
Toward a Distance Oracle for BillionNode Graphs

Zichao Qi
Tsinghua University

Beijing, China

qizichao@gmail.com

Yanghua Xiao
∗

Fudan University
Shanghai, China

shawyh@fudan.edu.cn

Bin Shao
Microsoft Research Asia

Beijing, China

binshao@microsoft.com

Haixun Wang
Microsoft Research Asia

Beijing, China

haixun@gmail.com

ABSTRACT
The emergence of real life graphs with billions of nodes poses sig-
nificant challenges for managing and querying these graphs. One of
the fundamental queries submitted to graphs is the shortest distance
query. Online BFS (breadth-first search) and offline pre-computing
pairwise shortest distances are prohibitive in time or space com-
plexity for billion-node graphs. In this paper, we study the feasibil-
ity of building distance oracles for billion-node graphs. A distance
oracle provides approximate answers to shortest distance queries
by using a pre-computed data structure for the graph. Sketch-based
distance oracles are good candidates because they assign each ver-
tex a sketch of bounded size, which means they have linear space
complexity. However, state-of-the-art sketch-based distance ora-
cles lack efficiency or accuracy when dealing with big graphs. In
this paper, we address the scalability and accuracy issues by focus-
ing on optimizing the three key factors that affect the performance
of distance oracles: landmark selection, distributed BFS, and an-
swer generation. We conduct extensive experiments on both real
networks and synthetic networks to show that we can build distance
oracles of affordable cost and efficiently answer shortest distance
queries even for billion-node graphs.

1. INTRODUCTION
The emergence of very large graphs, including the World Wide

Web [1], the Facebook social network [2], LinkedData [3], and var-
ious biological graphs [4], has brought tremendous challenges to
data management. A first step toward effectively managing large
graphs is to support a class of useful graph operators. In this paper,
we are concerned with one of the most useful graph operators: the
shortest distance query.

Shortest distance queries are important for two reasons. First,
shortest distance queries are indispensable in many graph applica-
tions. For example, in a social network, we are interested in finding
the shortest distance between two users. Second, shortest distance

∗Correspondence author.This work was supported by the National NSFC
(No. 61003001, 61170006, 61171132, 61033010); Specialized Research
Fund for the Doctoral Program of Higher Education No. 20100071120032;
Shanghai Municipal Science and Technology Commission with Funding
No.13511505302; NSF of Jiangsu Province (No. BK2010280).

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee. Articles from this volume were invited to present
their results at The 40th International Conference on Very Large Data Bases,
September 1st 5th 2014, Hangzhou, China.
Proceedings of the VLDB Endowment, Vol. 7, No. 2
Copyright 2013 VLDB Endowment 21508097/13/10... $ 10.00.

queries are indispensable building blocks for many advanced ana-
lytical tasks associated with large graphs. For example, in social
network analysis, a person’s importance can be measured by his
centrality, which is defined as the maximal shortest distance from
the person to any other person. Clearly, centrality is calculated by
shortest distance queries. Many other measures, such as between-
ness and network diameter, are also based on shortest distances.

1.1 Shortest Distances in Large Graphs
Although much work has been done on computing shortest dis-

tances, there is no realistic solutions for efficient shortest distance
computation on billion node graphs. For web-scale graphs, it takes
hours for the Dijkstra algorithm to find the shortest distance be-
tween two nodes [5]. Alternatively, we can pre-compute and store
the shortest distances for all pairs of nodes, and use table lookups
to answer shortest distance queries at the time of the query. Clearly,
this approach requires quadratic space.

In one aspect, the above approaches provide two extreme solu-
tions: The Dijkstra algorithm does not use any pre-computed data
structure, but it has large time complexity. In fact, a naive imple-
mentation of the Dijkstra algorithm has time complexity O(|V |2).
On the other hand, the table lookup approach has a constant time
complexity but a very large space complexity: The pre-computed
data structure is of size O(|V |2). For a web-scale graph where |V |
is in the 109 range, neither is realistic.

In this paper, we propose using a distance oracle to answer short-
est distance queries on billion node graphs. A distance oracle is a
pre-computed data structure that enables us to find the (approxi-
mate) shortest distance between any two vertices in constant time.
A distance oracle is feasible for billion node graphs if it satisfies
the following criteria:

1. Its pre-computed data structure has a small space complexity. For
billion-node graphs, we can only afford linear, or sub-linear pre-
computed data structures.

2. Its construction has a small time complexity. Although distance
oracles are created offline, for billion-node graphs, we cannot af-
ford algorithms of quadratic time complexity.

3. It answers shortest distance queries in constant time.
4. It answers shortest distance queries with high accuracy.

The four criteria are interrelated. In general, the more sophis-
ticated the distance oracle (the more space and the longer time
it takes to build the distance oracle), the higher accuracy and the
lower time complexity of online query processing. Thus, the key to
building a good distance oracle is to seek appropriate tradeoffs. The
major objective of our work is to build a distance oracle that is of
linear space complexity, takes constant time for query answering,
produces answers of high accuracy, and scales up to billion-node
graphs.

61

1.2 Sketchbased Distance Oracles
We focus on a class of distance oracles that create a bounded-

size sketch for each vertex as a pre-computed data structure for
shortest distance queries. Since the size of the sketch for each ver-
tex is bounded by a constant, sketch-based solutions require linear
space only. If the sketch encodes enough useful information, it can
produce highly accurate answers in a short time (in most cases a
constant time). In the following, we classify sketched-based dis-
tance oracles into two categories and review each of them. To
simplify the description, we focus on unweighted and undirected
simple graphs unless otherwise stated.

Shortestdistancebased sketches. Let d(u, v) denote the
shortest distance between vertex u and v in a graph G(V,E). First,
we select a set of vertices L called landmarks. Then, we compute
the shortest distances between each landmark to each vertex in V .
The sketch of a vertex u is simply {(w, d(u,w))|w ∈ L}, where
d(u,w) is the shortest distance between u and w. For any vertices
u and v, their shortest distance can be estimated as the minimal
value of d(u,w) + d(w, v) over all w ∈ L.

This distance oracle takes O(|L|·|V |) space and answers queries
in O(|L|) time. The accuracy of query answering is primarily de-
termined by landmark selection. In the worst case, if no landmarks
exists in a shortest path between u and v, the estimation of d(u, v)
will be erroneous. Hence, distance oracles of this category focus
on selecting landmarks that a large number of shortest paths pass
through them.

Coordinatebased sketches. We embed a graph into a geo-
metric space so that shortest distances in the embedded geometric
space preserve the shortest distances in the graph. Then, the short-
est distance is estimated as the coordinate distance. Let c be the
dimensionality of the embedded space. The space complexity of
the coordinate based solution is Θ(c · |V |). The query can be an-
swered in Θ(c) time, independent of the graph size.

Graph embedding is the key to the success of distance oracles
of this kind. State-of-the-art approaches [6, 7] first select a set of
landmark vertices using certain heuristics (for example, selecting
vertices of large degrees). For each landmark, BFS is performed
to calculate the shortest distance between each landmark and each
vertex. Then, we fix the coordinates of these landmarks using cer-
tain global optimization algorithms based on the accurate distances
between landmarks. Finally, for each non-landmark vertex, we
compute its coordinates according to its distances to the landmarks.
Finding the coordinates of landmarks and non-landmark vertices is
formulated as an optimization problem with the objective of mini-
mizing the sum of squared errors:√ ∑

(u,v)

(|c(u)− c(v)| − d(u, v))2 (1)

where c(u) is the coordinates of vertex u. Usually, this kind of opti-
mization problem can be solved by the simplex downhill method [8].

1.3 Challenges for BillionNode Graphs
We first discuss factors that affect the performance of distance

oracles. We then reveal the weaknesses of current approaches and
describe our contributions.

Key Performance Factors
For billion-node graphs, there are at least three key factors that have
a major impact on the performance and quality of sketch-based dis-
tance oracles:

1. Landmark selection is critical for shortest distance estimation.
Most heuristics for landmark selection, such as betweenness and
centrality, are costly to evaluate in large graphs. For instance,
computing betweenness takes O(|V | · |E|) time, which is pro-
hibitive for billion-node graphs.

2. After landmarks have been determined, a large number of BFSs
are required to find the distances between landmarks and each ver-
tex in the graph. The total cost is O(|V | · |L|), which is a perfor-
mance bottleneck for billion-node graphs.

3. For a pair of vertices, the distance oracle gives an estimation of
their shortest distance. The quality of the estimation depends on
the precomputed information as well as the rules of estimation.
More sophisticated rules give more accurate answers.

Weaknesses of Previous Distance Oracles
Many distance oracles have been proposed (Section 8 provides more
details). However, to the best of our knowledge, none of the exist-
ing approaches are able to provide accurate shortest distance esti-
mation for billion-node graphs. The reason is three-fold:
• First, some distance oracles compromise accuracy for cost. For

example, many distance oracles [6, 9] use vertices’ degrees, in-
stead of their centrality, for landmark selection to reduce the cost
of building distance oracles. However, as we will show, degree is
a very poor approximation of centrality. This leads to poor esti-
mation of shortest distances.

• Second, some distance oracles take very long time to create. For
example, Tretyakov et al. [10] randomly select M vertex pairs
and count the number of shortest paths between the pairs that pass
through a vertex to approximate the vertex’s betweenness. Un-
fortunately, such approximation takes 23h for a 0.5 billion node
graph on a 32-core server with 256G memory [10].

• Third, none of the previous distance oracles were designed for
distributed graphs. Although some solutions [6, 5] store data or
perform some algorithmic steps on a distributed platform, they use
the platform as it is without having graph or distance oracle spe-
cific optimization. In other words, the power of distributed graph
computing has not yet been fully leveraged for distance oracles.

As a result of the above weaknesses, most current research only
handles million-node graphs. The largest graphs reported in previ-
ous distance oracle work include a social network with 43 million
nodes [6] on 50 machines, a web graph with 65M nodes [5] on
a distributed web graph store, and the Skype network with 0.5B
nodes on a 32-core server with 256G memory. In our work, we use
only a dozen commodity PCs to determine shortest distances in a
billion-node graph.

Contribution and Organization
In this paper, we introduce several novel techniques to enable accu-
rate estimation of shortest distances in billion-node graphs for the
first time. The innovation lies in three aspects:
• Local vs. Global Computation. First, accurate estimation of be-

tweenness is the key to landmark selection. However, between-
ness is a global feature, meaning the computation involves the
entire graph. Apparently, computing global features on a large
graph is expensive: In order to compute the betweenness of a ver-
tex, we need to find all shortest paths in the entire graph that pass
this vertex. Also, a billion-node graph is usually distributed over
multiple machines, and graph exploration in the local machine is
much cheaper than graph exploration across the network. In view
of this, we develop a highly accurate centrality estimator through
graph exploration in each local machine. We show that our ap-
proach incurs little loss in accuracy but is a much more efficient.
This makes it possible to obtain high quality landmarks in billion-
node graphs.

• Fast Distributed BFS. BFS is inevitable for creating a distance
oracle: The distance oracle relies on the exact shortest distance
between every (landmark, vertex) pair to estimate the shortest dis-
tance between every (vertex, vertex) pair, and BFS is needed to
calculate the exact shortest distances. As we mentioned, we de-
ploy billion-node graphs in a cluster. Thus, the challenge becomes
how to support distributed BFS in an efficient manner. In our
work, we introduce a novel vertex caching mechanism to dramat-
ically reduce network communication in BFS. We show that this

62

mechanism, together with the local centrality estimation mecha-
nism mentioned above, enables our approach to scale up to billion-
node graphs.

• Accurate Query Answering. How to effectively use the infor-
mation provided by the distance oracle to accurately estimate the
distance between a vertex pair is a critical problem. In many real
life networks, in particular social networks, the average distance
between a vertex pair is very short (e.g., within 6 steps). Hence,
in these small-diameter networks, even a minor estimation error
will lead to misunderstandings of the network. To improve the
distance estimation accuracy, we propose a new distance estima-
tion mechanism for a vertex pair u, v based on both the shortest
distances from them to landmarks and their coordinate distance in
an embedded space. Theoretical results and experimental results
show that our new rule produces more accurate distances than es-
timations purely using either shortest distance to landmarks or co-
ordinate distance.

The rest of the paper is organized as follows. Section 2 and 3
describe the background for distance oracles and the system archi-
tecture. Section 4 describes a novel landmark selection method.
Section 5 introduces how to optimize distributed BFS for shortest
distance computation. Section 6 discusses how to estimate short-
est distance using the distance oracle. We present our experimental
results in Section 7. We review related work in Section 8 and con-
clude in Section 9.

2. BACKGROUND
In this section, we introduce the background for our distance

oracle. Specifically, we introduce the graph system on which our
solution is built, the graph embedding technique and landmark se-
lection in shortest path query answering.

2.1 The Graph Engine
We use Trinity [11], an in-memory, distributed graph infrastruc-

ture, to manage web scale graphs. Trinity combines the RAM of
multiple machines into a unified memory space to user programs.
Trinity supports very efficient memory-based graph exploration.
For example, it is able to explore 2.2 million edges within 1/10
of a second in a network of Facebook size and distribution. Fur-
thermore, Trinity also provides an efficient bulk message passing
mechanism, and supports a Pregel [12] like Bulk Synchronous Par-
allel (BSP) computation model. In one experiment, using just 8
machines, one BSP iteration on a synthetic, power-law graph of 1
billion nodes and 13 billion edges takes less than 60 seconds. Trin-
ity’s efficient graph exploration and bulk message passing mecha-
nism lay the foundation for developing our graph distance oracle.

2.2 Graph Embedding
Graph embedding is a key step to build a coordinate-based dis-

tance oracle. We will see that it is used in two steps (S3 and S4) of
our distance oracle in Section 3.1. In graph embedding, we embed
the graph into a geometric space. The geometric space we use is
the Hyperbolic space under the Hyperboloid model. We then use
the two-phase embedding method [13, 7, 6] to assign coordinates to
vertices. That is, first we determine the coordinates of landmarks,
and then we use the coordinates of the landmarks to determine the
coordinates of other vertices. To determine the coordinates, we
solve an optimization problem using the Simplex method. In the
following, we first discuss the Hyperbolic space, then we describe
how coordinates are determined.

The Hyperbolic space under the Hyperboloid model.
There are three widely used geometric spaces: Euclidean [13, 7],
Spherical [14], and Hyperbolic [15, 6]. Many real graphs such as
the world wide web consist of a core in the center and many ten-
drils connecting to the core. When embedding such graphs into
an Euclidean space, two vertices far from the core tend to have
short distances as the line connecting them does not need to pass
through the core. The Hyperbolic space is proposed to overcome

this weakness [15, 6]. In a Hyperbolic space, the distance between
two vertices is calculated along a curved line bent towards the ori-
gin, which makes the shortest path between non-core vertices tend
to pass through the core. There are different models for coordinate
assignment and distance computation over the same Hyperbolic
space. The most widely used is the Hyperboloid model. In this
model, a parameter called curvature δ ≤ 0 is used to control the
bend towards the core. More formally, for a Hyperboloid model,
the distance between x = ⟨x1, x2, ..., xc⟩ and y = ⟨y1, y2, ..., yc⟩
is defined as

d̄(x, y) = arccosh

√√√√(1 +
c∑

i=1

xi
2)(1 +

c∑
i=1

yi2)−
c∑

i=1

xiyi

×|δ|
(2)

which contains two parts: distance and curvature. The expres-
sion before |δ| can be considered as a distance metric indepen-
dent of δ. It was shown that the Hyperboloid model has two major
strengths [6]: (1) it is computationally simpler than other models;
and (2) the model is more flexible to tune since it can be separated
into two disjointed components.

Assigning Coordinates. The objective is to minimize the dis-
tance distortion when embedding a graph into a geometric space.
Let c(u) be the coordinate of vertex u. We can measure the distor-
tion by the absolute error:

err(u, v) = |d(u, v)− d̄(c(u), c(v))| (3)

or by the relative error:

err′(u, v) =
err(u, v)

d(u, v)
(4)

Coordinate learning is a typical optimization problem. In step S3,
we learn the coordinates of landmarks, given their shortest dis-
tances. We minimize the following objective function:

arg min
{c(vi):vi∈L}

√ ∑
1≤i̸=j≤|L|

e(vi, vj)2 (5)

where e(u, v) is given by Eq 3 or Eq 4. We use the Simplex down-
hill [8] method to calculate the optimal coordinates.

2.3 Landmark Selection
We review the landmark selection problem in shortest distance

query answering. We first give the principle of landmark selection.
A good set of landmarks should be complete and minimal.

Our goal is to predict the shortest distance between any two ver-
tices with high accuracy. Let L = {l1, l2, ..., lk} be a set of land-
marks. For any vertex pair (u, v), we estimate their shortest dis-
tance from their shortest distances to landmarks in L. If a landmark
exists that is on a shortest path between u and v, then the estima-
tion is accurate. Formally, we say a vertex pair (u, v) is covered
by L if a shortest path exists between u and v that passes through a
landmark in L. If all vertex pairs are covered by the landmark set
L, then L is complete. On the other hand, if all vertex pairs covered
by landmark li are also covered by landmark lj (i ̸= j), then li is
redundant. Formally, a landmark set L is minimal if there exists no
L′ ⊂ L such that L′ can cover the vertex pairs covered by L.

This leads to the minimal complete landmark (MCL) problem [9].
PROBLEM DEFINITION 1 (MCL). Given a graph G, find a

minimal landmark set that covers all vertex pairs.

Practically, we have to relax the requirement of covering all ver-
tex pairs in the above definition. A landmark set that is complete
is usually very large, which negatively impacts the performance of
query answering and may lead to unaffordable space cost. Thus,
we want to put a size constraint on the set of landmarks. Of course,
with the size constraint, we cannot ensure its completeness. This
leads to a new problem: maximal coverage landmark set with size
constraint (MCL-s) [9]:

63

PROBLEM DEFINITION 2 (MCL-S). Given a graph G and a
positive integer k, find a landmark set of size k that covers the
largest number of vertex pairs.

Both MCL and MCL-s are NP-Hard [9]. Many heuristics have
been proposed for the two problems. Most heuristics follow the
same framework: greedily select the most promising vertex as a
landmark until the upper limit is reached. To do this, the key
is how to measure a vertex as a good landmark. There are sev-
eral measures, including node degree, closeness centrality, and be-
tweenness. Betweenness has been empirically shown to be the best
measure in most cases [9].

For a vertex v, its betweenness is the fraction of all shortest paths
in the graph that pass through v. Formally, we have:

bc(v) =
∑

s̸=t̸=v∈V

σst(v)

σst
(6)

where σst is the number of shortest paths between s and t, and
σst(v) is the number of shortest paths in σst that pass through v.

3. OVERVIEW
In this section, we give an overview of the approach we are tak-

ing to build a distance oracle. In addition, we also give a complexity
analysis of our approach.

S1. Selecting

Landmark by local

betweenness

S3. Deriving the

coordinates of

landmarks

S4. Deriving the

coordinates of all

vertices

S2. Calculating shortest

distance between each

landmark and vertex

Trinity

Database

L

Notations:

L: Landmark set

D1: Shortest distance from landmarks to other vertices

D2: Shortest distance among landmarks

D3: Landmark coordinates

D4: Shortest distances from all other vertices to landmarks

D5: Coordinates of other vertices

D6: u,v

D7: low bounds, upper bounds and coordinates of u and v

D2
D4

D3
D1

D5

Embedding

S5. Indexing

S6. Answering

Queries

D6 D7

Query (u, v)

du, v

Offline construction

Online query answering

Figure 1: Architecture of a coordinate-based distance oracle.

3.1 The Flowchart
We build a coordinate-based distance oracle. Its architecture,

which is shown in Figure 1, consists of two parts: offline distance
oracle construction (steps S1-S5) and online shortest distance query
answering (step S6). We will elaborate on query answering in Sec-
tion 6. In this section, we focus on the construction of the distance
oracle.

We build a distance oracle for a graph G(V,E). The distance
oracle consists of a set of nodes L in V that are known as land-
marks, a set of coordinates {c(u)|u ∈ V }, and a set of distance
vectors {d(u)|u ∈ V }. Each c(u) is a c-dimensional vector <
x1, ..., xc > and each d(u) is a |L|-dimensional vector < d1, ..., d|L| >,
where di is the shortest distance to the i-th landmark in L. Next,
we describe each step in building a distance oracle:
• S1: Selecting landmarks by local betweenness. We select top-|L|

vertices with the largest local betweenness as landmarks. As we
mentioned, betweenness is widely accepted as the best heuristics
for landmark selection. But computing exact betweenness is very
costly for big graphs, especially when the graph is distributed. We
introduce a new concept called local betweenness, and we use lo-
cal betweenness to approximate the exact betweenness. Local be-
tweenness only depends on shortest paths in local graphs that are
confined in single machines. Thus, its computation is lightweight
and does not require network communication. Nevertheless, we
show that it is an extremely good approximation of the exact be-
tweenness.

• S2: Calculating shortest distances between each landmark and
each vertex. We use BFS to compute the shortest distances for
unweighted graphs. Each vertex v maintains an |L|-dimensional
vector ⟨d1, ..., d|L|⟩, where di is the shortest distance between v
and landmark Li. This requires O(|L| · |V |) space, which means
for billion node graphs we cannot affort having a large value of
|L|. In this work, we manage to get good results with a small |L|
(typically 100).

• S3: Deriving the coordinates of landmarks. We learn the coor-
dinates of landmarks by minimizing the difference between the
exact distances (calculated in S2) and the coordinate-based dis-
tances. Based on Eq. 5, we use the following objective function

arg min
{c(vi)|vi∈L}

√ ∑
1≤i ̸=j≤|L|

[d̄(c(vi), c(vj))− d(vi, vj)]2 (7)

where c(u) is the coordinates of vertex u, and d̄() is the coordi-
nate distance (Eq. 2), and d() is the shortest distance. We use the
simplex downhill method [8] to solve the optimizing problem.

• S4: Deriving the coordinates of all vertices. We learn the coor-
dinates of each vertex based on their distances to landmarks (cal-
culated in S2) and the landmarks’ coordinates (calculated in S3).
We use the following objective function:

argmin
c(u)

√ ∑
1≤i≤t

[d̄(c(u), c(vi))− d(u, vi)]2 (8)

Unlike in S3, here, we already know the coordinates of landmarks.
Furthermore, we randomly select a small number of t (t < |L|,
typically t = 16 as in [6, 7]) landmarks to save time. The com-
plexity of the Simplex downhill algorithm for deriving the optimal
coordinates is linear to the number of used landmarks. It can be
shown that with small values of t = 16 and |L| = 100, we can
derive coordinates for all vertices with high accuracy.

• S5: Indexing. As we have mentioned, each vertex is associated
with coordinates ⟨x1, ..., xc⟩ and a distance vector ⟨d1, ..., d|L|⟩.
We index the data so that we can support fast retrieval of such
information by vertex ID.

3.2 Complexity Analysis
Our distance oracle gives highly accurate answers to shortest-

distance queries in constant time (See Section 6 for detail). We will
evaluate its accuracy with extensive experiments. Here, we analyze
the time cost of constructing the distance oracle and the space cost
of the distance oracle itself.

Time complexity. Our distance oracle can be constructed in lin-
ear time with respect to the graph size. The time to construct the
distance oracle is dominated by graph embedding, whose complex-
ity is determined by the simplex downhill method. In general, sim-
plex downhill with an objective function g takes O(mD × f(g))
time, where f(g) is the cost to evaluate g, D is the total num-
ber of dimensions, and m is the number of iterations1. We run
simplex downhill in S3 and S4. In S3, we have D = |L|c and
f(g) = |L|2c. The second equation holds because we need to
calculate the pairwise distance of |L| c-dimensional coordinates.
In all, the time complexity is O(m|L|3c2). In S4, we need to learn
coordinates of |V |−|L| vertices. To learn each vertex’s coordinate,
we have D = c and f(g) = tc, where t is the number of selected
landmarks (see Eq. 8). Hence, it costs O(mtc2) time to learn the
coordinate for a single vertex. In all, S4 costs ((|V | − |L|)mtc2)
time. Hence, the time complexity to construct our distance oracle
is O((|V | − |L|)mtc2 + mt|L|3c2). In general, |L|, c, m, and t
are small constants (typically |L| = 100, c = 10 and t = 16).

1For simplicity of analysis, we always assume that simplex down-
hill runs in m iterations.

64

Compared to the size of the graph (billion-node scale), these con-
stants can be omitted. Hence, in general, it only needs linear time
to construct the distance oracle.

Space cost. Our distance oracle takes O((|L| + c)|V |) space,
which is linear with respect to the graph size. Next, we show
that for real life billion-node graphs, the distance oracle requires
an amount of space that is less than or comparable to the size
of the graph. On distributed, in-memory graph systems, the dis-
tance oracle can be deployed together with the graph on a dozen of
machines. More specifically, let ⟨d⟩ be the average degree of the
graph. Using 32 bits, we can encode 4 billion vertices. To support
even larger graphs, we may use 64 bits or 8 bytes to encode the ver-
tex id. Thus, for each vertex v, we need 8⟨d⟩ memory to store its
neighbors. The distance vectors and the coordinates need |L|+ 8c
space. Because most real graphs are small world networks, in gen-
eral, 1 byte is enough to store the geodesic distance. The coordi-
nates are real numbers, so each dimension needs 8 bytes. Hence,
when |L|

8
+ c < ⟨d⟩, the space required by the distance oracle is

smaller than the size of the graph. For example, when |L| = 100
and c = 10 (these are typical settings used in our distance oracle)
we have |L|

8
+ c = 22.5. Hence, if ⟨d⟩ > 22.5, the distance ora-

cle takes less space than the graph. Most real networks satisfy this
constraint, including the Facebook network which has an average
degree of 125.

Given the above typical settings, our distance oracle is realistic
even on the Facebook network with almost 1 billion users. Each
vertex in the Facebook network needs 8⟨d⟩ + |L| + 8c = 1000 +
100 + 80 = 1180 bytes. Overall, Facebook needs about 1TB of
memory. This means that Facebook and the distance oracle on
Facebook can be deployed on one or two dozens of commodity
servers.

4. LANDMARK SELECTION
It is known that betweenness is an effective heuristic for land-

mark selection. But on billion node graphs, calculating between-
ness is too costly. In this section, we argue that we need a dis-
tributed, lightweight, approximate betweenness measure. We pro-
pose local betweenness as approximate betweenness, and we in-
troduce a lightweight, distributed method of computing local be-
tweenness.

4.1 Motivation
We firsts show that approximate betweenness is a more appro-

priate choice than the exact betweenness on big graphs. There are
three reasons:
• First, calculating the exact betweenness is costly. The fastest al-

gorithm needs O(|V ||E|) time to compute exact betweenness [16].
This is computationally prohibitive for billion-node graphs. Fur-
thermore, it is hard to reduce the complexity. By its definition,
the calculation of betweenness relies on the shortest path com-
putation. Enumerating all shortest paths costs at least O(|V ||E|)
time, as finding all shortest paths from a single vertex costs at least
O(|E|) time.

• Second, although some parallel approaches for computing ex-
act betweenness have been proposed [17, 18, 19, 20, 21], in gen-
eral, it is still very costly for billion-node graphs. A straightfor-
ward parallel compuation of the exact betweenness has complex-
ity Ω(|V |2) [19], which is prohibitive on big graphs. Some efforts
focused on reducing the space cost to O(|V | + |E|) but the cost
of all-pair path enumeration cannot be reduced.

• Third, it may not be necessary to find the exact betweenness:
Eventually, we only use the top-k betweenness vertices as land-
marks anyway. If there exists a lightweight, approximate mea-
sure, whose top-k vertices coincide with the top-k vertices ranked
by the exact betweenness measure, we can ensure the optimality
of landmark selection while avoiding the cost of finding exact be-
tweenness.

Next, we show that a lightweight distributed solution is neces-
sary for calculating the approximate betweenness on big graphs.
Most previous approximate betweenness methods are implemented
on centralized platforms. For example, betweenness can be approx-
imated by counting only the shortest paths below a certain length
(which can be calculated with significantly less cost) [22] or short-
est paths starting from a limited number of vertices [17]. These be-
tweenness can be easily implemented on centralized platforms. But
there are many obstacles to extending these approximate solutions
to large, distributed graphs. Consider the approximate solution [17]
that enumerates the shortest paths starting from k randomly se-
lected vertices. Overall O(k|E|) communication is needed, and
it dominates the computation cost.

4.2 Local Betweenness
We propose an efficient and effective solution to computing ap-

proximate betweenness for large graphs distributed across many
machines. Instead of finding the shortest paths in the entire graph,
we find the shortest paths in each machine. Then, we use the short-
est paths in each machine to compute the betweenness of vertices
on that machine. We call betweenness computed this way local be-
tweenness. Clearly, the computation does not incur any network
communication. After we find local betweenness for all vertices,
we use a single round of communication to find the top-k vertices
that have the highest local betweenness value, and we use these
vertices as landmarks.

We show that, contrary to the perception that local betweenness
is very inaccurate because each machine only contains a small por-
tion of the entire graph, it turns out to be a surprisingly good alter-
native for the exact betweenness measure.

4.2.1 Local graphs
A graph G can distribute over a set of machines by hashing on

the vertex id. Hash-based vertex distribution might not the optimal
way of partitioning a graph, but it incurs the least cost, and hence it
has been widely accepted as the de facto graph partitioning scheme
for very large graphs. Each machine i keeps a set of vertices Vi as
well as the adjacent list of each vertex in Vi. Specifically, let N(v)
denote v’s neighboring vertices for any v ∈ Vi, and let N(Vi)
denote all of Vi’s neighbors, that is, N(Vi) = ∪v∈ViN(v). Thus,
machine i contains information of Vi and N(Vi). We define the
local graph and the extended local graph on machine i:
• The local graph Gi = (Vi, Ei) is the subgraph induced by Vi,

where Ei contains edge (u, v) if both u and v are in Vi.
• The extended local graph G′

i = (V ′
i , E

′
i) contains both Vi and

Vi’s neighbors as vertices, that is, V ′
i = Vi ∪ N(Vi), and E′

i

contains every edge (u, v) if either u or v is in Vi.
Clearly, Gi is a subgraph of G′

i. Example 1 illustrates the rela-
tionship between Gi and G′

i.

1

5

8

2

4

6

10

3

9

7

Vi

V’i

Figure 2: The local graph, the extended local graph, and the entire
graph, from the perspective of machine i.

EXAMPLE 1 (LOCAL GRAPHS). Consider a graph with 10 ver-
tices, as shown in Figure 2. Assume machine i contains 4 vertices,
that is, Vi = {1, 2, 3, 4}. The graph in the innermost circle is the
local graph. Machine i also has information about vertices 5, 6,

65

and 7, as they are in the adjacency lists of vertex 2 and 4. The
graph inside the second circle, except for the edge (6, 7), is the
extended local graph. Machine i does not realize the existence of
vertices 8, 9, and 10. Note that edge (6, 7) does not belong to the
extended local graph since none of its ends belongs to Vi.

Next, we show that the extended local graph G′
i contains enough

information to effectively approximate the exact betweenness. We
first quantify the size of the extended local graph (Lemma 1), and
then we quantify the quality of the shortest paths in the extended
local graph (Lemma 2).

LEMMA 1 (SIZE OF THE EXTENDED LOCAL GRAPH). Suppose
a graph G is randomly partitioned over k machines, and the aver-
age degree of G is ⟨d⟩. Then, for any extended local graph G′

i, its
expected number of edges is |E|(2k−1)

k2 , and its expected number of
vertices is at most |V |

k
[1 + ⟨d⟩(k−1)

k
].

PROOF. Local graph Gi has on average |V |
k

vertices. Each ver-
tex v has on average ⟨d⟩ neighbors. Among them, 1/k is expected
to reside in the same machine as v does. Thus, vertex v has on
average ⟨d⟩(1 − 1

k
) remote neighbors. Some vertices may share

remote neighbors. Consequently, the expected size of V ′
i is at most

E(|V ′
i |) =

|V |
k

(1 +
⟨d⟩(k − 1)

k
)

The probability that one edge is not in G′
i is equivalent to the

probability that both of its two ends do not belong to Gi. This
probability is p = (1− 1

k
)2. Thus, the expected size of E′

i is

E(|E′
i|) = |E|(1− p) =

|E|(2k − 1)

|k2|

From Lemma 1, we see that when k is large, |V ′
i | is approx-

imately |V | ⟨d⟩+1
k

on average and |E′
i| is approximately 2|E|

k
on

average. In particular, |V ′
i | is significantly smaller than |V | when

k ≥ ⟨d⟩+1, and |E′
i| is consistently smaller than |E| when k > 2.

Hence, in general, computation on G′
i is quite lightweight.

LEMMA 2 (QUALITY OF LOCAL SHORTEST PATHS). For any
vertices u and v, let d(u, v) be their shortest distance in G, and let
di(u, v) be their shortest distance in G′

i. Let ∆i(u, v) = di(u, v)−
d(u, v). The upper bound of ∆i(u, v) is given as follows:
• Case 1: u, v ∈ Vi,

∆i(u, v) ≤ max{0, di(u, v)− 3}

• Case 2: u ∈ Vi and v ∈ V ′
i − Vi (or vice versa),

∆i(u, v) ≤ max{0, di(u, v)− 2}

• Case 3: u, v ∈ V ′
i − Vi,

∆i(u, v) ≤ max{0, di(u, v)− 1}

PROOF. We give the proof for Case 1 only. The other two cases
can be proven in a similar way. First, we show that when di(u, v) ≤
3, we have ∆i(u, v) = 0. If di(u, v) = 1, which means u and v are
adjacent in G′

i, then G′
i has an exact shortest path, so ∆i(u, v) = 0.

If di(u, v) = 2, we can show that d(u, v) = 2 must hold as well,
because otherwise u, v are adjacent in G, and since both u, v are
in G′

i, then u, v must be adjacent in G′
i as well, which contradicts

di(u, v) = 2. Thus, we have ∆i(u, v) = 0. If di(u, v) = 3, we
can show that d(u, v) = 3 must hold as well, because otherwise we
have d(u, v) = 1 or d(u, v) = 2, which can be easily shown to be
contradicting di(u, v) = 3 (For example, d(u, v) = 2 means u, v
share a common neighbor, but then this common neighbor must be
in G′

i, which contradicts di(u, v) = 3). Second, when di(u, v) ≥
4, it must be true that d(u, v) ≥ 3, because the above reasoning
shows that when d(u, v) ≤ 2, we have di(u, v) smaller than 3.
This proves Case 1.

We use an example to demonstrate Lemma 2.
EXAMPLE 2 (SHORTEST DISTANCES ON A LOCAL MACHINE).

Let us continue with the previous example. Given u, v both in V ′
i ,

we evaluate their shortest distances in G′
i and G. For u = 1, v =

3, we have di(u, v) = 2. From Lemma 2, we have ∆i(u, v) = 0,
hence 2 is the actual shortest distance. For u = 2, v = 7, we have
di(u, v) = 3. From Lemma 2, we have ∆i(u, v) ≤ 1. Actually,
there exists a 2-hop shortest path 2, 6, 7 in G. For u = 6, v = 7, we
have di(u, v) = 4 and ∆i(u, v) ≤ 3. The actual shortest distance
is 1 in G.

Lemma 2 has the following implications:
• For many vertex pairs, their shortest distances found in an ex-

tended local graph are the exact shortest distances. Particularly,
when
– di(u, v) = 2 when at least one of u, v belongs to Vi, or
– di(u, v) ≤ 3 and u, v ∈ Vi

we know we have found the exact shortest paths. Most real life
networks are small-world networks, i.e., the average shortest dis-
tance is quite small. In most social networks, any two persons can
reach each other within six steps. It is also shown that real life
networks “shrink” when they grow in size, that is, their diameters
become smaller [23]. Hence, short geodesic distances, such as 2
or 3, cover a significant number of vertex pairs. Thus, we already
find exact shortest distances for many vertex pairs by just studying
the local graphs.

• Shortest paths discovered from extended local graphs are of dis-
parate quality. Their quality mostly depends on vertices’ location
in a local graph. From Lemma 2, we can see that when both u, v
are in Vi, the local shortest distance di(u, v) is of the best quality:
It is either the exact shortest distance or within a small error from
the exact shortest distance. In contrast, when both u and v are in
V ′
i −Vi, the approximation error may be large as in the worst case

they may be adjacent to each other in G.

4.2.2 A parallel algorithm for local betweenness
We present a parallel algorithm to find the approximate between-

ness (Algorithm 1). The idea is quite simple. On each machine i,
for each vertex v ∈ Vi, we count the number of shortest paths in the
local graph G′

i that pass through v. This number is the approximate
betweenness of v.

Algorithm 1 Local betweenness on machine i

1: Randomly sample n vertices from Vi;
2: Perform BFS from each sampled vertex to generate shortest paths in

G′
i;

3: Select a shortest path P (u, v) with probability pu,v , which is given by
Eq 10;

4: For each v ∈ Vi, compute b(v), the number of shortest paths that pass
through v;

5: Return b(v) for each v ∈ Vi as its local betweenness value;

There are three unique aspects of the algorithm: i) The algorithm
is based on approximate instead of exact shortest paths. Approxi-
mate shortest paths are shortest paths discovered on extended local
graphs. Furthermore, as Line 1 of Algorithm 1 shows, we only enu-
merate shortest paths from vertices in Vi, instead of from vertices in
the larger V ′

i . We justify our approach in more detail below; ii) We
do not treat approximate shortest paths equally, instead, we sam-
ple them by a probability. We describe our probabilistic approach
in more detail below; iii) The algorithm is easily parallelizable.
Moreover, we compute betweenness on each machine without com-
municating with other machines. Only after all the computation is
finished do we aggregate information from each machine to find
the top-k vertices with the highest betweenness value.

Sampling probability. Not every approximate shortest path is
of the same quality. As Lemma 2 suggests, the estimation has the
highest quality for a pair of vertices if both of them are in Vi, and

66

the estimation can potentially have a large error if both of them are
in V ′

i − Vi. We use the upper bound in Lemma 2 to quantify the
quality of a shortest path found from extended local graphs.

We define the quality of an approximate shortest path between u
and v in terms of its closeness to the exact shortest path as:

Q(u, v) =

max{0, di(u, v)− 3} if u, v ∈ Vi;

∞ if u, v ∈ V ′
i − Vi;

max{0, di(u, v)− 2} otherwise.
(9)

A small Q(u, v) implies a high quality for the approximate short-
est path. In particular, Q(u, v) = 0 implies that the discovered
shortest path is an exact shortest path. For the case where u, v ∈
V ′
i − Vi, Lemma 2 shows that the error might be quite big (pro-

portional to the exact shortest distance). Since the exact shortest
distance is not known, we can choose a constant value as the de-
fault quality. In our case, we set the quality to ∞ to disqualify local
shortest paths between those vertex pairs.

Given the quality function Q(u, v), we can sample shortest paths
by their quality. The probability is defined as:

pu,v = exp(−Q(u, v)) (10)

In general, the larger the ∆i(u, v), the less likely it is that the
estimated shortest distance is the exact shortest distance. If the es-
timation is accurate, that is, ∆i(u, v) = 0, then we have Q(u, v) =
0, which leads to pu,v = 1, meaning the shortest path will be used
in the betweenness calculation for sure.

Shortest path generation from Vi vs. from V ′
i . As Line

1 of Algorithm 1, only the shortest paths passing through vertices
in Vi are counted. Vertices in V ′

i − Vi are ignored. The reason
is two-fold. First, excluding v ∈ V ′

i − Vi is more efficient. Oth-
erwise, each v ∈ V ′

i − Vi needs one communication to send its
local shortest path number to the machine that holds it. As a re-
sult, overall

∑
i |V

′
i − Vi| communications are necessary. Second,

our experimental study shows that generating from Vi is already
effective enough to approximate betweenness.

5. DISTRIBUTED SHORTEST DISTANCES
After identifying landmarks, we must find the shortest distances

between every vertex and every landmark. This saves a consider-
able amount when compared to computing the shortest distances
for all the pairs, as the number of landmarks is much smaller than
the total number of vertices. But since the graph is distributed,
naive shortest distance algorithms still incur a large cost. In this
section, we optimize the performance of shortest distance compu-
tation in a distributed environment.

5.1 Naive LevelSynchronized BFS
First, we introduce a naive level-synchronized BFS approach to

compute shortest distances in a distributed environment. Algo-
rithm 2 outlines the process that is carried out on each machine
in a synchronous manner. Given a landmark vertex r, we find the
shortest distance between r and every vertex in the graph. At level
l, each machine i finds vertices of distance l to r. Then, we locate
their neighboring vertices. If a neighboring vertex has not been
visited before, then it has distance l + 1 to r. However, since
the neighboring vertices are distributed across all machines, only
their host machines (the machines they reside on) know their cur-
rent distances to r. Thus, we ask their host machines to update the
distance of these neighboring vertices. In order to save communi-
cation costs, we group these vertices by the machines they reside on
and send each machine m a single message Si,m, which contains
vertices that reside on machine m. Each remote machine i, upon
receiving messages S1,i ∪ · · · ∪ Sk,i from all of the k machines,
updates their distances to either l + 1 if they have not been visited
before, or keeps their current distances (equal to or less than l) un-
changed. After each level, all the machines synchronize, to ensure
that vertices are visited level by level.

Algorithm 2 Level-synchronized BFS
Input: r;
Output: dist[]
1: Let Vi be the set of vertices in local machine;
2: for all v ∈ Vi do
3: if v = r then dist[v] = 0 else dist[v] =∞;
4: end for
5: for all l = 0 to∞ do
6: let U be the vertices in Vi whose distance to r is l;
7: if U = ∅ then return;
8: let S be U ’s neighboring vertices (both remote and local);
9: group vertices in S by their machine ID, i.e., S = {(m,Si,m)}

where m is a machine ID, and Si,m ⊆ S is the set of vertices that
reside on m;

10: machine i sends Si,m to machine m, for each m;
11: machine i receives S′ = S1,i∪· · ·∪Sk,i from machines 1, · · · , k;
12: for all v ∈ S′ do
13: if dist[v] =∞ then dist[v]← l+ 1;
14: end for{synchronization;}
15: end for

5.2 Vertex Caching
In the above naive BFS algorithm, the cost is dominated by send-

ing messages to remote machines to update vertices’ distances to
landmarks. We reduce the communication cost by caching a sub-
set of vertices on each machine. In Algorithm 2, machine i sends
message Si,m to machine m. Assume u ∈ Si,m, i.e., machine i
requests u’s host machine m to update the distance of u (line 10).
If this is the first time we reach u, i.e., its current distance to r
is ∞ (the default value), then machine m updates u’s distance to
l+1, otherwise it ignores the request and keeps its current distance
unchanged (line 13). In other words, the distance update request
for vertex u is wasteful if dist[u] ̸= ∞. Avoiding wasteful re-
quests can reduce the communication cost. A straightforward way
to do this is to cache each vertex’s current distance on each ma-
chine. Then, we only need to send messages for those vertices
whose current distances to r are ∞. In this manner, we can re-
duce the communication cost. However, for billion node graphs, it
is impossible to cache every vertex on every machine. Then, the
problem is: which vertices to cache? To answer this question, we
analyze the benefits of caching.

LEMMA 3 (BENEFITS OF CACHING A SINGLE VERTEX).
Consider a level-synchronized BFS starting from a landmark node
r. Let Tr be the BFS tree rooted at r. Let Vh be all the vertices
of depth h in Tr (in other words, vertices in Vh will be reached at
level h during the BFS). Assume vertex v ∈ V (h). Let N(v) be v’s
neighbors in the original graph. If v is cached, we can save up to
O(|N(v)− Vh−1|) remote requests.

PROOF. We consider the worst case: None of v’s neighbors
N(v) resides on the same machine as v. We will derive the up-
per bound of the number of remote requests we can save. Since
v ∈ Vh, then v’s neighbors must be in Vh−1, Vh, or Vh+1. Let
u ∈ N(v) be one of v’s neighbors. We consider 3 cases for u.

1. Case 1. u ∈ Vh−1 : In this case, when we access v through u, v’s
distance to r is still unknown (∞). Thus, we need to request v’s
host machine to update v’s distance to r. For every v’s neighbors
in Vh−1, we need to send a request (assuming in the worst case,
all of the neighbors are in different machines). Thus, we need
|N(v) ∩ Vh−1| requests.

2. Case 2. u ∈ Vh : In this case, when we access v through u, v’s
distance is already updated to h during the BFS at level h − 1. If
v is cached on each machine, we can avoid this remote request.
Thus, the total number of requests we can avoid is |N(v) ∩ Vh|.

3. Case 3. u ∈ Vh+1: For the same reason as above, we can avoid
|N(v) ∩ Vh+1| requests.

Combining the 3 cases above, we can save |N(v)∩(Vh∪Vh+1)|
requests, or equivalently, |N(v)− Vh−1| requests.

Since |N(v)| = deg(v), where deg(v) denotes v’s degree, we
67

 0

 20

 40

 60

 80

 100

 0 10 20 30 40 50 60 70 80 90 100

R
at

io
 o

f t
ot

al
 s

um
 o

f d
eg

re
e(

%
)

Ratio of cached vertices(%)

R=-0.6
R=-0.7
R=-0.8
R=-0.9

Figure 3: Benefits of caching hub vertices on scale free graphs

have |N(v)− Vh−1| ≤ deg(v). Hence, deg(v) is an upper bound
of the benefits of caching v.

Next, we show that in real networks where v is a hub, meaning
v has a large degree, the upper bound deg(v) is easily reached. In
real networks, deg(v) is positively correlated to the eccentricity of
v: The larger the deg(v), the smaller the maximal shortest distance
from v to any other vertex. Thus, for any r, on average, a hub v has
a smaller depth h in Tr than non-hub vertices, and Vh−1 contains
fewer neighbors of v. As an extreme example, when v = r, we
have Vh−1 = ∅ and deg(v) remote accesses are avoided; when v is
adjacent to r, we have Vh−1 = {r} and deg(v)−1 remote accesses
are avoided. Hence, deg(v) is a good approximate for the benefit
of caching a hub.

Finally, we analyze the aggregate benefits of caching hub ver-
tices in real graphs. Lemma 4 quantifies the benefits when we cache
top-K vertices of the largest degree in a scale free graph. We use
the following model for scale-free graphs [24]:

deg(v) ∝ r(v)R (11)

where r(v) is the degree rank of vertex v, i.e., v is the r(v)-th
highest-degree vertex in the graph, and R < 0 is the rank exponent.

LEMMA 4 (BENEFITS OF CACHING HUBS). For a graph whose
degree distribution is given by Eq 11, the fraction of remote ac-
cesses that can be avoided by caching vertices of top-K maximum
degree is

O(

∑K
k=1 k

R∑|V |
k=1 k

R
) (12)

PROOF. By caching a vertex v, we can save at most deg(v) re-
mote accesses. Hence, we only need to count the fraction of total
degree of vertices with top-K maximum degree.

To obtain a more intuitive understanding, we give some simu-
lation results in Figure 3 with R varying from -0.6 to -0.9 (many
real networks’ rank exponent is in this range). From the simula-
tion, we can see that by caching a small number of hub vertices,
a significant number of communications can be saved. For exam-
ple, when R = −0.9, caching 20% of the top-degree vertices can
reduce communications by 80%.

6. QUERY ANSWERING
Recall that in our distance oracle, each vertex is associated with a

coordinate and a distance vector that contains the shortest distance
to each landmark. In this section, we show how we use this infor-
mation to answer shortest distance queries. The direct solution is
to estimate the shortest distance using the coordinate distance. We
refine the estimation using the lower and upper bounds that can be
derived from the computed shortest distances.

Refined distance estimation. From the shortest distances be-
tween landmarks and each vertex, we derive lower and upper bounds
(Lemma 5) for the shortest distance of any pair of vertices. These
bounds can be established by the triangle inequality, and have been
widely used in previous distance estimation solutions.

LEMMA 5 (LOWER AND UPPER BOUND). Given a landmark
set L, for any two vertices u, v, let l(u, v) = max{|d(u, l) −

d(v, l)| : l ∈ L}, and r(u, v) = min{d(u, l) + d(v, l) : l ∈ L},
we have

l(u, v) ≤ d(u, v) ≤ r(u, v)

Let d̄(u, v) be the coordinate distance between u and v. The key
idea of the refined estimation is that we estimate the distance be-
tween u and v as d̄(u, v) only if it lies within the range of [l(u, v), r(u, v)].
Otherwise, we estimate the distance as l(u, v) or r(u, v). More
specifically, given any pair of vertices u, v, the distance is estimated
as

d̂(u, v) =

{
⌊d∗(u, v) + 0.5⌋ unweighted or integer-weighted graphs
d∗(u, v) otherwise

(13)
where d∗(u, v) is defined as:

d∗(u, v) =

d̄(u, v) if l(u, v) ≤ d̄u,v ≤ r(u, v);
l(u, v) if d̄u,v < l(u, v);
r(u, v) if d̄u,v > r(u, v);

(14)

Note that we round off d∗(u, v) in Eq 13 when the graph is un-
weighted or integer-weighted. Because on these graphs, the short-
est distances are always integers.

Compared to direct estimation by coordinate distance, the new
distance estimation is more accurate. This is shown in Lemma 6,
whose correctness follows directly from Lemma 5.

LEMMA 6 (ACCURACY). For any vertex pair u, v,

|d∗(u, v)− d(u, v)| ≤ |d̄(u, v)− d(u, v)| (15)
Algorithm. We estimate the shortest distance between two ver-
tices u and v as follows:

Algorithm 3 QueryAnswering(u, v)

1: If u and v are adjacent, Return 1;
2: If u and v have a common neighbor, Return 2;
3: Obtain distance vectors and coordinates of u and v from index;
4: Calculate d̄(u, v) by Eq. 2 according to the coordinates;
5: Calculate l(u, v) and r(u, v) by the distance vectors;
6: Return the estimated distance by Eq. 13 and Eq. 14;

Clearly, if the distance is 1 or 2, the estimation provided by the
algorithm is accurate. In line 2, the cost is O(⟨d⟩) where ⟨d⟩ is the
average degree. The estimation of the core distance has complexity
O(|L| + c), because we only need O(|L|) time to calculate the
low and upper bounds and O(c) time to calculate the coordinate
distance. Recall that for big graphs, we use an index to access
distance vectors and coordinates on disk. Hence, for big graphs
it costs an additional constant number of disk I/Os to retrieve the
data.

The refined estimation comes at the cost of extra space O(|L||V |)
because we need to record the shortest distance between landmarks
and each vertex. Real networks are small-world networks, i.e., the
shortest distances are small. Usually, 4 bits are enough to store
the shortest distance. Hence, such extra space is quite insignificant
compared to space used to store the graph itself.

7. EXPERIMENTS
In this section, we present our experimental study. Section 7.1

presents the experiment setup. Section 7.2 compares the perfor-
mance (construction and query response time) and accuracy of our
approach with state-of-the-art distance oracles. Section 7.3 eval-
uates the effectiveness of each component of our distance oracle.
Section 7.4 shows the results on billion node graphs.

7.1 Setup
We ran all the experiments on Trinity deployed on 10 machines,

each of which had a 2.67 GHz dual core Intel(R) Xeon CPU and
72GB memory. We implemented our distance oracle with different
configurations. We used two options for landmark selection: by

68

degree (DE) and by local betweenness (LB). For graph embedding,
we used two error metrics: absolute error (AS) and relative error
(RS) (Eq 3 and Eq 4). Hence, overall we implemented four versions
of the distance oracle: DE+AS, LB+AS, DE+RS, LB+RS. For
comparisons, four state-of-the-art practical distance oracles were
also implemented: Sketch [5], SketchCE [25], SketchCESC [25]
and TreeSketch [25]. Sketch [5] uses randomly selected vertices as
landmarks, and their shortest paths to each vertex as the sketches.
SketchCE [25] improves the accuracy by eliminating cycles on the
shortest paths calculated by Sketch. SketchCESC [25] improves
the accuracy by considering the shortcut. TreeSketch conducts BFS
searches starting from the two query nodes, and then uses the short-
cut between them to improve the accuracy.

Sampling strategy. We first sampled a set of vertices S (|S| =
100). Each vertex in S and any other vertex will be used as a query
vertex pair. Hence, overall |S||V | queries were sampled. This sam-
pling method is better than the naive sampling approach. The naive
method directly samples a certain number of vertex pairs and tends
to miss vertex pairs with long shortest distance. Because long short-
est distances in general have lower frequencies. In contrast, our
sampling approach ensures sampled queries cover a wider range of
shortest distances. For accuracy and query performance evaluation,
we reported the average of all sampled vertex pairs.

Coverage. Recall that the goodness of a landmark set L is deter-
mined by the vertex pairs it covers. We use coverage to evaluate the
effectiveness of using local betweenness for landmark selection.

Cov(L) =
2|{(u, v)|∃w ∈ L, d(u, v) = d(u,w) + d(w, v)}|

|V |(|V | − 1)
(16)

The larger Cov(L), the more vertex pairs L covers.

Data. We use both synthetic and real life networks for evaluation
(Table 1). Real networks are typical online social networks: Orkut,
Flickr, LiveJournal [26], each of which has millions of users. We
also use three relatively small graphs to evaluate local betweenness
and exact betweenness: CA, the collaboration network of Arxiv
of Condensed Matter category (CA) [27], ST the Stanford web
graph [28], and GO, the friendship network of Gowalla users [29].
We also generated two web-scale synthetic networks following the
RMAT [30] model with parameters a = 0.57, b = 0.19, c =
0.19, d = 0.05. The first one has 0.5 billion nodes and 2 billion
edges. The second one has 1 billion nodes and 4 billion edges. To
the best of our knowledge, they are the largest graphs that have ever
been tested for distance oracles.
7.2 Overall Performance and Accuracy

Table 2 shows the distance oracle construction time and query
response time. We randomly sampled 1000 vertices to calculate
the local betweenness. For each graph, 100 landmarks were se-
lected. The construction time is acceptable in real applications.
For the largest graph RMAT2, it costs a total of 36/69 hours. Since
it is built as an offline phase, such cost is acceptable. Million-node
graphs only take several hours. The result shows that the embed-
ding procedure (embedding of landmarks as well as other vertices)
dominates the construction time for million node graphs. For bil-
lion node graphs, the cost of BFS and local betweenness become
non-negligible. We see that local betweenness was efficiently com-
puted. For million-node graphs, it takes less time than BFS. For
billion-node graphs, the computation cost is comparable to BFS.
The increase of computation cost for local betweenness on large
graphs is because the machine number is fixed in our experiment.
As a result, the size of local graphs will increase with the entire
graph size. Finally, we observe that the landmark embedding cost
is constant, independent of the graph size. This is because the num-
ber of landmarks is fixed at 100 in the experiment.

Query response time is the average response time of sampled
vertex pairs. The results show that our solution does not sacrifice
query performance. Even for the billion-node graphs, it only costs

less than 1ms. This performance is good enough to support online
shortest path query.

We evaluate the accuracy of our approach by comparing it with
the state-of-the-art distance oracles. The results on 3 million-node
graphs are shown in Figure 4. Our distance oracle is more accu-
rate in most cases (TreeSketch produces the most accurate results
on Flickr). Our distance oracles consistently produces accurate an-
swers. For example, the absolute error of our distance oracles is
almost consistently less than 0.5, while the error of TreeSketch on
2 of the 3 graphs is above 1, suggesting its sensitivity to network
structures. Our distance oracles are robust under different landmark
selection mechanisms or error metrics.

0

1

2

3

4

5

3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

A
b
s
o
l
u
t
e

E
r
r
o
r

Hop(s)

DE+AS

DE+RS

LB+AS

LB+RS

Sketch

SketchCE

SketchCESC

TreeSketch

(a) Flickr

0

1

2

3

4

5

3 4 5 6 7 8 9 10 11 12 13

A
b
s
o
l
u
t
e

E
r
r
o
r

Hop(s)

DE+AS

DE+RS

LB+AS

LB+RS

Sketch

SketchCE

SketchCESC

TreeSketch

(b) LiveJournal

0

1

2

3

4

5

3 4 5 6 7 8

A
b
s
o
l
u
t
e

E
r
r
o
r

Hop(s)

DE+AS

DE+RS

LB+AS

LB+RS

Sketch

SketchCE

SketchCESC

TreeSketch

(c) Orkut
Figure 4: Accuracy on real graphs

7.3 Results of Each Component

 40

 50

 60

 70

 80

 90

10 20 30 40 50 60 70 80 90 100

C
o
v
e
r
n
e
s
s
(
%
)

Number of landmarks

LB(5)
LB(10)

LB(15)
LB(20)

Bet
AB

Degree

(a) CA

 86

 88

 90

 92

 94

 96

 98

 100

10 20 30 40 50 60 70 80 90 100

C
o
v
e
r
n
e
s
s
(
%
)

Number of landmarks

LB(5)
LB(10)

LB(15)
LB(20)

Bet
AB

Degree

(b) GO
Figure 5: Coverage as the function of #landmarks

Local betweenness. We compare the effectiveness of local be-
tweenness (LB) with that of exact betweenness (Bet), node degree,
and approximate betweenness (AB), which counts the number of
shortest paths from a set of sampled vertices [31]. The computa-
tion of LB is under random partitions with varying partition num-
bers {5, 10, 15, 20}. The number of sampled vertices used in AB

69

Table 1: Graph data
Billion-node graphs Million-node graphs Small graphs

N M ⟨d⟩ N M ⟨d⟩ N M ⟨d⟩
RMAT1 0.5G 2G 8 Orkut 3.07M 117.19M 76.4 CA 21,363 91,342 8.6
RMAT2 1G 4G 8 Flickr 1.62M 15.75M 19.4 ST 255,265 1,941,926 15.2

Live. 4.84M 43.36M 18.0 GO 196,591 950,327 9.7
Table 2: Performance of distance oracle

Graph Construction Time Response Time
total time(degree/LB) landmark selection(degree/LB) BFS landmark embedding others’ embedding

Flickr 4.03h/4.07h 1s/2.8min 33.4min 3.45h 1.6min 0.70ms
LiveJournal 4.25h/4.46h 1s/12.8min 43.8min 3.46h 3.65min 0.68ms

Orkuts 4.07h/4.36h 1s/18.1min 31.8min 3.49h 2.82min 0.69ms
RMAT1 21.08h/32.78h 28s/11.7h 11.1h 3.6h 6.38h 0.73ms
RMAT2 36.2h/69.83h 58s/33.63h 19.4h 3.73h 13.07h 0.65ms

is 2000. Thus, AB needs to explore 2000|E| edges of the graph.
In the same amount of time, we can run BFS at least 2000 times
on each local graph. Hence, we sample 2000 vertices within each
machine to compute LB.

We show coverage as a function of the number of landmarks in
Figure 5. We can see that exact betweenness always performs the
best. Local betweeness is quite close to exact betweenness, com-
parable to AB and node degree. We also find that the effectiveness
of LB is almost independent of the number of partitions.

We further show that vertices of the top local betweenness value
have significant overlap with vertices of the top exact betweenness
value. Let V1, V2 be the top-K vertices under exact betweenness
and LB. We compute the overlapping ratio as |V1∩V2|

|V1|
. The over-

lapping ratios between degree and exact betweenness, and that be-
tween AB and exact betweenness are also calculated. The results
are shown in Figure 6. We can see that the effectiveness of LB is
close to AB, and in some cases (for example in CA) is even better
than AB. It is also evident that the effectiveness of LB is almost in-
dependent of the number of partitions. LB is a practical solution for
landmark selection. For 120 landmarks, on CA the overlapping ra-
tio between LB and exact betweenness is close to 70%, and on GO
it is almost 80%. Such coverage and overlapping ratio are enough
for selecting good landmarks.

 0.45

 0.5

 0.55

 0.6

 0.65

 0.7

 0.75

 0.8

30 60 90 120 150 180 210 240 270 300

A
c
c
u
r
a
c
y

Number of landmarks

LB(5)
LB(10)

LB(15)
LB(20)

AB
Degree

(a) CA

 0.6

 0.65

 0.7

 0.75

 0.8

 0.85

 0.9

30 60 90 120 150 180 210 240 270 300

A
c
c
u
r
a
c
y

Number of landmarks

LB(5)
LB(10)

LB(15)
LB(20)

AB
Degree

(b) GO
Figure 6: Overlapping of top-K vertices

Hubs caching. Figure 7 and Figure 8 show the number of com-
munications and time as a function of the number of cached hubs.
We can see that the #communications is monotonically decreas-
ing with the growth of #cached hubs. But the overall running time
is not necessarily decreasing with the growth of #cached hubs. It
is because when the #cached hubs increases it takes more time to
query from caches. When this cost is larger than the cost saved by
reducing the #communication, the overall run time will increase.
This is demonstrated in the experimental results. We can see that
there is a spike on Flickr, LiveJournal and RMAT when too many
hubs are cached.

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

3 4 5 6 7 8 9 10 11 12 13 14

A
b
s
o
l
u
t
e

E
r
r
o
r

Hop(s)

LR+C
C
L+R

(a) Flickr

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

3 4 5 6 7 8 9 10 11 12

A
b
s
o
l
u
t
e

E
r
r
o
r

Hop(s)

LR+C
C
L+R

(b) LiveJournal

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

3 4 5 6 7

A
b
s
o
l
u
t
e

E
r
r
o
r

Hop(s)

LR+C
C
L+R

(c) Orkut
Figure 9: Accuracy on real graphs

Distance estimation. We compared different distance estima-
tion mechanisms. The baseline approach only uses the lower and
upper bounds (denoted as LR). We can either estimate according
to coordinate distances only (denoted as C), or according to coor-
dinate distances and lower/upper bounds (denoted as LR+C). Fig-
ure 9 shows the average query answering error on three real net-
works. It is evident that in almost all cases, LR+C had the minimal
error. For LR+C, we gave the percentage of vertex pairs whose
estimated distance is exactly the coordinate distance (i.e., the coor-
dinate distance lies between the lower and upper bound). Figure 10
shows that on three real networks a significant number of quires has
the coordinate distance as the answer. This justifies our motivation
to construct a coordinate-based distance oracle.

 20

 30

 40

 50

 60

 70

 80

 90

 100

 3 4 5 6 7 8 9 10 11 12 13 14 15

R
a
t
i
o
(
%
)

Hops

Ratio of Reasonable C

Flickr
LiveJournal
Orkuts

Figure 10: Ratio that coordinate distance is effective

7.4 Results on billion node graphs
70

 0

 5

 10

 15

 20

 25

 0 5 10 15 20

#
C
o
m
m
u
n
i
.
(
M
)

CacheSize(2
x
)

(a) Flickr

 10

 20

 30

 40

 50

 60

 70

 0 5 10 15 20

#
C
o
m
m
u
n
i
.
(
M
)

CacheSize(2
x
)

(b) LiveJournal

 40

 80

 120

 160

 200

 0 5 10 15 20

#
C
o
m
m
u
n
i
.
(
M
)

CacheSize(2
x
)

(c) Orkut

 0

 200

 400

 600

 800

 1000

 0 5 10 15 20 25

#
C
o
m
m
u
n
i
.
(
M
)

CacheSize(2
x
)

(d) RMAT
Figure 7: #communications vs #cached hubs

 9000

 10000

 11000

 12000

 0 5 10 15 20

T
i
m
e
(
m
s
)

CacheSize(2
x
)

(a) Flickr

 13000

 14000

 15000

 16000

 17000

 0 5 10 15 20

T
i
m
e
(
m
s
)

CacheSize(2
x
)

(b) LiveJournal

 13000

 14000

 15000

 16000

 17000

 18000

 0 5 10 15 20

T
i
m
e
(
m
s
)

CacheSize(2
x
)

(c) Orkut

 20000

 30000

 40000

 50000

 60000

 0 5 10 15 20 25

T
i
m
e
(
m
s
)

CacheSize(2
x
)

(d) RMAT
Figure 8: Time vs #cached hubs

 0

 0.2

 0.4

 0.6

 0.8

 1

3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

A
b
s
o
l
u
t
e

E
r
r
o
r

Hop(s)

0.5B RMAT
1B RMAT

(a) Absolute error

 0

 0.02

 0.04

 0.06

 0.08

 0.1

3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

R
e
l
a
t
i
v
e

E
r
r
o
r

Hop(s)

0.5B RMAT
1B RMAT

(b) Relative error
Figure 11: Accuracy of distance oracle on billion-node graph

We highlight again that our distance oracle can scale up to bil-
lion node graphs. As shown in Table 2, it only takes about 20 to 70
hours to construct on billion node graphs. Since it is built offline,
this performance is acceptable. The query response is also quite
efficient. It only takes less than 1 ms to answer the shortest dis-
tance query on a billion node graph. The accuracy results on two
billion-node graphs are shown in Figure 11. We can see that for
geodesic distances less than 14 (which account for the majority of
the shortest paths), our distance oracles generate distances with ab-
solute error consistently less than 0.3 and relative error consistently
less than 8%.

8. RELATED WORKS

Distance oracles. Exact distance oracles in general need to
store all pairwise distances, which occupy quadratic space. This
gives rise to approximate distance oracles. Thorup and Zwick [32]
proposed a distance oracle of O(kn1+1/k) space, O(kmn1/k) con-
struction time, and O(k) query complexity (with at most 2k − 1
multiplicative distance estimation). By tuning k, we find the best
tradeoff between construction time, space, query time, and approx-
imation ratio. When k = 1, the distance oracle returns the exact
distance, but it requires quadratic space, and quadratic construction
time, which is prohibitive in billion-node graphs. When k = 2, the
worst distance is 3-multiplicative of the exact distance and the ora-
cle occupies O(n1.5) space. Many successors to this research fur-
ther reduce the construction time on weighted [33] or unweighted
graphs [34], or reduce the space cost on power-law graphs [35] or
Erdös-Rényi random graphs [36]. These oracles are of theoretic
interest and cannot be applied to billion-node graphs. Most real

graphs are small-world, i.e., any vertex pair has a small shortest
distance. Thus, even for k = 2, the estimation error is unaccept-
able.

To handle large graphs, practical distance oracles take a sketch-
based approach. There are two families of sketch-based solutions.
The first [9, 25, 5, 37, 10] uses the shortest distance of vertex u to
a set of landmarks as the sketch. The second [7, 6] uses the coordi-
nate of u in certain embedded space as its sketch. Sketch based dis-
tance oracles cost linear space and return a query result in constant
time but in general can hardly give a theoretic distance approxi-
mation bound. Landmark selection and distance estimation are the
two key components of sketch-based solutions. These solutions dif-
ferentiate from each other in these two components. Guvichev et.
al [25] uses cycle elimination and tree-structured sketch to improve
the distance estimation accuracy. Potamias et al. [9] shows that se-
lecting the optimal landmark set is an NP-hard problem and shows
that betweenness is a good landmark selection heuristic. Tretyakov
et al. [10] uses the distance to the least common ancestor of u and v
in a shortest path tree to estimate a tighter upper bound to improve
the distance estimation accuracy. Das Sarma et al. [5] proposed a
randomized seed selection approach to construct a sketch, which is
of O(k logN) size. For distance oracles that use coordinate dis-
tances in embedded spaces, geometric space selection is critical.
Euclidean space [38, 7] and hyperbolic space [39, 6] are the two
widely used spaces. For Euclidean space, an upper bound of the
distortion can be derived [38, 40]. But hyperbolic space is shown
to be more network structure aware [39]. Zhao et al. [7, 6] pro-
posed two solutions: Orion [7] and Rigel [6] in turn, that employ
graph embedding for distance oracles. Orion uses Euclidean space
and Rigel uses hyperbolic space. It was shown that Rigel is better
than Orion in accuracy [6].

These distance oracles are generally not practical for billion node
graphs. They either have low query accuracy, or are computation-
ally inefficient. Furthermore, none of these solutions consider an
optimized distance oracle for a distributed computing platform. As
a result, the largest graphs they can handle are a web graph with
65M nodes [5] and a social network with 43M nodes [6].

Betweenness and Distributed BFS. Betweenness is widely
regarded as a good heuristic to select landmarks for an effective
distance oracle [9]. Betweenness was first introduced by Free-
man [41]. The fastest exact algorithm to compute the between-
ness for all vertices needs O(|V ||E|) time [16] on an unweighted
graph, which is too expensive for large graphs. Many succeeding
efforts focus on effective approximation or parallelized computing.
Brandes et al. [31] shows that exact betweenness can be well ap-
proximated by extrapolating from shortest paths originating from
a subset of k starting nodes (called pivots). It turns out that ran-
dom sampling of pivots achieves good approximation [31]. Mária
et al. [22] uses the shortest path with a length no larger than L for
a counting in betweenness calculation. Bader et al. [42] uses adap-

71

tive sampling to approximate exact betweenness while reducing the
computation cost. These approximate solutions do not consider
parallelized optimization. Many versions of parallelized between-
ness are also proposed [17, 18, 19, 20, 21] on different parallelized
platforms, such as massive multithreaded computing platforms [17,
18], distributed memory systems [19], and multi-core systems [20,
21]. All these distributed betweenness algorithms only calculate
exact betweenness, without considering how to devise an effective
and approximate betweenness according to the characteristics of a
corresponding distributed computing platform.

Distributed levelwise BFS has been optimized from different as-
pects. There are a large number of waste attempts (random ac-
cess) to test wether a neighbor has been visited. Considering this,
Beamer et al. [43] applies a hybrid strategy, which uses the top-
down algorithm initially, and uses the bottom-up algorithm when
the number of nodes on current level is sufficient large. Buluc
et al. [44] developed one-dimensional and two-dimensional vertex
partitioning strategies to optimize the distributed levelwise BFS.
These approaches share the same levelwise BFS framework with
ours, but didn’t optimize distributed BFS by a smart caching strat-
egy.

9. CONCLUSION AND DISCUSSIONS
In this paper, we introduce a novel distance oracle on billion-

node graphs. This is the first research to make highly accurate
shortest distance estimation possible for billion-node graphs. We
solve the scalability and the accuracy problems by optimizing three
key factors that affect the performance of distance oracles, namely
landmark selection, distributed BFS, and distance estimation. Our
experiment results on both real networks and synthetic networks
show that our approach is practical for billion-node graphs, and it
beats existing approaches in terms of scalability and accuracy on
million-node or smaller graphs.

Extension on weighted graph. The proposed optimization
techniques can also be applied on weighted graphs. The difference
is that we need to calculate weighted shortest path. Bellman-Ford
algorithm is a typical choice for weighted shortest path computa-
tion. It can be easily parallelized and the hub caching optimiza-
tion is still effective in the parallelized Bellman-Ford algorithm.
For landmark selection, shortest paths in local graphs are still good
choice for the approximate betweenness. But we need to reevalu-
ate the quality of local shortest paths, which is an interesting future
work. The coordinate leaning can completely inherit the learning
model on unweighted graph. In the query answering phase, we use
the same strategy to generate the result. The only difference is that
we can not round off the estimated distance on unweighted graph
(see Eq. 13).

10. REFERENCES
[1] http://www.worldwidewebsize.com/.
[2] http://www.facebook.com/press/info.php?statistics.
[3] http://www.w3.org/.
[4] D. R. Zerbino and E. Birney, “Velvet: algorithms for de novo short

read assembly using de bruijn graphs.” Genome Research, 2008.
[5] A. Das Sarma, S. Gollapudi, M. Najork, and R. Panigrahy, “A

sketch-based distance oracle for web-scale graphs,” in WSDM ’10.
[6] X. Zhao, A. Sala, H. Zheng, and B. Y. Zhao, “Fast and scalable

analysis of massive social graphs,” CoRR, 2011.
[7] X. Zhao, A. Sala, C. Wilson, H. Zheng, and B. Y. Zhao, “Orion:

shortest path estimation for large social graphs,” in WOSN’10.
[8] J. A. Nelder and R. Mead, “A simplex method for function

minimization,” Computer Journal, 1965.
[9] M. Potamias, F. Bonchi, C. Castillo, and A. Gionis, “Fast shortest

path distance estimation in large networks,” in CIKM ’09.
[10] K. Tretyakov, A. Armas-Cervantes, L. Garcı́a-Bañuelos, J. Vilo, and

M. Dumas, “Fast fully dynamic landmark-based estimation of
shortest path distances in very large graphs,” in CIKM ’11.

[11] http://research.microsoft.com/en us/projects/trinity/.
[12] G. Malewicz, M. H. Austern, A. J. Bik, J. C. Dehnert, I. Horn,

N. Leiser, and G. Czajkowski, “Pregel: a system for large-scale graph
processing,” in SIGMOD ’10.

[13] T. S. E. Ng and H. Zhang, “Predicting internet network distance with
coordinates-based approaches,” in INFOCOM’01.

[14] F. Dabek, R. Cox, F. Kaashoek, and R. Morris, “Vivaldi: a
decentralized network coordinate system,” SIGCOMM Comput.
Commun. Rev., 2004.

[15] Y. Shavitt and T. Tankel, “On the curvature of the internet and its
usage for overlay construction and distance estimation,” in
INFOCOM ’04.

[16] U. Brandes, “A faster algorithm for betweenness centrality,” Journal
of Mathematical Sociology, 2001.

[17] D. A. Bader and K. Madduri, “Parallel algorithms for evaluating
centrality indices in real-world networks,” in ICPP ’06.

[18] K. Madduri, D. Ediger, K. Jiang, D. A. Bader, and
D. Chavarria-Miranda, “A faster parallel algorithm and efficient
multithreaded implementations for evaluating betweenness centrality
on massive datasets,” in IPDPS ’09.

[19] N. Edmonds, T. Hoefler, and A. Lumsdaine, “A space-efficient
parallel algorithm for computing betweenness centrality in
distributed memory,” in HIPC’10.

[20] G. Tan, D. Tu, and N. Sun, “A parallel algorithm for computing
betweenness centrality,” in ICPP ’09.

[21] D. Tu and G. Tan, “Characterizing betweenness centrality algorithm
on multi-core architectures,” in ISPA’09.

[22] M. Ercsey-Ravasz and Z. Toroczkai, “Centrality scaling in large
networks,” Phys. Rev. Lett., 2010.

[23] J. Leskovec, J. Kleinberg, and C. Faloutsos, “Graphs over time:
densification laws, shrinking diameters and possible explanations,” in
KDD ’05.

[24] M. Faloutsos, P. Faloutsos, and C. Faloutsos, “On power-law
relationships of the internet topology,” SIGCOMM Comput.
Commun. Rev., 1999.

[25] A. Gubichev, S. Bedathur, S. Seufert, and G. Weikum, “Fast and
accurate estimation of shortest paths in large graphs,” in CIKM ’10.

[26] A. Mislove, M. Marcon, K. P. Gummadi, P. Druschel, and
B. Bhattacharjee, “Measurement and Analysis of Online Social
Networks,” in IMC’07, 2007.

[27] J. Leskovec, J. Kleinberg, and C. Faloutsos, “Graph evolution:
Densification and shrinking diameters,” ACM Trans. Knowl. Discov.
Data, 2007.

[28] J. Leskovec, K. J. Lang, A. DasGupta, and M. W. Mahoney,
“Community structure in large networks: Natural cluster sizes and
the absence of large well-defined clusters,” 2008.

[29] E. Cho, S. A. Myers, and J. Leskovec, “Friendship and mobility: user
movement in location-based social networks,” in KDD ’11.

[30] D. Chakrabarti, Y. Zhan, and C. Faloutsos, “R-mat: A recursive
model for graph mining,” in In SDM, 2004.

[31] U. Brandes and C. Pich, “Centrality estimation in large networks,” in
Special issue ”Complex Networks’ Structure and Dynamics” of the
International Journal of Bifurcation and Chaos, 2007.

[32] M. Thorup and U. Zwick, “Approximate distance oracles,” 2001.
[33] S. Baswana and T. Kavitha, “Faster algorithms for approximate

distance oracles and all-pairs small stretch paths,” in FOCS’06.
[34] S. Baswana and S. Sen, “Approximate distance oracles for

unweighted graphs in expected o(n2) time,” ACM Trans. Algorithms,
2006.

[35] W. Chen, C. Sommer, S.-H. Teng, and Y. Wang, “Compact routing in
power-law graphs,” in DISC’09.

[36] M. Enachescu, M. Wang, and A. Goel, “Reducing maximum stretch
in compact routing.” in INFOCOM’08.

[37] A. V. Goldberg and C. Harrelson, “Computing the shortest path: A
search meets graph theory,” in SODA ’05.

[38] S. Rao, “Small distortion and volume preserving embeddings for
planar and euclidean metrics,” in Symposium on Computational
Geometry, 1999.

[39] Y. Shavitt and T. Tankel, “Hyperbolic embedding of internet graph
for distance estimation and overlay construction,” IEEE/ACM Trans.
Netw., 2008.

[40] J. R. Lee, “Volume distortion for subsets of euclidean spaces,”
Discrete & Computational Geometry, 2009.

[41] L. C. Freeman, “A set of measures of centrality based on
betweenness,” Sociometry, 1977.

[42] D. A. Bader, S. Kintali, K. Madduri, and M. Mihail, “Approximating
betweenness centrality,” in WAW’07.

[43] S. Beamer, K. Asanovi?, and D. A. Patterson, “Searching for a parent
instead of fighting over children: A fast breadth-first search
implementation for graph500,” Tech. Rep. UCB/EECS-2011-117.

[44] A. Buluç and K. Madduri, “Parallel breadth-first search on
distributed memory systems,” in SC2011, ser. SC ’11, 2011.

72

