. G(q)) are stored
locally.

For simplicity, we denote the set of sorted compound hash

keys sequence as K
′

and the compound hash key of the query
point as Kq. Thus, K′ is monotonically non-decreasing,

which means Ki ≤G Kj if Ki,Kj ∈ K
′

and i < j. Without

loss of generality, assume Kq /∈ K
′

and there are two com-

pound hash keys Ki,Ki+1 ∈ K
′

satisfying Ki <G Kq <G

Ki+1 and 1 ≤ i < |K
′
|. Intuitively, the closest compound

hash key to Kq is either Ki or Ki+1, which can be proved
by the following two lemmas.

Lemma 4. Given three compound hash keys with m ele-
ments, K1, K2 and K, if K2 <G K1 <G K, then dist(K1,K) ≤
dist(K2,K).

Proof. This lemma can be proved by contradiction. As-
sumed that dist(K1,K) > dist(K2,K). For simplicity, let
l1 = m−KL(K1,K), d1 = KD(K1,K), l2 = m−KL(K2,K)
and d2 = KD(K2,K). Here, 0 ≤ l1, l2 < m, d1, d2 > 0 s-
ince K 6=G K1 and K2 6=G K. According to Definition 5,
there are 2 cases to be taken into account for dist(K1,K) >
dist(K2,K).

• l1 = l2 and d1 > d2. According to Definition 3 and
Definition 4, pref(K1, l1) = pref(K, l1) = pref(K2, l1)
and kl1+1−k1,l1+1 > kl1+1−k2,l1+1. Further, k1,l1+1 <
k2,l1+1. According to Definition 6, K1 <G K2, which
contradicts the fact K2 <G K1.

• l1 < l2. According to Definition 3, pref(K1, l1) =
pref(K, l1) = pref(K2, l1), k1,l1+1 < kl1+1 and kl1+1 =
k2,l1+1. Further, k1,l1+1 < k2,l1+1. According to Defi-
nition 6, K1 <G K2, which contradicts the fact K2 <G
K1.

The conclusion contradicts with the assumption. Therefore,
the lemma is proved.

Lemma 5. Given three compound hash keys with m ele-
ments, K1, K2 and K, if K2 >G K1 >G K, then dist(K1,K) ≤
dist(K2,K).

749

(0,0,0) (1,1,3) (1,2,2) (1,2,5) (1,4,5) (2,1,1)

Figure 1: Search strategy

Proof. It can be proved in a similar way to Lemma 4.

Let D
′

be the sequence of points after rearranging them
in the orders of their corresponding compound hash keys

in K
′
. And, Ki ∈ K

′
corresponds to the point pi in D

′
.

Assuming that Ki <G Kq <G Ki+1, we can ensure that

the closest compound hash key in K
′

to Kq is either Ki or
Ki+1. Moreover, if more close compound hash keys to Kq

are required, we can easily explore those adjacent to Ki or
Ki+1, as illustrated in Figure 1.

As shown in Figure 1, there is a data set with 6 points,
{p1, . . . , p6} and the set of their corresponding compound
hash keys {K1, . . . ,K6} are sorted in the ascending order.
Initially, the set of candidate points C is ∅. Obviously, we
have K3 <G Kq <G K4 holds. Thus, according to Lemma 4
and 5, the closest compound hash key to Kq is in the set ψ =
{K3,K4}. Specifically, K3 is closer to Kq than K4 and hence
p3 is added to C. To obtain the second closest compound
hash key to Kq, we use the one adjacent to K3 along the left
direction, i.e. K2, to replace K3 in ψ. Moreover, it is easy
to derive that the second closest compound hash key to Kq

is still in ψ. Similarly, after removing K4 from ψ, K5, to
the right of K4, is put into ψ. More close compound hash
keys will be found in the same way and their corresponding
points are put into C.

Finally, we can see that close compound hash keys to Kq

are listed in the consecutive areas of K
′
. According to the

orders of seeking close compound hash keys to Kq, the cor-

responding points in D
′

can be verified conveniently. When
combining the distance measure in Equation 6, linear order
significantly improves the probability that candidates are
distributed locally.

Notably, we just proved that candidates are distributed
locally in a sorted data set with respect to a single com-
pound LSH function. Recall that, to reduce the loss of false
negatives, we employ L(L > 1) compound LSH functions to
construct our index structures. Accordingly, candidates are
distributed among L sorted data sets, which may consume a
lot of random I/Os since adjacent points in the sequence of
candidates may be located in different sorted data sets. In
order to solve the problem, we propose an index structure
in the next section.

4. SK-LSH
Actually, data points in a sorted data set are stored in

continuous disk pages and each random I/O reads a disk
page once. By arranging the candidates’ compound hash
keys in a single sorted data set according to the distance
measure in Equation 8, candidates are accessed and verified
in the unit of disk page. First, a disk page contains points
with close compound hash keys and it retains the property
that candidates similar to the query are stored locally. Sec-
ond, we select the disk pages containing close points to the

⁞

⁞

1p

⁞

⁞

⁞

⁞

2p

Bp

(1) 1i Bp

(1) 2i Bp

i Bp

1K

⁞

⁞

⁞

⁞

2K

BK

(1) 1i BK

(1) 2i BK

i BK

1Page

iPage

1 1L K

1 BU K

(1) 1i i BL K

i i BU K

⁞

⁞

Figure 2: The page structure over sorted data

query among L sorted data sets, where the distance mea-
sure in Equation 8 still works. Hence, there are two critical
problems to solve, including how to organize disk pages and
how to measure the distance between a query point and a
disk page, in order to determine the orders of disk pages
to be accessed. Actually, the two problems correspond to
the index strategy and the search strategy respectively. In
this section, we present a novel method, namely SK-LSH, to
address both problems.

4.1 Index Strategy
As discussed above, we randomly select a compound LSH

function and sort the compound hash keys for p ∈ D in
ascending order. Consequently, the points in D are sorted
in the same order correspondingly and stored in consecutive
disk pages. Let B be the size of a disk page (i.e. a disk page
contains B points at most). We illustrate the data page
structure of SK-LSH for a sorted data set in Figure 2.

As can be seen in Figure 2, each data page contains B
points at most. The index strategy works as follows. First-
ly, the compound hash keys of all points in D are acquired
and sorted in the increasing order according to Definition 6,
followed by rearranging data points accordingly. Recall that
each page, containing B points at most, corresponds to B
compound hash keys at most. We denote each page using
two representative compound hash keys, the first one and
the last one in the data page. In other words, the “lower
bound” and the “upper bound” inside a page are used to
represent the page. Without loss of generality, Pagei con-
taining B points is referred to as < K(i−1)×B+1,Ki×B >,
which are denoted as < Li, Ui > respectively, as presented
in Figure 2.

Using a pair of compound hash keys to represent a disk
page, we successfully compress the data set and the com-
pressing ratio is Bd/2m, where d is the dimensionality of
points in D. In order to organize the representative pairs
of all data pages in a sorted data set, we propose to use
the popular B+-tree to index them. Its efficiency will be
analyzed in Section 4.3.

To sum up, given a compound LSH function and a data
set, an index file of SK-LSH consists of two parts, (1) a B+-
tree indexing the pairs of compound hash keys for sorted
data pages and (2) the sorted data set stored in consecutive
data pages. Recall that L compound LSH functions are
employed and thus the index structure of SK-LSH contains
L pairs of B+-trees and sorted data sets.

4.2 Search Strategy
When accessing disk pages during the search process, the

order of pages loaded into the memory needs to be decided.

750

(0,0,1) , (0,0,5) (0,1,0) , (0,1,2) (0,1,3) , (0,1,6) (1,0,0) , (1,2,3)

(2,1,1) , (2,1,6) (2,2,0) , (2,2,2) (2,3,1) , (2,4,1) (2,4,5) , (2,5,1)

(7,1,0) , (7,1,4) (7,2,6) , (7,2,9) (7,3,5) , (7,4,2) (8,2,1) , (8,8,6)

T1 Data Pages

T2 Data Pages

T3 Data Pages

P11 P12 P13 P14

P23P22P21 P24

P31 P32 P33 P34

)1,1,0(1 qK

)3,2,2(2 qK

)3,2,7(3 qK

LP1 RP1

LP2

LP3 RP3

RP2

Figure 3: Bi-directional expansion (m = 3, l = 3)

To address the issue, we define the distance between a query
point and a data page as follows.

Definition 7. (Distance between a Query Point and
a Data Page) Given a query point q and a data page P
containing B points, let Kq be the compound hash key of q
and a pair of compound hash keys < L,U > to denote P .
The distance between q and P , denoted as DIST (q, P), is
calculated as follows:

DIST (q, P) =

 DIST (Kq, L) if Kq ≤G L ≤G U
0 if L ≤G Kq ≤G U
DIST (Kq, U) if L ≤G U ≤G Kq

(10)

As shown in Definition 7, for Kq and < L,U >, there are
three cases which need to be considered. In the first case, Kq

is smaller than all compound hash keys of points in P . So
the lower bound of distances between Kq and the compound
hash keys of points in P is dist(Kq, L) according to Lemma
5. In the second case where Kq falls into the range between
L and U , the distance of Kq and page P is defined as 0. In
the third case where Kq is larger than all compound hash
keys of points in P , the lower bound is dist(Kq, U) according
to Lemma 4.

Based on the above definition, we discuss below how to
find the closest page towards q in a sorted data set. Let n
be the cardinality of D and ρ = d n

B
e be the number of data

pages. Besides, we use P = {P1, P2, . . . , Pρ} to refer to the
set of data pages. Hence, a B+-tree is created to index the
compound hash keys in Θ = {L1, U1, L2, U2, . . . , Lρ, Uρ}. It
is very convenient to find two compound hash keys in Θ, θi
and θi+1 (1 ≤ i < 2ρ − 1), such that θi ≤ Kq ≤ θi+1 by
searching in the B+-tree. If d i

2
e = d i+1

2
e, indicating that

θi and θi+1 belong to the same data page Pd i
2
e, the closest

data page to q is Pd i
2
e according to Definition 7. Otherwise,

θi and θi+1 belong to different data pages and we compare
the distances of Pd i

2
e and Pd i+1

2
e to q respectively to figure

out the closest one according to Lemma 4 and Lemma 5.
In SK-LSH, we employ L index files in order to reduce

the loss of false negatives. After building a B+-tree on the
compound hash keys for each index file, we have L B+-trees.
The key operation for ANN search is to find the next data
page to be accessed among L B+-trees, which can be done
by bi-directional expansion at data pages of all B+-trees.

For each B+-tree Ti and 1 ≤ i ≤ L, we use PiL to denote
the closest data page to q in Ti, and PiR the data page
immediately succeeding PiL. Figure 3 shows an example
where each compound hash key has 3 elements and 3 index
files are used.

First, we determine PiL and PiR for Ti. Here, we set
C in Equation 6 as 10 for all index files. Taking T1 as

an example, P12 has the smallest distance to K1q. Hence,
P12 is set as P1L and P13 as P1R. Similarly, we obtain
P2L, P2R, P3L and P3R. It can easily be derived that the
page with the smallest distance to its corresponding com-
pound hash key of the query point must be in the set Φ =
{P1L, P1R, P2L, P2R, P3L, P3R}. To facilitate the discussion,
we define two operations on Φ, extract and shift. Oper-
ation P = extract(Φ) returns the closest data page in Φ
from all the B+-trees, and P is meanwhile removed from Φ.
shift(P), where P ∈ Φ, means moving P away from Kq by

one page to P
′
. For instance, the result of shift(P1L) is P11

and that of shift(P2R) is P24. Besides, we use the result of
shift(P) to replace P in Φ. By repeating extract and shift
operations, close data pages towards the query point will be
found from all the B+-trees in sequence.

If the number of data pages verified exceeds the thresh-
old, NP , specified before the search, SK-LSH terminates the
search process. Intuitively, SK-LSH returns superior results
with a much less running time than LSB and C2LSH, be-
cause it verifies much more points with dramatically less
random I/O operations, which is justified and discussed in
details in Section 5.

There are L copies of the data set indexed by L B+-trees
and we access data pages in different index files according to
the corresponding distances to the query point. Therefore,
it is probable that a candidate point is found in more than
one index file. To reduce this unnecessary overhead caused
by the duplicate points, we maintain a bitmap for each data
point to indicate whether it has been verified, as suggested
by A. Andoni and P. Indyk in the manual called E2LSH
package1. If it has been verified, we just ignore it, which
reduces the unnecessary CPU cost. We summarize the whole
search process in Algorithm 1.

Algorithm 1 Multi-Tree Search Algorithm

Require: T = {Ti|1 ≤ i ≤ L}, q, NP ;
Ensure: o;
1: for each i = 1 to L do
2: Compute the compound hash key of q, Kiq;
3: Find out PiL and PiR;
4: end for
5: repeat
6: P = extract(Φ);
7: Verify points in P and update o;

8: P
′

= shift(P);

9: Φ = Φ ∪ P
′
;

10: until |Φ| ≥ Np
11: return o;

4.3 Complexity Analysis
In this subsection, we analyze the space and time com-

plexity of SK-LSH. We first discuss the choice of B, the
page size, since it has an influence on our analysis. Intu-
itively, B should be a relatively large number in order that
sorted candidates are distributed locally. In addition, trans-
ferring the same amount of data from disk to main memory
often requires less time with larger pages than with smaller
pages 2. Hence, a large B significantly improve the efficien-
cy of loading candidates. However, if B is too large, it will
weaken the effect of the distance measure in Equation 8,

1
http://www.mit.edu/˜andoni/LSH/.

2
http://en.wikipedia.org/wiki/Page (computer memory)

751

which is set to reduce the loss of false negatives. Inspired
by HashFile [22], we set B as 100 in this paper, indicating
that a disk page contains at most 100 points.

The index files of SK-LSH require L copies of the data set
and correspondingly L B+-trees. A single B+-tree consumes
O(nm/B) space, where n is the cardinality of the data set
and and m is the number of elements in each compound
hash key. Therefore, the total space cost is O(Lnm/B) +
O(Lnd)=O(Ln(m/B+d)), where d is the dimensionality of
data points. Since m/B � d, the major space requirement
comes from the copies of the data sets.

The time complexity consists of two parts, including (1)
searching L B+-trees and (2) loading and verifying points
in NP pages, where NP is a parameter defined before the
ANN search. The cost of (1) exists in exploring O(LE)
pages, where E is the height of a B+-tree. The cost of (2)
is proportional to NP . Notably, the time cost of process-
ing a page is O(Bd). Thus, the total time complexity is
O(Bd(NP + L logB n)). As will be justified in Section 5, L
is usually less than 10 in real-world data sets. logB n is very
small since B is as large as 100. In addition, NP is usually a
small value, which is set as 10 for satisfactory results when
comparing with state-of-the-art LSH methods according to
our extensive experiments.

4.4 Maintainance of SK-LSH
For an index structure, it is also important to maintain it

when the data set is updated. To address this issue, we can
simply modify the index files to make the index structure
maintainable.

Given a compound LSH function G, we consider the pair
of a point and its compound hash key as an item and the
compound hash key underG is treated as the key of the item.
Instead of indexing only two representative compound hash
keys, a B+-tree is built to manage all those items in the
modified version. Each internal node only contains keys of
their corresponding items while each leaf node includes the
whole items. Here, a leaf node corresponds to a data page
in the aforementioned SK-LSH. Note that, the size B of a
page indicates that a disk page contains at most B points
and their corresponding compound hash keys. Since all the
data points are stored in the leaves, there are no additional
sorted data sets in the modified SK-LSH.

The search process could be performed more directly in
the modified B+-trees and the updating of data can also
be performed easily. However, a modified B+-tree requires
more space because (1) it stores all compound hash keys for
each point and (2) the number of points in each leaf node
is between bB/2c and B due to the property of B+-trees.
However, the increase of space requirement is limited since
each leaf node contains at least bB/2c points. The space
complexity of modified SK-LSH is O(Ln(d+m)).

In addition, the modified index structure will decrease the
efficiency and accuracy of SK-LSH slightly and the decreas-
ing effect is also limited. Due to the fact that the number
of points in a leaf node is in the range [bB/2c, B], the accu-
racy of returned results by modified SK-LSH is worse than
SK-LSH when accessing the same number of data pages or
leaf nodes.

5. EXPERIMENTAL RESULTS
In this section, we investigate the performance of SK-LSH

and compare it with state-of-the-art techniques [4, 14, 19]

in four multimedia data sets, which are described as follows.

5.1 Set Up

5.1.1 Data Sets
Corel 3. It consists of 68,040 32-dimensional color his-

tograms from the same number of images.
Aerial 4. It contains 275,465 60-dimensional texture vec-

tors.
Audio5. There are 54,387 192-dimensional vectors in this

data set, as is extracted from the ldc switchboard-1 col-
lection.

Sift6. ANN SIFT1M consists of three parts, 1,000,000
base vectors, 100,000 learn vectors and 10,000 query vectors,
and the dimensionality of each vector is 128.

For each data set, we randomly select 50 points to form
the query set and results are averaged.

5.1.2 Performance Measures
We employ three different measures to evaluate the per-

formance of SK-LSH.

• ratio. ratio is used to evaluate the accuracy of the
returned neighbors. Given a query q, let o∗1,o∗2,. . . ,o∗k
be the kNNs with respect to q, an approach for ANN
search returns k points o1,o2,. . . ,ok. Both results are
ranked by the increasing order of their distance to q.
Therefore, the approximate ratio for ANN with respect
to q is computed as

ratio(q) =
1

k

k∑
i=1

‖ oi, q ‖
‖ o∗i , q ‖

(11)

In the following experiment, we use the mean of ratio(q)
over the query set.

• Average Response Time (ART). The time cost main-
ly consists of two parts, the searching in L B+-trees
to find the closest data pages to the query point and
verifying points to find NNs among L index files. In
SK-LSH, much fewer data pages are necessary to ac-
cess than LSB and C2LSH while there are indeed more
distance computations than LSB and C2LSH. On the
other hand, the index structure of CK-Means is very
small in size but its CPU cost is considerable. Hence,
to make a fair comparison, we use the average response
time to evaluate the performance of ANN search. Here,
we use ti to denote the time cost for the i-th query
point and nq the cardinality of the query set.

ART =
1

nq

nq∑
i=1

ti (12)

• I/O cost (I/O). The efficiency of LSB and C2LSH
are sensitive to I/O cost, but they cannot make ful-
l use of each random I/O to find enough candidate
points. However, SK-LSH successfully overcomes this
issue and achieves a much better performance in ac-
curacy and efficiency. Here, we count the number of
random I/Os during the search process and the result
is denoted as I/O.

3
http://kdd.ics.uci.edu/databases/CorelFeatures/

4
http://vision.ece.ucsb.edu/data-sets

5
http://www.cs.princeton.edu/cass/audio.tar.gz

6
http://corpus-texmex.irisa.fr/

752

• Space Requirement. The space requirement of a LSH
scheme is the space occupied by its corresponding in-
dex structures.

5.1.3 Compared Methods
To demonstrate the superiority of SK-LSH, we compare

two categories of methods in this paper: LSH based and
PQ based methods. We compare SK-LSH with the state-of-
the-art LSH based methods in all of the four performance
measures. Due to the space limitation, we only compare SK-
LSH and CK-Means, the state-of-the-art PQ based method,
in ratio and ART . Moreover, the cost of PQ based methods
is dominated by its CPU cost instead of I/O cost.

5.2 Effect of Model Parameters
In SK-LSH, there are several parameters which may affect

the performance, including the width W for each LSH func-
tion, the number m of LSH functions in a compound LSH
function, the number L of index files and the number NP of
data pages accessed during the search process. We will tune
these parameters to evaluate the performance of SK-LSH in
sequence. By default, in the following experiments we set
the number of returned neighbors k as 100 and the size of a
disk page B as 100.

Effect of W and m. W and m are two fundamental pa-
rameters for constructing an index file. We tune these two
parameters for a single index file by fixing L as 1 and NP
as 10. A group of experiments are conducted to evaluate
the performance of SK-LSH under different W and m. The
number NP of data pages accessed is fixed and the time cost
will just vary slightly for different settings. Therefore, we
are only concerned with the precision of returned neighbors
measured by ratio. The results are presented in Figure 4.

Generally, the choices of W and m do co-affect the ac-
curacy of returned neighbors according to Figure 4. When
W is small, ratio does not vary much, which is caused by
our randomly selected LSH functions. In Corel, when W
is 0.2, the smallest value, ratio stays around 1.35. Similar
phenomena can be found in other data sets. That is because
fewer LSH functions with smaller m can achieve an utterly
perfect distinguishing capacity and adding more LSH func-
tions will not make any improvements. By contrast, it is
easily concluded that if we want to obtain good distinguish-
ing capacity with larger W , m should be large enough. That
is also supported by Figure 4. For instance, in Figure 4(b),
when W is set to 50, the largest value, ratio is more than
1.3 with m = 10. In contrast, ratio stays around 1.25 as m
exceeds 20. Notably, ratio just fluctuates slightly when m
is large enough for different W ’s. As shown in Figure 4(b),
when m exceeds 20, ratio remains stable by varying W . The
reason is simple that concatenating more LSH functions is
helpless to the distinguishing capacity of a compound LSH
function when m is large enough.

By comparing the stable part of ratios for different W ’s,
we find that ratio is very large if m is small enough. For
example, in Audio, when m is set as the smallest value,
1, the stable value of ratio is obviously worse than that of
other choices of W ’s. As is known, when W is very small,
it is highly probable that close pairs will fall into different
hash buckets. Our distance measure for compound hash
keys is sensitive to such issues, which leads to the missing
of candidate points. On the other hand, if W is too large,
more LSH functions need to be employed to acquire a good

2 3 4 5 6
1

1.1

1.2

1.3

L

r
a
t
i
o

Corel
Aerial
Audio
Sift

(a) ratio

2 3 4 5 6
0

0.5

1

1.5

2

L

A
R
T
(m

s
)

Corel
Aerial
Audio
Sift

(b) ART

Figure 5: Effect of L

distinguishing capacity, which increases the time cost for
both the construction of index files and the search.

According to Figure 4, we set (W,m) as (0.8, 12) for
Corel, (40, 30) for Aerial, (3, 30) for Audio and (1000,
30) for Sift in the following experiments, where SK-LSH
exhibits the best performance with respect to ratio. Notice
that m is smaller than the dimensionality of each data set.

Effect of L. L is the number of index files which affects
the number of false negatives and space consumption. Also,
it exhibits impact on the precision of returned neighbors.
Intuitively, a larger L indicates that more information pro-
vided by the index files facilitates the accuracy of returned
neighbors. To test the effect of L on ratio, we vary L from
2 to 6 with W and m fixed as above. NP is fixed to 10 as
above. Moreover, we take the response time into account
since L affects time cost of the search process in L B+-trees.
The results are shown in Figure 5.

As is expected, ratio decreases when L ranges from 2 to 6
in all the data sets as shown in Figure 5(a). This is consis-
tent with our intuitive study since more index files improve
the quality of data pages accessed. Also, it justifies that our
distance measure proposed in Section 3 is effective. More-
over, as L increases, the decreasing speed of that decreases
showing a submodular pattern [13]. It means increasing the
number of index files contributes little to the accuracy of re-
turned neighbors when L is large enough. Especially, when
L exceeds 4, ratio remains relatively unchanged for all those
data sets.

As to the response time, increasing L leads to more time
cost for searching in B+-trees. The height of a B+-tree is
very small in our experiment, 2 for all the data sets. More-
over, for a page in a B+-tree, the closest data page to a query
point can be found by a binary search since the compound
hash keys are stored in increasing order. Thus, it only takes
very little time to search in a B+-tree. Figure 5(b) shows
that ART does not increase significantly as L goes up.

The space requirement of SK-LSH is proportional to the
value of L. As the performances of SK-LSH in all the data
sets with respect to both ratio and ART are satisfactory
and do not vary much if L is greater than 3, we set L as
3 in the following experiment unless otherwise specified. In
fact, the space requirement of SK-LSH with L = 3 is less
than state-of-the-art LSH methods (e.g. LSB and C2LSH),
which is shown in Table 1 and will be discussed in detail in
Section 5.4.

Effect of NP . The number NP of data pages accessed for a
query directly influence the accuracy of returned neighbors
and the response time. Intuitively, more data pages are
accessed, more precise neighbors are returned and more time
is consumed during the search process. We vary the values
for NP from 5 to 30 at step 5, and the results are shown in

753

4 8 12 16 20
1

1.1

1.2

1.3

1.4

m

r
a
t
i
o

W=0.2
W=0.4
W=0.6
W=0.8
W=1.0

(a) Corel

10 20 30 40 50
1

1.1

1.2

1.3

1.4

m

r
a
t
i
o

W=10
W=20
W=30
W=40
W=50

(b) Aerial

10 20 30 40 50
1

1.1

1.2

1.3

1.4

m

r
a
t
i
o

W=1
W=2
W=3
W=4
W=5

(c) Audio

20 30 40 50 60
1

1.1

1.2

1.3

1.4

m

r
a
t
i
o

W=200
W=600
W=1000
W=1400
W=1800

(d) Sift

Figure 4: Effect of W and m

5 10 15 20 25 30
1

1.1

1.2

1.3

NP

r
a
t
io

Corel
Aerial
Audio
SIFT

(a) ratio

5 10 15 20 25 30
0

1

2

3

4

NP

A
R
T
(m

s
)

Corel
Aerial
Audio
SIFT

(b) ART

Figure 6: Effect of NP

500 1000 2000 4000 8000 16000
1

1.1

1.2

1.3

1.4

points verified

r
a
ti
o

KL
dist
Count

(a) Corel

500 1000 2000 4000 8000 16000
1

1.1

1.2

1.3

1.4

points verified

r
a
ti
o

KL
dist
Count

(b) Audio

Figure 7: Effect of distance measures

Figure 6.
As expected, ratio keeps on decreasing in all the data

sets when NP increases. As to ART , it nearly increases
linearly as NP increases for different data sets. Notably, the
increasing rate of ART is correlated to the dimensionality
of the data set. As can be seen in Figure 6(b), the 192-
dimensional Audio has the longest response time with the
same number NP whereas the 32-dimensional Color has the
shortest response time. It is because the main cost of the
search exists in two parts: the exploration in L B+-trees
and dealing with NP data pages. Both of those two parts
are linearly related to the dimensionality of the data set.
In addition, due to our strategy of determining the size of
a page, the response time for loading a page into the main
memory also differs for different data sets.

5.3 Effect of Distance Measures
In this subsection, we focus on the different distance mea-

sures for the compound hash keys. There are three distance
measures for compound hash keys, namely KL in Defini-
tion 3, dist in Definition 5 and Count, which simply counts
the number of common hash values between two compound
hash keys. Here, we observe the effects of different measures
on the accuracy of returned results by varying the number
of points verified. Notably, there is only one compound hash
function used. Due to the space limit, we only present the
results performed on Corel with the smallest dimensionality

and Audio with the largest dimensionality in Figure 7.
When verifying the same number of points, Count guar-

antees much more accurate results than both KL and dist
while dist has slightly better results than KL since dist con-
tains more information (i.e. KD) than KL. As previously
mentioned, there is no linear order for Count and hence it
could not use the efficient index structure in this paper. It
can also be seen that differences between dist and KL de-
creases as the dimensionality increases.

5.4 Comparison with LSB and C2LSH
In this part we compare SK-LSH with LSB and C2LSH

on the four data sets. Dimensionality ranges from 32 to 192.
To make a fair competition, we set the page size as B = 100
points for all three LSH methods. We set parameters in SK-
LSH according to the above discussion and set NP as 10.
To make a complete comparison, we vary k, the number of
returned neighbors, in the set {1, 10, 20, 30, ..., 100}.

The comparisons of ratio on different data sets are pre-
sented in Figure 8. Obviously, SK-LSH significantly out-
performs LSB and C2LSH in ratio, which reflects the preci-
sion of returned neighbors, and C2LSH overmatches LSB in
most cases. The curves representing ratio of SK-LSH and
C2LSH rise as k increases on all the four data sets, but that
of C2LSH displays a fiercer growing trend. As the curves
referring to ratio of LSB, those on Corel, Aerial and Au-
dio keeps relatively stable while that on Sift in Figure 8(d)
shows a gradually increasing trend.

The results on ART are shown in Figure 9. SK-LSH obvi-
ously exhibits the best performance comparing with its com-
petitors in ART . Especially, in Sift, SK-LSH consumes less
time than C2LSH by more than an order of magnitude and
LSB by two orders of magnitude. In Audio, with dimen-
sionality as large as 192, the efficiency of SK-LSH obviously
degrades, which indicates that the time cost of SK-LSH is
sensitive to the dimensionality of the data set. As discussed
in Secion 4.3, when the dimensionality is high, SK-LSH has
to spend more time to deal with each page necessary to be
accessed. C2LSH consumes significantly less time than LSB
in all the data sets.

From Figure 8 and Figure 9, it is obvious that SK-LSH
returns more precise neighbors than LSB and C2LSH with
the least response time, which demonstrates the superiority
of SK-LSH over LSB and C2LSH.

The results of I/O cost are shown in Figure 10. SK-LSH
consumes the least I/O cost on all the four data sets. SK-
LSH reduces the I/O cost by an order of magnitude com-
pared with the other two approaches on Aerial and Sift.
Notably, the I/O cost of SK-LSH keeps unchanged for dif-
ferent k’s and data sets, and this is caused by the fact that
the search process of SK-LSH actually consists of two part-

754

1 10 20 30 40 50 60 70 80 90 100
1

1.1

1.2

1.3

1.4

k

r
a
t
io

SK−LSH
LSB
C2LSH

(a) Corel

1 10 20 30 40 50 60 70 80 90 100
1

1.1

1.2

1.3

1.4

k

r
a
t
io

SK−LSH
LSB
C2LSH

(b) Aerial

1 10 20 30 40 50 60 70 80 90 100
1

1.1

1.2

1.3

1.4

k

r
a
t
io

SK−LSH
LSB
C2LSH

(c) Audio

1 10 20 30 40 50 60 70 80 90 100
1

1.1

1.2

1.3

1.4

k

r
a
t
io

SK−LSH
LSB
C2LSH

(d) Sift

Figure 8: Comparisons with LSB and C2LSH on ratio

1 10 20 30 40 50 60 70 80 90 100
10

−1

10
0

10
1

10
2

10
3

k

A
R
T
(m

s)

SK−LSH
LSB
C2LSH

(a) Corel

1 10 20 30 40 50 60 70 80 90 100
10

−1

10
0

10
1

10
2

10
3

k

A
R
T
(m

s)

SK−LSH
LSB
C2LSH

(b) Aerial

1 10 20 30 40 50 60 70 80 90 100
10

−1

10
0

10
1

10
2

10
3

k

A
R
T
(m

s)

SK−LSH
LSB
C2LSH

(c) Audio

1 10 20 30 40 50 60 70 80 90 100
10

−1

10
0

10
1

10
2

10
3

k

A
R
T
(m

s)

SK−LSH
LSB
C2LSH

(d) Sift

Figure 9: Comparisons with LSB and C2LSH on ART

Table 1: Comparisons of Space Requirement
Methods LSB C2LSH SK-LSH

Overall Space Requirement 454MB 159MB 26MB
Corel

Number of Hash Structures 26 208 3

Overall Space Requirement 6.1GB 261MB 194MB
Aerial

Number of Hash Structures 53 230 3

Overall Space Requirement 1.5GB 121MB 120MB
Audio

Number of Hash Structures 24 205 3

Overall Space Requirement 80.6GB 1.09GB 384MB
Sift

Number of Hash Structures 100 250 3

s, i.e. (1) exploration among L B+-trees and (2) accessing
NP data pages. For each B+-tree, only E, the height of a
B+-tree, pages are necessary to be accessed, but E is a very
small value according to the analysis in Section 4.3. In our
experiments, E = 2 for all the four data sets, and thus the
I/O cost of SK-LSH is fixed to 16. The I/O cost of LSB
and C2LSH are sensitive to the size of the data set. Obvi-
ously, both of them consume more I/O cost when dealing
with Sift than the other three data sets. The I/O cost of
C2LSH keeps relatively stable on different data sets while
that of LSB varies with the size of the data set. However,
the I/O cost of C2LSH increases linearly with the increase
of k while that of LSB does not vary with k. This is due
to their different terminating conditions, as discussed above.
The main I/O cost of C2LSH is incurred to access candidate
points and each access to a candidate means a random I/O.
For LSB, its I/O is paid to find candidate points with the
most similar z-orders to that of the query points among a
large number of LSB-trees.

Space requirement is also an important indicator for LSH
schema, which is closely related to its applicability and s-
calability. The comparison of space requirement for all the
four data sets are presented in Table 1. As described above,
the space required by SK-LSH consists of two parts: L B+-
trees and L copies of the data set. The data for SK-LSH
in Table 1 takes both two parts into account. SK-LSH only
maintains three hash structures, and hence it has the least
space requirement.

5.5 Comparisons with CK-Means
In this part, we compare SK-LSH with CK-Means [14],

the state-of-the-art method based on PQ. Due to the space
limitation, we only present comparisons of ratio and ART
on Aerial and Sift. Note that CK-Means is a memory-
resident index method. To make a fair comparison, we set
L = 10 and Np = 40 for SK-LSH. The number of bits for
each code is fixed as 64 in CK-Means, as suggested in [14].

The results of ratio are shown in Figure 11. SK-LSH and
CK-Means return results with similar accuracy. Notably,
ratio of SK-LSH increases with the increasing of k, while
that of CK-Means presents an opposite trend. When k is
small, SK-LSH returns better results than CK-Means.

From Figure 12, we can see that SK-LSH costs far less
time than CK-Means in the two data sets. The main time
cost of SK-LSH is on loading and verifying Np data points,
which is sensitive to the dimensionality of the data set but
robust to the size of the data set. On the other hand, CK-
Means needs to compute the AQD values between all codes
and that of the query point. Those costs are very sensitive
to the size of the data set but robust to the dimensionality
of the data set, given the fixed code length. Since the size
of Aerial and Sift are relatively large, the efficiency of SK-
LSH outperforms CK-Means on ART by almost an order
of magnitude. SK-LSH requires considerably more space
than CK-Means because the index file of CK-Means mainly
contains 64-bit codes for each point while SK-LSH needs
spaces for L data sets and B+-trees.

In short, SK-LSH better solves the scalability issue than
CK-Means, with more space required.

6. CONCLUSION
In this paper, we propose a novel index structure, SK-

LSH, to address ANN search based on the popular LSH tech-
niques. To speed up the search process, we introduce a new
distance measure for compound hash keys and define a nov-
el relation between them, which makes it possible for close
points to be stored locally. Hence, during the search pro-
cess, we can find sufficiently accurate neighbors by accessing
only limited data pages. Extensive experiments conducted
over four real-life data sets (varying from small dimension

755

1 10 20 30 40 50 60 70 80 90 100
0

100

200

300

400

k

I
/
O

SK−LSH
LSB
C2LSH

(a) Corel

1 10 20 30 40 50 60 70 80 90 100
0

100

200

300

400

k

I
/
O

SK−LSH
LSB
C2LSH

(b) Aerial

1 10 20 30 40 50 60 70 80 90 100
0

100

200

300

400

k

I
/
O

SK−LSH
LSB
C2LSH

(c) Audio

1 10 20 30 40 50 60 70 80 90 100
0

100

200

300

400

k

I
/
O

SK−LSH
LSB
C2LSH

(d) Sift

Figure 10: Comparisons with LSB and C2LSH on I/O cost

1 10 20 30 40 50 60 70 80 90 100
1

1.05

1.1

1.15

1.2

k

r
a
t
io

SK−LSH
CK−Means

(a) Aerial

1 10 20 30 40 50 60 70 80 90 100
1

1.05

1.1

1.15

1.2

k

r
a
t
io

SK−LSH
CK−Means

(b) Sift

Figure 11: CK-Means v.s. SK-LSH on ratio

1 10 20 30 40 50 60 70 80 90 100
10

−1

10
0

10
1

10
2

k

A
R
T
(m

s)

SK−LSH
CK−Means

(a) Aerial

1 10 20 30 40 50 60 70 80 90 100
10

−1

10
0

10
1

10
2

k

A
R
T
(m

s)

SK−LSH
CK−Means

(b) Sift

Figure 12: CK-Means v.s. SK-LSH on ART

to large dimension) demonstrate the superiority of SK-LSH
over the state-of-the-art LSH approaches, LSB and C2LSH,
and the state-of-the-art non-LSH approach, CK-Means, e-
specially with respect to the time cost. In the future, we
will explore the applications of the distance measure and
the linear order relationship proposed in this paper in other
research fields such as large-scale image retrieval.

7. ACKNOWLEDGMENTS
Yingfan Liu, Jiangtao Cui and Hui Li are supported by

the National Natural Science Foundation of China (Grant
No.61173089 and 61202179) and by SRF for ROCS, SEM. Zi
Huang and Heng Tao Shen are supported by ARC Discovery
Projects DP110103871 and DP130103252.

8. REFERENCES
[1] S. Berchtold, D. A. Keim, and H.-P. Kriegel. The X-tree:

An index structure for high-dimensional data. In VLDB,
pages 28–39, 1996.

[2] M. Datar, N. Immorlica, P. Indyk, and V. S. Mirrokni.
Locality-sensitive hashing scheme based on p-stable
distributions. In SoCG, pages 253–262, 2004.

[3] R. Datta, D. Joshi, J. Li, and J. Z. Wang. Image retrieval:
Ideas, influences, and trends of the new age. ACM
Computing Surveys, 40(2):1–60, 2008.

[4] J. Gan, J. Feng, Q. Fang, and W. Ng. Locality sensitive
hashing scheme based on dyanmic collision counting. In
SIGMOD, pages 541–552, 2012.

[5] A. Gionis, P. Indyk, and R. Motwani. Similarity search in
high dimensions via hashing. In VLDB, pages 518–529,
1999.

[6] J.-P. Heo, Y. Lee, J. He, S.-F. Chang, and S.-E. Yoon.
Spherical hashing. In CVPR, pages 2957–2964, 2012.

[7] Z. Huang, H. T. Shen, J. Shao, S. M. Rüger, and X. Zhou.
Locality condensation: a new dimensionality reduction
method for image retrieval. In ACM Multimedia, pages
219–228, 2008.

[8] P. Indyk and R. Motwani. Approximate nearest neighbors:
towards removing the curse of dimensionality. In STOC,
pages 604–613, 1998.

[9] H. Jegou, M. Douze, and C. Schmid. Product quantization
for nearest neighbor search. IEEE TPAMI, 33(1):117–128,
2011.

[10] A. Joly and O. Buisson. A posteriori multi-probe locality
sensitive hashing. In ACM Multimedia, pages 209–218,
2008.

[11] N. Katayama and S. Satoh. The sr-tree: an index structure
for high-dimensional nearest neighbor queries. In SIGMOD,
pages 369 – 380, 1997.

[12] Q. Lv, W. Josephson, Z. Wang, M. Charikar, and K. Li.
Multi-probe lsh: efficient indexing for high-dimensional
similarity search. In VLDB, pages 950–961, 2007.

[13] G. L. Nemhauser, L. A. Wolsey, and M. L. Fisher. An
analysis of approximations for maximizing submodular set
functions. i. Math. Programming, 14(3):265–294, 1978.

[14] M. Norouzi and D. Fleet. Cartesian k-means. In CVPR,
2013.

[15] R. Panigrahy. Entropy based nearest neighbor search in
high dimensions. In SODA, pages 1186 – 1195, 2006.

[16] H. T. Shen, B. C. Ooi, , Z. Huang, and X. Zhou. Towards
effective indexing for very large video sequence database. In
SIGMOD, pages 730–741, 2005.

[17] H. T. Shen, X. Zhou, and A. Zhou. An adaptive and
dynamic dimensionality reduction method for
high-dimensional indexing. The VLDB Journal,
16(2):219–234, 2007.

[18] J. Song, Y. Yang, Y. Yang, Z. Huang, and H. T. Shen.
Inter-media hashing for large-scale retrieval from
heterogenous data sources. In SIGMOD, 2013.

[19] Y. Tao, K. Yi, C. Sheng, and P. Kalnis. Quality and
efficiency in high dimensional nearest neighbor search. In
SIGMOD, pages 563–576, 2009.

[20] R. Weber, H.-J. Schek, and S. Blott. A quantitative analysis
and performance study for similarity-search methods in
high-dimensional spaces. In VLDB, pages 194–205, 1998.

[21] D. A. White and J. Ramesh. Similarity indexing with the
ss-tree. In ICDE, pages 516 – 523, 1996.

[22] D. Zhang, D. Agrawal, G. Chen, and A. K. H. Tung.
Hashfile: An efficient index structure for multimedia data.
In ICDE, pages 1103–1114, 2011.

756

