A Principled Approach to Bridging the Gap between Graph
Data and their Schemas

Marcelo Arenas!?, Gonzalo Diaz!, Achille Fokoue?,
Anastasios Kementsietsidis®, Kavitha Srinivas?

!Pontificia Universidad Catdlica de Chile
2University of Oxford
marenas@ing.puc.cl, gdiazc@uc.cl

ABSTRACT

Although RDF graph data often come with an associated schema,
recent studies have proven that real RDF data rarely conform to
their perceived schemas. Since a number of data management deci-
sions, including storage layouts, indexing, and efficient query pro-
cessing, use schemas to guide the decision making, it is imperative
to have an accurate description of the structuredness of the data at
hand (how well the data conform to the schema).

In this paper, we have approached the study of the structuredness
of an RDF graph in a principled way: we propose a framework
for specifying structuredness functions, which gauge the degree to
which an RDF graph conforms to a schema. In particular, we first
define a formal language for specifying structuredness functions
with expressions we call rules. This language allows a user to state
arule to which an RDF graph may fully or partially conform. Then
we consider the issue of discovering a refinement of a sort (type) by
partitioning the dataset into subsets whose structuredness is over a
specified threshold. In particular, we prove that the natural decision
problem associated to this refinement problem is NP-complete, and
we provide a natural translation of this problem into Integer Linear
Programming (ILP). Finally, we test this ILP solution with three
real world datasets and three different and intuitive rules, which
gauge the structuredness in different ways. We show that the rules
give meaningful refinements of the datasets, showing that our lan-
guage can be a powerful tool for understanding the structure of
RDF data, and we show that the ILP solution is practical for a large
fraction of existing data.

1. INTRODUCTION

If there is one thing that is clear from analyzing real RDF data,
it is that the data rarely conform to their assumed schema [5]. One
example is the popular type of DBpedia persons (in this paper, we
will use the term sort as a synonym of type), which includes all
people with an entry in Wikipedia. According to the sort definition,
each person in DBpedia can have 8 properties, namely, a name, a
givenName, a surName, a birthDate, a birthPlace, a deathDate, a
deathPlace, and a description. There are 790,703 people listed in

This work is licensed under the Creative Commons Attribution-
NonCommercial-NoDerivs 3.0 Unported License. To view a copy of this li-
cense, visit http://creativecommons.org/licenses/by-nc-nd/3.0/. Obtain per-
mission prior to any use beyond those covered by the license. Contact
copyright holder by emailing info@vldb.org. Articles from this volume
were invited to present their results at the 40th International Conference on
Very Large Data Bases, September 1st - 5th 2014, Hangzhou, China.
Proceedings of the VLDB Endowment, Vol. 7, No. 8

Copyright 2014 VLDB Endowment 2150-8097/14/04.

601

3IBM T.J. Watson Research Center

{achille, ksrinivs}@us.ibm.com, tasosk@ca.ibm.com

DBpedia, and while we expect that a large portion of them are alive
(they do not have a death date or death place) we do expect that
we know at least when and where these people were born. The
statistics however are very revealing: Only 420,242 people have a
birthdate, only 323,368 have a birthplace, and for only 241,156 do
we have both. There are ~40,000 people for whom we do not even
know their last name. As for death places and death dates, we only
know those for 90,246 and 173,507 people, respectively.

There is actually nothing wrong with the DBpedia person data.
The data reflect the simple fact that the information we have about
any domain of discourse (in this case people) is inherently incom-
plete. But while this is the nature of things in practice, sorts in
general go against this trend since they favor uniformity, i.e., they
require that the data tightly conform to the provided sorts. In our
example, this means that we expect to have all 8 properties for ev-
ery DBpedia person. So the question one needs to address is how to
bridge the gap between these two worlds, the sorts and the respec-
tive data. In our previous work [5], we considered sorts as being
the unequivocal ground truth, and we devised methods to make the
data fit these sorts. Here, we consider a complementary approach
in which we accept the data for what they are and ask ourselves
whether we can refine the schema to better fit our data (more pre-
cisely, we will seek a sort refinement of our data).

Many challenges need to be addressed to achieve our goal. First,
we need to define formally what it means for a dataset to fit a partic-
ular sort. Our own past work has only introduced one such fitness
metric, called coherence, but that does not clearly cover every pos-
sible interpretation of fitness. In this work, we propose a new set
of alternative and complementary fitness metrics between a dataset
and a sort, and we also introduce a rule language through which
users can define their own metrics.

Second, for a given RDF graph D and a fitness metric o, we
study the problem of determining whether there exists a sort refine-
ment 7 of D with a fitness value above a given threshold 6 that
contain at most k£ implicit sorts, and we show that the problem is
NP-complete. In spite of this negative result, we present several
techniques enabling us to solve this problem in practice on real
datasets as illustrated in our experimental evaluation section. Our
first attack on the problem is to reduce the size of the input we have
to work with. Given that typical real graph datasets involve millions
of instances, even for a single sort, scalability is definitely a con-
cern. We address this challenge by introducing views of our input
data that still maintain all the properties of the data in terms of their
fitness characteristics, yet they occupy substantially less space. Us-
ing said view, given any fitness metric expressed as a rule r in our
language, we formulate the previously defined problem as an Inte-
ger Linear Programming (ILP) problem instance. Although ILP is

also known to be NP-hard in the worst case, in practice, highly op-
timized commercial solvers (e.g. IBM ILOG CPLEX) exist to ef-
ficiently solve our formulation of the sort refinement problem (see
experimental evaluation for more details). In particular, we study
two complementary formulations of our problem: In the first alter-
native, we allow the user to specify a desired fitting value ¢’, and
we compute a smallest set of implicit sorts, expressed as a partition
{D1, Da,..., Dy} of the input dataset D, such that the fitness of
each D; is larger than or equal to §’. In the second alternative, we
allow the user to specify the desired number k of implicit sorts, and
we compute a set of k implicit sorts such that the minimum fitness
across all implicit sorts is maximal amongst all possible decompo-
sitions of the sort that involve k implicit sorts. Both our alternatives
are motivated by practical scenarios. In the former alternative, we
allow a user to define a desirable fitness and we try to compute a
sort refinement with the indicated fitness. However, in other set-
tings, the user might want to specify a maximum number of sorts
to which the data should be decomposed and let the system figure
out the best possible sort and data decomposition.

A clear indication of the practical value of this work can be
found in the experimental section, where we use different rules over
real datasets and not only provide useful insights about the data
themselves, but also automatically discover sort refinements that,
in hindsight, seem natural, intuitive and easy to understand. We
explore the correlations between alternative rules (and sort refine-
ments) over the same data and show that the use of multiple such
rules is important to fully understand the nature of data. Finally,
we study the scalability of the ILP-based solution on a sample of
explicit sorts extracted from the knowledge base YAGO, showing
that it is practical for all but a small minority of sorts.

Our key contributions in this paper are fivefold: (1) we propose
a framework for specifying structuredness functions to measure the
degree to which an RDF graph conforms to a schema; (2) we study
the problem of discovering a refinement of a sort by partitioning
the dataset into subsets whose structuredness is greater than a given
threshold and show that the decision problem associated with this
sort refinement problem is NP-complete; (3) we provide a natural
translation of an instance of the sort refinement problem into an
ILP problem instance; (4) we successfully test our ILP approach
on two real world datasets and three different structuredness func-
tions; (5) we study the scalability of our solution on a sample of
sorts extracted from the knowledge base YAGO, showing that the
solution is practical in a large majority of cases.

The remainder of the paper is organized as follows. Section
2 presents a brief introduction to RDF and sample structuredness
functions, while the syntax and the formal semantics of the lan-
guage for specifying structuredness functions is defined in Section
3. Section 4 introduces the key concepts of signatures and sort re-
finements. Section 5 presents the main complexity result of the sort
refinement problem, while Section 6 describes the formulation of
the problem as an ILP problem. In Section 7, we present our exper-
imental evaluation on three real world datasets. Finally, we review
related work in Section 8, and conclude in Section 9.

An extended version of this paper (with proofs of the theoretical
results) is available at http://arxiv.org/abs/1308.5703.

2. PRELIMINARIES

2.1 A schema-oriented graph representation
We assume two countably infinite disjoint sets U and L of URIs,

Literals, respectively. An RDF triple is a tuple (s, p,0) € U x U x
(UUL), and an RDF graph is a finite set of RDF triples. Given an

602

RDF graph D, we define the sets of subjects and properties men-
tioned in D, respectively denoted by S(D) and P(D), as:

S(D) {s €U | IpJos.t. (s,p,0) € D},
P(D) {p€VU | IsTos.t. (s,p,0) € D}.

Given an RDF graph D and s, p € U, we say that s has property
p in D if there exists o € U such that (s, p,0) € D.

A natural way of storing RDF data in a relational table, known as
the horizontal database [11], consists in defining only one relational
table in which each row represents a subject and there is a column
for every property. With this in mind, given an RDF graph D, we
define an |S(D)| x |P(D)| matrix M (D) (or just M if D is clear
from the context) as follows: for every s € S(D) and p € P(D),

M(D)sp = {

1 if s has property p in D
0 otherwise.

It is important to notice that M (D) corresponds to a view of the
RDF graph D in which we have discarded a large amount of in-
formation, and only retained information about the structure of the
properties in D. Thus, in what follows we refer to M (D) as the
property-structure view of D.

In an RDF graph, to indicate that a subject s is of a specific
sort ¢ (like person or country), the following triple must be present:
(s, type, t), where the constant type = http://www.w3.0rg/
1999/02/22-rdf-syntax—ns#type (note that type € U).

Given a URI ¢, we define the following RDF subgraph D; C D:
D, = {(s,p,0) € D | (s,type,t) € D}. This subgraph consists
of all triples whose subject s is explicitly declared to be of sort ¢
in D. With this subgraph D;, we can mention its set of subjects,
S(Dy), which is also the set of subjects of sort ¢ in D, and its set of
properties P(D;), which is the set of properties set by some subject
of sort t. We will use the term sort to refer to the constant ¢, the
RDF subgraph D¢, and sometimes the set S(Ds).

2.2 Sample structuredness functions

As there are many alternative ways to define the fitness, or struc-
turedness, of a dataset with respect to a schema, it is convenient
to define structuredness initially in the most general way. As such,
we define a structuredness function o to be any function which as-
signs to every RDF graph D a rational number o (D), such that
0 < o(D) < 1. Within the context of our framework a struc-
turedness function will only produce rational numbers. In what fol-
lows, we offer concrete examples of structuredness functions which
gauge the structuredness of RDF graphs in very different ways.

2.2.1 The coverage function

Duan et. al. defined the COVERAGE function [5] ocov to test
the fitness of graph data to their respective schemas. The metric
was used to illustrate that though graph benchmark data are very
relational-like and have high fitness (values of ocov (D) close to
1) with respect to their sort, real graph data are fairly unstructured
and have low fitness (ccov (D) less than 0.5). Using the property-
structure view M (D), the coverage metric of [5] can be defined as:
ocov(D) = (Zsp M(D)sp)/|S(D)||P(D)|. Intuitively, the met-
ric favors conformity, i.e., if one subject has a property p, then the
other subjects of the same sort are expected to also have this prop-
erty. Therefore, the metric is not forgiving when it comes to missing
properties. To illustrate, consider an RDF graph D; consisting of
N triples: (s;,p,0) fori =1,..., N (i.e. all N subjects have the
same property p). The matrix M (D) for D1 is shown in Figure 1a.
For this dataset, ccov(D1) = 1. If we insert a new triple (s1, ¢, 0)
for some property g # p, resulting dataset Da = Dy U{(s1,¢,0)}
whose matrix is shown in Figure 1b. Then, the structuredness of

p p q pP1 P2 PN
S1 1 S1 1 1 S1 1 0 0
52 1 S9 1 0 S92 0 1 0
sy \1 sk \1 0/ sy \o o 1
(a) M(D1) (b) M(D2) (c) M(D3)

Figure 1: Sample matrixes for datasets D1, D2 and D3

ocov(D2) & 0.5 (for a large value of). The addition of the sin-
gle triple generates a new dataset D> in which most of the existing
subjects are missing property g, an indication of unstructureness.

2.2.2 The similarity function

The previous behavior motivates the introduction of a structured-
ness function that is less sensitive to missing properties. We define
the osim structuredness function as the probability that, given two
randomly selected subjects s and s’ and a random property p such
that s has property p in D, s’ also has property p in D.

To define the function formally, let ©$"™ (s, s’,p) denote the
statement “s # s’ and s has property p in D” and let 5™ (s', p)
denote “s’ has property pin D”. Next, we define a set of total
cases total(oF™, D) = {(s,s',p) € S(D) x S(D) x P(D) |
go%?m(s, s',p) holds}, and a set of favorable cases tptal(ap?im A
©S™ DY = {(s,5,p) € S(D)xS(D)x P(D) | F™(s,s",p)A

©5™ (s’ p) holds}. Finally, define:

(D) — oI A o5 D)
owl(F™, D)|

Going back to the example in Figure 1, notice that ogim(D1) = 1
but also osim (Dz2) is still approx. equal to 1 (for large N). Unlike
Ocov, function osim allows certain subjects to have exotic prop-
erties that either no other subject has, or only a small fraction of
other subjects have (while maintaining high values for osim). As
another example, consider the RDF graph D3 in Figure 1¢ where
every subject s; has only one property p;, and no two subjects have
the same property. This dataset is intuitively very unstructured. In-
deed, osim (D3) = 0 while ocov(D3) = 0 (for a large value of N).

2.2.3 The dependency functions

It is also of interest to understand the correlation between dif-
ferent properties in an RDF graph D. Let p1, p2 € P(D) be two
fixed properties we are interested in. Define the opep[p1, p2] func-
tion as the probability that, given a random subject s € S(D) such
that s has p1, s also has p2. In the same way as before, we can de-
fine a set of total cases and a set of favorable cases, and we define
the value of opep[p1, P2] to be the ratio of the sizes of both sets.

A closely related structuredness function is the symmetric ver-
sion of opep[P1, P21, which we call 0sympepl[P1, P2]. Itis defined
as the probability that, given a random subject s € S(D) such that
s has p1 or s has p2, s has both.

3. A LANGUAGE FOR DEFINING STRUC-
TUREDNESS MEASURES

We have already shown in Section 2.2 some intuitive structured-
ness measures that give very different results when applied to the
same RDF graphs. As many more natural structuredness functions
exist, we do not intend to list all of them in this article, but in-
stead our goal is to introduce a general framework to allow users to
define their own custom structuredness measures in a simple way.
To this end, we introduce in this section a language for describing

603

such measures. This language has a simple syntax and a formal
semantics, which make it appropriate for a formal study, and it is
expressive enough to represent many natural structuredness func-
tions, like the ones presented in Section 2.2. In general, starting
from the matrix M (D) of a dataset D, our language can construct
statements that involve (i) the contents of the matrix (the cells of
the matrix with O or 1 values); (ii) the indices of the matrix, that
correspond to the subjects and properties of the dataset; and (iii)
Boolean combinations of these basic building components.

3.1 Syntax of the language

To define the syntax of the language, we need to introduce some
terminology. From now on, assume that V is an infinite set of vari-
ables disjoint from U. We usually use ¢, c1, c2, ... to denote the
variables in V, as each one of these variables is used as a pointer
to a cell (or position) in a matrix associated with an RDF graph.
Moreover, assume that 0, 1 do not belong to (U U V). Then the set
of terms in the language is defined as follows: (i) 0, 1, every u € U
and every ¢ € V is a term, and (ii) if ¢ € V, then val(c), subj(c)
and prop(c) are terms.

If ¢ is a variable pointing to a particular cell in a matrix, then
val(c) represents the value of the cell, which must be either 0 or 1,
subj(c) denotes the row of the cell, which must be the subject of
a triple in D, and prop(c) denotes the column of the cell, which
must be the property of a triple in D. Moreover, the set of formulas
in the language is recursively defined as follows:

elf ¢ € Vand u € U, then val(c) = 0, val(c)
prop(c) = w and subj(c) = u are formulas.

e Ifcy,co €V, then ¢1 = ¢, val(c1) = val(cz), prop(c1) =
prop(cz) and subj(c1) = subj(cz) are formulas.

o If 1 and ¢, are formulas, then (—¢1), (01 A@2), (01 V@2)
are formulas.

1,

If ¢ is a formula, then var(y) is the set consisting of all the
variables mentioned in . With this notation, we can finally define
the syntax of the rules in the language, which are used to define
structuredness functions. Formally, if @1, @2 are formulas such
that var(¢2) C var(¢1), then the following is a rule:

p1 = g)

3.2 Semantics of the language

To define how rules of the form (1) are evaluated, we need to
define the notion of satisfaction of a formula. In the rest of this
section, assume that D is an RDF graph and M is the |S(D)| x
|P(D)| matrix associated with D. A partial function p : V —
S(D) x P(D) is said to be a variable assignment for M, whose
domain is denoted by dom(p). Moreover, given a formula ¢ and
a variable assignment p for M such that var(p) C dom(p), pair
(M, p) is said to satisfy ¢, denoted by (M, p) = ¢, if:

e ¢ is the formula val(c) = i, where t = QO ori = 1, p(c) =
(s,p) and M, = i.

e ¢ is the formula subj(c) = w, where u € U, and p(c) = (u, p).

e ¢ is the formula prop(c) = u, where u € U, and p(c) = (s,u).

® ¢ is the formula ¢1 = ¢2, and p(c1) = p(c2).

e ¢ is the formula val(c;) val(cz), p(c1) = (s1,p1),
p(Cg) = (327172) and M, p, = Ms,p,.

e ¢ is the formula subj(c1) = subj(c2), p(c1) = (s1,p1),
p(c2) = (s2,p2) and s1 = s2.

e ¢ is the formula prop(c1) = prop(cz), p(c1) = (s1,p1),
p(cz2) = (s2,p2) and p1 = ps.

e ¢ is the formula (—¢1) and (M, p) = o1 does not hold.

e ¢ is the formula (o1 A p2), (M, p) = ¢1 and (M, p) E p2.

e ¢ is the formula (1 V ¢2), and (M, p) |= @1 or (M, p) = 2.

Moreover, the set of satisfying assignments for a formula ¢ w.r.t.
M, denoted by total(p, M), is defined as follows:

{ p | pis a variable assignment for M such that
dom(p) = var(p) and (M, p) = ¢}

We now have the necessary ingredients to define the semantics
of rules. Assume that 7 is the rule (1). Then the structuredness
function given by rule r is defined as a function o, that assigns to
every matrix M the value

|total (1 A 2, M|
|t0tal(§017 M)‘

if |total (@1, M)| > 0, and 1 otherwise (notice that 0 < o.(M) <
1, as we assume that var(y2) C var(¢1)). Thus, o (M) is defined
as the probability that a variable assignment p satisfies @2 given
that p satisfies 1.

The functions presented in Section 2.2 can be expressed in our
language as follows. The ogcoy Structuredness measure can be ex-
pressed with the rule ¢ = ¢ — val(¢) = 1. In this case, given
a matrix M, total(c = ¢, M) is the set of all cells of M and
total(c = cAval(c) = 1, M) is the set of all cells of M containing
a value 1 (which is represented by the condition val(c) = 1).

In some cases, it is desirable to compute a structuredness func-
tions without considering some predicate (or set of predicates),
which can be easily done in our language. For instance, a modi-
fied ocov structuredness measure which ignores a specific column
called p is defined by the following rule:

or(M)

¢ =cA—(prop(c) =p) +— val(c)=1.

The ogim structuredness measure can be expressed with the rule

=(c1 = ¢c2) Aprop(ci) = prop(cz2) Aval(c1) =1 —
val(cz) =1,

where —(¢1 = c¢2) considers two variables ¢; and ¢z that should
point to different cells, and prop(c1) = prop(cz) requires that the
two variables range over the same property column, say property
p. Taken together, the first two formulas iterate over all pairs of
subjects for each property p. The last part of the formula val(cy) =
1 requires that the value of the first cell be 1, i.e., the first subject
actually has property p. If the consequence formula is satisfied,
then the rule considers the cases where the value of the second cell
is also 1, which translates to the second subject also having property
p. Notice that this is exactly the definition of the function o'sim.
Finally, for fixed p1, p2 € U, the dependency measures. opep[p1,

P2] can be expressed with the rule

subj(c1) = subj(cz) A prop(c1) = p1 A prop(cz) = p2
Aval(c1) =1+ val(c2) =1,

while osympep[P1, P2] can be expressed with the rule

subj(ci) = subj(c2) A prop(c1) = p1 A prop(cz2) = p2
A (val(er1) =1V val(e2) = 1)
— val(c1) = 1 Aval(e2) = 1.
A variant of the dependency rule uses disjunction in the conse-

quent and corresponds to the probability that a random subject s
satisfies that: if s has pi, then s also has pa:

subj(ci) = subj(c2) A prop(c1) = p1 A prop(c2) = p2

— val(c1) = 0V val(e2) = 1.

604

4. SORT REFINEMENTS AND SIGNATURES

We can use the language from the previous section to define a
structuredness measure for a dataset. If the value of the measure
for the dataset is high, say 0.9 or even 1.0, then this is probably a
positive indication for the current state of the data, and the measure
computation can be repeated at a later stage, as the data change. Of
most interest, however, is what happens if this value is relatively
low, say, 0.5 or even 0.1? Then, we know that the dataset does not
have the desired characteristic, as expressed by the measure, and
the question is whether there is anything we can do about it. In
particular, it is interesting to investigate if there is a way to convert
the existing dataset into one whose measure is high.

In our previous work, we tried to change the data themselves to
fit the measure, by introducing new triples or removing existing
ones. The approach made sense in the context of benchmarking for
which it was introduced, but in any practical setting one does not
want to contaminate their data with dummy triples, or even worse
lose real data by deleting triples just so that the data fit some desired
measure. So a more pragmatic solution is to leave data as they are
and try to figure out whether we can refine the sort that the data is
supposed to fit, in an effort to improve structuredness.

To this end, we consider the situation in which one wishes to
partition the dataset into & implicit sorts such that each implicit sort
has a high structuredness (as defined by a rule in our language). For
a certain subject sg € S(D) we are interested in keeping all triples
of the form (so, p, 0) (for some p,o € U) together. We refer to
these triples collectively as the entity so.

We define an entity preserving partition of size k of an RDF
graph D to be a set of non-empty RDF graphs { D1, . .., Dy} where
(i) D; C D foreveryi € {1,...,k}, (ii) D; N D; = 0 for every
i,j € {1,...,k} such that i # 7, (iii) J*_, D; = D, and (iv) for
all s, p1,p2, 01,02 € U, we have that:

if (s,p1,01) € D; and (s, p2,02) € Dj, then i = j.

While the first three items specify a partition of D, the last item
indicates that for every entity s, we include the full entity in a sort.

A second consideration we shall make is concerned with the
grouping of subjects which have the same properties in D. For
this, we define the concept of signature:

DEFINITION 4.1. Given an RDF graph D and a subject s €
S (D), the signature of s in D is a function sig(s, D) : P(D) —
{0, 1}, which assigns to every property p € P(D) a 1 if s has
property p in D, and a O otherwise. O

Similarly, a signature set is the set of all subjects in S(D) which
share the same signature. The size of a signature set is the number
of subjects sharing that signature.

We are now ready to define our main objects of study. For the
following definition, let D be a fixed RDF graph and 6 be a ratio-
nal number such that 0 < 6 < 1 (@ is required to be a rational
number for compatibility with the reduction to the Integer Linear
Programming instance).

DEFINITION 4.2. Given a structuredness function o, a o-sort
refinement T of D with threshold 0 is an entity preserving partition
{D1,...,Dxn} of D such that:

i) o(D;)>0fori=1,...,n,and

ii) each D; (1 < ¢ < n) is closed under signatures. That is,
for every pair of subjects s1,s2 € S(D), if sig(s1, D) =
Sig(827 D) and 51 € S(Dz), then s € S(Dl) OJ

Figure 2: DBPedia Persons
has 790,703 subjects, 8 prop-
erties and 64 signature sets.
Its ocov 0.54, while
osim = 0.77.

53 signature sets. Its ocov
0.44, while ogim = 0.93.

In the rest of this paper, we will refer to the elements of the sort
refinement (i.e. the elements of the partition of D) as implicit sorts.

The requirement that each implicit sort be closed under signa-
tures is due to the fact that two subjects with equal signatures are
structurally identical, and thus it would not be reasonable to place
them in different subsets. This has the added benefit of reducing the
difficulty of partitioning the dataset, as the basic units to be moved
will be signatures sets, and not individual entities.

In what follows we will be concerned with discovering sort re-
finements in RDF data.

Figures 2 and 3 present a visual representation of an RDF graph’s
horizontal table. Every column represents a property and the rows
have been grouped into signature sets, in descending order of signa-
ture set size. The first 3 signature sets in Figure 2 have been delim-
ited with a dashed line, for clarity. The subsequent signature sets
can be visually separated by searching for the change in pattern.
The black zones represent data (i.e. non-null values) whereas
the white regions represent null cells. The difference between
DBpedia Persons (Fig. 2) and WordNet Nouns (Fig. 3) is immedi-
ately visible. DBpedia Persons is a relatively unstructured dataset,
with only 3 clearly common properties: name, givenName, and
surName (these three attributes are usually extractable directly
from the URL of a Wikipedia article). On the other hand, WordNet
Nouns has 5 clearly common properties, and the rest of the prop-
erties are realtively rare (very few subjects have them). The values
of the structuredness functions show how they differ in judging the
structuredness of an RDF graph.

We shall use this visual representation of the horizontal table of
an RDF graph to present the results of the experimental settings. In
this context, a sort refinement corresponds loosely to a partitioning
of the rows of the horizontal table into subtables (in all figures for
a given dataset, we depict the same number of columns for easy
comparison, even if some columns are not present in a given im-
plicit sort of the sort refinement).

5. FORMAL DEFINITION OF THE DECI-
SION PROBLEM

Fix a rule r. The main problem that we address in this paper can
be formalized as follows.

Figure 3: WordNet Nouns has
79,689 subjects, 12 properties and

605

Problem: EXISTSSORTREFINEMENT(T)
Input: An RDF graph D, a rational number 6 such that
0 < 0 < 1, and a positive integer k.
QOutput: true if there exists an o,.-sort refinement 7 of

D with threshold 6 that contains at most k im-
plicit sorts, and false otherwise.

In the following theorem, we pinpoint the complexity of the
problem EXISTSSORTREFINEMENT(r").

THEOREM 5.1.
e EXISTSSORTREFINEMENT(r) is in NP for every rule r.

e There is a rule ro for which EXISTSSORTREFINEMENT ()
is NP-complete. Moreover, this result holds even if we fix
k=3andd=1. [J

The first part of Theorem 5.1 is a corollary of the fact that one
can efficiently check if a sort refinement is an entity preserving
partition of an RDF graph and has the correct threshold, as for
every (fixed) rule r, function o, can be computed in polynomial
time. The second statement in Theorem 5.1 shows that there ex-
ists a (fixed) rule ro for which EXISTSSORTREFINEMENT(7) is
NP-hard, even if the structuredness threshold 6 and the maximum
amount of implicit sorts k are fixed. The proof of this part of the
theorem relies on a reduction from the graph 3-coloring problem
to EXISTSSORTREFINEMENT(7) with § = 1 and k£ = 3. In this
reduction, a graph G (the input to the 3-coloring problem) is used
to construct an RDF graph D¢ in such a way that a partition of the
nodes of G can be represented by an entity preserving partitioning
of the RDF graph. Although the rule 7o will not be shown explic-
itly, it is designed to calculate the probability that 2 subjects in a
subset of the entity preserving partitioning of D¢ represent 2 nodes
of G which are not adjacent. This probability will be 1 only when
said subset represents an independent set of G. Therefore, setting
the threshold § = 1 ensures that each subset of D¢ will represent
an independent set of GG. Finally, setting k = 3 ensures that at most
3 subsets will be generated. If the graph G is 3-colorable, then it
will be possible to generate the sort refinement of Dg in which
each subset represents an independent set of GG, and thus will have
a structuredness value of 1. Conversly, if there is a sort refinement
of at most 3 subsets, then it is possible to partition the nodes of G
into 3 or less independent sets, and thus, is 3-colorable.

Note that the fixed rule ¢ used in the reduction does not contain
statements of the form subj(c) = a (where a is a constant URI),
although it does use statements of the form prop(c) = a and other
equalities. It is natural to exclude rules which mention specific
subjects, as the structuredness of an RDF graph should not depend
on the presence of a particular subject, but rather on the general
uniformity of all entities in the RDF graph.

The decision problem presented in this section is theoretically
intractable, which immediately reduces the prospects of finding
reasonable algorithms for its solution. Nevertheless, the inclusion
of the problem in NP points us to three NP-complete problems
for which much work has been done to produce efficient solvers:
the travelling salesman problem, the boolean satisfiability problem,
and the integer linear programming problem.

An algorithm for our problem must choose a subset for each sig-
nature set, producing a series of decisions which could in principle
be expressed as boolean variables, suggesting the boolean satisfia-
bility problem. However, for a candidate sort refinement the func-
tion o, must be computed for every subset, requiring non-trivial
arithmetics which cannot be naturally formulated as a boolean for-
mula. Instead, and as one of the key contributions of this paper,

we have successfully expressed the previous decision problem in a
natural way as an instance of Integer Linear Programming. It is to
this reduction that we turn to in the next section.

6. REDUCING TO INTEGER LINEAR PRO-
GRAMMING

We start by describing the general structure of the Integer Lin-
ear Programming (ILP) instance which, given a fixed rule r, solves
the problem EXISTSSORTREFINEMENT(7). Given an RDF graph
D, a rational number 6 such that 0 < 6 < 1 and a positive inte-
ger k, we define in this section an instance of integer linear pro-
graming, which can be represented as a pair (A(p x,g), E(D’kyg)),
where A(p ¢y is a matrix of integer values, E(DJC’Q) is a vector

of integer values, and the problem is to find a vector d of integer
values (i.e. the values assigned to the variables of the system of
equations) such that A D,kyg)cf < l_;(D,k,0)- Moreover, we prove
that (D, k,0) € EXISTSSORTREFINEMENT(r) if and only if the
instance (A(p,k,0), E(D’kyg)) has a solution.

Intuitively, our ILP instance works as follows: the integer vari-
ables decide which signature sets are to be included in which sub-
sets, and they keep track of which properties are used in each sub-
set. Also, we group variable assignments into objects we call rough
variable assignments, which instead of assigning each variable to a
subject and a property, they assign each variable to a signature set
and a property. In this way, another set of variables keeps track of
which rough assignments are valid in a given subset (i.e. the rough
assignment mentions only signature sets and properties which are
present in the subset). With the previous, we are able to count the
total and favorable cases of the rule for each subset.

For the following, fix a rule r (1 — (2 and assume that
var(p1) = {c1,...,cn} (recall that var(p2) C var(¢1)). Also,
fix a rational number 6 € [0, 1], a positive integer k, and an RDF
graph D, with the matrix M = M (D).

6.1 Variable definitions

We begin by defining the ILP instance variables. Recall that our
goal when solving EXISTSSORTREFINEMENT(r) is to find a o-
sort refinement of D with threshold 6 and at most k implicit sorts.

All the variables used in the ILP instance take only integer val-
ues. To introduce these variables, we begin by defining the set of
signatures of D as A(D) = {sig(s, D) | s € S(D)}, and for every
u € A(D), by defining the support of y, denoted by supp(u), as
the set {p € P(D) | u(p) = 1}. Then for each ¢ € {1,...,k}
and each € A(D), we define the variable:

¥ 1 if signature p is placed in implicit sort ¢
#7710 otherwise.

These are the primary variables, as they encode the generated sort
refinement. Notice that it could be the case that for some i €
{1,...,k} value 0 is assigned to every variable X, , (1 € A(D)),
in which case we have that the ¢-th implicit sort is empty.
Foreachi € {1,...,k} and each p € P(D) define the variable:

1 if implicit sort ¢ uses property p
0 otherwise.

Ui,p

Each variable U;), is used to indicate whether the ¢-th implicit
sort uses property p, that is, if implicit sort ¢ includes a signature
1 € A(D) such that pu(p) = 1 (p € supp(u)).

For the last set of variables, we consider a rough assignment of
variables in ¢; to be a mapping of each variable to a signature

606

and a property. Recall that var(p1) = {c1,...,¢cn}. Then we
denote rough assignments with 7 = ((u1,p1),---, (in,pn)) €
(A(D) x P(D))", and for each ¢ € {1,...,k} and each 7 €
(A(D) x P(D))", we define the variable:

T 1 if 7 is consistent in the ¢-th implicit sort
“T 710 otherwise.

The rough assignment 7 = ((t41,Pn), - - -, (in, Pn)) is consistent
in the i-th implicit sort if it only mentions signatures and properties
which are present in it, that is, if for each j € {1,...,n} we have
that p; is included in the ¢-th implicit sort and said implicit sort
uses pj.

6.2 Constraint definitions

Define function count(p, 7, M) to be the number of variable
assigments for rule r which are restricted by the rough assignment
7 and which satisfy the formula . Formally, if 7 = ((pt1,pn), - - -
(tin, Dn)), then count(p, 7, M) is defined as the cardinality of the
following set:

{p | p is a variable assignment for D s.t. dom(p) = var(yp),
(M, p) = ¢ and foreveryi € {1,...,n},
if p(c;) = (s, p) then sig(s, D) = p; andp = p;}.

Note that the value of count(p, 7, M) is calculated offline and is
used as a constant in the ILP instance. We now present the inequal-
ities that constrain the acceptable values of the defined variables.

o The following inequalities specify the obvious lower and up-
per bounds of all variables:

0<X;,<1 ie{l,...,k}and u € A(D)
0<Uip<1 i€{l,....k}andp € P(D)
0<T;.<1 ie{l,...,k}and T € (A(D) x P(D))"

e For every 1 € A(D), the following equation indicates that
the signature 1 must be assigned to exactly one implicit sort:

k
> Xiw=1.
=1

e For every ¢ € {1,...,k} and p € P(D), we include the
following equations to ensure that U; j, is assigned to 1 if and
only if the i-th implicit sort includes a signature 1 € A(D)
such that u(p) = 1 (p € supp(p)):

Xiy < Up ifpé€supp(p)
Up < Xi
w' €A(D) : pEsupp(p’)

!

The first equation indicates that if signature p has been as-
signed to the i-th implicit sort and p € supp(u), then p is
one of the properties that must be considered when comput-
ing o, in this implicit sort. The second equation indicates
that if p is used in the computation of o, in the i-th im-
plicit sort, then this implicit sort must include a signature
u' € A(D) such that p € supp(p’).

eFori € {1,....k} and 7 = ((u1,p1)s- -, (jtn,pn)) €
(A(D)xP(D))", recall that T; » = 1 if and only if for every
J €{l,...,n},itholds that X; ,, = 1 and U; p, = 1. This
is expressed as integer linear equations as follows:

n

Z(Xi’ﬂj +Uip;) <Tip +2-n—1

Jj=1

2-n-Tir <Y (Xip; + Uip;)

j=1

The first equation indicates that if the signatures pui, ...,
un are all included in the ¢-th implicit sort (each variable
Xi,u; is assigned value 1), and said implicit sort uses the
properties p1, ..., pn (each variable U; p; is assigned value
1), then 7 is a valid combination when computing favor-
able and total cases (variable T} - has to be assigned value
1). Notice that if any of the variables X1 ,,, Uip,, ...,
Xn,pn» Un,p, 1s assigned value O in the first equation, then
> i1 (Xi; +Uip;) < 2-n—1and, therefore, no restric-
tion is imposed on 7 - by this equation, as we already have
that 0 < T; . The second equation indicates that if variable
T; - is assigned value 1, meaning that 7 is considered to be
a valid combination when computing o, over the i-th im-
plicit sort, then each signature mentioned in 7 must be in-
cluded in this implicit sort (each variable X; ,; has to be
assigned value 1), and each property mentioned in 7 is used
in this implicit sort (each variable U, ;; has to be assigned
value 1).

Finally, assuming that § = 61 /602, where 61, 62 are natural

numbers, we include the following equation for each i €

{1,...,k}:

() (count(p1 A @2, 7, M) - TiJ)
r€(A(D)x P(D))™
> 91 .

(count(p1, 7, M) ~Ti,>
TE(A(D)x P(D))™

To compute the numbers of favorable and total cases for o,
over the i-th implicit sort, we consider each rough assign-
ment 7 in turn. The term ZTE(A(D)XP(D))" count(p1 A
p2,7,M) - T; . evaluates to the amount of favorable
cases (i.e. variable assignments which satisfy the an-
tecedent and the consequent of the rule), while the term
2o re(A(D)x P(Dyyn count(pr, 7, M) - T; ; evaluates to the
number of total cases (i.e. variable assignments which sat-
isfy the antecedent of the rule). Consider the former term as
an example: for each rough variable assignment 7, if 7is a
valid combination in the i-th implicit sort, then the amount of
variable assignments which are compatible with 7 and which
satisfy the full rule are added.

It is now easy to see that the following result holds.

PROPOSITION 6.1. There exists a o,.-sort refinement of D with
threshold 6 that contains at most k implicit sorts if and only if the
instance of ILP defined in this section has a solution. [

6.3 Implementation details

Although the previously defined constraints suffice to solve the
decision problem, in practice the search space is still too large due
to the presence of sets of solutions which are equivalent, in the
sense that the variables describe the same partitioning of the input
RDF graph D. More precisely, if there is a solution of the ILP in-
stance where for each i € {1,...,k}, u € A(D), p € P(D), and

607

T € (A(D) X P(D))n, X'L,,u = Qi,pu, Ui’p = biyp, and Ti’T = Ci,r,
then for any permutation (11, ...,1) of (1,...,k), the following
is also a solution: X5 ;, = ay;,u, Us,p = by, p, and T3 7 = ¢y, .

In order to break the symmetry between these equivalent solu-
tions, we define the following hash function for the i-th implicit
sort. For this, consider £ = |A(D)| and consider any (fixed) order-
ing g1, . .., e of the signatures in A(D). Then:

4
hash(i) = Y " 2/X; .,

=0

With the previous hash function defined, the following constraint
is added, fori =1,...,k — 1:

hash(¢) < hash(i + 1).

The hash function as defined above uniquely identifies a subset
of signatures, and thus the previous constraints eliminate the pres-
ence of multiple solutions due to permutations of the 7 index. Care
must be taken, however, if the amount of signatures in the RDF
graph is large (64 for DBpedia Persons) as large exponent values
cause numerical instability in commercial ILP solvers. This issue
may be addressed on a case by case basis. One alternative is to limit
the maximum exponent in the term 27, which has the drawback of
increasing the amount of collisions of the hash function, and there-
fore permitting the existence of more equivalent solutions.

7. EXPERIMENTAL RESULTS

For our first experiments, we consider two real datasets—DBpedia
Persons and WordNet Nouns—and two settings:

e A highest 0 sort refinement for £ = 2: This setup can
be used to obtain an intuitive understanding of the dataset at
hand. We fix k = 2 to force at most 2 implicit sorts.

e A lowest k sort refinement for 6 = 0.9: As a comple-
mentary approach, we specify # = 0.9 as the threshold, and
we search for the lowest & such that an sort refinement with
threshold 0 and & implicit sorts exists. This approach allows
a user to refine their current sort by discovering sub-sorts.
In some cases the structuredness of the original dataset un-
der some structuredness function is higher than 0.9, in which
case we increase the threshold to a higher value.

In the first case the search for the optimum value of 6 is done
in the following way: starting from the initial structuredness value
6 = o,(D) (for which a solution is guaranteed) and for values of
0 incremented in steps of 0.01, an ILP instance is generated with
k = 2 and the current value of 6. If a solution is found by the ILP
solver, then said solution is stored. If the ILP instance is found to be
infeasible, then the last stored solution is used (this is the solution
with the highest threshold). This sequential search is preferred over
a binary search because the latter will generate more infeasible ILP
instances on average, and it has proven to be much slower to find
an instance infeasible than to find a solution to a feasible instance.
A similar strategy is used for the second case (the search for the
lowest k), with the following difference: for some setups it is more
efficient to search downwards, starting from & = |A(D)] (i.e. as
many available sorts as signatures in the dataset), and yet for others
it is preferrable to search upwards starting from k£ = 1, thus dealing
with a series of infeasible ILP instances, before discovering the first
value of k such that a solution is found. Which of the two directions
is to be used has been decided on a case by case basis.

The amount of variables and constraints in each ILP instance
depends on the amount of variables of the rules, on the degrees

of freedom given to the variables in the rules (e.g. the two vari-
ables in opep[p1, P2] lose a degree of freedom when considering
the restriction subj(c1) = subj(c2) in the antecedent), and on the
characteristics of the dataset. Here, the enourmous reduction in
size offered by the signature representation of a dataset has proven
crucial for the efficiency of solving the ILP instances.

The previous two settings are applied both to the DBpedia Per-
sons and WordNet Nouns datasets. Furthermore, they are repeated
for the ocov, Osim, and opep functions (the last function is only
used on DBpedia Persons). All experiments are conducted on dual
2.3GHz processor machine (with 6 cores per processor), and 64GB
of RAM. The ILP solver used is IBM ILOG CPLEX version 12.5.

In section 7.3 we study how our solution scales with larger and
more complex datasets by extracting a representative sample of ex-
plicit sorts from the knowledge base YAGO and solving a highest
sort refinement for fixed k for each explicit sort. Finally, in section
7.4 we challenge the solution to recover two different explicit sorts
from a mixed dataset, providing a practical test of the results.

7.1 DBpedia Persons

DBpedia corresponds to RDF data extracted from Wikipedia.
DBpedia Persons refers to the following subgraph (where Person
is a shorthand for http://xmlns.com/foaf/0.1/Person):

DDBpedia Persons — {(5,]9, 0) € DDBpedia |
(s, type, Person) € Dpgpedia }-

This dataset is 534 MB in size, and contains 4,504,173 triples,
790,703 subjects, and 8 properties (excluding the type property). It
consists of 64 signatures, requiring only 3 KB of storage. The list of
properties is as follows: deathPlace,birthPlace, description,
name, deathDate, birthDate, givenName, and surName (note
that these names are abbreviated versions of the full URIs).

For this sort, ccoy = 0.54, and ogim = 0.77. We are also
interested in studying the dependency functions for different prop-
erties p1 and p2. If p1 = deathPlace and p2 = deathDate, for
example, then the value of the function osympep [deathPlace,
deathbDate] is 0.39. This specific choice of p; and p2 is espe-
cially interesting because it might be temping to predict that a death
date and a death place are equally obtainable for a person. How-
ever, the value 0.39 reveals the contrary. The generally low values
for the three structuredness functions discussed make DBpedia Per-
sons interesting to study.

7.1.1 A highest ¢ sort refinement for k = 2

We set k = 2 in order to find a two-sort sort refinement with the
best threshold 6. Figure 4a shows the result for the ocoy function.
The left sort, which is also the largest (having 528,593 subjects)
has a very clear characteristic: no subject has a deathDate or a
deathPlace, i.e. it represents the sort for people that are alive!
Note that without encoding any explicit schema semantics in the
generic rule of ocov, our ILP formulation is able to discover a very
intuitive decomposition of the initial sort. In the next section, we
show that this is the case even if we consider larger values of k. In
this experiment, each ILP instance is solved in under 800 ms.

Figure 4b shows the results for the osim function. Here, the sec-
ond sort accumulates subjects for which very little data is known
(other than a person’s name). Notice that whereas Cov has ex-
cluded the columns deathPlace, description, and deathDate
from its first sort, Sim does not for its second sort, since it does
not penalize the largely missing properties in these columns (which
was what motivated us to introduce osim in the first place). Also,
notice that unlike the ocov function, the cardinality of the gener-
ated sorts from ogim is more balanced. In this experiment, each

608

0

(a) Using the o0coy function, the left sort has 528,593 subjects and 8 signa-
tures, ccov = 0.73, and ogiy, = 0.85. The right sort has 262,110 subjects
and 56 signatures, 0oy = 0.71, and ogj, = 0.78.

A

It

(b) Using the ogim, function, the left sort has 387,297 subjects and 37 signa-
tures, ocov = 0.67, and ogiy, = 0.82. The right sort has 403,406 subjects
and 27 signatures, 0coy = 0.42 and ogjy, = 0.85.

5

(c) Using the 01 = Usychp [deathPlace, deathDate] function, the
left sort has 305,610 subjects and 25 signatures, ocoy = 0 66, ogim =
0.80, and o7 = 1.0. The right sort has 485,093 subjects and 39 signatures,
OCov = 0.52, JSim = 0.78, and o1 = 0.82.

Figure 4: DBpedia Persons split into £ = 2 implicit sorts, using
the structuredness functions (a) ocov, (b) 0sim, and (¢) Opep.

ILP instance is solved in under 2 minutes, except the infeasible
(last) instance which was completed in 2 hrs.

Finally, Figure 4c shows the results for osympep[deathPlace,
deathDate], a structuredness function in which we measure the
probability that, if a subject has a deathPlace or a deathDate,
it has both. In the resulting sort refinement, the second sort to
the right has a high value of 0.82. It is easy to see that indeed
our ILP solution does the right thing. In the sort on the right, the
deathDate and deathPlace columns look almost identical which
implies that indeed whenever a subject has one property it also has
the other. As far as the sort on the left is concerned, this includes all
subjects that do not have a deathPlace column. This causes the
sort to have a structuredness value of 1.0 for osympDep[deathPlace,
deathDate] since the rule is trivially satisfied; the absence of said
column eliminates all total cases (i.e. there are no assignments in
the rule that represents osympep[deathPlace, deathDate] for
which the antecedent is true, as it is never true that prop(ci) =
deathPlace). This setting is completed in under 1 minute.

7.1.2 A lowest k sort refinement for 6 = 0.9

111N
1 |-H

(a) DBpedia Persons split into k = 9 implicit sorts, using the o ¢, func-
tion. The threshold of this sort refinement is & = 0.9, (i.e. every sort D;
has ooy (D;) > 0.9. The sizes of the sorts range from 260,585 subjects
(the second sort) to 10,748 subjects (the seventh sort).

Jijil N

(b) A k = 4 ogjm-sort refinement with threshold 0.9 for DBpedia Persons.
The sizes of the sorts range from 292,880 subjects (the first sort) to 87,117
subjects (the third sort).

Figure 5: DBpedia Persons split into the lowest k such that the
threshold is & = 0.9, using the structuredness functions (a) ocov,
and (b) ogim.

We now consider a fixed threshold § = 0.9. We seek the small-
est sort refinement for DBpedia persons with this threshold. Figure
5a shows the result for ocov, Where the optimum value found is
for k = 9. As in the previous setting, the Cov function shows a
clear tendency to produce sorts which do not use all the columns
(i.e. sorts which exclude certain properties). People that are alive
can now be found in the first, second, third, fourth, and sixth sorts.
The first sort considers living people who have a description (and
not even a birth place or date). The second sort shows living people
who are even missing the description field. The third sort considers
living people who have a description and a birth date or a birth place
(or both). The fourth sort considers living people with a birth place
or birth date but no description. Finally, the sixth sort considers
living people with a birth place only. It is easy to see that sim-
ilarly dead people are separated into different sorts, based on the
properties that are known for them. The eighth sort is particularly
interesting since it contains people for which we mostly have all the
properties. This whole experiment was completed in 30 minutes.

Figure 5b shows the result for osim, wWhere the optimum value
found is for k = 4. Again, the function is more lenient when prop-
erties appear for only a small amount of subjects (hence the smaller
k). This is evident in the first sort for this function, which corre-
sponds roughly to the second sort generated for the ocov function

(Fig. 5a) but also includes a few subjects with birth/death places/dates.

This is confirmed by the relative sizes of the two sorts, with the sort
for ooy having 260,585 subjects, while the sort for osim having
292,880 subjects. This experiment is more difficult as the running
time of individual ILP instances is apx. 8 hrs.

7.1.3 Dependency functions in DBpedia Persons

We now turn our attention to the dependency functions. In terms

609

[dp [P | dD [bD |
deathPlace 1.0 | 93 | .82 | .77
birthPlace 26 | 1.0 | .27 | .75

deathDate 43 | 50 | 1.0 | .89
birthDate || .17 | .57 | 37 | 1.0

Table 1: DBpedia Persons structuredness according to opep With
different combinations of parameters p; and p2. The property
names are abbreviated in the column headers.

of creating a new sort refinement using the function opep[p1, P2),
for any constants p1,p2 € U, we can generate a sort refinement
with # = 1.0 for £ = 2, consisting of the following two sorts:
(1) all entities which do not have p1, and (ii) all entities which do
have p2. The sort (i) will have structuredness 1.0 because there are
no assignments that satisfy the antecedent (no assigments satisfy
prop(cz2) = p1), and sort (ii) has structuredness 1.0 because every
assigment which satisfies the antecedent will also satisfy the con-
sequent (val(cz) = 1 because all entities have p2). On the other
hand, osympep With constants p1, p2 € U can generate an sort re-
finement with § = 1.0 for k = 3, consisting of the following three
sorts: (i) entities which have p; but not p2, (ii) entities which have
P2 but not p1, and (iii) entites which have both p; and p2 or have
neither. The first two sorts will not have any total cases, and for the
third sort every total case is also a favorable case.

The dependency functions, as shown, are not very well suited to
the task of finding the lowest k such that the threshold 6 is met,
which is why these functions were not included in the previous re-
sults. The dependency functions are useful, however, for character-
izing an RDF graph or a sort refinement which was generated with
a different structuredness function, such as ocov Or Osim, Since
they can help analyze the relationship between the properties in an
RDF graph. To illustrate, we consider the opep[p1, P2] function,
and we tabulate (in Table. 1) the structuredness value of DBpedia
Persons when replacing the parameters p; and p2 by all possi-
ble combinations of deathPlace, birthPlace, deathDate, and
birthDate. Recall that opep With parameters p; = deathPlace
and p2 = birthPlace measures the probability that a subject
which has deathPlace also has birthPlace.

The table reveals a very surprising aspect of the dataset. Namely,
the first row shows high structuredness values when p; = death-
Place. This implies that if we somehow know the deathPlace
for a particular person, there is a very high probability that we also
know all the other properties for her. Or, to put it another way,
knowing the death place of a person implies that we know a lot
about the person. This is also an indication that it is somehow the
hardest fact to acquire, or the fact that is least known among per-
sons in DBpedia. Notice that none of the other rows have a similar
characteristic. For example, in the second row we see that given
the birthPlace of a person there is a small chance (0.27) that we
know her deathDate. Similarly, given the deathDate of a person
there is only a small chance (0.43) that we know the deathPlace.

We can do a similar analysis with the osympep[P1, P2] function.
In Table 2 we show the pairs of properties with the highest and
lowest values of osympep. Given that the name property in DBpe-
dia persons is the only property that every subject has, one would
expect that the most correlated pair of properties would include
name. Surprisingly, this is not the case. Properties givenName
and surName are actually the most correlated properties, proba-
bly stemming from the fact that these two properties are extracted
from the same source. The least correlated properties all involve
deathPlace and the properties of name, givenName and surName.

7.2 For WordNet Nouns

P1 P2 O0SymDep
givenName surName

name givenName 95

name surName 95

name birthDate 53
description | givenName .14
deathPlace name 11
deathPlace givenName A1
deathPlace surName A1

Table 2: A ranking of DBpedia Persons structuredness accord-
ing to osympep With different combinations of the 8 properties in
P(DpBpedia persons)- Only the highest and lowest entries are shown.

WordNet is a lexical database for the english language. Word-
Net Nouns refers to the following subgraph (where Noun stands for

http://www.w3.0rg/2006/03/wn/wn20/schema/NounSynset):

DwordNet Nouns = {(5,]77 0) € DwordNet |
(s, type, Noun) € DwordNet }-

This dataset is 101 MB in size, and contains 416,338 triples,
79,689 subjects, and 12 properties (excluding the type property).
Its signature representation consists of 53 signatures, stored in 3
KB. The properties are the following: gloss, label, synsetId,
hyponymOf, classifiedByTopic, containsWordSense,
memberMeronymOf, partMeronymOf, substanceMeronymOf,
classifiedByUsage, classifiedByRegion, and attribute.

For this sort, ccov = 0.44, and osim = 0.93. There is a sig-
nificant difference in the structuredness of WordNet Nouns as mea-
sured by the two functions. This difference is clearly visible in
the signature view of this dataset (fig. 3); the presence of nearly
empty properties (i.e. properties which relatively few subjects have)
is highly penalized by the Cov rule, though mostly ignored by Sim.

7.2.1 A highest 6 sort refinement for k = 2

As mentioned, the WordNet case proves to be very different from
the previous, partly because this dataset has roughly 5 dominant
signatures representing a most subjects, and yet only using 8§ of the
12 properties, causing difficulties when partitioning the dataset.

Figure 6a shows the result for ocov. The largest difference be-
tween both sorts is that the left sort mostly consists of subjects
which have the memberMeronymOf property (the 7th property).
The improvement in the structuredness of these two sorts is very
small in comparison to the original dataset (from 0.44 to 0.55),
suggesting that & = 2 is not enough to discriminate sub-sorts in
this dataset, and with this rule. This is due to the presence of many
of signatures which represent very few subjects, and have different
sets of properties. Here, all ILP instances were solved in under 1 s.

Figure 6b shows the result for osim. The difference between the
two sorts is gloss, which is absent in the left sort. The placement
of the smaller signatures does not seem to follow any pattern, as the
Sim function is not sensitive to their presence. Although the struc-
turedness is high in this case, the improvement is small, since the
original dataset is highly structured with respect to osim anyway.
A discussion is in order with respect to the running times. Recall
that the ILP instances are solved for increasing values of 6 (the in-
crement being 0.01). For all values of 6 lower than 0.95 each ILP
instance is solved in less than 5 s. For the value # = 0.95 however
(the first value for which there is no solution), after 75 hours of run-
ning time, the ILP solver was not able to find a solution or prove
the system infeasible. Although there is an enourmous asymmetry
between the ease of finding a solution and the difficulty of proving

610

(a) Using the ¢y function, the left sort has 14,938 subjects and 35 signa-
tures, ccov = 0.55, ogim = 0.93. The right sort has 64,751 subjects and
18 signatures, ooy = 0.56, ogim = 0.95.

(b) Using the ogin, function, the left sort has 7,311 subjects and 13 signa-
tures, ocov = 0.34, and ogj, = 0.98. The right sort has 72,378 subjects
and 40 signatures, 0oy = 0.45, and ogip, = 0.94.

Figure 6: WordNet Nouns split into k& = 2 implicit sorts, using two
different structuredness functions: (a) ocov, and (b) o'gim.

an instance infeasible, in every instance a higher threshold solution
is found, in which case it is reasonable to let the user specify a
maximum running time and keep the best solution found so far.

7.2.2 A lowest k sort refinement for fixed 0

As with the previous experimental setup, Nouns proves more dif-
ficult to solve. For the ocov We set the usual threshold of 0.9, how-
ever, since the structuredness value of Wordnet Nouns under the
osim function is 0.93 originally, this exersize would be trivial if
is 0.9. For that reason, in this last case we fix the threshold at 0.98.

Figure 7a shows the first 10 sorts of the kK = 31 solution for
ocov. The sheer amount of sorts needed is a indication that Word-
Net Nouns already represents a highly structured sort. The sorts
in many cases correspond to individual signatures, which are the
smallest sets of identically structured entities. In general, it is prob-
ably not of interest for a user or database administrator to be pre-
sented with an sort refinement with so many sorts. This setup was
the longest running, at an average 7 hours running time per ILP in-
stance. This large number is another indication of the difficulty of
partitioning a dataset with highly uniform entities.

Figure 7b shows the solution for osim, Which is for &k = 4. As
with the £k = 2 case, there is a sort which does not include the
gloss property. The general pattern of this sort refinement, how-
ever, is that the four largest signatures are each placed in their own
sort. Beyond that, the presence of the smaller signatures does not
greatly affect the structuredness value (runtime: apx. 15 min.).

Itis to be expected that a highly structured RDF graph like Word-
Net Nouns will not be a prime candidate for discovering refine-
ments of the sort, which is confirmed by these experiments.

l
l
|

(a) WordNet Nouns split into £ = 31 implicit sorts, using the oco, func-
tion and a threshold of & = 0.9. Only the first 12 sorts are shown here.

=
—
=
=

(b) WordNet Nouns split into & = 4 implicit sorts, using the ogiy, function.
The threshold of this sort refinement is 6 = 0.98. The sizes of the sorts
range from 52,880 subjects (the third sort) to 7,037 subjects (the first sort).

Figure 7: WordNet Nouns partitioned into the lowest k£ with a fixed
threshold.

7.3 Scalability Analysis

To study how the ILP-based solution scales, we turn to the knowl-
edge base YAGO. This proves to be a useful dataset for this study,
as it contains apx. 380,000 explicit sorts extracted from several
sources, including Wikipedia. From YAGO, a sample of apx. 500
sorts is randomly selected (as most explicit sorts in YAGO are
small, we manually included larger sorts in the sample). The sam-
ple contains sorts with sizes ranging from ~100 to ~10° subjects,
from 1 to ~350 signatures, and from ~10 to ~40 properties.

As can be seen in the histograms of figure 8, there exist larger and
more complex explicit sorts in YAGO than those sampled (e.g. sorts
with ~20,000 signatures or ~80 properties). However, the same
histograms show that 99.9% of YAGO explicit sorts have under
350 signatures, and 99.8% have under 40 properties, and thus the
sample used is representative of the whole. We also note that, in
a practical setting, the amount of properties can be effectively re-
duced with the language itself by designing a rule which restricts
the structuredness function to a set of predefined properties.

For each sort in the sample, a highest 6 sort refinement for k = 2
is solved, and the total time taken to solve the ILP instances is
recorded (we may solve multiple ILP instances, each for larger val-
ues of 6, until an infeasible instance is found). See figure 8.

Due to lack of space, a plot for the runtime as a function of the
number of subjects in a sort is not shown, but the result is as ex-
pected: the runtime of the ILP-based solution does not depend on
the amount of subjects in an explicit sort; the difficulty of the prob-
lem depends on the structure of the dataset, and not its size.

In contrast, figures 8a and 8b both reveal clear dependencies of
the runtime on the number of signatures and properties in a sort.

In the first case, the best polynomial fit shows that runtime is
O(s*), where s is the number of signatures (the best fit is ob-
tained by minimising the sum of squared errors for all data points).
This result limits the feasibility of using the ILP-based solution for
more complicated explicit sorts. However, sorts with more than 350

30x10°

Signatures Histogram for YaGO Explicit Types

25x10°
20x10°

15x10°

Runtime (ms)
Amount of Types

10x10°

Signatures

(a) Left: A plot of the runtime as a function of the number of signatures in a
sort. The best fit is shown, and corresponds to f(s) ~ x2:>3 (R? = 0.72).
Right: A logarithmic histogram of the number of signatures in YAGO ex-
plicit sorts. Note that 99.9% of sorts have less than 350 signatures.

Properties Histogram for YaGO Explicit Types

Runtime (ms)

20
Properties

(b) Left: A logarithmic plot of the runtime as a function of the number
of properties in a sort. The best fit is shown, and corresponds to f(p) ~
€028 (R2 = 0.61). Right: A histogram of the number of properties in
YAGO explicit sorts. Note that 99.8% of sorts have less than 40 properties.

Figure 8: For a sample of YAGO explicit sorts, a highest sort
refinement for k = 2 is solved.

signatures are very rare. In the second case, the best exponential fit
shows that runtime is O(e-?®?), where p is the number of proper-
ties. Although an exponential dependency can be worrisome, the
situation is similar to that for signatures.

7.4 Semantic Correctness

A final practical question is whether our ILP-based solution can
reproduce existing differences between sorts. To address this, we
have chosen two explicit sorts from YAGO: Drug Companies and
Sultans. All triples whose subject is declared to be of sort Drug
Company or Sultan are included in one mixed dataset. We then
solve a highest 6 sort refinement for fixed k = 2 problem on this
mixed dataset and compare the resulting sort refinement with the
actual separation between Drug Companies and Sultans.

Is Drug Company | Is Sultan
Classified as Drug Company 27 17
Classified as Sultan 0 23

In order to describe the quality of these results, we interpret this ex-
periment as the binary classification problem of Drug Companies.
Thus, Drug Companies become the positive cases, whereas Sultans
become negative cases. With this, the resulting accuracy of the re-
sult is 74.6%, the precision is 61.4%, and the recall is 100%. These
results can be improved by considering a modified Cov rule which
ignores properties defined in the syntax of RDF (type, sameAs,
subClassOf, and label), which can be achieved by adding
four conjuncts of the form prop(c) # u to the antecedent of Cov.
This results in 82.1% accuracy, 69.2% precision, and 100% recall.

It must be noted, however, that this experiment relies on the as-
sumption that the initial explicit sorts are well differentiated to be-
gin with, which is precisely the assumption we doubt in this paper.

8. RELATED WORK

Our work is most related to efforts that mine RDF data to dis-
cover frequently co-occurring property sets that can be stored in

separate so-called ’property tables’. A recent example of this ap-
proach is exemplified in [7], “Attribute Clustering by Table Load”
where the authors consider the problem of partitioning the proper-
ties of an RDF graph into clusters. Each cluster defines the columns
of a property table in which each row will represent a subject. A
cluster is valid insofar as the table load factor remains above a
threshold. The table load factor Lee et. al. defined is equivalent
to the coverage value defined in [5] (Cov metric as per the nota-
tion of this paper). Their approach, however, differs from ours in
the following way: while they seek to partition the properties of an
RDF graph for the purpose of generating property tables, we seek
to discover sets of subjects which, when considered together as an
RDF graph, result in a highly structured relational database. The
sub-sorts generated by us may use overlapping sets of properties.

Similarly, [4] and [9] use frequent item set sequences [1] data
mining techniques to discover, in a RDF dataset, properties that are
frequently defined together for the same subject (e.g., first name,
last name, address, etc.). Such properties represent good candi-
dates to be stored together in a property table. Although the goal of
[4] and [9] is to improve performance by designing a customized
database schema to store a RDF dataset, a property table can also
be viewed as a refined sort whose set of instances consists of all
resources specifying at least one of the properties of the table. In
[4] and [9], various important parameters controlling the sort re-
finement approach are chosen in an ad-hoc manner (e.g., in [4] the
minimum support used is chosen after manually inspecting partial
results produced by an handful of minimum support values, and, in
[9], it is explicit specified by the user); whereas, in our approach,
key parameters (e.g., k and 0) are selected in a principled way to
reach an optimal value of a user defined structuredness metric.

Other than the property tables area, our work can be positioned
in the broader context of inductive methods to acquiring or refining
schema-level knowledge for RDF data [13, 2, 8, 3, 10, 6]. Prior
works have typically relied on statistical or logic programming ap-
proaches to discover ontological relations between sorts and prop-
erties. However, to the best of our knowledge, our work presents
the first principled approach to refine the sort by altering the assign-
ment of resources to a refined set of sorts in order to improve some
user defined measure of structuredness.

In the area of knowledge discovery in general, the work by Yao
[12] offers a nice overview of several information-theoretic mea-
sures for knowledge discovery, including, attribute entropy and mu-
tual information. A common characteristic of all these measures is
that they focus on the particular values of attributes (in our case,
predicates) and attempt to discover relationships between values of
the same attribute, or relationships between values of different at-
tributes. As is obvious from Section 3, our work focuses on discov-
ering relationships between entities (and their respective schemas)
and therefore we are only interested in the presence (or absence)
of predicates for particular attributes for a given entity, therefore
ignoring the concrete values stored there. Hence the our measures
are orthogonal to those discussed by Yao [12].

9. CONCLUSIONS

We have presented a framework within which it is possible to
study the structuredness of RDF graphs using measures which are
tailored to the needs of the user or database administrator. This
framework includes a formal language for expressing structured-

ness rules which associate a structuredness value to each RDF graph.

We then consider the problem of discovering a partitioning of the
entities of an RDF graph into subset which have high structured-
ness with respect to a specific structuredness function chosen by
the user. Although this problem is intractable in general, we define

612

an ILP instance capable of solving this problem within reasonable
time limits using commercially available ILP solvers.

We have used our framework to study two real world RDF datasets,
namely DBpedia Persons and WordNet Nouns, the former depend-
ing on a publicly editable web source and therefore containing data
which does not clearly conform to its schema, and the latter corre-
sponding to a highly uniform set of dictionary entries. In both cases
the results obtained were meaningful and intuitive. We also stud-
ied the scalability of the ILP-based solution on a sample of explicit
sorts extracted from the knowledge base YAGO, showing that our
solution is practical for all but a small minority of existing sorts.

The obvious next goal is to better understand the expressiveness
of structuredness rules, and to explore subsets of our language with
possibly lower computational complexity. In particular, the NP-
hardness of the decision problem has been proven for a rule which
uses disjunction in the consequent; if this were to be disallowed, it
might be possible to lower the complexity of the problem. Finally,
it would also be interesting to explore the existence of rules for
which a high structuredness value can predict good performance
for certain classes of queries.

10. REFERENCES

[1] R. Agrawal and R. Srikant. Mining sequential patterns. In
ICDE, pages 3—14, 1995.
C. d’Amato, N. Fanizzi, and F. Esposito. Inductive learning
for the semantic web: What does it buy? Semant. web,
1(1,2):53-59, Apr. 2010.
A. Delteil, C. Faron-Zucker, and R. Dieng. Learning
Ontologies from RDF annotations. In IJCAI 2001 Workshop
on Ontology Learning, volume 38 of CEUR Workshop
Proceedings. CEUR-WS.org, 2001.
L. Ding, K. Wilkinson, C. Sayers, and H. Kuno.
Application-specific schema design for storing large rdf
datasets. In First Intl Workshop On Practical And Scalable
Semantic Systems, 2003.
S. Duan, A. Kementsietsidis, K. Srinivas, and O. Udrea.
Apples and oranges: a comparison of rdf benchmarks and
real rdf datasets. In SIGMOD, pages 145-156, 2011.
G. A. Grimnes, P. Edwards, and A. Preece. Learning
Meta-Descriptions of the FOAF Network. In Proceedings of
the Third International Semantic Web Conference
(ISWC-04), LNCS, pages 152-165, Hiroshima, Japan.
T. Y. Lee, D. W. Cheung, J. Chiu, S. D. Lee, H. Zhu, P. Yee,
and W. Yuan. Automating relational database schema design
for very large semantic datasets. Technical report, Dept of
Computer Science, Univ. of Hong Kong, 2013.
J. Lehmann. Learning OWL class expressions. PhD thesis,
2010.
J. J. Levandoski and M. F. Mokbel. Rdf data-centric storage.
In ICWS, pages 911-918, 20009.
A. Maedche and V. Zacharias. Clustering ontology-based
metadata in the semantic web. In PKDD, pages 348-360,
2002.
Z. Pan and J. Heflin. DIdb: Extending relational databases to
support semantic web queries. Technical report, Department
of Computer Science, Lehigh University, 2004.
N. X. Vinh, J. Epps, and J. Bailey. Information theoretic
measures for clusterings comparison: Variants, properties,
normalization and correction for chance. J. Mach. Learn.
Res., 9999:2837-2854, December 2010.
J. Volker and M. Niepert. Statistical schema induction. In
ESWC, pages 124-138, 2011.

(2]

(3]

(4]

(5]

(6]

(7]

(8]
(9]

[10]

(1]

[12]

[13]

