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ABSTRACT
We focus on crowd-powered �ltering, i.e., �ltering a large set of
items using humans. Filtering is one of the most commonly used
building blocks in crowdsourcing applications and systems. While
solutions for crowd-powered �ltering exist, theymake a range of im-
plicit assumptions and restrictions, ultimately rendering them not
powerful enough for real-world applications. We describe two ap-
proaches to discard these implicit assumptions and restrictions: one,
that carefully generalizes priorwork, leading to an optimal, but o�en-
times intractable solution, and another, that provides a novel way
of reasoning about �ltering strategies, leading to a sometimes sub-
optimal, but e�ciently computable solution (that is asymptotically
close to optimal). We demonstrate that our techniques lead to sig-
ni�cant reductions in error of up to 30% for �xed cost over prior
work in a novel crowdsourcing application: peer evaluation in on-
line courses.

1. INTRODUCTION
Crowdsourcing, i.e., using input from human workers to solve

problems, has emerged as a powerfulmechanism for processing data,
especially unstructured data, such as images, videos, and text. Over
the past few years, there has been a development of algorithms that
use humans for a range of data processing tasks, including sort-
ing [30], clustering [20], maximum [21], �nding [41], �ltering [37],
and deduplication [47]. �ese algorithms typically o�er guarantees
on some combination of accuracy, latency, and monetary cost (i.e.,
total compensation to human workers).

Of these tasks, perhaps the most commonly used data process-
ing task is �ltering, i.e., using humans to evaluate or rate items such
as images, videos, or text. For instance, �ltering is used for content
moderation [2], i.e., deciding if each image in a dataset is appropriate
to be viewed by a general audience, by havingmultiple humans eval-
uate each image. In addition to content moderation, �ltering is used
in spam identi�cation [32], relevance estimation [7], text classi�ca-
tion [9,42], and video analysis [15]. Filtering also forms a fundamen-
tal relational operator in declarative crowdsourcing systems [19,39].

Our previous work on �ltering, titled CrowdScreen [37], provides
a state representation that enables us to reason about and store �l-
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tering strategies for a simple setting: �ltering a set of equally di�cult
items (with no prior knowledge on items) using a in�nite pool of in-
dependent and identical workers with equal costs (i.e., the workers
need to be paid the same amount). Under those assumptions, the
designed strategies have guarantees on expected cost and accuracy
(and no guarantees on latency).

While CrowdScreen provides a good starting point for �ltering,
due to the many implicit assumptions and restrictions, it is ulti-
mately not powerful enough for real-world �ltering applications. In
this paper, we describe techniques that enable us to remove many
of the assumptions and restrictions in CrowdScreen. Overall, our
techniques can inform the design of a general and powerful �ltering
operator that we believe can be applied to any real-world scenario.

Our approach is the following: we �rst recast the new variants of
�ltering (on removing simplifying assumptions and restrictions one
by one) into generalizations of the representation in CrowdScreen.
While this step in itself is not hard, our main challenge here is to
ensure that we preserve the desirable linearity properties that allow
us to use e�cient optimization techniques.

However, an even bigger challenge ariseswhile incorporatingmany
of the new variations: the representation itself becomes intractable
to store. For instance, when incorporating distinct worker abilities
(instead of assuming that all workers have identical accuracies), the
representation scales exponentially in the number of workers. �us,
the optimization problems becomes even more complex and time
consuming. To combat this challenge for the troublesome varia-
tions, we devise a novel state representation that reduces the amount
of information stored and enables us to �nd strategies that are ap-
proximate, but provably close to optimal asymptotically.

Todescribe both these representations (the recasting of theCrowd-
Screen representation, as well as the entirely new compressed repre-
sentation), we focus on two important variations not considered by
CrowdScreen: distinct worker abilities and prior information.
● Distinctworker abilities: CrowdScreen assumes that all humanwork-
ers have the same error rates — all workers are equally capable of
answering questions. �is assumption is certainly not true in prac-
tice: there are some workers that are much better than others, pos-
sibly because they do a more careful job or are more competent.

● Prior information: �e CrowdScreen algorithms assume that we
have no information about any of the items to begin with; how-
ever, there may be cases where we have “prior information”—that
is, knowledge that some items are more likely to pass the �lter
than others. �is prior information may originate from an auto-
mated algorithm, such as a machine learning algorithm, that out-
puts probabilities for whether each item is likely to pass the �lter
or not. We therefore come up with a principled way to combine
machine- and human-computation, so that we expense human cy-
cles on the items that are hard to judge automatically.
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�e entire list of variations or aspects we consider can be found in
Table 1 in Section 5 (we do not expect the reader to fully understand
the table at this point), along with brief explanations. We do not de-
scribe in detail the other aspects due to space limitations, however,
they may be all found in our extended technical report [36].
NovelApplication: To ground our discussion, we evaluate our tech-
niques on a novel real-world application that, to our knowledge, has
not been studied in the context of crowd algorithms, peer evaluation
in online courses.

MOOCs (MassiveOpenOnline Courses) [10] are revolutionizing
education. �ere are hundreds of courses being o�ered by organi-
zations such as Coursera [1], Udacity [6], and EdX [3], and each
of these courses are being taken by thousands of students world-
wide [4]. Evaluating students in many of these MOOCs (especially
courses in the humanities) requires human expertise: for instance, it
is impossible to grade an essay, a so�ware project, or amathematical
proof completely automatically.

Given that thousands of students are taking these courses, the
MOOC providers have turned to peer evaluation, i.e., having stu-
dents evaluate each other’swork, as the primarymechanism for grad-
ing in these problematic courses. Peer evaluation is a large scale ap-
plication of crowd-powered �ltering: for each student submission,
the peer evaluation systemneeds to decide howmany graders would
need to evaluate that submission in order to correctly determine the
true grade. Student graders may make mistakes while evaluating
submissions, and therefore, wemayneedmultiple student graders to
evaluate each submission. Since student grader time is a limited re-
source, we would rather have graders evaluate student submissions
forwhich there ismore uncertainty regarding the true grade, instead
of submissions for which the true grade is fairly certain.

We demonstrate that the techniques described in this paper are
useful for peer evaluation: they provide signi�cantly higher quality
results than standard heuristics currently in use in the peer evalu-
ation system in the MOOC platform Coursera [1], as well as algo-
rithms in CrowdScreen, which ignore a number of key factors, and
are therefore not as useful. Overall, we get reductions of upto 30%
in error for �xed cost, a sizable improvement in performance.
Contributions: Here is the outline for the paper:
● We describe the answer-record representation, a way to represent
and reason about �ltering strategies. �is representation is a straight-
forward extension of the representation in CrowdScreen. �is rep-
resentation provides the optimal solution to all the aspects we con-
sider, but can be expensive to compute in some cases (Section 3).
● Wedescribe our solution for distinctworker abilities (Section 3.1).
● We provide the key ideas for incorporating prior information
(Section 3.2).

● We describe the posterior-based representation, a new way of rep-
resenting and reasoning about strategies. �is representation leads
to an e�cient but approximate solution to all the aspects we con-
sider (Section 4).
● We describe the representation for the basic setting considered
in CrowdScreen, and show that the expected cost of the optimal
strategy in this representation converges (on increasing a user-
speci�ed parameter without bound) to the cost of the optimal
strategy in the answer-record representation (Section 4.1).

● We describe our solution using this representation for distinct
worker abilities (Section 4.2).

● We provide the key ideas for using the posterior-based represen-
tation when incorporating prior information (Section 4.3).

● Wediscuss other aspects and demonstrate that our representations
are general enough to incorporate all the newvariations (Section 5).

● We evaluate our algorithms on real MOOC data, demonstrating
that we get a signi�cant reduction of up to 30% in error (for same

cost) by using our techniques over techniques in CrowdScreen, as
well as other techniques and heuristics currently used in the peer
evaluation system (Section 6).

● We describe related work (Section 7), and conclude (Section 8).

2. PRELIMINARIES
We begin by describing the basic setup from CrowdScreen, but

when taking into consideration distinct worker abilities. �e other
aspects mentioned in the introduction will be described later on.

We are given a set of items I , where ∣I∣ = n. A random variable
V controls whether an input item satis�es the �lter (V = 1) or not
(V = 0). �e selectivity of our �lter, s, gives us the probability that
V = 1 (over all possible items).
We assume that there is no automated mechanism to examine an

item and determine for certain whether that item satis�es the �lter
or not. �e only type of action we can perform on an item is to ask a
speci�c human worker w i , i ∈ 1 . . . r a question. �e worker can tell
us YES (meaning that they think the item satis�es the �lter) or NO.
�e worker w i can make mistakes, and in particular:
● �e false positive rate is: Pr[w i ’s answer is YES∣V = 0] = e0(w i)

● �e false negative rate is: Pr[w i ’s answer is NO∣V = 1] = e1(w i)

�e error rates e0(w i), e1(w i) are estimated either by evaluating
worker w i on questions with known correct answers, or by using
prior history onworker performance. In peer evaluation, error rates
are estimated by having workers (in this case, graders) evaluate a
few “test” submissions that the course instructors have also graded.
�e selectivity s is estimated by having course instructors evaluate a
small sample of submissions.

Overall, there may be some workers who are less error-prone at
answering questions than others, possibly because they are more
diligent or more capable. We can ask di�erent humans the same
question to get better accuracy, and we assume that their errors are
independent. (We relax this restriction in Section 5.) However, if we
ask the same human the question on the same item, we will get the
same answer. �erefore, we will ask the question on a given item to
a given human at most once.

A strategyF is a computer procedure that takes as input one item,
asks one or more humans questions on that item, and eventually
outputs either Pass or Fail for that item. A Pass output represents a
belief that the item satis�es the �lter, while Fail represents the oppo-
site. We de�ne an algorithm to be a procedure that, given parameters
and constraints, generates a strategy.

3. ANSWER-RECORD REPRESENTATION
In this section, we describe our �rst representation for worker

abilities. We will then discuss how we may incorporate prior infor-
mation. For the latter, we may have a machine learning algorithm
(say a classi�er) that analyzes items and assigns probabilities of pass-
ing the �lter to each item. As an example, if we were doing content
moderation of images, there are automated algorithms that analyze
each image (perhaps by using the distribution of colors or by look-
ing for speci�c patterns) and provide a probability for whether the
image is likely to be inappropriate for a general audience.

3.1 Setting with Worker Abilities
Representation: Since humans may have di�erent error rates, the
state of processing for an item a�er some questions are asked can be
completely represented using a state variable S = (x1 , y1 , x2 , y2 , . . . ,
xr , yr), where x i is an indicator variable indicating whether worker
w i answered YES for the question on the item, and y i indicates if
workerw i answered NO for the question on the item. If x i = y i = 0,
thenw i has not been asked a question yet on the item; if x i = 1, y i =
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Figure 1: Path-based Reasoning

0, then w i has been asked a question and has answered YES; and if
x i = 0, y i = 1, then w i has been asked a question on the item and
has answered NO.�e case where x i = y i = 1 can never arise.

Note that the reasonwhy the state variable S is a complete descrip-
tion of the state of processing is that the order in which the answers
are provided by humans is not critical for making a decision on an
item; only the set of YES/NO answers is important, and the iden-
tity of the workers who provided the answers. �erefore, the state
variable S captures all the relevant information about an item that is
necessary for a strategy to maintain. In CrowdScreen, S was simply
the count of the YES and NO answers. �is information was suf-
�cient because all workers were assumed to be equally error-prone
in that setting, and therefore, the identity of the worker who gave a
speci�c answer was not important.

We therefore call this representation theAnswer Record Represen-
tation (i.e., the state or processing is the complete set of answers).

At a given state S, a strategy F probabilistically does one of the
following: (a) stop executing, and return Pass on the item, (b) stop
executing, and return Fail on the item, or (c) continue executing
(Cont), i.e., ask an additional question for that item. Notice that, we
are overloading our use of the term “strategy” to mean two things:
(a) the code that operates on an item, and eventually returnsPass or
Fail, (b) a decision function, de�ned over all reachable states, that
takes as input a state S, and outputs a decision for that state (Pass,
Fail, Cont). �e use will be clear from the context.

�us, at a given state S, the strategy returns Pass, i.e., F(S) =

Pass, with probability apass(S), returns Fail, i.e., F(S) = Fail with
probability a f ai l (S), and will ask another human a question on that
item, F(S) = Cont with probability acont(S) = 1 − apass(S) −
a f ai l(S). If either Pass or Fail returned at a state, we say that the
strategy terminates. If Cont is returned at a state, then an answer
is requested from one of the unasked human workers—those for
whom x i = y i = 0, all with equal probability. �us, in this scenario,
we do not control which human worker answers our question—this
scenario is relevant in marketplaces like Mechanical Turk, or even
in peer evaluation, where we do not control who is online and avail-
able for grading at a given time. In some real world applications, we
may be able to control whichworker is asked to answer the question;
this aspect is covered in Section 5.

Due to the properties described above, strategies are instances of
the well-studied discrete Markov Decision Processes (MDPs) [43].
MDPs are represented by a set of states (here, all possible S), possi-
ble decisions for each state (here, Pass, Fail, Cont), and a prob-
ability distribution over next states when a decision is taken at a
given state. MDPs have a single reward function (or metric) asso-
ciated with each state. In our case, since we are considering multi-
ple metrics—cost and accuracy—we cannot use the standard value
and policy iteration techniques that are meant for optimizing sin-
gle metrics in MDPs. Instead, we must rely on linear programming.
We emphasize that our key contribution is not in the solution but
in reducing our scenario to the MDP formalism, while maintaining
computational e�ciency. To enable our paper to be self-contained
for a database audience, we describe our approachwithout using the
MDP formalism.

Metrics: To determine which strategy is best, we study the metrics

of error and cost. We start by de�ning two quantities, given a strat-
egy:
● p1(S) is the probability that the strategy reaches state S and the
item satis�es the �lter (V = 1); and

● p0(S) is the probability that the strategy reaches state S and the
item does not satisfy the �lter (V = 0).

We can now de�ne the following metrics:
● E is the sumof expected errors across all states. �e expected error
at a state S is simply the probability that the strategy terminated at
S with an error being made.

E = ∑
S
apass(S) ⋅ p0(S) + a f ai l (S) ⋅ p1(S) (1)

● C is the sum of expected cost across all states. �e cost at a state
S is the probability that the statewas reached, i.e., (p0(S)+p1(S)),
multiplied by the probability that a terminationdecisionwas taken,
i.e., (apass(S) + a f ai l(S)), multiplied by the cost, i.e., the total
number of answers so far: ∑i∈1. . .r[x i + y i].

C =∑
S

[p0(S) + p1(S)] ⋅ (apass(S) + a f ai l (S)) ⋅ ( ∑
i∈1. . .r

[x i + y i]) (2)

�eprobabilities p0 and p1 can be iteratively computed; we illustrate
this using a simple example with r = 2 workers for p0 (also displayed
in Figure 1(a)). Consider state S0 = (1, 0, 0, 1) (i.e., worker w1 an-
swered YES andw2 answeredNO). �e �gure shows that we can get
to state S0 from either S1 = (0, 0, 0, 1) by receiving a YES from w1 ,
or from S2 = (1, 0, 0, 0) by receiving a NO from w2 . �en, p0(S0)
is the sum of two quantities: the �rst quantity is the probability that
the strategy reached S0 via S1 , and the second quantity is the prob-
ability that the strategy reached S0 via S2 , both when the item does
not satisfy the �lter. �ere are no other ways to get to S0 . �e �rst
quantity is equal to p0(S1) ⋅ acont(S1) ⋅ e0(w1), where
● p0(S1) is the probability that the strategy reached S1 and the item
does not satisfy the �lter (V = 0),

● acont(S1) is the probability that an additional human worker was
asked (the only unasked worker at S1 is w1 , so w1 was asked to
answer),

● and e0(w1) is the probability that w1 answered incorrectly.
�e second quantity is similar. �us,

p0(S0) = p0(S1)acont(S1)e0(w1) + p0(S2)acont(S2)(1 − e0(w2))

In the general case, we have the following equations:

p0(x1 , y1 , . . . , xr , yr) = ∑
1≤i≤r ; x i=1;

R=(x1 ,y1 , . . . ,x i−1 ,y i−1 ,0,0,. . . ,xr ,yr)

e0(w i) ⋅ p0(R) ⋅ acont(R)
b

+

∑
1≤i≤r ; y i=1;

R=(x1 ,y1 , . . . ,x i−1 ,y i−1 ,0,0,. . . ,xr ,yr)

(1 − e0(w i)) ⋅ p0(R) ⋅ acont(R)
b

⋅

p0(0, 0, . . . , 0, 0) = (1 − s)

where b is the number of x i or y i that are 0, i.e., the number of
workerswhohave not been asked yet at stateR. �us, we simply sum
up the probabilities that the strategy reaches (x1 , y1 , . . . , x i−1 , y i−1 ,
0, 0, . . . , xn , yn) and gets a YES from a speci�c worker w i (out of
b unasked workers) who has not been asked before, for all i. Andwe
add this sum to the probabilities that the strategy reaches (x1 , y1 , . . . ,
x i−1 , y i−1 , 0, 0, . . . , xn , yn) and gets a NO from a speci�c worker w i
(out of b) who has not been asked before, for all i. �erefore, the
probability of getting to a state S (and the item not satisfying the
�lter) is the sum of the probabilities of getting to one of the previ-
ous states R that is identical to S but has one x i or y i diminished by
1 (with the item not satisfying the �lter), and getting the appropri-
ate answer (YES/NO) from the appropriate worker i. (Naturally, the
states R that are invalid are omitted from the summation.)
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For a strategy, we de�ne the states S for which p0 or p1 are non-
zero as reachable states (that is, there is a non-zero probability of
reaching them while executing a strategy.)
Problem: Given parameters selectivity s, false negative rates e1(w i),
and false positive rates e0(w i), we consider the following problem:

Problem 1 (Abilities). Given an error threshold τ and a bud-
get threshold per item m, �nd a strategy that minimizes C such that
E < τ and ∀ reachable (x1 , y1 , . . . , xr , yr) ∶ ∑i∈1. . .r(x i + y i) ≤ m
Since we want to ensure that the strategy terminates, we enforce a
threshold m on the maximum number of questions we can ask for
any item (which is nothing but a maximum budget for any item that
we want to �lter). In our peer evaluation setting, the problem above
translates to a minimization of the average number of evaluations
assuming a threshold on error rate, a maximum number of graders
per submission and knowledge of per-worker error rates.
Solution Intuition: We present a solution to Problem 1 that gen-
eralizes the solution in CrowdScreen, but is simpler to understand.
Our solution leverages linear programming.

Even though the equations describing relationships between vari-
ables are highly non-linear (ref. Equation 1, 2), we can convert these
into linear equations by considering the �ow of paths. A path is a
speci�c sequence of answers that can be used to get to a given state
S. Returning to our previous example (Figure 1), one path to get to
S0 may be w1 answering YES �rst, followed by w2 answering NO.
�e only other possible path is for w2 to answer NO followed by w1
answering YES.�ese paths are depicted in Figure 1(a); the only way
to get from (0, 0, 0, 0) to (1, 0, 0, 1) is via one of these two paths. Of
course, not all paths may be possible in a strategy. �at is, it may be
possible that a strategy stops and returns Failwhenw2 answers NO,
and therefore, the latter path is not feasible.

We de�ne a new variable called path(S) to denote the number
of paths from the origin (0, . . . , 0) to S within a strategy. In our ex-
ample above, assume the strategy always continues asking questions
at (0, 0, 0, 0), (1, 0, 0, 0), and (0, 0, 0, 1) (that is, acont = 1 for all of
these points). �en path(S0) is 2, since both paths are feasible. �is
case is depicted in Figure 1(b).

Now, assume that from (1, 0, 0, 0) the strategy continues only
with 0.5 probability (i.e., acont = 0.5). In this case path(S0) is equal
to 1.5 — one path via (0, 0, 0, 1), and half a path via (1, 0, 0, 0). �is
case is depicted in Figure 1(c).

In fact, path(S) can be computed recursively. Continuing with
our example, observe that the number of ways of getting to S0 , i.e.,
path(S0), is equal to the sum of the number of ways of reaching S0
via S1 = (0, 0, 0, 1), which we denote pathcont(S1), and the num-
ber of ways of reaching S0 via S2 = (1, 0, 0, 0), which we denote
pathcont(S2). If, for instance, acont(S1) = 0, that is, the strategy al-
ways terminates at S1 , then, the former number (i.e., pathcont(S1))
is 0. If, on the other hand, acont(S1) = 0.5, that is, with probability
half, the strategy asks an additional question at S1 , then the former
number pathcont(S1) = 0.5 × path(S1), i.e., the number of paths
leaving S1 is half the number of paths reaching S1 (alternatively, half
the number of ways to reach S1).
Solution Details: We now present the details. From each state S,
the incoming paths, path(S), �ow onward to other states in the fol-
lowing manner: pathpass(S) is the fraction of paths that stop at S
with the strategy returningPass; path f ai l(S) is the fraction of paths
that stop at S with the strategy returningFail; and pathcont(S) is the
fraction of paths that continue onward to other states.
We therefore have:

pathpass(S) = apass(S) × path(S)
path f ai l (S) = a f ai l (S) × path(S)

path(S) = pathcont(S) + pathpass(S) + path f ai l (S)

�at is, apass and a f ai l alternatively represent the fraction of the
path at a state that is lost by returning a Pass or Fail decision respec-
tively. �e remaining (fractional) number of paths, pathcont , con-
tinue onward to other states. Via conservation of paths, we have:

path(x1 , y1 , x2 , y2 , . . . , xr , yr) =

∑

1≤i≤r ; xi=1
pathcont(x1 , y1 , x2 , y2 , . . . , x i−1 , y i−1 , 0, 0, . . . , xr , yr)+

∑

1≤i≤r ; yi=1
pathcont(x1 , y1 , x2 , y2 , . . . , x i−1 , y i−1 , 0, 0, . . . , xr , yr) (3)

In other words, path �ow can come to a state by asking any one of
the rworkers and getting one of the twopossible answers (YES/NO).

It can be shown that the rest of the variables are linear equalities
on the path variables. For some constants const(S), const′(S) (in-
dependent of the strategy and only dependent on S) we have:

p0(S) = const(S) × path(S)
p1(S) = const(S) × path(S)

E = ∑S const(S) ⋅ pathpass(S) + const′(S) ⋅ path f ai l (S)

C = ∑S const(S) ⋅ pathpass(S) + const′(S) ⋅ path f ai l (S)

�e proofs use induction, and can be found in the extended tech-
nical report [36].

�us, we have linear equations relating all the variables of interest,
along with corner cases:

path(0, . . . , 0) = 1
∀S = (x1 , y1 , . . . , xn , yn); ∑

i∈1. . .r
[x i + y i] = m + 1 ∶ path(S) = 0

�e objectives are linear as well, enabling a linear programming so-
lution. Recall that the complexity of linear programming is polyno-
mial in the number of variables (with an exponent of 3.5), and log-
arithmic in the problem encoding. Our Linear Program (LP) has
a total of O(m2r

) variables, with total size of the LP encoding be-
ing O(pol y(mr

)). As a result, the complexity of the solution is:
O((m2r

)
3.5
× log(pol y(mr

)), i.e., O(m7r r logm). �us, we have:
Theorem 3.1 (Abilities). We can �nd the optimal strategy for

Problem 1 in O(m7rr logm).
Note that our techniques are easily adapted to the somewhat simpler
setting when there are di�erent worker classes, each with an in�nite
number of workers. In this setting, there are r classes of workers
with error rates e0(w i), e1(w i), i ∈ 1 . . . r, such that there are in-
�nitely many workers in each class (and each worker in a given class
has the same error rate). Here, even a�er receiving an answer from
a worker in one class, we may still get additional (possibly di�erent)
answers from workers in the same class (with the same error rate).
We return to this simpler setting in the posterior-based representa-
tion section (Section 4).
Discussion:�eastute readermay have noticed that the complexity,
especially when r is large, can be rather high, due to r being present
in the exponent of the complexity expression. �erefore, the linear
programming approach will not scale if r is large. Instead, we will
need to resort to an approximate approach, presented in Section 4.

3.2 Incorporating Prior Information
We now generalize our algorithms for when we have prior infor-

mation about items.
Modi�ed Setting: Instead of having a single prior probability or se-
lectivity s for all items, we now have prior probabilities s i for each
item i, representing the probability of the item satisfying the �lter.
We let s′1 , s′2 , . . . , s′l be the distinct set of prior probabilities. �enum-
ber l may be typically much smaller than n, the total number of
items. For instance, if s1 = s2 = s5 = 0.8, s3 = s4 = s6 = 0.3, then
s′1 = 0.8, s′2 = 0.3, i.e., l = 2.
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Solution: Our algorithm will e�ectively design a distinct strategy
for each distinct probability s′j . We characterize the new state space
as: (x1 , y1 , . . . , xr , yr , j), j ∈ 1 . . . l . �e last coordinate in this state
space encodes the a-priori probability of the item we operate on.

Each item with priori probability s i = s′j will then begin �lter-
ing at state (0, . . . , 0, j), i.e., the start state for the strategy corre-
sponding to s′j . On asking a question and getting an answer from a
worker, we transition from (x1 , y1 , . . . , xr , yr , j) to (x1 , y1 , . . . , x i +
1, y i , . . . , xr , yr , j) or (x1 , y1 , . . . , x i , y i + 1, . . . , xr , yr , j) — that is,
the last coordinate remains �xed, while one of the other coordinates
is incremented based on the given worker answer.

When computing the strategies in the previous section, we had
set p0(0, 0, . . . , 0) = 1 − s. Here, we have a di�erent probability p0
depending on the last coordinate. We have,

p0(0, 0, . . . , 0, j) = f rac(s′j) × (1 − s′j)
�e probability above is a product of two factors: �e �rst factor is
the fraction of items that begin at (0, . . . , 0, j), i.e., the probability
that any item has prior probability s′j . �e second factor is the prob-
ability that an item does not satisfy the �lter, given that it begins
processing at (0, . . . , 0, j)—i.e., (1 − s′j)

Note that by adding another index to our state space, we are e�ec-
tively constructing one strategy for each s′j : intuitively, for s′j close to
1 or 0, we expect the strategies to be “small” (i.e., have a small num-
ber of reachable states), while for s′j close to 0.5, the strategy may be
larger, since that case is more uncertain.

Given thesemodi�cations, once again, the path �ow property can
be leveraged to derive a linear program, giving us:

Theorem 3.2 (Problem 1+Priors). Wecan�nd the optimal strat-
egy for Problem 1 with priors in O(m7rrl 3.5 log(ml) + m2r l), where
l is the number of distinct s i .
�e proof of complexity is a straightforward extension of the argu-
ment in the previous section.
Discussion: Notice that even if r = 1, l can be as large as n (the total
number of items), and as a result, this approach can be rather inef-
�cient when l is large. In particular, the �ne-grained probabilities
output by machine learning algorithms may give us many distinct
prior probabilities. Instead, we will need to resort to an approximate
approach, presented in the next section.
Note also that prior information may not always be completely

accurate for individual items. However, we do expect that over all
items, the statistics may indeed be correct, and in such a case, our
guarantees still continue to hold.

4. POSTERIOR-BASED REPRESENTATION
We now describe the posterior-based representation. �is repre-

sentation, unlike the previous representation, is approximate, that
is, the representation does not comprise a complete record of the
state of processing of an item—some information is lost. However,
our technique exposes a knob that allows the calling application to
control the amount of lost information (at the cost of added com-
putational complexity): as the amount of information recorded is
increased, the cost of the output strategy tends towards reaching
optimal cost. In addition, unlike the answer-record representation
whose state space scales rapidly (with someparameter dependent on
the aspect under consideration), the dimensionality of the posterior-
based representation stays constant on adding additional aspects.
We �rst describe the representation for the basic setting consid-

ered in CrowdScreen—when all workers are assumed to be equally
error-prone. Considering the basic setting allows us to demonstrate,
for a simple case, how the states in the answer-record representation,
discussed previously, map to those the posterior-based representa-
tion. �en, in the next subsection, we will provide our solution for
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Figure 2: Mapping Between Representations: Left: Answer-record Representation;
Middle: Continuous Posterior-based Representation; Right: Discretized Posterior-
based Representation

worker abilities (that we considered in Section 3.1), and then for in-
corporating prior information (that we considered in Section 3.2).

4.1 Basic Setting
Preliminaries: In the basic setting, when all workers have identi-
cal error rates, the answer-record representation has a collection of
states S represented using a pair (x , y), where x is the total number
of YES answers so far, while y is the total number of NO answers so
far, as shown in Figure 2 (le�). �e �gure shows a strategy that has a
Cont decision (Yellow) for all states (x , y) such that x + y ≤ 2, with
Pass (blue) for (3, 0) and (2, 1), and Fail (red) for (0, 3), and (1, 2).
Instead, the posterior-based representation has a new state space

represented using two components (p, c), encoding a probability p,
which represents the probability that an item has V = 1 given the
answers obtained so far, denoted: p = Pr[V = 1∣(x , y)] and cost c,
which represents the total cost incurred so far, i.e., (x + y).
As in the answer-record representation, in this representation, a

strategy takes as input a state (p, c), and outputs a probabilistic de-
cision: “Fail”, “Pass”, or “Continue”.
Mapping and Optimality: We show the correspondence by map-
ping states in the strategy in the answer-record (le�) representa-
tion to the posterior-based (middle) representation. �e mapping
is shown in Figure 2 for s = 0.7, e0 = e1 = 0.2 with dashed lines for
three states (other mappings are omitted for clarity).

As can be seen in the �gure, the state (0, 0) maps to precisely
(s, 0) = (0.7, 0), since Pr[V = 1∣(0, 0)] = s = 0.7, and since x +
y = 0 + 0 = 0. �e state (1, 0) maps to precisely (0.903, 1) since
Pr[V = 1∣(1, 0)] =

se1
se1+(1−s)(1−e0) = 0.903, and since x + y = 1 +

0 = 1, while state (0, 1) maps to precisely (0.368, 1) since Pr[V =

1∣(0, 1)] = 0.368, and since x + y = 0 + 1 = 1.
�us, each state (x , y) (in the le� in the �gure) maps to precisely

one state in the new representation (in themiddle in the �gure). It is
also easy to see that each state in the new representation can corre-
spond to atmost one state (x , y). To see this, let there be twodistinct
states (x′ , y′) and (x , y) in the answer-record representation that
map to the same state in the posterior-based representation. �us,
x′ + y′ = x + y. Now, without loss of generality, let x′ < x. �en, we
can show that the p value associated with (x′ , y′) must be smaller
(since there are fewer YES answers from workers with the same er-
ror rates). �us, strategies in the answer-record representation may
be represented in the posterior-based representation without loss in
information.

Furthermore, there are no better strategies in the posterior-based
representation, that is, the best strategy in the posterior-based rep-
resentation is no better than the best strategy in the answer-record
representation. �is is because the only states in the posterior-based
representation that matter are the ones that are reachable in any
answer-record strategy; those are precisely the ones that have a cor-
responding state in the answer-record representation. �us:

Theorem 4.1 (Optimality). For the basic setting (with all work-
ers having identical error rates), the optimal strategy for Problem 1 in
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the posterior-based representation would have same expected mone-
tary cost as the optimal strategy in the answer-record representation.
Approximation: �e theorem above states that the optimal strat-
egy in the posterior-based representationwould have same expected
cost as the optimal strategy in the answer-record representation. In-
stead of storing the set of reachable states and computing a strat-
egy using those states, we instead compute strategies on an approx-
imate discretized version of the entire posterior-based representa-
tion states; when we consider worker abilities, approximations will
become more necessary. As we will see in Section 6, even our ap-
proximate solutions have very good performance (i.e., very low cost
for same error threshold).

In particular, we approximate the state (p, c) by using discretiza-
tion. We discretize the probability p into intervals. (Note that c is
already discrete.) We use a discretization factor δ, and we divide the
[0, 1] interval for p into δ intervals of size 1/δ each. For instance,
if δ = 2, then [0, 1] will be divided into two parts: [0, 0.5], (0.5, 1].
�e larger the discretization factor δ, the smaller will be our inter-
vals, and our intervals will be more in number.
Our state space S is now restricted to (p, c) where p is an inte-

ger multiple of 1/δ. �e discretized state space is depicted in Fig-
ure 2 (Right) for δ = 5. As can be seen in the �gure, the two blue
states in the full posterior-based representation (middle) map to
the same state in the approximate posterior-based representation
(right); there are in�nitely many mappings from states in the full
posterior-based representation to the approximate discrete one, but
we omit them from the �gure for clarity. For instance, any (p, c),
where a/δ ≤ p ≤ (a + 1)/δ, where a is an integer, maps to (a/δ, c).

Now, if on getting an answer ans for a question asked when at
state (p, c), (where p is an integer multiple of 1/δ), our updated
posterior probability value is p′, we round p′ up to p′′, the nearest
integer multiple of 1/δ, and the new state will be (p′′ , c + 1).
Approximate Solution: Now that we have a discrete set of states, we
can once again use path-based reasoning, and linear programming
on paths to �nd the best strategy, as in the answer-record represen-
tation. We now brie�y describe how path-based reasoning works
in this case: �e value path(p, c) is the sum of pathcont from all
(p′ , c− 1) such that receiving either a YES or a NO answer from any
worker leads to the point (p, c). Essentially, we can de�ne a recur-
rence expression that allows us to compute path(p, c) in a manner
similar to Equation 3.
We therefore have the following theorem, using a straightforward

extension of the complexity argument of �eorem 3.1:
Theorem 4.2. We can �nd a strategy using the approximate post-

erior-based representation for a variant of Problem 1 with all workers
having identical error rates, in O(δ3.5m3.5 log(mδ)), where δ is the
discretization factor.
�us, by adjusting δ, the user can control how much time they are
willing to invest in �nding a strategy. �emore they invest, the lower
the monetary cost of the strategy will be, as we will see next.
Convergence: As we saw in Figure 2, multiple states in the answer-
record representationmaymap to the same state in the approximate
posterior-based representation. For example, the two blue states in
the answer-record representation (le�)map to two separate states in
the full posterior-based representation (middle), both of whichmap
to a single discrete blue state in the approximate posterior-based
representation (right). However, as we increase the discretization
factor (and therefore the number of intervals), the likelihood that
multiple states in the answer-record representation will map to the
same discrete state in the approximate posterior-based representa-
tion will go down; as a result, the cost of the optimal strategy in the
approximate discrete posterior-based representation tends towards
optimal cost. Formally,

Theorem 4.3 (Asymptotic Optimality). As δ →∞, the cost
of the optimal strategy in the approximate posterior-based represen-
tation will tend to the cost of the optimal strategy in the answer-based
representation.

Discussion: In this subsection, we demonstrated that even though
the strategies computed using the approximate posterior-based rep-
resentation do not achieve the same low monetary cost of the exact
answer-record representation, we can get as close as we want to that
cost by varying the user-controlled discretization factor δ.

�is guarantee seems to not be that useful for the basic setting
with an in�nite pool of identical workers, where the answer-record
representation leads to a tractable solution. However, we will �nd
that similar guarantees hold for the aspects considered next. While
tractable solutions are not possible for those aspects using the answer-
record representation, they are indeed possible with the posterior-
based representation.

4.2 Worker Abilities
Recall that in Section 3.1, for the answer-record representation, we

found that representing the answers from each worker individually
led to an explosion in the state space. In this section, we describe
how we may leverage the posterior-based representation when we
have worker abilities without a similar explosion.

Also in Section 3.1, we had brie�y mentioned that our techniques
would directly apply to the simpler setting of in�nite worker classes,
where instead of having r distinct workers, we had r in�nite worker
classes, with each class having a distinct error rate. �e key di�er-
ence is that if one of the r workers answers a question on an item,
that worker will not be asked from that point on; while in the r in�-
nite worker classes case, the sameworker class may be usedmultiple
times on the same item.

Here, we revisit that setting �rst: our guarantees for asymptotic
optimality only hold for the simpler setting of r worker classes, and
do not hold for the setting of r distinct workers. We will return to
this point once we �nish our treatment of r worker classes.

We begin by describing the changes in representation that apply
to the entire section. We then discuss the in�nite worker classes case
(along with the associated optimality guarantees), and the r distinct
workers case.
Changes in Representation: Unlike in the answer-record repre-
sentation, where we had 2r coordinates in the representation cor-
responding to the r workers, here, the posterior-based representa-
tion continues to use two coordinates (p, c). �us, the size of the
posterior-based state space does not change when we have many
workers with di�erent abilities — but, as we will see later, the cost of
computing the strategy does change.
In�nite Worker Classes: We �rst consider the full posterior-based
representation before discretization, and then discuss discretization.
Recall that in the in�nite worker classes case, instead of having r
workers with di�erent abilities, we have r in�nite worker classes.
�at is, there are r classes of workers, such that, at any state, with
probability 1/r, our question is answered by a worker with error
rate e0(w1), e1(w1), with probability 1/r, by a worker with error rate
e0(w2), e1(w2), and so on. �ese classes are in�nite; that is, if we
sample a worker from class 1, the probability of getting a worker
from class 1 does not change in the future. In this scenario, the
answer-record representation is the same S = (x1 , y1 , . . . , xr , yr):
but with one di�erence; in the previous setting, at most one of x i or
y i is 1; here x i or y i can both be as large as m (because there may
be as many as m YES or NO answers from a given worker class —
recall that our cost bound per item is m.)

We state the following lemma without proof.
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Lemma 4.4 (No Loss of Information). With in�nite worker
classes, all states s1 , s2 , . . . , sa in the answer-record representation that
map to the same state s = (p, c) in the full posterior-based represen-
tation have the following properties:
● For the same answer obtained at s1 , . . . , sa (YES/NO fromanyworker
class), the resulting states s′1 , s′2 , . . . , s′a all map to the same state s′ =
(p′ , c′).

● �e probability of getting a YES or a NO from a speci�c worker class
at s1 , . . . , sa , given that a question is asked, is identical for each of
s1 , . . . , sa .

We can now state the following theorem:
Theorem 4.5 (Optimality withWorker Classes). With in-

�nite worker classes, the optimal strategy for Problem 1 in the full
posterior-based representation has the same cost as the optimal strat-
egy in the answer-record representation.
�eproof of the above theorem is not as straightforward as the proof
of �eorem 4.1, where we could simply show a one-to-one corre-
spondence between states in the answer-record and posterior-based
representations. �e proof may be found in the extended technical
report [36]. Furthermore, we have:

Theorem 4.6 (Asymptotic Optimality). For in�nite worker
classes, as δ →∞, the cost of the optimal strategy in the approximate
posterior-based representationwill tend to the cost of the optimal strat-
egy in the full posterior-based representation.

Approximation to Worker Abilities: While we have proved op-
timality for the posterior-based representation for in�nite worker
classes, the proof does not capture the worker abilities aspect dis-
cussed in Section 3.1 precisely, because as soon as a worker answers
a question (with a YES/NO), the worker can no longer be asked any
further questions. �erefore, even as δ increases without bound, by
representing the state using just two numbers p and c, we are cer-
tainly losing information if we do not record exactly which worker
gave us which answer (like we do in the answer record representa-
tion). �us, our solution will be necessarily approximate.

We now further approximate via discretization (as discussed in
the previous section). �erefore, in adapting to r distinct workers,
there are two sources of approximation: one, from discretization
(like we saw in the previous section), and second, from using the
r in�nite worker classes approach for the r distinct worker case.
However, as we will see in the experiments in Section 6, the two

approximations we have made do not hurt performance. We have
the following, a straightforward extension of the complexity argu-
ment of �eorem 3.1:

Theorem 4.7. Wecan�nd a posterior-based strategy for the Prob-
lem 1 with worker abilities provided, in O(m3.5δ3.5 log(mrδ)+mδr),
where δ is the discretization factor.
Notice that r appears as a logarithmic factor in �rst term of the
complexity. �is is because the linear equations in the linear pro-
gram scale up by O(r)—we need to consider transitions from each
state (p, c) based on r possible answers: YES/NO from each worker.
Since the complexity is no longer exponential in r, it is much faster
to compute the optimal strategy in the approximate posterior based
representation than it is in the answer-record representation.

4.3 Incorporating Prior Information
We now consider the aspect described in Section 3.2. Recall that

our approach for the answer-record representation was to have a
strategy computed for each individual distinct prior probability s′j
value as provided by an automated algorithm or human. �is num-
ber could be as large as O(n), where n is the number of items. As
a result, our solution, even when the number of workers or worker
classes is small, ended up being di�cult to compute.

We now discuss how we may leverage the posterior-based rep-
resentation S = (p, c) for this aspect. We discuss our solution for
the basic setting, that is, when all workers are identical, though our
technique is generalizable to when we have distinct worker abilities.

�e key idea that we use is to set the path �ow into (s′j , 0) to be
equal to f rac(s′j), i.e., the fraction of items with prior probability
s′j . �us, the total path �ow into all states with cost c = 0 is still 1, as
before. For instance, if we had 50% of the items with prior probabil-
ity 0.4, and the remaining with prior probability 0.8, then we would
start half a path at (0.4, 0), and half a path at (0.8, 0).

With the full posterior-based representation, the optimal strategy
has just as low cost as the answer-record representation, formalized
in the theorem below:

Theorem 4.8 (Optimality). With s1 , s2 , . . . , sn provided, the
optimal strategy in the posterior-based representation for Problem 1
(with identical workers) has the same cost as the optimal strategy in
the answer-record representation.
We will now discretize the probability p, as before. As we increase
the discretization factor δ, the cost of the optimal strategy in the
discretized posterior-based representation will tend to the cost of
the optimal strategy in the full posterior-based representation.

Theorem 4.9 (Asymptotic Optimality with Priors). As δ →
∞, with priors, the cost of the optimal strategy for Problem 1 (with
identical workers) in the approximate posterior-based representation
will tend to the cost of the optimal strategy in the answer-record rep-
resentation.
We then have:

Theorem 4.10. We can �nd a posterior-based strategy for Prob-
lem 1with prior probabilities provided, in O(δ3.5m3.5 log(mlδ)+lmδ),
where δ is the discretization factor.
�us, unlike the answer-record representation, this representation
does not have a computationally expensive O(n3.5

) factor.

5. OTHER ASPECTS
We now discuss other aspects described in the introduction. All

these aspects can be captured by the two representations discussed
previously.
● Latent Di�culty: �e algorithms in CrowdScreen assume that all
items are equally hard or equally easy to �lter—that is, they as-
sume that all humans have the same error rate on every item. How-
ever, this assumption may not hold in practice. As an example,
checking if a blurry picture contains a cat is much harder to do
(and is more error-prone) than a clear picture. Furthermore, dif-
�culty information is not provided to us up-front; we need to infer
if an item is di�cult or not based on answers we get from humans.

● Requesting Speci�c Workers: �e algorithms in CrowdScreen do
not request that speci�c workers answer, nor pay workers di�er-
ently. In the marketplace ODesk [5], for instance, there are better
quali�ed workers who are paid more while not-so well quali�ed
workers who are paid less, and for any question, wemay choose to
use amore quali�ed or less quali�edworker. Here, we consider the
addition of the functionality of being able to request that speci�c
workers answer and being able to pay them di�erent amounts.

● Latency:�e problem statements described so far only have mon-
etary cost and error as objectives, not latency. Latency is impor-
tant in many crowdsourcing applications. We consider the addi-
tion of a simple latency constraint in our problem statement.

● Scoring: �e problem statements described so far only consider
binary �ltering: we would also like to perform scoring, i.e., iden-
tifying the appropriate score or rating of an item, say from 1 . . . 5.
Furthermore, we allow weighted error objectives. For instance, it
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is much worse to score an item with true rating 1, as a 5, instead of
a 2. Brie�y, scoring is handled by increasing the dimensionality of
states by recording if a worker gave an item a score of 1, 2, . . . , r.

Our solution for all of these aspects can be found in our technical
report [36]. In Table 1, we show the complexity results for each of the
aspects considered; the two columns correspond to the complexity
of algorithm computing the strategy using the answer-record repre-
sentation, and the complexity of the algorithm computing the strat-
egy using the posterior-based representation.

We divide the rows into two parts: the complexity on adding each
of the individual improvement-based aspects to the settingwithworker
abilities, followed by the complexity on adding each of the function-
ality addition-based aspects to the setting with worker abilities.

6. PEER EVALUATION EXPERIMENTS
We describe the dataset and the setting �rst, followed by our ex-

perimental methodology.
Dataset Description: We validate our algorithms on a real MOOC
course dataset—theHumanComputer Interaction (HCI) course of-
fered during Fall 2012 at Stanford. �e HCI course involved around
1000 students, who were evaluated on �ve assignments, each con-
taining �ve problems, for a total of 25 problems. �us, the total num-
ber of student submissions (across all problems) was 25,000.

�e course relied entirely on evaluation by peer graders to judge
the quality of the student submissions for each problem. Each sub-
mission was graded independently by 10 (randomly selected) stu-
dent graders on average, each grader providing a score between 0–
5, both inclusive, i.e., one of six scores. �us, the total number of
evaluations (i.e., questions asked to humans) across all submissions
was 250,000, with each grader grading 250,000/1000 = 250 items on
average. �is dataset is ordered, that is, for every submission, the
scores provided by the ten graders are listed in the order in which
they were received. For each score assigned to a submission, the
identity of the grader who provided the score is also recorded as
part of the dataset.
Mapping to Filtering: We treat each student submission on a prob-
lem as an item to be scored on a scale from 0—5 (both inclusive).
�us, we are operating under the scoring scenario described in Sec-
tion 5, instead of �ltering items as being YES/NO. Since there are 25
problems, each evaluated by 1000 students, we have a total of 25,000
items to be scored.
Grader Evaluation:�edataset also contains a set of 250 “test” sub-
missions that were graded by all 1000 graders, as well as the course
sta� (instructors or TAs). �ese test submissions allows the peer
evaluation system to calibrate the error rates of each grader prior to
peer evaluation.
Since we are scoring items rather than performing binary �lter-

ing, the error rates or accuracies for each grader (or worker) wk are
of the form p(i , j)(wk), representing the probability that a workerwk
examines an item with sta� score j, and assigns it a score of i. Since
we have 6 possible scores, each grader’s error rate is therefore de-
�ned by a set of 36 p(i , j) values. We set the grader’s error rate based
on his or her performance on the 250 test submissions. Our estimate
of p(i , j)(wk) is simply: the fraction of items whose sta� scores are j
that the worker wk judged to be i instead, over the total number of
items with a sta� score of j.
Complete Maximum Likelihood Score: In our evaluations we will
need to compare the score provided by a strategy to the submission’s
“correct” score. Since we do not have TA scores (except for the test
submissions), we will interpret the “correct score” as the best pos-
sible estimate if we had available all information. �us we de�ne
the complete maximum likelihood score for an item a as the score

j ∈ 0 . . . 5 that the item is most likely to be, based on all existing in-
formation about a (that is, all grader evaluations of a). We assume
that graders evaluate items with known accuracies corresponding to
p(i , j). We de�ne this concept more formally below.
We de�ne L( j, a), j ∈ 0 . . . 5 to be the probability that the score

of item a is j, given the evidence we have. �at is,
L( j , a) = ∏

wk ’s score for item a=i
p(i , j)(wk)

�erefore, L( j, a) encodes the product of the probabilities p(i , j) for
all workers who looked at the item, and gave it a score of i, for some
i. For instance, if worker w1 gave an item a a score of 3, and worker
w3 gave a a score of 5, then: L( j, a) = p(3, j)(w1) ⋅ p(5, j)(w3). Now,
the complete maximum likelihood score of an item a,V(a) is de�ned
as the score j that maximizes L( j, a):

V(a) = arg max
j∈0.. .5

L( j , a)

�us, the complete maximum likelihood score of an item is the
score that maximizes the product of the probabilities of the individ-
ual grader scores, across all graders who have provided scores for
the item. As a result, we use the entire dataset to assign a score to
each item. Note that we are overloading V to mean both the “true
value” of items (as de�ned in Section 2), and the complete maxi-
mum likelihood score: this is because for all practical purposes, the
complete maximum likelihood score is our best estimate of the true
value of items given the entire dataset.
Overall Goal and Methodology: �e goal of our experiments is to
study the trade-o� between expected cost and expected error for the
�ltering strategies output by our algorithms. Our methodology for
comparison is to repeat the following for each algorithm:
● For each error threshold τ ∈ [0, 1], we execute the algorithm to
generate a �ltering strategy that obeys the expected error thresh-
old, and is optimized for minimum expected cost.

● We then simulate a run of the generated �ltering strategy on each
item (i.e., each student submission) in the dataset. When the �lter-
ing strategy requests an additional grader score while processing
an item, then this score as well as the identity of the grader who
provided the score is retrieved from the dataset. �at is, when the
�ltering strategy requests an additional grader score, it is allowed
to “see” another score for the item from the dataset (in the order
in which the scores were assigned by graders in the �rst place).

● When the simulation of the strategy on each item terminates, we
record both the empirical cost (the number of scores requested
for that item), and the empirical error (the di�erence between the
completemaximum likelihood score—as assigned above—and the
score output by the strategy for the item).

● We then measure the average empirical cost (i.e., total number of
scores requested by the strategy, as a fraction of the total number
of scores available in the dataset across all items), and the aver-
age empirical error (i.e., the average di�erence between the score
assigned to an item and its complete maximum likelihood score,
across all items).

● We repeat the procedure above for a range of τ, recording the av-
erage empirical cost and error, giving us a cost-error curve. �ese
cost-error curves allow us to pictorially compare between algo-
rithms over a range of cost and error values.

Algorithms: We evaluate four �ltering algorithms. For all algo-
rithms that we study, we use the posterior-based representation (as
described in Section 4), wherein the state of processing is recorded
using two quantities: the probability p that the item passes the �lter,
given answers seen so far, and cost spent so far, c. Since we wish
to score items from 0 . . . 5, instead of performing binary �ltering,
the probability p is replaced with 5 probabilities p0 , p1 , . . . , p4 , i.e.,
the probability that the item has score i , i ∈ 0 . . . 4, given the grader
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Functionality Answer-record Approximate Posterior-based (δ)
Problem 1 (Worker Abilities) m7r r logm (mδ)3.5 log(mrδ) + mδr
Problem 1 (Worker Abilities)+Priors m7r r l 3.5 log(ml) + m2r l (mδ)3.5 log(mrl δ) + mδrl
Problem 1 (Worker Abilities)+Difficulty m7r r log(md) + m2rd (mδ)3.5 log(mrdδ) + mδrd
Problem 1 (Worker Abilities)+Picking Workers m7r r logm (mδ)3.5 log(mrδ) + mδr
Problem 1 (Worker Abilities)+Latency m7r r t3.50 log(mt0) + m2r t0 (mδt0)3.5 log(mrδt0) + mδrt0
Problem 1 (Worker Abilities)+Scores m3.5ru ru logm + mru

(mδ(u−1))3.5u log(mrδ) + mδu−1 r

Table 1: Comparison of complexity: For clarity, we only show the complexity of adding one aspect at a time to the setting of Problem 1; it is straightforward to construct the
solution for applying all the aspects at the same time. Notation: m is the upper-bound on cost, r is the number of workers, δ is the discretization factor, d is the number of
distinct error rates, l is the number of distinct probabilities, t0 is the upper-bound on latency, and u is the number of distinct scores.

evaluations seen so far. (�e probability p5 that the item has score 5
given the scores seen so far can be inferred from the remaining 5 val-
ues, and therefore need not be recorded.) Sincewe use the posterior-
based representation, all the algorithms we study have a discretiza-
tion factor δ, representing the number of intervals into which we
divide the probability coordinate. As we saw in Section 4, the larger
the δ, the more �ne-grained our probability estimates are, but the
more time it takes to compute the strategy.
�e algorithms we consider are the following:
● Single(δ): �is algorithm, for each threshold τ, generates the cost-
optimal strategy assuming all workers have the same error rate, us-
ing techniques from CrowdScreen.

● Complete(δ): �is more powerful algorithm, for each threshold τ,
generates the cost-optimal strategy assuming worker abilities are
all distinct, using techniques from Section 4.1.

● Var(k, δ):Wede�ne variance as the average di�erence between the
scores provided by the grader and sta� scores, as observed during
testing (described above). �is algorithm, for each value k, �rst
places graders into k equal-sized intervals based on their variance:
that is, graders are sorted based on their variance, and then we
partition variance into k intervals such that the same number of
graders are in each interval. �is algorithm, for each error thresh-
old τ, generates the cost-optimal strategy, assuming that workers
within each partition have the same error rate. �at is, workers in
an partition are assumed to be equally capable of evaluating items.
When k = 1000, i.e., equal to the total number of graders, then
this algorithm is identical to the Complete algorithm, since in that
case, each grader will be in a partition all by himself or herself.
Additionally, when k = 1, then this algorithm is identical to the
Single algorithm, since in that case all graders will be in the same
partition. �us, this algorithm can be viewed as a generalization of
both Single and Complete, as is the Bias algorithm described next.

● Bias(k, δ): �is algorithm is the same as the previous one, except
we partition graders based on bias; we de�ne bias as the average
signed di�erence between the scores provided by the grader and
sta� scores, as observed during the testing period.
We compare the algorithms above to the following two baselines:
● Median: �is heuristic is currently in use in the Coursera system
for peer evaluation. For each submission, the scores given by the
randomly selected student graders are combined using themedian
heuristic: that is, the median of the scores for each submission is
the �nal grade assigned to the submission.
We can generate a cost-error curve for the median algorithm by
constraining the cost to be some fraction γ of the maximum possi-
ble cost—that is, with probability γ, we include each score assigned
to an itemwhile computing themedian—and then wemeasure the
error of themedian scores assigned (i.e., the di�erence between the
median score and the complete maximum likelihood score, on av-
erage across all items). We repeat this for multiple γ to give us a
cost-error curve.

● RMLE (Randomized Maximum Likelihood Estimation): For each
submission, this algorithm combines the scores given by randomly
selected graders, usingmaximum likelihood, that is, the �nal grade
assigned to the submission is the maximum likelihood estimate

computed using the set of scores seen so far. As in the Median
algorithm, we generate a cost-error curve by constraining the cost
to be some fraction γ of the maximum possible cost—that is, with
probability γ, we include each score assigned to an item—and then
wemeasure the error of the score assigned by the RMLE algorithm.
We repeat this for multiple γ to give us a cost-error curve.
We implemented all of our algorithms in Python and conducted our
experiments on a large memory (100 GB) 25 processor server.

We report some statistics on the dataset, including distribution of
grader load, bias and variance of grader evaluations, and impact of
question on grader accuracy, all in our technical report [36].
Experiment 1: Howmuchbene�tdoweget fromoptimized crowd-
powered algorithms as compared to simple heuristics, and how
much bene�t do we get from considering worker abilities?

On comparing Single, Complete, RMLE, and Median on cost
and error, we �nd that for the same error, Complete has sig-
ni�cantly lower cost than Single and RMLE, which has signi�-
cantly lower cost than Median. Additionally, on �xing cost, we
�nd that Complete has signi�cantly lower error than Single and
RMLE, both of which have signi�cantly lower cost than Me-
dian. For most costs, Complete has 70% of the error of Single
and RMLE, and 50% the error of Median.

We use the methodology described above to trace the cost-error
curve for Single, Complete (both for δ = 10) — denoted Single-
Factor10 and Complete-Factor10 respectively, RMLE, and Median.
�e results are displayed in Figure 3(a). �e�gure shows the fraction
of the dataset that is “seen” or “consumed” by each of the algorithms
(i.e., the total empirical cost) on the y-axis, versus the average dif-
ference between the complete maximum likelihood score and the
estimated score (i.e., the average empirical error) on the x-axis. As
can be seen in the �gure, Complete has much lower cost and error
than Single, RMLE, and Median. For instance, on �xing cost, say
at 50%, which means that each of the algorithms requests 5 scores
on average for each submission, Median has an error of 0.57, i.e., on
average, the actual score assigned to a student is 0.57 away from the
complete maximum likelihood score; Single and RMLE have an er-
ror of 0.4, 70% of the error ofMedian; Complete, on the other hand,
has an error of 0.27, just 47% of the error of Median, and just 68%
the error of Single or RMLE. (Of course, the better performing al-
gorithms have a higher computational cost, as will be discussed in
Experiment 5.)

In Figure 3(b), we trace the cost-error curve for Single (for δ =

20), RMLE, and Median. Here, we �nd that unlike when δ = 10
(where Single andRMLEperformed similarly), Single itself hasmuch
lower cost and error than RMLE and Median. For instance, on �x-
ing cost at 50%, Median has an error of 0.57 and RMLE has an error
of 0.4, while Single has an error of around 0.3 (i.e., just 75% of the
error of RMLE, and 50% of the error of Median.)

�us, the optimized crowd-powered algorithms—Complete and
Single—provide signi�cant bene�ts in both cost and error over the
algorithm currently used in the peer evaluation system (Median), as
well as RMLE. �is is because these algorithms �nd strategies that
are optimized to make the right decision at every possible interme-
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Figure 3: (a) Basic Comparison (b) Basic Comparison: Varying Factor (c) Varying Class Size

diate state of processing. Further, we �nd that Complete does much
better than Single; thus there are signi�cant bene�ts to tracking in-
dividual grader abilities rather than assuming that all graders have
the same error rate. Since Complete takes into account individual
grader abilities, it can appropriately “weigh” di�erently the same an-
swer coming from two di�erent graders with di�erent abilities. �e
algorithm Single, on the other hand, is not able to take this informa-
tion into account. Both Complete and Single do better than RMLE,
because they are able to requestmore evaluations for themore prob-
lematic or controversial items. over others. RMLE, on the other
hand, requests the same amount of evaluations on average for all
items. While Single does not do much better than RMLE for δ = 10,
it does much better for δ = 20, indicating that the discretization fac-
tor can have a signi�cant impact on cost and error. We explore this
aspect subsequently.
Experiment 2: How much does taking worker abilities into ac-
count impact performance? �at is, how �ne-grained should our
worker ability partitions be?

On keeping δ �xed, increasing the number of worker parti-
tions has the e�ect of reducing error for �xed cost, or vice versa.
However, the impact of the number of partitions is more pro-
nounced early on (for a small number of partitions), than later
on, when the number of partitions is already large. �us, in-
creasing the number of partitions yields signi�cant savings in
cost even though it leads to higher computational cost while
computing the strategy.

Wenext study howour hybrid algorithm forVariance performs in
comparison with Single and Complete, on varying k, the number of
worker partitions. We �x the discretization factor to be δ, and vary
the number of partitions from 1 (i.e., Single), to 10, 100, and then
�nally to 1000 (i.e., Complete). Figure 3(c) depicts the cost-error
curves for each of these four algorithms (the Variance curves are
denoted Var-Class-k-Factor10 in the �gure.) As can be seen in the
�gure, there are signi�cant gains to be had in terms of cost and error
in increasing the number of grader partitions from 1 to 10, from 10
to 100, and from 100 to 1000. For instance, if we �x the error to be
around0.35, Complete gives us a cost of 40%, Var-Class100-Factor10
(i.e., Variance with k = 100) has a cost of around 50%, Var-Class10-
Factor10 (i.e., Variance with k = 10) has a cost of around 55%, and
Single has a cost of around 60%.

As can be also seen in the �gure, small changes in k aremore likely
to impact the cost-error curve when k is small, rather than when k
is already large: for instance, the impact of changing k from 1 to 10
is as pronounced as the impact of changing k from 100 to 1000.

�us, if the computing the strategy is feasible for large k, this �g-
ure shows that it is preferable to do so in order to take advantage of
the additional cost savings to be had on increasing k. We consider
the computational cost on varying k later on.

Experiment 3: How �nely should we discretize probabilities?

On keeping k �xed at 50, increasing the discretization factor
has a signi�cant impact on performance: that is, it has the e�ect
of reducing error for �xed cost, or vice versa. �us, increasing
the discretization factor yields signi�cant savings in monetary
cost even though it leads to higher computational cost while
computing the strategy.

For this experiment, we �x k = 50, and let δ be 4, 5, 10, or 20.
(�ese values of δ were chosen because each of these values are di-
visors of the number 100.) We then plot the cost-error curves for
Variance for these values of δ in Figure 4(a), and for Bias for these
values of δ in Figure 4(b). As can be seen in the �gure, the cost-error
curves for δ = 4 or 5 are not as smooth as the ones for δ = 10 or
20: this is because when the probability discretization is so coarse-
grained, then there is a lot more noise, and the trade-o� between
cost and error is less predictable.

Further, as we can see here, as we increase δ, there are signi�cant
gains in both cost and error. For instance, in Figure 4(a), for error
being equal to 0.35 the cost for δ = 20 is 35%, while the cost for
δ = 10 is 45%, an almost 30% increase. �e cost-error curves for 4
or 5 never manage to achieve error 0.35.

�us, these set of results dictate that we should use as high a δ
as possible, to pro�t from the gains in both monetary cost and er-
ror. However, increasing δ leads to much higher computational and
storage cost. In fact, in our experiments, we were not able to com-
pute the strategy for δ = 25: this is because even storing the strategy
(in amemoized form) would require an array of 10×255×50×6 ≈ 30
Billion entries, which is more than we couldmanage on our Ubuntu
server. We will study this aspect in more detail later.
Experiment 4: How should we partition graders?

Partitioning graders on bias or variance gives similar results.

In Figure 4(c), we study the di�erence between using Bias orVari-
ance to partition graders. We let k = 50, and plot the cost-error
curves for both Bias and Variance for δ = 10 and 20. As can be
seen in the �gure, Bias and Variance perform similarly: while it
seems like Variance is better for higher δ and Bias is better for lower
δ, these changes may be attributed to experimental noise, rather
than to some systematic variation. Overall, using Bias to partition
graders is just as good as using Variance.
Experiment 5: How does the computational cost of computing a
strategy vary with k or δ?

�e cost of computing a strategy grows linearly with k and
polynomially with δ.

We focus on the Variance worker partition scheme, and plot the
cost of computing the strategy in minutes versus δ for di�erent val-
ues of k: 1 (same as Single), 10, and 100, shown inFigure 5(a) and 5(b)
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Figure 4: (a) Variance with Factor (b) Bias with Factor (c) Bias vs. Variance

(Figure 5(b) is the same as Figure 5(a), but with the y-axis in log
scale). As you can see in Figure 5(a), the time to compute the strat-
egy increases very rapidly with δ: for instance, for k = 100, the time
varies from less than 10 minutes for δ = 4, to three hours for δ = 10,
to half a day for δ = 20. �e growth curve is convex (i.e., the rate of
change increases as we increase δ) for each of the three plots corre-
sponding to di�erent k. In our analysis of the posterior-based repre-
sentation for themultiple scores case in the technical report [36], we
showed that the complexity of representing the strategy itself (and
computing it) is proportional to a large polynomial of δ, thus the
experimental results con�rm the theoretical analysis.

In Figure 5(b), the trend on increasing k is clear: for each value
of δ, the di�erence between the log of the computation time for k =
100 and 10 is the same as the di�erence between that for k = 10
and 1 (for all δ). �us, (a) the ratio between the time to compute
strategies is proportional to the ratio of k values (b) this ratio is the
same independent of δ. �us, as predicted by theoretical analysis,
the time to compute the strategy is linearly proportional to k.

�us, the cost of computing strategies increases polynomiallywith
δ and linearly with k. On the other hand, the cost of storing strate-
gies increases polynomially with δ, but is not dependent on k.
Experiment 6: Should we increase k or δ?

Both k and δ a�ect cost and error signi�cantly; however, it may
be preferable to increase k �rst, since it increases the complexity
linearly rather than polynomially (as in the case of δ).

We focus on the Variance worker partition scheme, and consider
two values each of k and δ: k = 10, 100, and δ = 10, 20: we plot
the cost-error curves for these four algorithms in Figure 5(c). We
�nd that the two curves for δ = 20, and the two curves for δ = 10
perform similarly, with the curve for k = 100 performing better than
the curve for k = 10 in both cases. However, the curves for δ = 10
perform worse than δ = 20. �us, δ has a larger impact on cost
and error than k. �is impact comes at a price: the computational
complexity is proportional to a large polynomial of δ, while being
linearly proportional to k. And since the number of k values is not
likely to be very large (in the hundreds or thousands, rather than the
millions), it may be preferable to increase k �rst before δ.

7. RELATED WORK
Crowd Algorithms: �ere is plenty of recent work on designing
data processing algorithms that use humans as data processing units
[8, 13, 17, 20, 21, 25, 29, 30, 37, 41, 44, 47]. Of these, the only paper fo-
cusing on �ltering is CrowdScreen [37], which we compare against
in this paper. �e work by Karger et al. [25] also considers �ltering,
but instead of optimizing for an explicit objective, tries to minimize
worst case error (a di�erent, weaker objective than ours). As a re-
sult, their algorithm never obtain any (asymptotic) improvements
from using an online scheme that asks questions based on the an-
swers obtained thus far. Furthermore, Karger et al. assume that the

same worker will never be asked again. In our case, the same set of
students will be asked to answer many questions.
EM-BasedWorker Quality Estimation: �ere are a number of pa-
pers that use the Expectation Maximization algorithm to estimate
worker quality, and in the process, estimate the true answers for var-
ious tasks [18, 22, 23, 34, 35, 40, 45]. �ese algorithms collect annota-
tions from humans, and does disagreement-based analysis a�er the
fact to deduce the true answers. Our algorithms could certainly ben-
e�t from using some of these techniques to better assess the quality
of the work provided by workers before designing strategies, per-
haps combining them with multi-armed bandit schemes [46].
Systems: �ere are many crowd-powered systems that have been
developed over the last few years [11, 12, 16, 19,27,28,31, 33, 38, 39,48].
Many of these systems require a quality control component, making
sure that enough votes are gathered to ensure correctness.
MDPs: Dan Weld’s group has used POMDPs (Partially Observable
MarkovDecisionProcesses) to design crowd-poweredwork�ows [14,
16,26,27]. In particular, they model worker behavior, task di�culty,
and output quality to dynamically choose the decision to make at
any step in the work�ow (re�ne, improve, vote, or stop), and also to
dynamically switch between work�ows to improve the overall “util-
ity”. Kamar et al. [24] use POMDPs to study how to best utilize par-
ticipation in voluntary crowdsourcing systems, speci�cally, Galaxy
Zoo, an astronomical data set veri�ed by human workers.

Our �ltering strategies also use decision theory, speci�cally,MDPs
(MarkovDecisionProcesses); however, unlike the papers listed above,
our models are simpler, enabling us to get guarantees for optimal-
ity for our �ltering strategies, while performing exceptionally well
in practice. �e papers mentioned above do not provide theoretical
guarantees of any kind. Lastly, these papers do not focus on �ltering.

8. CONCLUSIONS
In this paper, we described optimal �ltering techniques that take

into account a number of aspects found in real-world scenarios.
We provided extensions of the strategy computation techniques in
CrowdScreen [37] that enable us to address all of these aspects, but
lead to intractability in the representation and computation of the
strategy for some aspects. We then developed the posterior-based
representation which does not su�er from the intractability issue in
the answer-record representation, but leads to strategies that may
not be optimal. We did, however, show that these strategies con-
verge to optimal ones in the limit.

We then demonstrated the use of crowd-powered algorithms in a
novel application: peer evaluation in MOOCs. Our algorithms pro-
vide signi�cant reductions in both cost and error (as high as 30%
savings in cost, and 30% improvement in accuracy) over schemes
used in practice and intuitive baselines, as well as simpler Crowd-
Screen algorithms.

Even with a posterior-based representation, there may be signif-
icant computational costs in running the algorithm to derive the

695



4 6 8 10 12 14 16 18 20
Discretization Factor

0

100

200

300

400

500

600

700

800

900

T
im

e
 T

a
ke

n
 t

o
 C

o
m

p
u
te

 S
tr

a
te

g
y

Var-Class1-Factor*
Var-Class10-Factor*
Var-Class100-Factor*

4 6 8 10 12 14 16 18 20
Discretization Factor

10-1

100

101

102

103

104

T
im

e
 T

a
ke

n
 t

o
 C

o
m

p
u
te

 S
tr

a
te

g
y

Var-Class1-Factor*
Var-Class10-Factor*
Var-Class100-Factor*

0.25 0.30 0.35 0.40 0.45 0.50
Average Error in Score

20

30

40

50

60

70

Fr
a
ct

io
n
a
l 
C

o
st

 U
se

d
 (

%
)

Var-Class10-Factor10
Var-Class10-Factor20
Var-Class100-Factor10
Var-Class100-Factor20

Figure 5: (a) Computational Cost of Varying Class Size (b) Computational Cost of Varying Class Size (c) Relative Impacts of k and δ

optimized strategy, as well as signi�cant costs in representing and
storing the optimized strategy. �e computational costs are linearly
dependent on k (the number of worker partitions based on ability)
and polynomially dependent on δ (the strategy discretization fac-
tor). We demonstrated that there are signi�cant bene�ts to increas-
ing the strategy parameters k and δ; we should increase both k and
δ as much as the computational capability allows. Since k is likely
to be no more than a few hundred or a few thousand in our peer
evaluation system, we prefer to increase k �rst, before δ. Of course,
in other systems or other applications, wemay wish to increase both
k and δ simultaneously.
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