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ABSTRACT

We consider an application scenario where points of interest (PoIs)

each have a web presence and where a web user wants to iden-

tify a region that contains relevant PoIs that are relevant to a set of

keywords, e.g., in preparation for deciding where to go to conve-

niently explore the PoIs. Motivated by this, we propose the length-

constrained maximum-sum region (LCMSR) query that returns a

spatial-network region that is located within a general region of in-

terest, that does not exceed a given size constraint, and that best

matches query keywords. Such a query maximizes the total weight

of the PoIs in it w.r.t. the query keywords. We show that it is NP-

hard to answer this query. We develop an approximation algorithm

with a (5 + ǫ) approximation ratio utilizing a technique that scales

node weights into integers. We also propose a more efficient heuris-

tic algorithm and a greedy algorithm. Empirical studies on real data

offer detailed insight into the accuracy of the proposed algorithms

and show that the proposed algorithms are capable of computing

results efficiently and effectively.

1. INTRODUCTION
The web is undergoing a rapid transformation from being pre-

dominantly desktop-based to being used predominantly from mo-

bile devices such as smartphones and tablets. In addition, increas-

ing volumes of geo-textual objects are becoming available on the

web that represent Points of Interest (PoIs). Specifically, a geo-

textual object contains the geo-location of its PoI and describes

the PoI by means of text and possibly other elements such as user

ratings. Geo-textual objects are available from numerous sources,

including business directories such as Google Places for Business

and Yahoo! Local, as well as rating and review services such as

TripAdvisor. We illustrate geo-textual objects from Google Places

for Business in Figure 1.

A range of proposals have been published that aim to return rel-

evant geo-textual objects in response to a user’s topical interests

and geographical preference. Such proposals may be distinguished

according to several dimensions. First, proposals differ w.r.t. re-

sult granularity: some return individual objects [2, 5, 6, 10, 15, 20],
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Figure 1: Example of a Region of Restaurants

while others return sets of objects [3, 4, 11, 12, 16]. Second, ob-

jects differ w.r.t. the assumed underlying space: some consider

two-dimensional Euclidean space [2–6, 10–12, 16, 20], while oth-

ers consider a spatial network [15]. Third, it is often attractive for

similar PoIs to co-locate, which attracts more customers [7]. For

example, cities often have regions with high concentrations of bars,

restaurants, or different kinds of shops. Proposals differ in how they

account for such co-location relationships: some do not take into

account the co-location of a PoI with other PoIs when rating the

PoI, while others do [2, 4, 11, 16]. Fourth, proposal target different

use cases: some implicitly assume that the user needs to find the

single nearest and best matching PoI [2,3,5,6,10,12,15,20], while

others assume that the user wishes to browse, or explore, several

relevant PoIs before selecting one [4, 11, 16].

Along these dimensions, the majority of proposals adopt the single-

object result granularity, model the underlying space as Euclidean,

disregard co-location, and target non-browsing behavior. In con-

trast, the proposed length-constrained maximum-sum region query

(LCMSR) assumes a set-of-objects result granularity, uses an un-

derlying spatial network, addresses co-location, and targets brows-

ing behavior. In doing so, it aims to be practical in real applications

that enable users to explore regions of interests.

Previous proposals by Choi et al. [4], Tao et al. [16], and Liu et

al. [11] address the maximum range sum problem that accounts for

co-location and can be used to support user exploration. These pro-

posals retrieve regions that are either a rectangle with fixed length

and width [4, 11, 16] or a circle with fixed radius [4]. The retrieved

regions must maximize the total weight of the objects contained

in them. To improve on these proposals, we first consider a spa-

tial network setting rather than an underlying Euclidean space, and

the regions we retrieve are always connected by road segments.

Second, as we believe that the rectangle width and length and the

radius parameters are, at best, difficult to set, we eliminate such
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shape-related parameters and permits regions of arbitrary shape.

The shapes of the retrieved regions depend on the road network

topology and thus vary across a road network. To illustrate the is-

sue, consider the following scenario.

Example 1: Suppose that a user wishes to find a region in Man-

hattan to explore in order to find a restaurant for dinner. Figure 1

shows a map of part of Manhattan, where the balloons and dots

represent restaurants. As these are located along the streets, the

shape of a region with many restaurants is not easily described by

a rectangle or circle of predefined shape and size, as is required by

previous work [4,11]. It is better to define a region as an arbitrarily

shaped subgraph of the spatial network. ✷

In detail, we aim to support users who wish to explore a region

containing multiple PoIs, located in a spatial network G, each of

which is relevant to given query keywords. An LCMSR query Q
takes as arguments (i) a set of query keywords Q.ψ, e.g., “restau-

rant” or “coffee,” (ii) a length constraint Q.∆ that indicates how

large a region the user is willing to explore, e.g., is willing to walk

before selecting an appropriate restaurant, and (iii) a general re-

gion of interest Q.Λ, e.g., Manhattan. The query returns a region

in the general region of interest Q.Λ that does not exceed length

constraint Q.∆ and that contains objects relevant to Q.ψ with the

largest total weight. Our proposal is open to different definitions of

an object’s weight: popularity as measured by numbers of check-

ins, user ratings, degree of relevance to the query keywords, etc.

Computing this query calls for the consideration of very large

numbers of combinations of objects. This, in combination with

arbitrarily shaped result regions, renders the problem of computing

LCMSR queries NP-hard.

We first devise a technique that scales node weights into integers

using a scaling parameter α. We denote the network with integer

node weights by GS . If we can find a region with the largest scaled

weight from GS , it can be guaranteed that its weight is at least (1−
α) times that of the optimal region. However, finding an optimal

region on a graph with integer node weights is still NP-hard.

Based on the scaling technique, we design an approximation al-

gorithm (called APP) with a (5 + ǫ) approximation ratio, i.e., the

region found has at least 1/(5 + ǫ) times the weight of the opti-

mal region. This algorithm first finds a candidate tree from GS that

has length not exceeding 3Q.∆ (to be explained in Section 4.2.1)

and has scaled weight larger than 1/(1 + β) (β > 0) times the

optimal scaled weight. Then the feasible region with the largest

scaled weight is computed from the tree to approximate the op-

timal region. Finding the feasible region with the largest scaled

weight from the candidate tree is also NP-hard, and we devise

a pseudo-polynomial time algorithm, utilizing dynamic program-

ming for this.

Extended from this dynamic programming approach, we devise

an algorithm that heuristically finds the feasible region with the

largest scaled weight from GS . We represent a region as a five-tuple

storing the total length, the original weight, the scaled weight, and

the set of all nodes and edges of the region. Each node stores an ar-

ray of currently enumerated region tuples it belongs to, from which

we generate new tuples. The algorithm visits nodes in breadth-first

order and processes each edge only once. We call this algorithm

TGEN (tuple generation). While it is computationally expensive

to enumerate all feasible regions, TGEN’s enumeration is bounded

and can be done in polynomial time. This algorithm achieves better

accuracy and efficiency compared to APP.

Finally, we present a greedy algorithm, Greedy, that works by

greedily expanding a candidate region and taking into account both

the node weight and the road segment length. This algorithm is

efficient, but has low accuracy. We also extend the proposed al-

gorithms, i.e, APP, TGEN, and Greedy, to find the top-k best

regions for an LCMSR query.

In summary, our contribution is threefold. First, we define the

LCMSR query and show that answering it is NP-hard. Second,

we develop an algorithm with a (5 + ǫ) approximation bound. We

also develop a heuristic algorithm inspired by this algorithm and

develop a greedy algorithm for answering LCMSR queries. Third,

we study the properties of the proposals empirically using two large

road network graphs. The results demonstrate that APP is capable

of excellent efficiency and accuracy, while TGEN can achieve even

better efficiency and accuracy. Greedy performs much worse than

other methods in terms of accuracy, but is the fastest.

The rest of the paper is organized as follows. Section 2 formal-

izes the LCMSR query and establishes its computational complex-

ity. Section 3 presents the indexing used by the algorithms. Sec-

tion 4 presents the node weight scaling technique and describes the

algorithm APP. Section 5 presents the algorithm TGEN. Section 6

covers the algorithm Greedy and how to process top-k LCMSR
queries. We report on empirical studies in Section 7. Finally, we

cover related work in Section 8 and offer conclusions in Section 9.

2. PROBLEM STATEMENT
Definition 1: Road Network Graph. A road network graph G =
(V,E, τ, λ) consists of a set of nodes V , a set of undirected edges

E ⊆ V ×V , a distance function τ : E → R, and a spatial mapping

λ : V → R2.

Each node v ∈ V represents a road junction, a dead-end, or is the

location of a geo-textual object, in which case it has associated with

a text description, i.e., a set of keywords denoted by v.ψ. Each edge

eij = (vi, vj) ∈ E represents a road segment connecting nodes vi
and vj , and its road segment length is denoted by τ(vi, vj). Next,

we define a region as follows.

Definition 2: Region. A region R in a road network graph G is a

connected subgraph of G. We denote the vertices and edges in R
by R.V and R.E , respectively.

We need to score a region with respect to an LCMSR query. To

do so, we define the score of a region as the sum of the scores of

the vertices in the region that represent geo-textual objects. The

next step is to score individual geo-textual objects with respect to

the query. An LCMSR query contains a set of keywords. For an

object o, we can score the object by its text relevance to the query

keywords using an information retrieval model (to be introduced

in Section 3). Alternatively, the scoring can also take into account

both the relevance to the query keywords and the object’s other

attributes, such as its rating or popularity, by the following strategy:

its score will be the object’s rating or popularity if it matches the

query keywords and zero otherwise. Thus the score of a region

represents the popularity of a relevant region. Our proposals are

equally applicable to the different scoring methods.

We are now ready to define the LCMSR query. Intuitively, the

query computes a region whose score w.r.t. the given query is the

largest, with the constraints that it must locate in a region of interest

and must not exceed a length constraint.

Definition 3: Length-Constrained Maximum-Sum Region Query

(LCMSR). Given a graph G, an LCMSR query Q takes the argu-

ments 〈ψ,∆,Λ〉, where ψ is a set of query keywords, ∆ is a length

constraint, and Λ specifies a rectangular region of interest. The

query returns the region Ropt in G such that

Ropt = argmaxR Score(R,Q)

subject to
∑

(vi,vj)∈R.E,vi,vj∈Q.Λ
τ(vi, vj) ≤ Q.∆,
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where Score(R,Q) computes the score of region R w.r.t. Q.ψ.

Given a query Q, a region R that satisfies the query length con-

straint given by Q.∆ is called a feasible region, and a feasible re-

gion with the largest total score is called an optimal region. In the

rare case that there is more than one optimal region, we return the

one with shortest length, with ties broken randomly.
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Figure 2: Example of G

Figure 2 shows an example graph G. We assume that the weight

(score) of each object w.r.t. the query is already computed. If Q.∆
is set to 6, the optimal regionR has total weight 1.1 and length 5.9,

i.e.,R.V = {v2, v4, v5, v6} andR.E = {(v2, v6), (v6, v5), (v5, v4)}.

Next, we prove the hardness of the problem.

Theorem 1: Computing the LCMSR query is NP-hard.

PROOF. The computation of the LCMSR query can be proven

to be NP-hard by a reduction to it from the well-known k mini-

mum spanning tree (k-MST) problem [8]. Given an instance of the

k-MST problem on a graph G′ = (V,E), where each edge has

a non-negative length, the objective is to find a tree of minimum

length that spans k nodes. The decision version of this problem

is to decide if given ∆ there is a tree with length smaller than ∆
spanning k nodes. Now we construct a graph G = G′, and each

node in G has unit weight 1. It is obvious that this straightforward

mapping is polynomial. Given a query Q = 〈ψ,∆,Λ〉 where Λ is

the whole space, G has a subtree with weight k if and only if G′

has a k-node subtree with length smaller than ∆. Hence, we reduce

an instance of k-MST to an instance of the problem of answering

LCMSR query where each node has unit weight.

It might be tempting to try to find optimal regions using the fol-

lowing idea: we cluster the objects in a pre-processing step. At

query time, we then return the cluster that is most relevant to the

query. However, this method has several drawbacks, which renders

it unsuitable for LCMSR querying. First, observe that the cluster-

ing is query independent and that the objects in each cluster are

close in terms of location and text similarity, assuming that we use

a spatial-textual similarity measure for the clustering. However, a

user is interested in a region with objects that have text descrip-

tions that are relevant to given query keywords, rather than one

with the objects being similar to each other. Figure 3 exemplifies

this drawback. A clustering algorithm may partition the example

graph in Figure 2 into three clusters, as shown with the ellipses.

Given a query with keywords {t1, t2}, the best region R has R.V
= {v2, v3}. However, this region is split into two clusters in the

clustering-based method. Second, the number of generated clus-

ters and their sizes are fixed. However, it appears infeasible to de-

termine the number and sizes of clusters before querying occurs.

Moreover, predefined clusters may not satisfy the length constraint

specified in a query.

3. INDEXING STRUCTURE
In this work, we use the text relevance of an object to a given

query as the object’s weight, as it is used in existing studies of

spatial keyword querying [1]. The text relevance of a region R to
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Figure 3: Drawback of Clustering-Based Methods

a query Q is computed using an information retrieval model. We

use the vector space model [21] (other models can also be used,

e.g., the language model [13]). Specifically, given an object o and

a query Q, function σ(o.ψ,Q.ψ) computes the similarity between

o.ψ and Q.ψ using the vector space model.

σ(o.ψ,Q.ψ) =

∑

t∈Q.ψ
⋂
o.ψ

wQ.ψ,two.ψ,t

WQ.ψWo.ψ

, where

wQ.ψ,t = ln(1 +
|D|

ft
), wo.ψ,t = 1 + ln(tf t,o.ψ),

WQ.ψ =

√

∑

t

w2
Q.ψ,t, Wo.ψ =

√

∑

t

w2
o.ψ,t

(1)

Here, ft is the number of objects whose text description contains

the term t, and tf t,o.ψ is the frequency of term t in o.ψ; wo.ψ,t
captures TF and wQ.ψ,t captures IDF. Then we compute the text

relevance between a region R and a query Q as the sum of scores

of objects in R: Score(R,Q) =
∑

o∈R.V σ(o.ψ,Q.ψ). With a bit

abuse of notation, we denote σ(o.ψ,Q.ψ) by σo for simplicity.

We use a grid index to organize the geo-textual objects. We par-

tition the entire space according to a uniform grid, and each object

is stored in the grid cell that its point location belongs to.

In each grid cell, we maintain an inverted list with the keywords

of the objects stored in this cell. Each inverted list has: a) A vocab-

ulary of all distinct words appearing in the description of an object;

and b) A postings list for each word t that is a sequence of pairs

(o,wto(t)), where o is the identifier of an object, and wto(t) is the

term weight of t in the description of object o.

Since we utilize the vector space model to compute the text sim-

ilarity score, on each node o, for each word t in its description o.ψ,

we compute the term weight of t with regard to o as: wto(t) =
σ(o.ψ, t) =

wt,two.ψ,t

wt,tWo.ψ
=

wo.ψ,t

Wo.ψ
. Hence, given a query Q, utiliz-

ing the inverted lists, we first read the postings lists corresponding

to the keywords in Q.ψ and then compute the text similarity score

σ(o.ψ,Q.ψ) between each object o containing some query key-

words and the query Q as follows:

σ(o.ψ,Q.ψ) =

∑

t∈Q.ψ
⋂
o.ψ

wQ.ψ,two.ψ,t

WQ.ψWo.ψ

=
1

WQ.ψ

∑

t∈Q.ψ
⋂
o.ψ

wQ.ψ,two.ψ,t
Wo.ψ

=
1

WQ.ψ

∑

t∈Q.ψ
⋂
o.ψ

wQ.ψ,twto(t),

(2)

where wQ.ψ,t and WQ.ψ are computed as defined in Equation 1.

The inverted lists may not fit in memory, and we use a disk-based

B+-tree to index them for each grid cell. The spatial grid index is

maintained in memory since it consumes little memory. We note

that other spatial-keyword indices [5] can also be used.

4. APPROXIMATION ALGORITHM APP
Due to the hardness of answering LCMSR queries, it is hard

to design algorithms that can find the optimal region efficiently.
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We devise a method that scales node weights (scores) into integers

in Section 4.1. This enables us to design an algorithm APP with

guaranteed approximation bounds as presented in Section 4.2.

4.1 Scaling of Node Weights
Specifically, we define a scaling factor θ = ασmax/|VQ|, where

α is the scaling parameter, VQ denotes the set of nodes within the

query region Q.Λ, and σmax is the maximum weight score among

all nodes in VQ. Next, for each location v, its weight score σv is

scaled to σ̂v = ⌊σv/θ⌋. We call the graph with scaled node weights

the scaled graph and denote it by GS .

Example 2: Take the graph in Figure 2 as an example. We set

α to 0.15, and let Q.Λ cover the whole graph. Therefore, θ =

ασmax/|VQ| = 0.15 ∗ 0.4/6 = 0.01, which means that the weight

of each node is scaled to 100 times its original value. ✷

We use the following definition to represent a region in the scaled

graph GS .

Definition 4: Region Tuple. Each region R is stored as a 5-tuple

T = (l, s, ŝ,V, E), where l is the total length of all road segments

in R, s is the original weight, ŝ is its scaled weight, V is a set

storing all the nodes in R, and E is the set of all edges in R.

Example 3: Take the graph in Figure 2 as an example, and suppose

that we scale the weight 100 times as we do in Example 2. Given a

region R with R.V = {v2, v4, v5, v6} and R.E = {(v2, v6), (v6,
v5), (v5, v4)}, its region tuple is T = (5.9, 1.1, 110, R.V, R.E).

✷

Next, we prove that given an LCMSR query, if the region with

the largest scaled weight can be found, its total weight is at least

(1− α) times that of the optimal region.

Given a query Q, we denote the region with the largest scaled

weight in GS by RSopt, and the optimal region in the original graph

G by Ropt. We have the following theorem:

Theorem 2: RSopt.s ≥ (1− α)Ropt.s.

PROOF. From σ̂v = ⌊σv/θ⌋, we know that σv−θ < θσ̂v ≤ σv .

Therefore, RSopt.s =
∑

v∈RSopt.V
σv ≥

∑

v∈RSopt.V
θσ̂v . Since

RSopt is the best region in the scale graph, we know that RSopt.ŝ =
∑

v∈RSopt.V
σ̂v ≥ Ropt.ŝ, and thus,

RSopt.s ≥ θRopt.ŝ =
∑

v′∈Ropt.V

θσ̂v′ ≥
∑

v′∈Ropt.V

(σv′ − θ)

≥
∑

v′∈Ropt.V

σv′ − |VQ|θ =
∑

v′∈Ropt.V

σv′ − ασmax

Because
∑

v′∈Ropt.V
σv′ ≥ σmax, we can conclude that:

RSopt.s ≥ (1− α)
∑

v′∈Ropt.V

σv′ = (1− α)Ropt.s.

We complete the proof.

However, even on the scaled graph GS , finding the region with

the largest scaled weight remains NP-hard. The proof of Theorem 1

can still be used to prove this. Therefore, it is also challenging to

find a region that approximates the optimal region from GS .

4.2 Algorithm Details of APP
We proceed to describe the approximation algorithm based on

the node weight scaling technique introduced in Section 4.1. This

algorithm runs polynomially with 1/α, Q.∆, and the number of

nodes and edges in Q.Λ, and has an approximation ratio of (5+ ǫ).

4.2.1 Algorithm Overview

Theorem 2 shows that the feasible region with the largest scaled

weight can achieve an approximation ratio of (1−α), where α can

be an arbitrarily small value. However, finding the feasible region

with the largest scaled weight is NP-hard. This inspires us to find

a feasible region to approximate the region with the largest scaled

weight, and then based on Theorem 2 we can further approximate

the original optimal weight.

Lemma 1: If we can find a feasible region R such that R.ŝ >
1/(1+β)RSopt.ŝ, where β is an arbitrarily small value, an LCMSR
query can be approximately answered with an ratio of (1 + ǫ).

PROOF. From Theorem 2 we know θσ̂v ≤ σv , and thus R.s =
∑

v∈R.V σv ≥
∑

v∈R.V θσ̂v = θR.ŝ. Because R.ŝ > 1/(1 +

β)RSopt.ŝ, we have R.s ≥ θR.ŝ ≥ 1/(1 + β)θRSopt.ŝ. Theo-

rem 2 shows that θRSopt.ŝ ≥ (1− α)Ropt.s, and we obtain R.s >
(1 − α)/(1 + β)Ropt.s. Because both α and β can be arbitrarily

small, (1 − α)/(1 + β) is equivalent to (1 + ǫ), and the proof is

completed.

Before describing how to find such a region satisfying the re-

quirement in Lemma 1, we first introduce the node-weighted k
minimum spanning tree problem (denoted by k-MST, extended from

the k minimum spanning tree problem [14]), which is defined over

a graph with integer node weights. Given a node weight constraint

X , the problem aims to find the tree with the smallest length such

that the nodes it spans have total weight at least X . The k-MST

problem is NP-hard, but there exists efficient approximation al-

gorithms with performance guarantees for the problem. Note that

the k-MST problem is different from the problem of answering the

LCMSR query, where the constraint is on the total edge length and

the aim is to maximize the total node weight.

We aim to utilize algorithms for k-MST to find a feasible region

R as described in Lemma 1. Given a weight constraint X , suppose

that we have a k-MST solver for answering the k-MST problem

exactly, we are able to find the region with the smallest length with

weight at least X . We first introduce the following lemma before

we describe how the solver can be utilized to find a region with

scaled weight larger than 1/(1 + β)RSopt.ŝ.

Lemma 2: Given a weight constraintX , if the exact k-MST solver

returns a tree TC with length no larger thanQ.∆, thenX ≤ TC .ŝ ≤
RSopt.ŝ. If TC .l > Q.∆, we have TC .ŝ ≥ X > RSopt.ŝ.

PROOF. X ≤ TC .ŝ is always true, because according to the

definition of k-MST, TC is the tree with the smallest length among

all trees with node weight at least X .

The first statement is obvious. RSopt.ŝ is the largest scaled weight

given length constraint Q.∆, and thus TC .ŝ cannot exceed RSopt.ŝ.
The second statement can be proved by contradiction. If X ≤

RSopt.ŝ, because TC has the smallest length among all trees with

weight at leastX , we know TC .l ≤ RSopt.l. SinceRSopt is a feasible

region, TC .l ≤ RSopt.l ≤ Q.∆, thus leading to a contradiction.

According to Lemma 2, in order to find a feasible region R
satisfying R.ŝ ≥ 1/(1 + β)RSopt.ŝ, or equivalently, RSopt.ŝ ≤
(1 + β)R.ŝ, we only need to find a feasible region R, such that

under the weight constraint (1 + β)R.ŝ, the tree returned by the

solver has length larger than Q.∆. Here the challenge is that we do

not know the scaled weight of R. Our idea is to estimate the lower

and upper bounds for the weight of R, and then use binary search

to find such a region by repeatedly invoking the k-MST solver.

LetX denote the weight constraint under which the k-MST solver

returns the region R satisfying Lemma 1. Figure 4 illustrates the
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Figure 4: Binary Search Sketch

objective of the binary search. We aim to find a weightX , such that

the tree TC returned by the k-MST solver under weight constraint

X has length no larger than Q.∆ and the tree T ′
C returned under

constraint (1 + β)X has length larger than Q.∆.

The process can be described as follows. Based on the lower and

upper bounds (to be presented in Lemma 5) of the scaled weight of

R, we initially setX to be the middle of the two bounds. We invoke

the k-MST solver with X as the argument. If the tree returned has

length larger than Q.∆, we need to decrease the value of X and

recursively invoke the k-MST solver. When the tree returned has

length no larger than Q.∆, we know the tree is a feasible region.

Then we invoke the k-MST solver again with weight (1 + β)X as

the argument. If the tree T ′
C returned has length smaller than Q.∆,

we know (1 + β)X ≤ RSopt.ŝ (according to Lemma 2), and thus

we need to increase the value of X . The binary search stops until

X reach a value such that the tree TC returned under constraint

X has length not exceeding Q.∆ and the tree T ′
C returned under

constraint (1 + β)X has length larger than Q.∆. It can be proved

that the tree TC is the feasible region we aim to find. The following

example illustrates the binary search procedure.

Example 4: We denote the lower bound by L and the upper bound

by U , and we set Q.∆ to 100 and β to 0.5. The binary search steps

are shown in Table 1.

Steps L U X TC .l 1.5X T ′
C .l

0 10 1000 * * * *

1 10 1000 505 150 * *

2 10 505 258 77 387 92

3 258 505 381 90 572 158

Table 1: Example of the Binary Search Procedure

We first initialize L and U . In step 1, by invoking the k-MST

solver, we obtain a tree with length larger than Q.∆. Thus, we set

the upper bound to X in the next step, and we get a tree satisfying

the length constraint. However, after invoking the k-MST solver

again with weight (1+β)X as the argument, the tree obtained still

has length smaller than Q.∆. We set the lower bound to X in step

3, and we now we obtain a tree satisfying Lemma 1. ✷

Lemma 3: Such a tree TC has an approximation ratio of (1 + ǫ).

PROOF. According to Lemma 2, when the binary search termi-

nates, we know that X ≤ RSopt.ŝ < (1 + β)X . In addition, since

TC .ŝ ≥ X , we know TC .ŝ > 1/(1 + β)RSopt.ŝ. According to

Lemma 1, TC .s > 1/(1 + ǫ)Ropt.s.

Unfortunately, the k-MST problem (also the node-weighted ver-

sion) is NP-hard [14], and there exists no efficient exact algorithm

for it. We adopt the 3-approximation algorithm (denoted by kMST)

proposed by Garg [8], a state-of-art algorithm, for solving the node-

weighted k-MST problem. Garg’s algorithm approximately solves

the k-MST problem by applying the GW-algorithm [9], which is a

general approximation technique for constrained forest problems.

kMST is able to find a subtree with length at most 3 times that of

the optimal tree satisfying the node weight constraint. Since we

use the 3-approximation algorithm kMST instead of an exact algo-

rithm, we need to modify the binary search process a bit. We have

the following lemma.

Lemma 4: Given a weight constraint X , if kMST returns a tree

TC with length no larger than 3Q.∆, and kMST returns a tree T ′
C

with length larger than 3Q.∆ under constraint (1 + β)X , we have

TC .ŝ > 1/(1 + β)RSopt.ŝ.

PROOF. It is obvious that X ≤ TC .ŝ due to the definition of

k-MST. We denote the tree with the smallest length under the con-

straint (1+β)X by TO . Because T ′
C is returned by a 3-approximation

algorithm of k-MST, we know 3Q.∆ < T ′
C .l ≤ 3TO.l, and thus

TO.l > Q.∆. According to Lemma 2, we can derive TO.ŝ ≥ (1+
β)X > RSopt.ŝ. Therefore, we have TC .ŝ > 1/(1+β)RSopt.ŝ.

According to Lemma 4, during the binary search, we now com-

pare the returned tree with 3Q.∆ rather than Q.∆.

We show the basic steps of the approximation algorithm, called

APP, in Figure 5 and Algorithm 1. Given a query Q, we first scale

the node weights, and we obtain GS . Then we invoke the binary

search method (to be detailed in Section 4.2.2) to find the candidate

tree TC satisfying Lemma 4. Finally, we find the feasible region

with the largest scaled weight from TC to approximate the optimal

result in findOptTree() (to be detailed in Section 4.2.3). This

algorithm has an approximation ratio of (5 + ǫ), as will be shown

in Section 4.2.4.

Q
Weight

Scaling

G

GS
Binary

Search TC
Find Result

From Tree

Result of APP

Users

Figure 5: Basic steps of APP

Algorithm 1: APP(Q, G)

1 GS ← the scaled graph w.r.t. Q;
2 TC ← binarySearch(Q, GS );
3 if TC .l < Q.∆ then return TC ;
4 else return findOptTree(TC );

4.2.2 Function binarySearch()

First, we obtain the upper and lower bounds for the optimal

scaled weight of a feasible region (i.e., RSopt.ŝ) based on the fol-

lowing lemma, which are used as the binary search range.

Lemma 5: Given an LCMSR query Q, the lower bound of the

optimal scaled weight of a feasible region is ⌊|VQ|/α⌋, and the

upper bound is |VQ|⌊|VQ|/α⌋.

PROOF. The maximum scaled weight of a node in Q.Λ, i.e.,

σ̂max = ⌊|VQ|/α⌋. It must be smaller than the best scaled weight

of a region and is used as the lower bound. The region to be found

must be formed by a subset of nodes in VQ, and thus we can derive

an upper bound as |VQ|⌊|VQ|/α⌋.

The binary search process is presented in binarySearch(). We

first establish lower and upper bounds for the optimal scaled weight

of a region according to Lemma 5 (line 1). Next, if the length of TC
exceeds 3Q.∆, we set the upper bound as X (line 5). Otherwise,

we check if T ′
C has length exceeding 3Q.∆. If so we stop the

search and otherwise we set the lower bound L as X (lines 7–9).

4.2.3 Function findOptTree()

The last step of APP (line 3) is to find the feasible region with

the largest scaled weight from TC . However, this is still not an easy

problem.
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Function binarySearch(Q, GS)

1 L← ⌊
|VQ|

α
⌋; U ← |VQ|⌊

|VQ|

α
⌋;

2 while true do

3 X ← (L+ U)/2;

4 TC ← kMST(X) ; // call Garg’s algorithm

5 if TC .l > 3Q.∆ then U ← X;

6 else

7 T ′
C ← kMST((1 + β)X);

8 if T ′
C .l > 3Q.∆ then break;

9 else L← X;

10 return TC ;

Theorem 3: Finding the region with the largest scaled weight whose

length does not exceed Q.∆ from TC is NP-hard.

PROOF. This problem can be reduced from the well-known knap-

sack problem. In the knapsack problem, there are m objects and a

weight limit ∆, and each object oi has a value ci and weight wi.
The aim is to find a set of objects such that the total weight does not

exceed ∆ and the total value is as large as possible. We construct

a starlike tree in which each node is connected only with the cen-

ter node. Each object oi in the knapsack problem corresponds to a

non-center node vi in TC , its value ci corresponds to the weight of

the node vi, and its weight wi corresponds to the length of the edge

between the node vi and the center node. The weight limit ∆ in the

knapsack problem corresponds to the query length constraint Q.∆.

It is obvious that this straightforward mapping is polynomial, thus

completing the proof.

Two observations inspire us to design a pseudo-polynomial time

algorithm based on dynamic programming for this problem. First,

the weights of nodes are scaled into integers. Second, since we are

finding the region with the largest scaled weight from a tree, we

can fix a node in TC as the root, and each node in TC has a level

according to the number of edges in the path from it to the root.

Then each region R can be viewed as rooted at the node v ∈ R.V
that has the highest level in TC . Based on the two observations, we

have the following lemma.

Lemma 6: Assume that region R rooted at v has the smallest

length among all regions with the scaled weight R.ŝ rooted at v.

Given any node vi ∈ R.V , the sub-region rs of R rooted at vi
must also have the smallest length among all regions with scaled

weight rs.ŝ rooted at vi.

PROOF. If there is another region rs′ rooted at vi with scaled

weight rs.ŝ, we can replace rs with rs′ in R to obtain a region

R′ rooted at v that has smaller length than does R. However, this

contradicts that R has the smallest length among all regions rooted

at v with weight R.ŝ.

Lemma 6 lays the basis of the dynamic programming approach,

and it implies that on each node v, we only need to keep the tuple

with the smallest length for each scaled weight value, and thus the

number of regions rooted at v can be bounded. Specifically, we use

the following structure to organize the region tuples on each node.

Definition 5: Region Tuple Array. Each node v in TC maintains

an array of region tuples rooted at v, denoted by v.tp, and v.tp[S]
stores the tuple representing the feasible region with the smallest

length among all regions rooted at v having scaled weight S.

Using this structure, we can compute the node region tuple arrays

in a bottom-up manner. We treat the nodes with only one neighbor

as the leaf nodes, and the tree is constructed consequently. First,

each leaf node vl initializes its tuple array using the region formed

by itself, i.e., vl.tp[σ̂vl ] = (0, σvl , σ̂vl , {vl}, ∅). Then, the tuple

arrays of leaf nodes are used to compute the tuple arrays of nodes

in the higher level. This step is stopped until we reach the root node

of TC , and we can select the feasible region with the largest scaled

weight from tuple arrays of all nodes in TC .V . Next, we proceed

to describe how to compute the tuple array of a parent node when

the tuple array of each of its child node has been computed.

If the parent node vp has only one child node vc, it is quite sim-

ple. We only need to combine each region tuple in vc.tp with vp
to obtain new regions, and they are stored in vp.tp. Specifically,

for each tuple T in vc.tp, we have vp.tp[T.ŝ + σ̂vp ] = (T.l +
τ(vp, vc), T.s+ σvp , T.ŝ+ σ̂vp , T.V ∪ {vp}, T.E ∪ {(vp, vc)}).

However, it is more complicated when parent node vp has mul-

tiple child nodes. The idea is to process the child node one by one.

Assume that vp has m child nodes, each of which is represented

by vck where 1 ≤ k ≤ m. When computing vp.tp[S], we denote

the region obtained after processing the first k child nodes of vp by

T [vp, S, k]. When the first (k−1) child nodes have been processed

and the kth child node is to be processed, the length of T [vp, S, k]
can be computed by the following lemma.

Lemma 7: Denoting T [vp, S− ŝ, k− 1] by t1 and vck .tp[ŝ] by t2,

T [vp, S, k] = min(T [vp, S, k − 1], arg min
1≤ŝ<S

(t1.l + t2.l + τ(vp,

vck ), t1.s+ t2.s, S, t1.V ∪ t2.V, t1.E ∪ t2.E ∪ {(vp, vck )})).

PROOF. After the first (k − 1) child nodes of vp are processed,

for each value S, T [vp, S, k−1] stores the region with the smallest

length among all regions rooted at vp constituted by nodes rooted at

the (k−1) nodes and vp. In order to compute the region T [vp, S, k],
there are only two possibilities: either it contains no nodes rooted

at vck , or it contains some nodes rooted at vck . In the first case,

T [vp, S, k] = T [vp, S, k − 1]. In the second case, we need to

consider all possible combinations that can generate a region with

scaled weight S. Finally, we select the feasible region with the

smallest length and store it in T [vp, S, k].

After all m child nodes of vp are processed, for each scaled

weight value S we set vp.tp[S] as T [vp, S,m]. After the region

tuple arrays of all nodes are computed, we find the region with the

largest scaled score from these arrays and return it as the result.

v1(20)
4

v2(20)

v3(40)

v3.tp[40]

5

v2.tp[20]

v1.tp[20]

v1.tp[40]

v1.tp[60]

v1.tp[80]

Figure 6: Example of Updating Tuple Arrays

Example 5: Assume that the tree TC returned is as shown in

Figure 6. Nodes v2 and v3 are treated as leaf nodes and v1 is the

root. First, we have v1.tp[20], v2.tp[20] and v3.tp[40]. When com-

puting v1.tp, we first consider node v2, and we obtain v1.tp[40] =
(5, 0.4, 40, {v1, v2}, {(v1, v2)}). Next, v3 is considered, and v1.tp
has two tuples now. Both are combined with v3.tp[40], and v1.tp[60]
and v1.tp[80] are generated. ✷

The function is detailed in Function findOptTree(). Initially, we

create a region tuple for each node v in tree TC using the node

itself, and the tuple is used to initialize v.tp[σ̂v]. For nodes that

have only one neighbor in TC , we insert them into nodeQ, and

these nodes are treated as the leaf nodes in TC (lines 3–5). While

there is only one node in nodeQ, it means that the root node is

reached, and thus the algorithm can be terminated. Otherwise, we
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select a node v from nodeQ and use its tuple array to compute the

tuple array of its parent node (lines 7–12). Each node v in nodeQ
has only one neighbor vn which is treated as the parent node of v.

We then use v.tp and vn.tp to generate new tuples and to update

vn.tp according to Lemma 7 (line 9). We also update bestR using

the newly generated tuple with the largest scaled score (line 10).

After v is processed, we remove it from TC , and if vn now has

only one neighbor, we insert it into nodeQ (lines 11–12). Finally,

we return bestR, the region with the largest scaled weight in TC ,

as the result to approximately answer the given query.

Function findOptTree(TC )

1 initialize a queue nodeQ;

2 bestR← null;

3 foreach node v in TC do

4 v.tp[σ̂v]← (0, σv, σ̂v, {v}, ∅);
5 if v has only one neighbor then nodeQ.enqueue(v);

6 while nodeQ contains more than one node do

7 v ← nodeQ.dequeue();

8 vn ← the neighbor node of v in TC ;

9 generate new tuples using v.tp and vn.tp to update vn.tp;

10 update bestR using the new region with the largest weight;

11 remove v from TC ;

12 if vn has only one neighbor then nodeQ.enqueue(vn);

13 return bestR;

4.2.4 Approximation Ratio and Complexity

Approximation ratio. In order to establish the approximation ratio

of Algorithm APP, we first introduce the following lemma.

Lemma 8: A tree Tr with total weight W and total length L can

be split into three edge-disjoint subtrees, and there always exists a

subtree with length no more than 1/3L and weight at least 1/5W .

PROOF. It is obvious that no matter how Tr is split, there must

exist one subtree with length no more than 1/3L. The idea is to

show that we can split Tr into three subtrees and each has weight

larger than 1/5W . We construct those subtrees to complete the

proof. If there is a node whose weight exceeds 1/5W , then it is

the subtree we want. Otherwise, no node in the subtree has weight

more than 1/5W . Suppose a subtree t1 has weight smaller than

1/5W . We can move some nodes to it from subtree t2 connected

to t1, until t1 has weight between 1/5W and 2/5W . Thus, the total

weight of t2 and t3 exceeds 3/5W . If either one has weight smaller

than 1/5W , the other one must have weight larger than 2/5W , and

we can move some nodes from the one with larger weight to the

one with smaller weight to make sure that all subtrees have weight

larger than 1/5W .

Theorem 4: APP is a (5 + ǫ)-approximation algorithm.

PROOF. When the binary search terminates, we have RSopt.ŝ <
(1 + β)TC .ŝ according to Lemma 4 . Lemma 8 tells that TC has

a subtree satisfying the length constraint Q.∆ with scaled node

weight larger than 1/5TC .ŝ. The region returned by APP is the

best tree from TC (denoted byRSapp), and thusRSapp.ŝ ≥ 1/5TC .ŝ >

1/(5 + 5β)RSopt.ŝ.

Because RSapp.s ≥ θRSapp.ŝ, we can obtain RSapp.s > 1/(5 +

5β)θRSopt.ŝ. Recall the proof of Theorem 2, it is true that θRSopt.ŝ =
∑

v∈RSopt
θσ̂v ≥ (1− α)Ropt.s.

Hence, we can conclude thatRSapp.s > (1−α)/(5+5β)Ropt.s.
Both α and β can be arbitrarily small, and thus APP is a (5 + ǫ)-
approximation algorithm.

Complexity. We first analyze the complexity of function findOpt-

Tree(). The nodes of a region returned is a subset of TC .V . In

addition, since the optimal region must be a tree, there are at most

⌊Q.∆/dmin⌋ edges contained in a region (dmin is the minimum

edge length in Q.Λ). Hence, the maximum number of nodes in a

region can be estimated by min(|TC .V|, ⌊Q.∆/dmin⌋ + 1), and

we denote this value as Nmax. We know that the largest score of a

node in Q.Λ is σmax. Therefore, the maximum number of region

tuples in a node’s tuple array is bounded by Nmax⌊σmax/θ⌋ =
Nmax⌊|VQ|/α⌋, and we denote this value by Tmax.

In the function each edge in TC is only processed once. When

an edge (vi, vj) is processed, tuples in vi.tp and tuples in vj .tp
are combined to generate new tuples. Hence, the worst complex-

ity of this step is O(|TC .E|T
2
max). The binary search takes at most

O(log1+β |VQ|) iterations to find the subtree TC . kMST runs poly-

nomially with |VQ| and |EQ| [8]. Therefore, the algorithm runs

polynomially with |VQ|, |EQ|, Q.∆, and 1/α.

5. TUPLE GENERATION ALGORITHM
In Section 4.2.3, we devise a dynamic programming method to

find the feasible region with the largest scaled weight from a tree, in

which we compute the region tuple arrays in a bottom-up manner.

Unfortunately, we cannot apply this method in GS because of the

cycles in the graph. However, we can extend this method to design

an algorithm that heuristically finds a region to approximate the

feasible region RSopt that has the largest scaled weight from graph

GS . We denote this algorithm by TGEN (tuple generation).

Recall that in Function findOptTree(), each edge in the candi-

date tree is only processed once, and each node stores an array of

regions rooted at it. In order to find RSopt, we can do as follows.

We also process each edge only once to generate new regions, and

during the enumeration each node stores all enumerated feasible

regions it belongs to in a list. When processing an edge (vi, vj),
each enumerated region containing vi and each enumerated region

containing vj are combined with this edge to form a new region. If

it satisfies the length constraint, we store it in the region list of each

node it contains.

In this method, afterm edges are processed, each feasible region

R formed by these edges is stored on each node contained in R.

When we process a new edge e, since all the enumerated feasible

regions from the region lists of the two nodes of e are combined,

all possible feasible regions formed by the first m + 1 edges are

generated and stored. Therefore, after all edges are processed, any

feasible region cannot be missed, and the correctness of the algo-

rithm is assured.

The problem of this exact approach is that too many region tuples

need to be enumerated and stored. Given a node, the number of

regions it belongs to is exponential with the maximum number of

nodes in a feasible region (bounded by Q.∆). Hence the approach

is computational prohibitive.

Recall that in findOptTree(), we only keep one tuple that has

the smallest length for a scaled weight rooted at each node. This

inspires us to adopt the node weight scaling technique and the con-

cepts of region tuples and tuple arrays to design TGEN. The idea

is that, given a query Q, we scale the node weights as introduced

in Section 4.1, and the regions are stored as tuples as defined in

Definition 4. We use the structure in Definition 6, which is similar

to that defined in Definition 5, to store the tuples on each node.

Definition 6: Explored Region Tuple Array. Each node v in

Q.Λ maintains an array of regions containing v, denoted by v.tp.

v.tp[S] stores the region tuple with the smallest length among all

enumerated region tuples containing v having scaled weight S.
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Notice that the explored region tuple array is different from the

region tuple array in Definition 5 where a node only stores the re-

gions rooted at it. The analysis established on the maximum num-

ber of regions a node needs to store in Section 4.2.4 is still applica-

ble here, i.e., the number of tuples stored on a node can be bounded

by Tmax in TGEN.

Using the tuple arrays as defined in Definition 6, we describe

the process of TGEN as follows. Given a query Q, we select any

unprocessed node in Q.Λ, denoted by v0. We then traverse the

remaining nodes in Q.Λ in a breadth-first order starting from v0 to

generate new regions. When we reach a node vi, we process each of

its incident edges that has not yet been processed, and this ensures

that each edge is processed only once. If all the nodes reachable

from v0 are processed and some nodes are yet to be processed,

we again randomly select one of them and repeat the above steps.

Finally we return the best region from the explored tuple arrays.

When processing an edge (vi, vj), each region from vi.tp and

each region from vj .tp are combined by this edge to generate a

new region T . If T is feasible, we update the tuple array of each

node v in T.V: If v.tp[T.ŝ].l > T.l, we update v.tp[T.ŝ] as T .

Because we discard some regions in this step, it is possible that

the optimal region is missed. Since now we are finding the region

from a graph instead of a tree, it is possible that some regions con-

taining cycles are generated, which are not necessary. We have the

following lemma to avoid generating such unnecessary regions.

Lemma 9: When processing an edge (vi, vj), if a tuple Tmi from

vi.tp and a tuple Tnj from vj .tp share common nodes, they do not

need to be combined by this edge.

PROOF. In this case, the tuple combining Tmi and Tnj by (vi, vj)
must contain a cycle. Any region contains a cycle cannot be the

result, since there must exist another region with the same set of

nodes has smaller length. Thus, it can be discarded safely.

We can process the edges in other orders (e.g., the edges can be

processed in ascending order of their lengths). However, after test-

ing several orders, we observe that the accuracy only varies slightly

while the order we adopt yields better efficiency. This is because:

a) we do not need to spend extra time on ordering edges; and b)

after a node is processed, i.e., all its incident edges are processed,

we can discard its node tuple array. In later steps, if it is contained

in a newly generated tuple, it is not necessary to update its tuple ar-

ray. As shown in the experimental study, TGEN can achieve better

accuracy than does APP.

The method is presented in Algorithm 2We first obtain an un-

processed node and insert it into nodeQ (line 3–4). Lines 7-14

describes how an edge is processed as discussed above. We use a

new generated tuple T to update the tuple array of each node in

T.V (lines 12–14). Finally, we return bestR as the result.

Complexity. Each edge in Q.Λ is only processed once. When

an edge (vi, vj) is processed, TGEN combines all the tuples from

vi.tp and vj .tp. Hence, TGEN has the complexity O(|EQ|T
2
max).

6. GREEDY METHOD AND EXTENSIONS

6.1 Greedy Method
We propose a approach that expands the region greedily. We

use RC to represent the currently explored region. We initialize

RC using the node with the largest weight in Q.Λ. Then in each

following step we greedily select a node connected toRC to expand

RC . Since we are trying to maximize the total weight of a region

satisfying the query length constraint, we can have two methods to

select the next node greedily: 1) we select a node with the largest

weight; or 2) we select a node such that the edge connecting it with

Algorithm 2: TGEN(Q, GS)

1 Initialize a queue nodesQ; bestR← null;
2 while there exist unprocessed nodes do

3 v0 ← an unprocessed node;
4 nodesQ.enqueue(v0);
5 while nodesQ is not empty do

6 vi ← nodesQ.dequeue();
7 for each unvisited edge (vi, vj) do
8 if τ(vi, vj) > Q.∆ then continue;
9 nodesQ.enqueue(vj );

10 generate new tuples using vi.tp and vj .tp;
11 update bestR using the new region tuples;
12 foreach new tuple T do

13 foreach unprocessed node v in T.V do

14 if T.l < v.tp[T.ŝ].l then v.tp[T.ŝ]← T ;

15 return bestR;

the explored region has the smallest length. This step is repeated

until no more nodes can be added to the region (i.e., the total length

of the region exceeds Q.∆ if including more nodes). We denote

this algorithm as Greedy.

However, both methods have obvious drawbacks. The first method

only considers the weight of a region. It performs poorly when the

edge connecting the selecting node and the region has a large length

value. The second method takes into account only the road segment

length, and thus its performance is poor if the selected node is not

relevant to the query.

To avoid the drawbacks of the two aforementioned methods, we

devise a combined model, in which both the weight and the road

segment length are taken into account. A parameter µ is used to

balance the importance of them when greedily selecting a node to

extend the explored region RC .

Specifically, given a query Q and an currently explored region

RC , for each node vi connected to RC via vj (i.e., vj ∈ RC .V and

vi /∈ RC .V), we compute the ranking score for vi as follows:

ρ(vi) = µ(1− τ(vi, vj)/τmax) + (1− µ)σvj/σmax,

where τmax denotes the maximum length in the area ofQ.Λ. After

we compute the scores for all such nodes, we select the one with

the largest score and include it in RC .

In each step, the greedy algorithm only checks the nodes con-

necting to the already explored regionRC . There are at mostNmax
steps and in each step we select the node with the largest score from

at most |VQ| nodes, and thus the complexity is O(Nmax log |VQ|).

6.2 Top-k LCMSR Query
We extend the LCMSR query to the top-k length-constrained

maximum-sum region query. Instead of finding the best region de-

fined in LCMSR, the top-k LCMSR query returns the top-k re-

gions such that they have the highest ranking scores and satisfy the

given query length constraint within the query region.

Due to the space limitation, we only briefly discuss how to mod-

ify APP, TGEN, and Greedy to answer the top-k LCMSR query.

In APP, after the candidate tree TC is returned, we utilize Func-

tion findOptTree() to compute the tuple arrays for all nodes in TC ,

and we find the best k regions from these arrays. In TGEN, af-

ter all edges in Q.Λ are processed, we scan the tuple arrays of all

nodes to find top-k regions whose scaled weights are the largest. In

Greedy, after the first region is detected greedily, we select a node

with the largest weight that is not contained in the first region to

find the second one. This procedure is repeated until k best regions

are found greedily.
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7. EXPERIMENTAL STUDY

7.1 Experimental Settings
Algorithms. We study the performance of the following proposed

algorithms: the APP algorithm in Section 4, the TGEN algorithm

in Section 5, and the greedy method Greedy in Section 6.1.

Data and queries. We use two datasets in our experimental study.

The first dataset is a real-life dataset that comprises of the road

network of the New York City downloaded from a public website1,

and the geo-textual objects crawled using Google Place API2. The

road network contains 264,346 nodes and 733,846 arcs. We crawl

0.5 million objects using Google Place API and we map each object

to its nearest node on the road network (note that our algorithm can

handle objects that lie on an edge a road network). Each crawled

object has a name and a type such as “food” and “restaurant,” and

they are used as the textual description of the objects. The dataset

contains 55,230 distinct keywords.

The second dataset is generated from two real-world datasets.

We use a larger road network in the area of the northwest part of

USA. It contains 1,207,945 nodes and 2,840,208 arcs. We ran-

domly generated a set of objects of the same size of the vertices in

the road network following the network distribution. The keywords

were collected from Flickr using its public API .We collected more

than one million photos with tags taken by 30,664 unique users in

the region of USA. Each photo is associated with a set of user-

annotated tags. The set of tags of a photo is used as the textual

description of an object, and the object is then mapped to its near-

est vertex. We remove tags used by only 1 user, which are likely to

be noisy, and the dataset has 107,956 keywords.

The locations have a pair of latitude and longitude. In order to

compute the Euclidean distance between locations, we convert the

data to the UTM (Universal Transverse Mercator coordinate sys-

tem) format, using World Geodetic System 84 specification.

We generated 5 query sets with different numbers of keywords

1, 2, 3, 4, and 5 for the New York dataset (denoted by NY) and the

northwest USA dataset (denoted by USANW), respectively. Note

that most of search engine queries with local intent contain only

1-2 keywords [1]; and it is reported in an analysis on a large Map

query log [17], nearly all queries contain fewer than 5 words. Each

set comprises 50 queries. When generating a query, we first ran-

domly select a query area with the largest Q.Λ following the net-

work distribution (100 km2 for NY and 150 km2 for USANW).

Then, within this area, we randomly select the terms that appear in

this area according to their frequency.

All algorithms were implemented in C++ on Windows 7, and run

on an Intel(R) Xeon(R) CPU X5650 @2.66GHz with 8GB RAM.

7.2 Experimental Results on NY

7.2.1 Varying Parameters Used in Algorithms

APP uses the scaling parameter α to scale node weights into in-

tegers, and uses β to do the binary search, and they together decide

the approximation ratio of APP. TGEN also uses α to do scal-

ing. Greedy uses µ to balance the importance of node weights

and edge lengths when greedily select a node to expand the cur-

rently explored region. We study their effect on both runtime and

accuracy in the three algorithms. Based on this parameter tuning

process, we select the value for each parameter that can achieve

good accuracy efficiently. We set the number of query keywords to

3, Q.∆ to 10 km, and Q.Λ to 100 km2 by default.

1http://www.dis.uniroma1.it/˜challenge9/
download.shtml
2https://developers.google.com/places/
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Varying the scaling parameter α. The scaling parameter α is

used in both APP and TGEN. We set β to 0.1 in this set of ex-

periments, and we vary the value of α from 0.01 to 0.9. Figures 7

and 8 show the runtime and accuracy of APP, respectively. It can

be observed that the runtime decreases as α becomes larger. This

is because that the maximum number of tuples kept on a node is

bounded by Tmax = Nmax⌊|VQ|/α⌋. More tuples collide at the

same scaled weight as α increases, and thus more enumerations are

pruned. The accuracy does not vary much (region weights are all

between 5.85 and 5.95). We set α to 0.5 by default for APP in

subsequent experiments.

TGEN also utilizes α to do the weight scaling. If we set α to a

value smaller than 1, TGEN runs extremely slowly and consumes

huge amounts of memory. This is because that the number of tuples

on a node can be estimated by Tmax = Nmax⌊|VQ|/α⌋. If there

are 10 thousand nodes in Q.Λ, hundreds of millions of tuples need

to be maintained. In contrast, in APP there are at most hundreds of

nodes in the candidate tree. In TGEN, we set α to a larger value to

decrease the complexity and the space cost. We test the values from

50 to 1600, and Figures 9 and 10 show the results. As expected, as

α increases, both the runtime and accuracy decrease. We set α to

400 for TGEN in subsequent experiments by default because using

this value, we can achieve both good accuracy and efficiency. We

also test α using values 50 and 400 in APP. The average region

weight drops to 5.47 and the runtime is 0.786 seconds when α =

50, and the average region weight drops to 5.35 and the runtime is

0.762 seconds when α = 400. We can see that the runtime of APP
is not improved much by using larger α, and APP is still slower

than TGEN and has worse accuracy.
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Varying the binary search parameter β. The value of β affects

the range of the binary search and also the accuracy in APP. We

vary β from 0.001 to 0.9. Figures 11 and 12 show the runtime and

accuracy, respectively. Both the runtime and accuracy drop as β be-

comes larger. The reason is that, with a larger β, the binary search

741



can finish earlier because there are more candidate trees. Recall

that the approximation ratio of APP is (1− α)/(5 + 5β), and this

explains why the accuracy decreases. We notice that APP achieves

the same accuracy when setting β to 0.01 and 0.001, which implies

that the accuracy cannot be further improved by reducing β. We set

β to 0.1 in subsequent experiments for APP.
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Varying the parameter µ. The parameter µ balances the impor-

tance of node weights and edge lengths when selecting a node to

expand the current explored region. It is shown that better accuracy

can be achieved by taking into account both node weights and edge

lengths than only considering one of them in Greedy. We set µ to

0.2 by default in subsequent experiments.

7.2.2 Varying Query Arguments

APP TGEN Greedy
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Figure 15: Vary Query Arguments (NY)

An LCMSR query has three arguments, i.e., the query keywords

Q.ψ, the length constraintQ.∆, and the region of interestQ.Λ. We

vary the three arguments and study the performance of the three

proposed algorithms. We set the number of query keywords to 3,

Q.∆ to 10 km, and Q.Λ to 100 km2 by default.

Due to the absence of efficient exact methods, when evaluating

the accuracy we compute the ratio of an algorithm over TGEN
(which always has the best accuracy) under the same setting as fol-

lows: For each query, we compute the ratio of the weight returned

by this algorithm to the weight returned by TGEN, and the average

ratio over all queries is finally reported as the measure.

Varying the number of query keywords. Figure 15(a) shows the

runtime of the three algorithms when we vary the number of query

keywords. It can be observed that Greedy runs very fast due to its

simplicity, and its runtime increases slightly as the number of query

keywords increases. TGEN runs faster than does APP consistently.

All the algorithms run slowly as queries contain more keywords.

The reason behind is that, when the number of query keywords

increases, more locations become relevant to the query. All these

relevant locations have scaled weights, and thus more regions need

to be considered during the algorithm execution.

Figure 15(b) shows the accuracy of the algorithms. The ratio

of APP is over 90% ratio on all query sets. Greedy has much

worse accuracy compared with APP and TGEN, and its accuracy

increases a bit as queries contain more keywords. This might be

because more nodes used to expand the explored region are relevant

to the query.

Varying the query length constraint. Figure 15(c) shows the run-

time of the three algorithms when we vary Q.∆ from 8 km to 12

km. Greedy still runs the fastest. Its runtime increases slightly as

Q.∆ increases, because the region is larger and more nodes need

to be checked to expand the explored region. APP runs slower

than does TGEN. The runtime of both APP and TGEN increases

as Q.∆ becomes larger. The reason is that under the constraint of

a larger Q.∆, the maximum number of nodes in a region Nmax
becomes larger, and more tuples are stored on each node.

Figure 15(d) shows the accuracy of the three algorithms. APP
always has a ratio over 90%. Greedy has the worst ratio, and its

accuracy decreases a bit as Q.∆ becomes larger.

Varying the size of query region. Figure 15(e) shows the runtime

of the three algorithms when we vary Q.Λ from 50 km2 to 150

km2. Since a larger query region contains more nodes and edges in

the road network, and all algorithms runs slower as the size of Q.Λ
increases. The runtime of all algorithms increases almost linearly

with the size of Q.Λ. Greedy runs the fastest, and TGEN is faster

than APP over all query sets.

The accuracy of the three algorithms is shown in Figure 15(f).

It can be observed that APP still always achieves a ratio of above

90%, and Greedy performs the worst in terms of accuracy.

In conclusion, APP is capable of both excellent accuracy and

efficiency. However, TGEN can achieve even better accuracy and

efficiency. Greedy performs much worse than other methods in

terms of accuracy although it is the fastest.

7.3 Experimental Results on USANW
We also vary α, β, and µ to tune the best parameter values

for each algorithm, due to the space limitation the results are not

shown, and we finally set α to 0.1 and β to 0.1 for APP, α to 300

for TGEN, and µ to 0.4 for Greedy. We set the number of query

keywords to 3, Q.∆ to 15 km, and Q.Λ to 150 km2 by default.

Figures 16(a) and 16(b) show the runtime and accuracy when

we vary the number of query keywords from 1 to 5, Figures 16(c)

and 16(d) show the runtime and accuracy when we vary Q.∆ from

13 km to 17 km, and Figures 16(e) and 16(f) show the runtime and

accuracy when we vary Q.Λ from 100 km2 to 200 km2, respec-

tively. We can observe similar results as we do on NY. The runtime

of all algorithms increases as the number of query keywords, Q.∆,

andQ.Λ become larger. TGEN always has the best accuracy, APP
can always achieve a ratio above 90%, and Greedy only achieves a

ratio about 40%. TGEN has the best performance in terms of both

accuracy and efficiency.
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Figure 16: Vary Query Arguments (USANW)

7.4 Real Examples
Figures 17, 18, and 19 show the regions returned by TGEN,

APP, and Greedy, when given the same arguments:Bronx, New

York, the keywords “cafe” and “restaurant,” and a length constraint

of 8 km. Greedy returns a region containing only 7 objects with

weight 3.6. The region returned by APP contains 11 objects with

weight 4.8, while the region returned by TGEN contains 15 objects

with weight 5.9. It can also be observed that the objects in the re-

turned regions locate along the roads, and that the returned regions

have irregular shapes. This is especially noticeable in Figure 17.

Figure 17: Region (TGEN)

Figure 18: Region (APP)

Figure 19: Region (Greedy)

7.5 Comparison with Existing Studies
These experiments compare the quality of regions returned by

the LCMSR query and regions returned using width-and height-

fixed rectangles by the maximum range sum (MaxRS) query ([4,

11]). Note that the size constraints in LCMSR and MaxRS are

different and the two return different types of regions. Thus, it is

difficult to set comparable size constraints to compare returned re-

gions. We did a survey with 30 students, and they consistently find

that the length constraint of LCMSR is much more user-friendly to

specify than the width and height of MaxRS. To compare the two

types of queries, we adopt the following procedure: We set both the

width and the height of the query rectangle of MaxRS to 500 me-

ters, and we find the rectangular region with the largest total weight

for each query. Then we compute the minimum total length of the

road segments connecting all relevant objects in this region, and we

use this value as the length constraint in the LCMSR query (we use

the TGEN algorithm).

For each of 20 queries, we ask 5 annotators to manually com-

pare the quality of two regions returned by LCMSR and MaxRS.

Given regions R1 and R2 for the same set of query keywords, if

no less than 3 users judge that R1 is better than R2, we believe

that R1 has better quality. According to the annotation results, the

regions returned by LCMSR has better quality on 90% of all test-

ing queries. This is because that real-world regions tend to have

arbitrary shapes. Moreover, the objects in the regions returned by

MaxRS may not be connected while those returned by LCMSR
are always connected by road segments. An example is shown in

Figure 20. LCMSR successfully finds an “L”-shaped region, while

MaxRS only finds a rectangle covering part of the real region.

(a) LCMSR (b) MaxRS

Figure 20: Example of two types of regions

The regions returned by MaxRS are better for two queries be-

cause the real regions happen to be rectangular and TGEN only

returns approximate results and thus finds fewer relevant objects.

7.6 Performance of Answering Top-k LCMSR
Figures 21 and 22 show the runtime of the three algorithms for

processing the top-k LCMSR query, respectively. On NY, we set

the number of query keywords to 3, Q.∆ to 10 km, and Q.Λ to

100 km2. On USANW, we set the number of query keywords to

3, Q.∆ to 15 km, and Q.Λ to 150 km2. It can be observed that

all algorithms runs a bit slower when increasing the value of k in-

creases. Greedy always runs the fastest, and TGEN consistently

runs faster than does APP.

APP TGEN Greedy
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8. RELATED WORK
Querying Geo-textual Objects. As presented in the introduc-

tion, most studies on querying geo-textual objects focus on com-

puting results with a single-object granularity in Euclidean space

(e.g., [2, 5, 6]) or a spatial network [15]. They retrieve lists of sin-

gle objects, each of which is close to the query and relevant to the

query keywords. In contrast, the LCMSR query retrieves a region

containing a set of objects, targeting users who wish to physically

browse, or explore, PoIs.

Several proposals [3, 12, 18, 19] feature a set-of-objects result

granularity. In one line of study [18, 19], the query takes a set of

keywords and aims to find a set of geo-textual objects such that the

union of their text descriptions cover all query keywords and such

that the diameter of the objects is minimized. In another line of

work [3, 12], the query takes a set of keywords and a query loca-

tion. The idea is that several objects that satisfy a query together

(i.e., cover all the query keywords) may be more convenient for

the user than a single, far-away object that satisfies the query by

itself. Unlike the LCMSR query, these proposals return a set of

objects that together satisfy the query when the objects are taken

as one, and they must all be visited. The result cardinality never

exceeds the number of query keywords. In contrast, the LCMSR
query retrieves many relevant objects enclosed by a region satisfy-

ing the size constraint. For example, given query keywords “shoes,

jeans,” the existing proposals return a set of at most two objects

that together cover “shoes” and “jeans,” while the LCMSR query

returns a compact region with many objects that each is relevant to

the query. Next, the existing proposals do not support user brows-

ing behavior because only one group of objects is returned. Third,

they do not assume a spatial network and do not take into account

co-location, as does our work. Fourth, they use Boolean keyword

matching, while we compute the text relevance between the objects

and the query.

One proposal [2] accounts for co-location. It delivers single-

object granularity results, does not assume a spatial network, and

does not support user browsing behavior. In contrast, our proposal

exploits the co-location phenomenon. The LCMSR query is often

able to find confined regions with a high concentration of PoIs rel-

evant to a user’s need, and it accounts for co-location by returning

such regions.

Region Search. Liu et al. [11] study the problem of finding subject-

oriented top-k hot regions in spatial databases. Choi et al. [4] and

Tao et al. [16] propose to solve the maximizing range sum problem

in spatial databases. These proposals define regions as width-and

height-fixed rectangles or radius-fixed circles, which we find to be

less appropriate than connected subgraphs (as exemplified in Fig-

ure 3). In practice, regions are often arbitrarily shaped, and using

particular size-fixed shapes may only find parts of confined regions

with a high concentration of relevant PoIs.

9. CONCLUSION AND FUTURE WORK
We define the length-constrained maximum-sum region query,

which takes a set of query topics, a region of interest, and a region

size threshold as parameters. Given a set of geo-textual objects

mapped to a road network graph, the query retrieves the region,

formalized as a connected subgraph with the relevant objects, such

that it has the largest weight and is located inside the region of

interest and it does not exceed the size threshold. The weight of

a result region is defined as the sum of the score, e.g., relevance,

of each of its objects w.r.t. the query keywords. The query aims

to support users who wish to conveniently explore multiple objects

that are relevant to the query, e.g., Italian restaurants.
The problem of answering this query is NP-hard. We devise a

node weights scaling technique, and based on this we design an

approximation algorithm with performance bound. Extended from

this algorithm, we design an algorithm that heuristically finds the

region with the largest scaled weight. We also design a greedy

approach that takes into account both node weight and edge length

when expanding the region. Results of empirical studies show that

APP and TGEN are capable of answering queries efficiently and

effectively, and TGEN performs better than does APP in terms of

both accuracy and efficiency.

In future, we plan to develop some preprocessing techniques to

accelerate the proposed algorithms. It is also of interests to consider

the number of query keywords covered by a region when retrieving

the relevant hot regions.
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