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ABSTRACT
Our news are saturated with claims of “facts” made from data.
Database research has in the past focused on how to answer queries,
but has not devoted much attention to discerning more subtle qual-
ities of the resulting claims, e.g., is a claim “cherry-picking”? This
paper proposes a framework that models claims based on struc-
tured data as parameterized queries. A key insight is that we can
learn a lot about a claim by perturbing its parameters and see-
ing how its conclusion changes. This framework lets us formu-
late practical fact-checking tasks—reverse-engineering (often in-
tentionally) vague claims, and countering questionable claims—as
computational problems. Along with the modeling framework, we
develop an algorithmic framework that enables efficient instanti-
ations of “meta” algorithms by supplying appropriate algorithmic
building blocks. We present real-world examples and experiments
that demonstrate the power of our model, efficiency of our algo-
rithms, and usefulness of their results.

1 Introduction
While a lot of current database research is devoted to the art of
answering queries, equally critical to our understanding of data is
the art of discerning the “quality” of claims and asking queries that
lead to high-quality claims. But first, what does “quality” mean?
Consider the following.

Example 1 (Giuliani’s Adoption Claim (from factcheck.org)).
During a Republican presidential candidates’ debate in 2007, Rudy
Giuliani claimed that “adoptions went up 65 to 70 percent” in the
New York City “when he was the mayor.” More precisely, the com-
parison is between the total number of adoptions during 1996–
2001 and that during 1990–1995. Giuliani was in office 1994–
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2001. The claim checks out according to data, but that does not
mean we should stop here. Why does the claim compare these two
particular six-year periods? As it turns out, the underlying data re-
veals that while adoption increased steadily before 1998, it began
to slow down in 1998, a trend that continued through 2006. Lump-
ing data into the periods of 1990–1995 and 1996–2001 masks this
trend. Comparing the adoption rates at the beginning and the end
of his tenure would have only yielded an increase of 17 percent.

Example 2 (Vote Correlation Claim (from factcheck.org)). A
TV ad in the 2010 elections claimed that Jim Marshall, a Demo-
cratic incumbent from Georgia “voted the same as Republican lead-
ers 65 percent of the time.”1 This comparison was made with Re-
publican Leader John Boehner over the votes in 2010. If we look at
the history since 2007, however, the number would have been only
56 percent, which is not very high considering the fact that even the
Democratic Whip, Jim Clyburn, voted 44 percent of the time with
Boehner during that period. Basically, many votes in Congress are
not as controversial as the public would think!

For both claims above, we can verify their correctness using,
for example, SQL queries over reliable, structured datasets avail-
able to the public. Database systems are good at verifying whether
these claims are correct, but from the above discussion, it is obvi-
ous that assessing claim quality involves much more than testing
correctness. Indeed, both claims above “check out” on the surface,
but they present misleading views of the underlying data. The list
of so-called “lies, d—ed lies, and statistics” goes on, in politics,
sports, business, and even research—practically wherever numbers
and data are involved.

While the lines of reasoning behind our assessment of the claims
above are intuitive, deriving them requires considerable skill and
effort. Not all users think as critically as we would hope. Not all
users who are suspicious of a claim have the time or expertise to
conduct further data analysis. How do we make this process of
“fact-checking” easier and more effective?

This problem has many applications in domains where assess-
ments and decisions are increasingly driven by data. Computa-
tional journalism [6, 7] is one domain with the most pressing need
for better fact-checking techniques. With the movement towards
accountability and transparency, the amount of data available to
the public is ever increasing. Such data open up endless possi-
bilities for empowering journalism’s watchdog function—to hold
governments, corporations, and powerful individuals accountable
to society. However, we are facing a widening divide between the
growing amount of data on one hand, and the shrinking cadre of
1This ad was in response to an earlier ad attacking Marshall for voting with
Nancy Pelosi “almost 90 percent of the time,” which, not surprisingly, also
tailored the claim in ways to further its own argument.
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investigative journalists on the other. Computing is a key to bridge
this divide. Automating fact-checking, as much as possible, will
help data realize their potentials in serving the public.
Challenges To have any hope for automated fact-checking, can
we formalize, mathematically, intuitions of seasoned fact-checkers
when assessing claim quality (such as in Examples 1 and 2)? Do
different claims require different intuitions and procedures to check?
To what extent can fact-checking be approached in general ways?

Besides numerical measures of claim quality, counterarguments
are critical in helping users, especially a non-expert public audi-
ence, understand why a claim has poor quality. As examples, we
counter Giuliani’s adoption claim with the argument that “Compar-
ing the adoption rates at the beginning and the end of this tenure...
would have only yielded an increase of 17 percent”; we counter the
Marshall-Boehner vote correlation claim with the argument that “...
even the Democratic Whip, Jim Clyburn, voted 44 percent of the
time with Boehner” since 2007. Can we automatically generate
such counterarguments?

In many situations, the original claims were stated in a vague
way (often intentionally). Claims in both Examples 1 and 2 omit
important details such as the exact time periods of comparison.
Numbers are rounded (sometimes in ways that are “convenient”).
Fact-checkers thus need to seek clarification from original claimants,
but such prodding requires effort and credential, and often leads to
delays. Can we automatically “reverse-engineer” vague claims to
recover the omitted details?
Our Contributions To address the above challenges, we propose
a fact-checking framework general enough to handle various types
of claims and fact-checking tasks. The key insight is that a lot of
fact-checking can be accomplished by “perturbing” the claims in
interesting ways. Thus, we model a claim as a parameterized query
over data, whose result would vary as we change its parameter set-
ting, forming a (high-dimensional) surface which we call the query
response surface (QRS). In conjunction with QRS, we introduce
the notions of relative result strength, which captures how a per-
turbation strengthens or weakens a claim, and of parameter sensi-
bility, which captures how natural and relevant a perturbation is in
the context of the claim being checked. To illustrate the modeling
power of this framework:

• We show that many intuitive measures of claim qualities can be
defined naturally. For example, a claim has low “robustness” if
sensible perturbations of claim parameters lead to substantially
weaker, or even opposite, conclusions.

• We show how to formulate fact-checking tasks—such as find-
ing counterarguments and reverse-engineering vague claims, as
discussed earlier—as optimization problems on the QRS.

• As concrete examples, we show how to use our framework to
check window aggregate comparison claims (generalization of
Giuliani’s adoption claim in Example 1) and time series similar-
ity claims (generalization of the Marshall-Boehner vote correla-
tion claim in Example 2).

Besides the modeling challenges of fact-checking, we also ad-
dress its computational challenges. Given a claim, it is costly (and
sometimes infeasible) to compute the full QRS by evaluating a
database query for every possible parameter setting. We introduce
techniques at various levels for more efficient fact-checking:

• We propose three general “meta” algorithms that make different
assumptions about claim properties and availability of low-level
algorithmic building blocks. The baseline (Section 3.1) assumes

no special building blocks but needs to examine all possible pa-
rameter settings. More efficient meta algorithms (Section 3.2)
assume building blocks that enable enumeration of parameter
settings in the order of sensibility. The most efficient meta algo-
rithms (Section 3.3) use building blocks that enable a divide-and-
conquer approach for searching through the parameter space.
Together, these meta algorithms enable “pay-as-you-go” support
for efficient fact-checking—new claim types can be supported
with little effort upfront, but more efficient support can be en-
abled by plugging in instantiations of low-level building blocks
without re-implementing the high-level algorithms.

• For window aggregate comparison claims and time series simi-
larity claims, we develop efficient, specialized algorithmic build-
ing blocks that can be plugged into the meta algorithms above to
enable fact-checking in real time for interactive users.

Finally, we experimentally validate the ability of our framework
in modeling fact-checking tasks and producing meaningful results,
as well as the efficiency of our computational techniques.

Limited by space, we focus on the computational challenges of
finding counterarguments and reverse-engineering vague claims.
Even with this focus, our rich model and diverse application do-
mains give rise to numerous interesting problems with non-trivial
solutions. It is only possible to sample some of them here, often at
a high level; for comprehensive discussion and additional details,
please refer to our technical report [28].

Before proceeding, we note that fact-checking in general requires
a repertoire of techniques including but not limited to ours—such
as how to find datasets relevant to given claims, how to translate
claims to queries, how to check claims that cannot be readily de-
rived from structured data, just to mention a few. These challenges
are briefly discussed in [28], but are beyond the scope of this paper.

2 Modeling Framework for Fact-Checking
2.1 Components of the Modeling Framework
On a high level, we model the claim of interest as a parameter-
ized query over a database, and consider the effect of perturbing
its parameter settings on the query result. Besides the parameter-
ized query, our model has two other components: 1) a measure of
relative “strengths” of query results as we perturb query parame-
ters, and 2) a measure of the “sensibility” of parameter settings, as
not all perturbations make equal sense. In the following, we give
additional intuition and formal definitions for our model.
Parameterized Query Templates, QRS, and Claims Let q :
P→ R denote a parameterized query template, where P is the pa-
rameter space, whose dimensionality is the number of parameters
expected by q, and R is the result space, or the set of possible query
results over the given database.2 The query response surface of q,
or QRS for short, is the “surface” {(p, q(p)) | p ∈ P} in P× R.

A claim of type q is specified by 〈q, p, r〉, where p ∈ P is the
parameter setting used by the claim and r ∈ R is the result as
stated by the claim. Obviously, if r differs significantly from q(p),
the claim is incorrect. However, as motivated in Section 1, we are
interested in the more challenging case where the claim is correct
but nonetheless misleading. Doing so will involve exploring the
QRS not only at the parameter setting p, but also around it.

For example, to check Giuliani’s claim in Example 1, suppose
we have a table adopt(year, number) of yearly adoption numbers.
2Here, we focus on perturbing query parameters, and assume the database
D to be given and fixed. In general, we can let q additionally take D as
input, and consider the equally interesting question of perturbing data, or
both data and query parameters; Section 7 briefly discusses this possibility.
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(b) Sensibility of parameter settings
Figure 1: Perturbing t (end of the second period) and d (distance between
periods) in Giuliani’s claim while fixing w = 6 (length of periods). Note
the constrain t− d− w ≥ 1988; 1989 is when the data became available.

The parameterized query template here can be written in SQL, with
parameters w (length of the period being compared), t (end of the
second period), and d (distance between the two periods):

SELECT after.total / before.total -- (Q1)
FROM (SELECT SUM(number) AS total FROM adopt

WHERE year BETWEEN t-w-d+1 AND t-d) AS before,
(SELECT SUM(number) AS total FROM adopt
WHERE year BETWEEN AND t-w+1 AND t) AS after;

Giuliani’s claim (after reverse-engineering) is specified by 〈Q1, (w =
6, t = 2001, d = 6), 1.665〉.
Relative Strength of Results To capture the effect of parameter
perturbations on query results, we need a way to compare results.
For example, if a perturbation in Giuliani’s claim leads to a lower
increase (or even decrease) in the total adoption number, this new
result is “weaker” than the result of the claim. To this end, let
SR : R × R → R denote the (relative) result strength function:
SR(r; r0), where r, r0 ∈ R, returns the strength of r relative to the
reference result r0. If SR(r; r0) is positive (negative), r is stronger
(weaker, resp.) than r0. We require that SR(r; r) = 0. For exam-
ple, we let SR(r; r0) = r/r0 − 1 for Giuliani’s claim.

Given a claim 〈q, p0, r0〉 to check, SR allows us to simplify the
QRS of q relative to (p0, r0) into a surface {(p, SR(q(p); r0) | p ∈
P} in R × R. We call this simplified surface the relative result
strength surface. For example, Figure 1a illustrates this surface
for Giuliani’s adoption claim. Since the full three-dimensional pa-
rameter space is difficult to visualize, we fix w to 6 and plot the
surface over possible t and d values. Intuitively, we see that while
some perturbations (near the diagonal, shown in greener colors)
strengthen the original claim, the vast majority of the perturbations
(shown in redder colors) weaken it. In particular, increasing t and
decreasing d both lead to weaker claims. Thus, the surface leaves
the overall impression that Giuliani’s claim overstates the adoption
rate increase. However, before we jump to conclusions, note that
not all parameter settings are equally “sensible” perturbations; we
discuss how to capture this notion next.
Relative Sensibility of Parameter Settings Some parameter per-
turbations are less “sensible” than others. For example, in Giu-
liani’s claim, it makes little sense to compare periods with “unnat-
ural” lengths (e.g., 13 years), or to compare periods “irrelevant” to
Giuliani’s term (e.g., periods in the 1970s). While “naturalness”
of values is often an intrinsic property of the domain, “relevance”
is often relative to the original claim (or its context). To capture
overall sensibility, which is generally relative, we use either a pa-
rameter sensibility function or a parameter sensibility relation.

A (relative) parameter sensibility function SP : P × P → R
scores each parameter setting with respect to a reference parame-
ter setting: SP(p; p0) returns the sensibility score of p ∈ P with

respect to p0 ∈ P. Higher scores imply more sensible settings.
As an example, Figure 1b illustrates the relative sensibility of pa-
rameter settings for checking Giuliani’s claim (again, we fix w and
vary only t and d). Darker shades indicate higher sensibility. The
interaction of naturalness and relevancy results in generally decay-
ing sensibility scores around (t0, d0) = (2001, 6) (because of rel-
evancy), but with bumps when d = 4 and d = 8 (because of
naturalness—the New York City mayor has 4-year terms). Intu-
itively, portions of the QRS over the high-sensibility regions of the
parameter space are more “important” in checking the claim. See
Section 4 for more details on SP for Giuliani’s claim.

In some cases, there is no appropriate SP for ordering all param-
eter settings, but a weaker structure may exist on P. A (relative)
parameter sensibility relation �p0 , with respect to a reference pa-
rameter setting p0 ∈ P, is a partial order over P: p1 �p0 p2 means
p1 is less sensible than or equally sensible as p2 (relative to p0). The
sensibility relation �p0 imposes less structure on P than the sen-
sibility function SP—the latter actually implies a weak order (i.e.,
total order except ties) on P. As an example, consider perturbing
the Marshall-Boehner vote correlation claim by replacing Marshall
with Clyburn. Intuitively, U.S. Representatives who are well rec-
ognizable to the public lead to more “natural” perturbations; on the
other hand, “relevant” perturbations are Representatives who are
even more liberal in ideology than Marshall (so as to counter the
original claim’s suggestion that Marshall is conservative). While it
is difficult to totally order the discrete domain of Representatives, it
makes sense to define a partial order based on their recognizability
and ideology. See [28] for more details.

2.2 Formulating Fact-Checking Tasks
Finding Counterarguments Given original claim 〈q, p0, r0〉, a
counterargument is a parameter setting p such that SR(q(p); r0) <
0; i.e., it weakens the original claim. For example, Figure 1a shows
counterarguments to Giuliani’s claim in orange and red; they re-
sult in a lower percentage of increase (or even decrease) than what
Giuliani claimed. Since there may be many counterarguments, we
are most interested in those weakening the original claim signifi-
cantly, and those obtained by highly sensible parameter perturba-
tions. There is a trade-off between parameter sensibility and result
strength: if we consider counterarguments with less sensible pa-
rameter perturbations, we might be able to find those that weaken
the original claim more. Finding counterarguments thus involves
bicriteria optimization. We define the following problems:

(CA-τττRRR) Given original claim 〈q, p0, r0〉 and a result strength thresh-
old τR ≤ 0, find all p ∈ P with SR(q(p); r0) < τR that are
maximal with respect to �p0 ; i.e., there exists no other p′ ∈ P

with SR(q(p′); r0) < τR and p′ �p0 p.

(CA-τττPPP) Beyond the partial order on P, this problem requires the
parameter sensibility function SP. The problem is to find, given
original claim 〈q, p0, r0〉 and a sensibility threshold τP, all p ∈ P

where SP(p; p0) > τP and SR(q(p); r0) is minimized.

For interactive exploration and situations when the choices of
thresholds τR and τP are unclear, it is useful to enumerate Pareto-
optimal counterarguments,3 in descending order of parameter set-
ting sensibility, until the desired counterargument is spotted. This
problem is formulated below:
3More precisely, we say that a counterargument p dominates a counterar-
gument p′ if i) SP(p; p0) ≥ SP(p′; p0) (i.e., p is more sensible than or
equally sensible as p′); ii) SR(q(p); r0) ≤ SR(q(p′); r0) (i.e., p weakens
the original claim as much as or more than p′); and iii) inequality is strict
for at least one of the above. A Pareto-optimal counterargument is one that
is dominated by no counterarguments.
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(CA-po) This problem requires the parameter sensibility function
SP. Given original claim 〈q, p0, r0〉, find the k Pareto-optimal
counterarguments p ∈ P with the highest SP(p; p0) values.

Reverse-Engineering Vague Claims As motivated in Section 1,
many claims are not stated precisely or completely; e.g., Giuliani’s
adoption claim omits its parameter values and rounds its result
value. We still represent a vague claim by 〈q, p0, r0〉. However,
p0 and r0 are interpreted differently from other problem settings.
Here, r0 may be an approximation of the actual result. For pa-
rameter values mentioned explicitly by the claim, p0 sets them
accordingly. On the other hand, for omitted parameters, p0 sets
them to “reasonable” values capturing the claim context. For ex-
ample, Giuliani’s adoption claim does not state the periods of com-
parison. We simply use 1993–1993 and 2001–2001 for p0, i.e.,
(w0, t0, d0) = (1, 2001, 8), to capture the claim context that Giu-
liani was in office 1994–2001. Note that when picking p0, we do
not need to tweak it to make q(p0) match r0; our problem formu-
lation below will enable automatic reverse-engineering.

Any parameter setting is a candidate for a reverse-engineered
claim. The reverse-engineering problem turns out to be very sim-
ilar to the problem of finding counterarguments—we still seek a
sensible parameter setting p relative to p0, but we want p to lead to
a result that is close to r0 instead of weaker than it. The problem
has three variants, RE-τR, RE-τP, and RE-po, analogous to their
counterparts for CA. Because of limited space, we formally define
only RE-τR here.

(RE-τττRRR) Given vague claim 〈q, p0, r0〉 and a result strength thresh-
old τR > 0, find all p ∈ P with |SR(q(p); r0)| < τR that are
maximal with respect to �p0 .

Measuring Claim Quality Quantifying claim quality requires a
parameter sensibility function SP : P×P→ R. Given the original
parameter setting p0, we further require SP(·; p0) to define a prob-
ability mass function (pmf),4 or, if P is continuous, a probability
density function (pdf). Consider a “random fact-checker,” who ran-
domly perturbs the parameter setting according to SP; SP(p; p0)
represents the relative likelihood that the original parameter setting
p0 will be perturbed to p. This random fact-checker is more likely
to pick settings that are “natural” and “relevant” (with respect to
the original claim), as explained earlier.

Different quality measures make sense for claims of different
types, or the same claim viewed from different perspectives. Be-
cause of limited space, we present only robustness here; see [28]
for formal definitions of fairness and uniqueness. For simplicity of
exposition, we assume that P is finite and discrete, and that SP is a
pmf. Generalization to the continuous case is straightforward.

(Robustness) The robustness of a claim 〈q, p0, r0〉 is

exp
(
−
∑
p∈P SP(p; p0) · (min(0, SR(q(p); r0)))2

)
.

Intuitively, robustness is computed from the mean squared devia-
tion (from r0) of perturbed claims generated by the random fact-
checker. If a perturbed claim is stronger than the original, we
consider the deviation to be 0. We use exp(−·) to ensure that
robustness falls in (0, 1]. Robustness of 1 means all perturba-
tions result in stronger or equally strong claims; low robustness
means the original claim can be easily weakened.

3 Algorithmic Framework for Fact-Checking
With the modeling framework in place, we now turn to our algorith-
mic framework for fact-checking. To make our techniques broadly
4When P is finite and discrete, given any definition for SP, we can simply
normalize it by

∑
p∈P SP(p; p0) to obtain a pmf.

applicable, we develop more generic algorithms than ones tailored
to particular types of claims. However, more efficient algorithms
are only possible by exploiting specific properties of the claims. To
gain efficiency without sacrificing generality, we develop a series
of “meta” algorithms:

• Our baseline algorithms (Section 3.1) assume only the availabil-
ity of a generator function GetP, which returns, one at a time, all
possible parameter perturbations of the claim to be checked.

• To avoid considering all possible parameter perturbations, our
advanced algorithms assume more powerful building blocks: func-
tions that generate parameter settings in decreasing sensibility
order (Section 3.2), and those that support a divide-and-conquer
approach for searching the parameter space (Section 3.3). In-
stantiations of such building blocks will be presented in Sec-
tions 4.2 and 5.2.

• Besides intelligent strategies for searching the parameter space,
preprocessing of the input data can significantly reduce the cost
of query evaluation for each parameter setting. Thus, we allow
a customized data preprocessing function to be plugged in. Sec-
tions 4.2 and 5.2 presents examples of how plugged-in prepro-
cessing helps with checking claims in Examples 1 and 2.

As motivated in Section 1, this approach enables an extensible
system architecture with “pay-as-you-go” support for efficiency—
new claim types can be supported with little configuration effort,
but higher efficiency can be enabled by plugging in instantiations
of low-level building blocks.

We tackle finding counterarguments (CA) and reverse-engineering
(RE) here, and do not discuss how to compute various claim qual-
ity measures. Furthermore, we focus on CA below, because (unless
otherwise noted) our meta algorithms for RE are straightforward
adaptions of their counterparts for CA. Whenever their counterparts
use SR(q(p); r0), they simply use |SR(q(p); r0)| instead.

3.1 Baseline Algorithms
The baseline algorithms assume nothing beyond the minimum re-
quired to define the problems. To find counterarguments, these al-
gorithms simply call GetP to consider all possible parameter set-
tings exhaustively. Because of limited space, we only describe the
baseline algorithm for CA-po here; see [28] for other algorithms.

(BaseCA-po) Suppose the original claim is 〈q, p0, r0〉. Given k,
BaseCA-po solves CA-po by calling GetP to consider each pos-
sible parameter setting p. Finding the Pareto-optimal parameter
settings amounts to the well-studied problem of computing max-
imal points in 2-d (sensibility and strength) [18, 5]. To avoid
storing sensibility and strength for all possible parameter set-
tings, BaseCA-po remembers only the Pareto-optimal subset A
of all parameter settings seen so far. We store A in a search
tree indexed by sensibility, which supportsO(log t) update time,
where t denotes the maximum size reached by A during execu-
tion. After considering all p ∈ P, BaseCA-po returns the k
elements in A with the highest sensibility.

The baseline algorithms work fine for small parameter spaces.
However, their costs become prohibitive (especially for interactive
use) when |P| is large, because they must exhaustively examine
all possible parameter settings before returning any answer at all.
More precisely, the baseline algorithms, for all three variants of
CA, make O(|P|) calls to functions SR, SP, and GetP. Assuming
each such call takes unit time, BaseCA-po takes O(|P| log t) time
and uses O(t) space, where t denotes the maximum size reached
by A (Pareto-optimal answer set found so far) during execution.
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3.2 Ordered Enumeration of Parameters
We now consider algorithms that take advantage of functions that
enumerate, on demand, all parameter settings in non-increasing or-
der of sensibility. When the parameter space is large, such func-
tions enable us to focus first on exploring parts of it with the most
sensible perturbations. There are three cases.

We start with the case (Section 3.2.1) when the parameter sen-
sibility function SP(p; p0) is defined, and an improved version of
GetP, which we denote by GetP↓, is available for generating pa-
rameter settings with high SP first.

The second case (Section 3.2.2) extends the first, and is common
for multidimensional parameter spaces. Here, instead of requir-
ing GetP↓, we require, for each dimension ı, a function GetP

d[ı]
↓

for enumerating the values in this dimension in order. We assume
this order is consistent with the overall sensibility: i.e., given a pa-
rameter setting p, replacing its value for dimension ı with one that
appears earlier in this order cannot decrease SP(p; p0). We give
a general procedure that uses the single-dimensional GetPd[ı]

↓ ’s to
implement a single multidimensional GetP↓, so we can then apply
the algorithms for the first case above. Giuliani’s adoption claim
can be handled with this approach, as we will see in Section 4—
we need to specify how to enumerate values in each of the three
dimensions w, t, and d individually, but we need not define how to
enumerate (w, t, d) settings manually.

In the third case, again, no single GetP↓ is given, but param-
eter settings can be compared according to multiple criteria. For
each criterion , a function GetP

c[]
↓ exists to enumerate parame-

ter settings in order according to . The GetP
c[]
↓ ’s together define

a partial order �p0 on P. For example, the Marshall-Boehner vote
correlation claim falls into this case when we permute the U.S. Rep-
resentatives being compared—they can be ordered by either recog-
nizability or ideology.

We now present our algorithms for the first two cases. Because
of space limit, the details on the third case are presented in [28].

3.2.1 Algorithms based on GetP↓

Suppose that given the parameter setting p0 of the original claim,
GetP↓(p0) is available for generating parameter settings one at a
time in non-increasing order of SP(p; p0). The algorithms for find-
ing counterarguments can be improved as follows.

(EnumCA-po) On a high level, EnumCA-po is similar to BaseCA-
po. As EnumCA-po considers each parameter setting returned
by GetP↓, it also incrementally maintains the Pareto-optimal sub-
set A of parameter settings seen so far, as in BaseCA-po. Be-
cause GetP↓ returns parameter settings in non-increasing order
of sensibility, however, maintenance of A becomes much easier.
We can store A as a list and update A in O(1) time, as in Kung
et al.’s algorithm for 2-d skyline [18]. Furthermore, |A| grows
monotonically, so we can terminate once |A| reaches k.

EnumCA-po runs inO(s) steps, where s ≤ |P| is the number of
parameter settings it examines. It runs with O(k) space, where k is
the desired number of results. Each step evaluates q once and takes
O(1) time to update A. Thus, EnumCA-po outperforms BaseCA-
po on all fronts: BaseCA-po runs in O(|P|) steps and with O(t)
space (recall that t is the maximum size that A can reach during
BaseCA-po, which is not bounded by k as in EnumCA-po), and
each step takes O(log t) time to update A. The savings are signif-
icant in practice, because oftentimes s � |P| and k � t. Other
algorithms can be similarly improved.

3.2.2 Enumerating Values in Each Dimension
Given the parameter setting p0 of the original claim, suppose that
for each dimension ı of the parameter space, a function GetP

d[ı]
↓ (p0)

is available for returning values in dimension ı in order, such that
SP(p; p0) is monotonically non-increasing with respect to the ordi-
nal number of p’s value for dimension ı in the sequence returned by
GetP

d[ı]
↓ (p0). Since it is possible for some combinations of single-

dimensional values to be an invalid parameter setting, we also as-
sume a Boolean function IsPValid(p; p0) that tests the validity of
p. With these functions, we now show how to implement an overall
GetP↓ by combining these multiple GetP

d[ı]
↓ ’s.

We maintain the set of candidate parameter settings in a prior-
ity queue Q, whose priority is defined by sensibility. Q is initial-
ized with an entry whose components are obtained by calling each
GetP

d[ı]
↓ (p0) for the first time. Because of the monotonicity of SP,

this entry has the highest sensibility in P. We always remove the
highest-priority entry (say p) from Q and, if it is valid, return it as
the next parameter settings for GetP↓. Suppose the entry removed
is p = (v1, . . . , vdim(P)). Using it, we construct candidate param-
eter settings and insert them into Q. Each candidate parameter set-
ting p′ is obtained by replacing one component vı of p by the value
that GetPd[ı]

↓ (p0) returns after vı. We check that all predecessors
p′′ of p′ have been removed fromQ, by comparing SP(p′′; p0) with
SP(p; p0). Hence, we avoid enumerating any p multiple times.

Suppose the number of values per dimension isO(η). The space
complexity of this algorithm is O(ηdim(P)−1), dominated by the
priority queue; cached values from GetP

d[·]
↓ calls together take only

O(dim(P)η). The time complexity is O(ηdim(P) dim(P) log η),
with O(log ηdim(P)−1) for each of the O(ηdim(P)) parameter set-
tings enumerated. If we exhaust the parameter space P using this
algorithm, by enumerating all possible values along all dimensions,
the time complexity can be higher than the baseline. However, this
algorithm can stop execution early, enumerating only parameters
in the “neighborhood” of p0. Additional analysis in Section 4 will
demonstrate this point analytically on a concrete problem instance.

3.3 Divide and Conquer on Parameter Space
For certain types of query templates, there exist more powerful al-
gorithmic building blocks for efficiently finding parameter settings
with the “best” result strengths within a region of the parameter
space P, without trying all parameter settings therein. For exam-
ple, given a time series, with some preprocessing, it is possible to
find the data point with the minimum value within a given time
range; as we will show in Section 4.2, this building block allows us
to find counterarguments for Giuliani’s adoption claim quickly.

For these types of query templates, we develop algorithms that
assume the availability of two functions: DivP is the parameter
space division function, and OptP is the parameter optimization
function. On a high level, these two functions together enable a
divide-and-conquer approach: DivP divides P into “zones,” and
OptP returns the “best” parameter setting within each zone.

Formally, given a reference parameter setting p0 and a parame-
ter sensitivity threshold τP, DivP(p0, τP) returns a set of zones5 in
P, whose union is exactly {p ∈ P | SP(p; p0) > τP}, the subset
of P with sensibility above τP. Given a zone ψ and a reference
result r0, OptP has two variants: OptP-∞(r0, ψ), for CA, returns
arg minp∈ψ SR(q(p); r0), i.e., the parameter setting(s) in ψ with

5We leave the definition for a “zone” of P up to DivP and OptP. The gen-
eral guidelines for designing DivP and OptP are that each zone should
contain a non-trivial number of parameter settings, and that OptP can work
efficiently within each zone. The only requirement is that zones have com-
pact descriptions, so they can be passed efficiently from DivP to OptP
during processing. For example, a zone in N3 may be succinctly described
as a convex region defined by a small number of inequalities. In contrast,
an explicit list of member points would not be a good description.
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minimum result strength relative to r0; OptP0(r0, ψ), for RE, re-
turns arg minp∈ψ |SR(q(p); r0)|, i.e., the parameter setting(s) in ψ
whose result is closest to r0. Using DivP and OptP-∞, we now have
the following algorithm for CA-τP.

(DiCoCA-τP) Given a parameter sensibility threshold τP, DiCoCA-
τP simply calls DivP(p0, τP) to divide the set of parameter set-
tings above the sensibility threshold (relative to p0) into a set of
zones. Then, for each zone ψ, DiCoCA-τP calls OptP(r0, ψ)
to find the best counterarguments. Finally, it returns the overall
best counterarguments across all zones.
The main improvement of DiCoCA-τP over EnumCA-τP comes
from the fact that the number of zones returned by DivP is often
far less than the number of parameter settings with sensibility
above τP. On the other hand, the cost of processing each zone
is likely bigger than that of processing each parameter setting.
Thus, the overall savings hinge on the efficiency of OptP.

The divide phase avoids the O(dim(P) log η) factor in the time
complexity of the earlier algorithm based on ordered enumeration.
The conquer phase aims at finding the optimal parameter setting
without calling SR for every possible parameter setting in the zone.
The overall time complexity depends on the building blocks DivP
and OptP; the goal is to devise DivP and OptP to achieve o(ηdim(P))
running time. We will see instantiations of DivP and OptP in Sec-
tions 4.2 and Section 5.2 that would enable this algorithm.

Algorithms for CA-τR and CA-po build on top of DiCoCA-τP
by invoking it multiple times with different “guesses” of values τP,
while carefully avoiding repeated DiCoCA-τP calls with sensibility
thresholds that are (effectively) the same. See [28] for details.

4 WAC: Window Aggregate Comparison Claims
With our modeling and algorithmic frameworks, we now show how
to check a class of claims generalizing Giuliani’s in Example 1.

4.1 Modeling WAC
Parameterized Query Template Here, the database is a sequence
of positive numbers x1, x2, . . . , xn. A window aggregate with win-
dow length w and endpoint t computes

∑
i∈(t−w,t] xi.

6 The win-
dow aggregate comparison (WAC) query template is the function

q(w, t, d) =

∑
i∈(t−w,t] xi∑

i∈(t−d−w,t−d] xi
, (1)

which compares two windows of the same length w ∈ [1, n − 1]
ending at t and t−d, respectively. We call t ∈ [w+1, n] the current
time and d ∈ [1, t − w] the lead. Hence, the parameter space P is
the set of points in N3 in a convex polytope, and the result space R

is R+. The size of P for a data sequence of length n is O(n3).
Result Strength Suppose the claim boasts an increase of ag-
gregate value over time (which is the case for Giuliani’s adoption
claim). As mentioned in Section 2.2, we define the result strength
function as SR(r; r0) = r/r0 − 1. (On the other hand, if the claim
boasts a decrease, e.g., “crime rate is dropping,” we would replace
r/r0 with r0/r in SR(r; r0).)
Parameter Sensibility We define parameter sensibility by divid-
ing it into two components—“naturalness” SPnat(p) (independent
of p0) and “relevance” SPrel(p; p0) (dependent on p0):

SP(p; p0) ∝ SPnat(p) · SPrel(p; p0). (2)

We normalize SP(p; p0) so that it is a pmf over P given p0. Note
that it also induces a weak order on P.
6Here we assume sum; extensions to other common aggregation functions
are straightforward.

First, consider naturalness. In general, for time series data, cer-
tain durations are more natural than others. For example, for monthly
data, multiples of 12 (i.e., years) are more natural than multiples of
3 but not of 12 (i.e., quarters), who are in turn more natural than an
integer not divisible by 3. For Giuliani’s adoption claim over yearly
adoption data, durations that are multiples of 4 are natural because
the term of the New York City mayor is four years. Recognizing
that a domain of time durations often has a periodic structure, we
define naturalness for such a domain using a set of (usually a few,
and often not disjoint) levels whose union is N. Each level ` is
specified by a pair (χ`, π`). Here, χ` is the naturalness score as-
sociated with level `; π` ≥ 1 is an integral period that defines the
domain values in level ` as N(`) = {v ∈ N | π` divides v}. The
naturalness score of a duration v is given by max{χ` | v ∈ N(`)};
i.e., the maximum score that v is associated with.

For WAC, let p = (w, t, d). Window length w and lead d are
both durations, and contribute to the naturalness of p. We define

SPnat(p) = SPw
nat(w) · SPdnat(d), (3)

where SPw
nat and SPd

nat are naturalness scoring functions for the do-
mains of w and d as discussed above. Specifically, for Giuliani’s
claim, we define naturalness for both domains using three levels
(1, 1), (e, 4), (e2, 8). Here, periods 4 and 8 reflect the natural
term lengths of New York City mayors; the choice of e as bases is
for convenience (when multiplied with a Gaussian relevance term).
More sophisticated naturalness modeling is certainly possible, but
we have found this definition to be adequate in our experiments.

Second, consider relevance. Generally speaking, the relevance
of a parameter setting decreases with the magnitude of perturba-
tion from the parameter setting of the original claim. For WAC,
let p0 = (w0, t0, d0) denote the original parameter setting. We de-
fine SPrel(p; p0) as follows, which is essentially a Gaussian centered
around p0, with independent components and component-wise dis-
tances normalized by σw, σt, and σd:

SPrel(p; p0) = SPw
rel(w;w0) · SPabrel(t; t0) · SPdrel(d; d0), where

SPw
rel(w;w0) = e

−
(
w−w0
σw

)2

, SPab
rel(t; t0) = e

−
(
t−t0
σt

)2

, SPd
rel(d; d0) = e

−
(
d−d0
σd

)2

. (4)

Specifically, for Giuliani’s claim, (σw, σt, σd) = (5, 1, 10). Here,
a small σt penalizes perturbation in t, because its original setting
reflects the end of Giuliani’s term; a large σd allows more flexibility
in perturbing d thanw, asw is more constrained by Giuliani’s term.

Recall that Figure 1b illustrates the overall parameter sensibility
function—the product of naturalness and relevance—for Giuliani’s
claim when fixing w = 6.
Fact-Checking Tasks The modeling above immediately enables
the formulation of all problems in Section 2.2 related to finding
counterarguments and reverse-engineering for WAC claims.

4.2 Algorithmic Building Blocks for WAC
4.2.1 Preprocessing to Speed up Queries
Answering a WAC query given parameters (w, t, d) normally takes
Ω(w) time because it must examine all data in the windows being
compared. By preprocessing the input sequence into a sequence of
prefix sums, we can reduce the query time to O(1). More specif-
ically, given the input data x1, x2, . . . , xn, define x̄i =

∑i
j=1 xi

for i ∈ [1, n]. With one pass over the input data, we compute and
materialize the prefix sums using the recurrence x̄i = x̄i−1 + xi
starting from x̄1 = x1. This preprocessing takes O(n) time and
results in an array of size n. Then, we can evaluate a WAC query
with parameters (w, t, d) as x̄t−x̄t−w

x̄t−d−x̄t−d−w
in O(1) time.
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4.2.2 Ordered Enumeration of Parameters
Enabling ordered enumeration of parameters for WAC is straight-
forward. As discussed in Section 3.2.2, for each of the three di-
mensions w, t, and d of P, we simply need to provide a function
to enumerate its values in descending order of their contribution to
SP; we also need to define the Boolean function IsPValid to test
the validity of (w, t, d) combinations. The algorithm described in
Section 3.2.2 can then combine these functions automatically to
provide ordered enumeration of full parameter settings.

We show how to implement GetPd[w]
↓ (w0) for the dimension of

window length w, where w0 is from the original claim’s param-
eter setting. Recall from Section 4.1 that w contributes to both
naturalness and relevance. For w values within the same level of
naturalness, enumerating them in the decreasing relevance order is
straightforward, because they are found at increasing distance from
w0. To enumerate w values in order of their overall contribution to
SP, we perform enumeration across all levels of naturalness in par-
allel, using a priority queue to merge values from different levels
into single stream.

The dimension of lead d is analogous. The dimension of end-
point t is simpler as it does not contribute to naturalness; we simply
return t values in increasing distance from t0. Function IsPValid
checks t − d − w > 0, to ensure that the earlier window falls
completely within the input sequence.

To understand the complexity of ordered enumeration, we note
that all parameter settings above a given sensibility fall within an el-
lipsoid centered at p0; see Figure 2 for an illustration (a slice of the
bounding ellipsoid is outlined in red; ignore the “zones” for now).
Let r̃ denote the length of the longest semi-principal axis (measure
by the number of possible values on it) of this ellipsoid; we call r̃
the interesting solution radius. For CA-τP, r̃ is determined by the
given τP. For CA-τR (or CA-po), r̃ is determined by the “effective”
τP, i.e., the sensibility of the answer (or the lowest sensibility in
the answer set, respectively). The same analysis applies to the vari-
ants of RE. Using the results in Section 3.2.2, the time and space
complexities of ordered enumeration for WAC are O(r̃3 log r̃) and
O(r̃2), respectively. In the worst case, r̃ = Θ(n). However, in
practice, a counterargument or reverse-engineered claim is often
close to p0, so r̃ � n, and ordered enumeration will run much
faster than the O(n3) baseline.

4.2.3 Divide and Conquer on Parameter Space
We now show how to enable an efficient divide-and-conquer ap-
proach to checking WAC claims, by defining functions DivP and
OptP (Section 3.3). The subset of P above sensibility threshold τP
is a set of 3-d grid points. Roughly speaking, our approach “slices”
this subset using planes perpendicular to the w axis, and computes
the best answer within each slice.

Divide In more detail, the parameter space division function DivP
works as follows. For each possible window lengthw, for each nat-
uralness level ` in the domain of d specified by (χd` , π

d
` ), and then

for each h ∈ [0, πd` ), we define a zone ψw,`,h using the constraints
below (note that w is fixed):

t ≤ n ∧ t− d ≥ w; (5)

d mod πd` = 0; (6)(
t−t0
σt

)2

+
(
d−d0
σd

)2

< − ln τ, where

τ = τP/
(
SPw

nat(w) · SPwrel(w;w0) · χd`
)

;
(7)

t mod πd` = h. (8)

Constraint (7)
π = 1

Constraint (7)
π = 4

t

d

(t0, d0)

Figure 2: Illustration of zones ψw,`,h (for a fixed w) dividing the param-
eter space of WAC claims. The yellow dots ( ) belong to the zone for the
level with period 1 and the lowest naturalness; the four types of red dots
( ), distinguished by their color saturation and orientation, belong to
the four zones (with h = 0, 1, 2, 3) that make up the level with period 4
and higher naturalness. We shown only two levels here for simplicity.

Constraint (5) is implied by the problem definition. Constraint (6)
says that d belongs to the current level ` being considered. Con-
straint (7) enforces that the overall sensibility is above τP. As Fig-
ure 2 illustrates, the union of all zones ψw,`,h with the same w and
` is a uniform (t, d) grid in the plane (with fixed w) bounded by a
convex region; the spacing of this grid is 1 along the t-dimension
and πd` along the d-dimension. Constraint (8) further divides this
grid into πd` zones (by h), where each zone is a subgrid with spac-
ing of πd` along the t-dimension.

Here is some intuition of why a zone is defined as above. Con-
sider a zone ψw,`,h. First, withw fixed, q(w, t, d) can be written as
yt/yt−d (y will be formally defined below). Given this decompo-
sition of q, in order to maximize/minimize q(w, t, d), we only need
to maximize/minimize yt and minimize/maximize yt−d, which is a
1-d problem. However, not all combinations of (t, d) are valid ac-
cording to the semantics of WAC claim. Constraint (8) ensures that
for any t, values of d for valid (t, d) combinations are contiguous
in ψw,`,h, which is convenient for optimization as shown below.

Conquer: CA Next, we show how to conquer each zone returned
by DivP. For the problem of finding counterarguments, we define
OptP-∞ for WAC (see [28] for pseudocode) as follows. Note that
each zone ψw,`,h is associated with an equally-spaced subsequence
of time points I = {i | i mod πd` = h∧ imin ≤ i ≤ imax}, where
imin and imax are derived from the constraints on t and d imposed
by the zone. We compute the window aggregate result (with win-
dow length w) for each of these time points, obtaining a sequence
Y = {yi | i ∈ I}, where yi =

∑
j∈(i−w,i] xj = x̄i − x̄i−w.

Recall that the x̄i’s are precomputed prefix sums, so computing Y
takes O(|Y |) time. Every (t, d) setting in zone ψw,`,h corresponds
to a pair of time points in I , namely (i1, i2) = (t − d, t); we call
such pairs valid. Note that SR((w, t, d); r0) =

yi2
yi1
· 1
r0
− 1.

Thus, to minimize SR((w, t, d); r0) within the zone, we look
for a valid (i1, i2) pair that minimizes

yi2
yi1

. To this end, for each
valid i2 value, we determine the range of valid i1 values within
which to maximize yi1 . Because of the convexity of the zone, this
range covers a contiguous subsequence of {yi}. Hence, given i2,
the maximization problem reduces to a range-maximum query over
a (static) sequence, a well-studied problem. The sequence Y can
be preprocessed in O(|Y |) time into a linear-size data structure, so
that any range-maximum query can be answered in O(1) time [13,
4, 10].7

7We actually use a simple implementation based on Tarjan’s offline LCA
algorithm [24]. It has linear space and preprocessing time, but O(α(|Y |))
time per range-maximum query (whereα(·) is the inverse Ackermann func-
tion), which already provides adequate performance.
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(i1, yi1 )find two
closest segments

valid i1 range given i2

yi2
r0

i1

y

Figure 3: Illustration of the sweep line procedure used by OptP0 for
reverse-engineering WAC claims. Points corresponding to Y are drawn as
black dots. Segments currently intersected by the (red) sweepline are drawn
using thick lines.

We use the same notion of “interesting solution radius” r̃ intro-
duced in Section 4.2.2 to analyze the complexity of divide-and-
conquer for WAC with the DivP and OptP-∞ described here. The
time complexity of finding counterarguments for WAC is improved
to O(r̃2)—with the space divided into O(r̃) slices, each taking
O(r̃) time to solve—compared with O(r̃3 log r̃) for ordered enu-
meration. The space complexity is improved to O(r̃), compared
with O(r̃2) for ordered enumeration.

Conquer: RE For reverse-engineering WAC claims, we define
OptP0 as follows. Given a zone ψw,`,h, we derive I and precom-
pute the sequence Y = {yi | i ∈ I} as in OptP-∞, such that each
(t, d) setting in the zone corresponds to a pair of time points in
I , namely (i1, i2) = (t − d, t). However, instead of minimizing
yi2
yi1
· 1
r0
− 18 over all valid (i1, i2) pairs as in OptP-∞, we want to

minimize the absolute result strength difference | yi2
yi1
· 1
r0
− 1|, or,

equivalently, |yi1 − yi2 · 1
r0
|.

Given a valid i2 value, we can determine the range of valid i1
values associated with i2, as in OptP-∞. Recall that OptP-∞ pre-
processes Y , issues a query for each i2 to find the best i1 in the
associated range, and then picks the overall best (i1, i2) pair. Here,
however, we find the overall best (i1, i2) using a sweep line pro-
cedure, which essentially considers the i1 ranges associated with
all valid i2’s in batch. To illustrate, let us map the sequence Y =
{yi | i ∈ I} to a set of points {(i, yi) | i ∈ I} in 2-d as shown
in Figure 3. For each valid i2 value and its associated i1 range,
we draw a horizontal line segment spanning the i1 range, at height
yi2/r0. It is easy to see that i1 value that minimizes | yi2

yi1
/r0 − 1|

within this range corresponds to either the closest point above the
segment or the closest point below the segment (with the constraint
that the segment contains the projections of these points). Hence,
the problem reduces to that of finding such closest point-segment
pairs. To solve this problem, we sort the segments by the horizontal
coordinates of their endpoints. Using a vertical sweep line, we con-
sider the segments and points together in order. During the sweep,
we incrementally maintain the set of segments intersected by the
sweep line in a 1-d search tree (e.g., B-tree) keyed on their heights.
For each incoming point (i, yi), we probe the search tree with yi
for the active segments with heights closest to yi (above and be-
low). We keep track of the best point-segment pair (i.e., one with
the smallest | yi2

yi1
/r0 − 1|) seen so far during the sweep, and return

it at the end of the sweep.
Preparing the segments for the sweep takesO(|Y | log |Y |) time.

The sweep takesO(|Y |) steps, each takingO(log |Y |) time. There-
fore, OptP0 takes O(|Y | log |Y |) time and O(|Y |) space.

Similar to finding counterarguments earlier, the parameter space
is divided into O(r̃) slices by DivP, each taking O(r̃ log r̃) time to
solve by OptP0. Thus, the overall time complexity is O(r̃2 log r̃).
The space requirement is again linear.

8Recall that if the original claim boasts a decrease, we would define SR as
r0 ·

yi1
yi2
− 1, but the same algorithm applies.

5 TSS: Time Series Similarity Claims
We now turn to a class of claims generalizing Example 2.

5.1 Modeling TSS
Parameterized Query Template Here the database contains in-
formation about m entities identified as 1, 2, . . . ,m. Each entity
i is associated with a time series Xi = {xi,1, xi,2, . . . , xi,n}. A
function simT (Xi, Xj), where T ⊆ [1, n] and i, j ∈ [1,m], com-
putes the similarity between two time series {xi,t ∈ Xi | t ∈ T}
and {xj,t ∈ Xj | t ∈ T}, i.e., Xi and Xj restricted to the subset
of timesteps in T . The time series similarity (TSS) query template
is the function q(u, v, a, b) = sim[a,b](Xu, Xv), which compares
source entity u against target entity v (u 6= v) over the time pe-
riod [a, b] ⊆ [1, n]. Entity v is typically well recognizable to the
audience, and serves as the target of comparison in order to claim
something desirable about u.

For example, in the Marshall-Boehner claim (reverse-engineered)
of Example 2, v is Boehner and u is Marshall; a corresponds to Jan-
uary 2007, and b corresponds to October 14, 2010, the time when
the claim was made. Each vote is one of yea, nay, present but not
voting, and absent. The similarity between two Representatives
over a period is computed as the number of times they both voted
yea or nay, divided by the number of times neither is absent.

Result Strength and Parameter Sensibility We can investigate
a TSS claim in multiple ways by parameter perturbation—changing
the period of comparison, replacing the entities being compared,
or both—which lead to multiple useful problem formulations. In
many cases, it makes sense to perturb some instead of all parame-
ters; doing so gives cleaner problem formulations and solutions that
are easier to interpret. In general, different problem formulations
call for different setups for parameter sensibility and result strength.
Here, we focus on the problem of finding counterargument by per-
turbing the comparison period. Two other problems—finding coun-
terarguments by perturbing entities, and reverse-engineering vague
TSS claims—are discussed in [28].

Fixing u and v to those in the original claim, we can consider
counterarguments obtained by perturbing a and b. We call this
problem TSS-CAab. Suppose higher similarity strengths the claim
(which is the case for the Marshall-Boehner claim). We define the
result strength function as SR(r; r0) = r − r0. For parameter sen-
sibility, we define the sensibility of (a, b) relative to (a0, b0) as the
product of naturalness and relevance, as in Eq. (2).

In more detail, naturalness stems from a. In the vote correlation
example, values of a that correspond to the beginning of some ses-
sion of Congress are the most natural. As with the naturalness of
durations discussed in Section 4.1, we define naturalness of time
points using a set of (not necessarily disjoint) levels whose union
is N. The relevance of (a, b) relative to (a0, b0) decreases with the
distance between them, and is defined analogously to WAC claims
in Eq. (4), Section 4.1. Specifically, for the Marshall-Boehner
claim, (σa, σb) = (1000, 1). We use a small σb to penalize per-
turbation in b, because its original setting reflects the time of the
claim. With the definitions above, we obtain the three variants of
the problem of finding counterarguments in Section 2.2, for pertur-
bations of the comparison time period.

5.2 Algorithmic Building Blocks for TSS
We now discuss how to instantiate the meta algorithms in Section 3
for TSS. We focus on TSS-CAab; see [28] for approaches to other
problems for TSS. Since ordered enumeration for TSS-CAab is a
2-d analogy to that of WAC-CA, we omit its discussion and focus
on precomputation and divide-and-conquer below.
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5.2.1 Preprocessing to Speed up Queries
For TSS-CAab, we are given entities u and v but need to permute
the time period [a, b]. We preprocess the two time series Xu =
{xu,t} and Xv = {xv,t} so that queries with any (a, b) setting
can be quickly answered. At the very least, the two time series can
be materialized separately from the input data and further indexed
by time. If the similarity function sim[a,b](Xu, Xv) is a distribu-
tive or algebraic aggregate [12] over the set {sim[t,t](Xu, Xv) |
t ∈ [a, b]} of point-wise similarities—which is the case for vote
correlation claims—we can do better. In this case, using an idea
similar to that of prefix sums in Section 4.2.1, we define s̄i as the
number of times during [1, i] that u and v agreed (i.e., they both
voted yea or nay), and c̄i as the number of times u and v both voted
(i.e., neither was absent), where i ∈ [0, n]. We can incrementally
compute the s̄i’s and c̄i’s with one pass over Xu and Xv , starting
with s̄0 = c̄0 = 0. Then, with materialized s̄i’s and c̄i’s, we can
compute each query sim[a,b](Xu, Xv) =

s̄b−s̄a−1

c̄b−c̄a−1
in O(1) time.

5.2.2 Divide and Conquer on Parameter Space
We now describe how to enable the divide-and-conquer approach
for TSS-CAab. On a high level, the approaches are similar to those
for WAC claims described in Section 4.2.3, but the details and un-
derlying algorithmic challenges differ.

The subset of (a, b) parameter settings above sensibility thresh-
old τP is a set of 2-d grid points. This subset is analogous to a slice
of the 3-d grid points (with w fixed) in Section 4.2.3, but further di-
vision into zones is simpler in this case. For each naturalness level
` in the domain of a specified by (χ`, λ`), we let DivP return zone
ψ` defined by the constraints below:

1 ≤ a ≤ b ≤ n; (9)
λ`(a) = true; (10)(

a−a0
σa

)2

+
(
b−b0
σb

)2

< − ln(τP/χ`). (11)

In the case of vote correlation claims, there are simply two zones:
the low-naturalness zone is the set of grid points within a clipped
ellipse defined by Constraints (9) and (11); the high-naturalness
zone is a subset of the gird points with a ∈ Nbegin.

We define OptP-∞ for TSS-CAab as follows. Given zone ψ`, we
consider each valid a value in turn. For each a, we determine the
range of valid b values (which is contiguous) using Constraints (9)
and (11). Finding the b value within this range that minimizes
SR((a, b); (a0, b0)) amounts to minimizing s̄b−s̄a−1

c̄b−c̄a−1
.

We solve this minimization problem by a binary search on the
lower boundary of the convex hull (lower hull for short) of the set of
2-d points {(c̄i, s̄i)}, where i falls within the given range. Figure 4
illustrates the intuition behind this procedure. The set of points
O = {oi = (c̄i, s̄i) | i ∈ [1, n]} form a non-decreasing staircase in
2-d. Given a and the subsetOa of the points in the corresponding b
range (which lies somewhere to the right of oa−1), the point ob? ∈
Oa we are seeking minimizes the slope of the line La−1,b? (i.e.,
connecting points oa−1 and ob? ). Clearly, ob? must be on the lower
hull of Oa, denoted LH(Oa). Furthermore, for each point ob ∈
LH(Oa), consider the points ob− and ob+ immediately to its left
and right (respectively) in LH(Oa). The point we are seeking forms
a tangent to the hull from point oa−1; i.e., it is the only point for
which both ob− and ob+ lie above line La−1,b. If ob− lies above
La−1,b and ob+ lies below La−1,b, then ob? is to the right of ob;
if ob− lies below La−1,b and ob+ lies above La−1,b, then ob? is to
the left of ob. This observation allows us to find ob? with a binary
search in LH(Oa)—given a guess ob, the positions of ob− and ob+
relative to La−1,b tell us whether to search further to the left or
right of ob.

oa−1
c̄b? − c̄a−1

ob?

s̄b? − s̄a−1

Oa range
adjacent hull points lie on

different sides
of lineLa−1,b

same side
ofLa−1,b?

c̄

s̄

Figure 4: Illustration of OptP-∞ for finding counterarguments to TSS
claims. Points {(c̄i, s̄i) | i ∈ [1, n]} are drawn as black dots. The lower
hull for the set Oa of points is drawn as thick lines.

Let G denote the set of valid b ranges, each associated with a
possible a value. What remains to be shown is how to compute
the lower hulls for all ranges in G efficiently. Instead of computing
them independently, which would take a total of O(n|G|) time, we
batch-compute them in O(n) time as follows.

We divide G into at most three batches, such that the ranges
in each batch, when ordered non-decreasingly by their right end-
points, are either ordered non-increasingly or non-decreasingly by
their left endpoints. More precisely, each batch ofm possible a val-
ues and associated ranges can be represented as a list {(aj , [lj , rj ]) |
j ∈ [1,m]}, where r1 ≤ r2 ≤ · · · ≤ rm, and either l1 ≥ l2 ≥
· · · ≥ lm or l1 ≤ l2 ≤ · · · ≤ lm. These lists can be generated sim-
ply by considering all possible a values in order; no further sorting
is needed. We process the ranges in each list (batch) in order, incre-
mentally maintaining the lower hull when moving from one range
to the next. There are two cases here.

Case I. The list satisfies l1 ≥ l2 ≥ · · · ≥ lm; i.e., Oaj ’s range
expands in both directions as j increases. In the j-th iteration, we
update the hull from LH(Oaj−1) to LH(Oaj ), by incrementally
adding points to the immediate left ofOaj−1 from right to left (i.e.,
olj−1−1, olj−1−2, . . . , olj ), as well as points to the immediate right
of Oaj−1 from left to right (i.e., orj−1+1, orj−1+2, . . . , orj ), ap-
plying the sweep line method for convex hull computation [3] in
both directions. Although adding each point may require deleting
multiple points closest to it in the hull, the total time for the en-
tire batch is only O(n) because each point can be deleted from the
evolving hull at most once.

Case II. The list satisfies l1 ≤ l2 ≤ · · · ≤ lm; i.e., both end-
points of Oaj ’s range move right as j increases. To update the hull
from LH(Oaj−1) to LH(Oaj ), we first incrementally add points
to the immediate right of Oaj−1 , and then delete points to the im-
mediate left of Oaj . Addition of points is done in the same way
as in Case I. Deletion of points requires more care to avoid exces-
sive recomputation of the parts of the lower hull. To aid deletion
processing, we maintain an “anchor point” oh, with the invariant
that oh ∈ LH(Oaj ) at the end of the j-th iteration; furthermore,
for every point oi where i ∈ [lj , h), we remember next(oi) as
the point next to oi on LH({oi, oi+1, . . . , oh}). Before process-
ing the first range in the batch, we initialize oh to be ol1 (i.e., for
a dummy 0-th range [l0, r0] = [l1, l1]). During the processing of
the j-th range [lj , rj ] in the batch, after processing additions to ob-
tain H = LH({olj−1 , olj−1+1, . . . , orj}), we update the anchor
point and the next(·) values, and compute LH(Oaj ) as follows
(also shown in Figure 5):

(i) First, suppose lj ≤ h, i.e., the anchor point remains in range. In
this case, we discard the points in H to the left of olj , as well as
any next(·) values for points inO to the left of olj . Then, we add
olj , next(olj ), next(next(olj )), etc. to H until we encounter a
point in this series that is already inH . We have LH(Oaj ) = H .

(ii) Suppose lj > h, i.e., the range is moving past the anchor point.
In this case, we discard the points in H to the left of olj , as well
as all current next(·) values. We let the new anchor point oh be
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current range

“anchor point” oh

c̄

s̄

(a)

new range

“anchor point” oh

point was in old hull;
tracking next(·) stops here

c̄

s̄

(b)

new range

old anchor point:
out of range

new anchor point:
first point in new range
that was in the old hull

c̄

s̄

(c)
Figure 5: Update the lower hull w.r.t. deletion of leftmost points in the
current range. Lower hull points are in blue. (a) before deletion; (b) case (i)
anchor point remains in rage after deletion; (c) case (ii) anchor point goes
out of range after deletion.

the first point in H at or to the right of lj . Then, to compute
LH(Oaj ), we start with H and incrementally consider adding to
its left points oh−1, oh−2, . . . , olj , in the same way as in Case I.
This process also computes LH({oi, oi+1, . . . , oh}) for each i ∈
[lj , h) (in reverse order), allowing us to remember each next(oi).

Note that each point oi ∈ O can be associated with at most one
anchor point, so next(oi) is only computed once (and in O(1) time
amortized) in (ii) above. Moreover, next(oi) can be examined at
most once in (i) above, because the series of additions to H stops
as soon as a point is already in H . Therefore, the total time for
processing the entire batch is still O(n).

Overall, it takes O(n) time to incrementally construct the lower
hull for each range of G, with ordered endpoints of the ranges. For
each range [lj , rj ] of G, a binary search on LH(Paj ) is performed
to find the optimal point in Paj with respect to paj , usingO(logn)
time. The total time and space complexities are O(n logn) and
O(n), respectively. More precisely, if we bound the size ofG using
O(r̃) instead of O(n), the time and space complexities become
O(r̃ log r̃) and O(r̃).

6 Experiments
We begin with proof-of-concept experiments that apply our QRS
framework to Examples 1 and 2, and that illustrate the usefulness
of our results. Next, we demonstrate the efficiency and scalabil-
ity of our algorithms, showing how enumeration and divide-and-
conquer approaches lead to faster running times for interactive fact-
checking.

All algorithms are implemented in C++. All experiments ran
on a machine with the Intel Core i7-2600 3.4GHz processor and
7.8GB of memory. Besides the small adoption dataset for the New
York City, we use the following datasets: UNEMP9 records the US
monthly unemployment rate for 782 months from January 1948
to February 2013; AUTO10 contains daily auto accident statistics in
Texas from 2003 to 2011 (with 3287 data points); VOTE11 contains
22.32 million votes cast by 12,572 members of the US Congress
from May 1789 to April 2013.

6.1 Proof of Concept
Giuliani’s Adoption Claim We first use our technique to reverse-
engineer Giuliani’s vague adoption claim in Example 1. Recall
the model in Section 4.1. As discussed in Section 2.2, we set
9http://data.bls.gov/timeseries/LNS14000000

10http://www.dot.state.tx.us/txdot_library/drivers_
vehicles/publications/crash_statistics/

11http://www.govtrack.us/

p0 = (1, 2001, 8), representing the two one-year windows 1993–
1993 and 2001–2001 that are eight years apart. This captures the
claim context that Giuliani served the 8-year term of Mayor of NYC
during 1994-2001. Since the claim stated a “65 to 70 percent” in-
crease, we set r0 to be the geometric mean of 1.65 and 1.70. We
ran our algorithm for RE-po; the top two answers (ordered by sensi-
bility) were (4, 2001, 7) and (6, 2001, 6). The second (comparing
1990–1995 and 1996–2001) is exactly what Giuliani’s claim used.
The first one (comparing 1991–1994 and 1998–2001) also gives
“65 to 70 percent” increase, and is arguably more sensible because
it compares 4-year periods (term for mayor).

Next, given Giuliani’s claim, reverse-engineered as (6, 2001, 6),
we ran our algorithm for CA-po to find counterarguments. The top
answer was (4, 2001, 4), which compares 1994–1997 and 1998–
2001, i.e., Giuliani’s first and second 4-year terms. This counterar-
gument leads to 1% decrease in the adoption rate (as opposed to the
big increase in the original claim), exposing the actual trend after
Giuliani took office.
Marshall’s Vote Correlation Claim As another proof of con-
cept, consider Marshall’s vote correlation claim in Example 2.

Suppose we have the reverse-engineered claim as specified in
Section 5.1. We ran the CA-po algorithm for TSS-CAab to find
counterarguments with other sensible comparison periods that yield
lower vote correlations between Marshall and Boehner. The top
counterarguments, in decreasing sensibility, perturb the start of the
period to the beginning of 2009, 2008, and 2007, yielding decreas-
ing correlations of 59.65%, 57.36%, and 53.63%. These results
include the counterargument found by factcheck.org, and sug-
gest that the vote correlation between Marshall and Boehner had
not always been high.

6.2 Efficiency and Scalability of Algorithms
We now turn to experiments comparing the performance of three
classes of algorithms—Base (baseline), Enum (enumeration-based),
and DiCo (divide-and-conquer). For brevity, when the context is
clear, we use these names to refer to the respective algorithms for a
given problem. Because of limited space, we only present a sample
of our results here. We focus mainly on finding counterarguments
(CA), since algorithms for reverse-engineering (RE) are similar to
CA, and the comparison among the three classes of algorithms also
shows similar trends. We also focus more on WAC than on TSS.
For the complete set of results, see [28].

Each data point in the figures below is obtained by averaging
over 100 original claims with randomly generated parameter set-
tings. For the results below, all algorithms (including Base) imple-
ment the preprocessing optimization (Sections 4.2.1 and 5.2.1).
Varying τττPPP in CA-τττPPP for WAC on UNEMP Figure 6a shows
the running times of the CA-τP algorithms for WAC claims on UN-
EMP, as we vary the parameter sensibility threshold τP. Since Base
always explores the entire parameter space P, overall it is much
slower than Enum and DiCo. However, as τP decreases, the region
of P meeting this threshold becomes larger. Since the radius of this
region isO(| ln τP|1/2), Enum needs to exploreO(| ln τP|3/2) set-
tings, which explains Enum’s super-linear increase in running time
in Figure 6a. DiCo, with its powerful low-level building blocks,
runs in time linear in | ln τP|. This trend is difficult to see in the fig-
ure, as DiCo remains fast even with very low sensibility thresholds.
Varying τττRRR in CA-τττRRR for WAC on UNEMP Figure 6b consid-
ers the CA-τR problem for WAC claims on UNEMP, and compares
the algorithms as we vary the result strength threshold τR. Here,
as τR decreases, we want counterarguments with results that de-
viate farther from the original claim, which are harder for Enum
and DiCo to find. On the other hand, lower τR makes Base faster
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(a) CA-τP, varying τP
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(b) CA-τR, varying τR
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(c) CA-po, varying k
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(d) RE-τP, varying τP
Figure 6: Running time of CA and RE algorithms for WAC claims on UNEMP.
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(a) CA-τP (ln τP = −20)
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(b) CA-τR (τR = −0.05)
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(c) CA-po (k = 20)
Figure 7: Running time of CA algorithms for WAC claims on AUTO when varying data size.
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Figure 8: Running time of CA-τP
algorithms for TSS-CAab on VOTE,
varying τP.

because it needs to call SP with fewer parameter settings that meet
the result strength threshold.12 When τR is as small as −0.5, a
large portion of P must be examined by Enum and DiCo. In fact,
counterarguments found at this point are starting to be no longer
useful, because their parameter settings are already too far from the
original claim. Thus, for practical values of τR, Enum and DiCo
are faster than Base. Also, we see that for CA-τR, DiCo holds no
advantage over Enum, which can be explained by the overhead of
DiCo’s exponential search in this case.

Varying kkk in CA-po for WAC on UNEMP We now turn to
CA-po, which returns the k Pareto-optimal counterarguments with
highest sensibility. As explained in Section 2.2, this problem for-
mulation is attractive because it avoids the sometimes tricky task
of choosing thresholds for CA-τP and CA-τR. Figure 6c shows the
running time of the three algorithms for WAC claims on UNEMP
when we vary k. Enum and DiCo show comparable performance
up to k = 35. After that, the running time of Enum increases
rapidly, and approaches that of Base. On the other hand, the run-
ning time of DiCo shows a much slower increase and remains much
faster than Base for all k values tested.

Varying τττPPP in RE-τττPPP for WAC on UNEMP As a sample of
reverse-engineering experiments, Figure 6d compares the three al-
gorithms for RE-τP for WAC claims on UNEMP. As we decrease
the parameter sensibility threshold τP, we observe the same trend
as in Figure 6a for CA-τP: Base is the slowest, while DiCo scales
better than Enum in the size of the high-sensibility region of the
parameter space. Note that DiCo for RE-τP in Figure 6d is slightly
slower than DiCo for CA-τP in Figure 6a, because of the more ex-
pensive building block (OptP0 vs. OptP-∞ in Section 4.2.3).

Varying Data Size in CA for WAC on AUTO Besides testing
the performance of the algorithms while varying their input pa-
rameters, we also show how they scale with respect to data size.
In Figure 7, we show the results on the three variants of the prob-
lem of finding counterarguments—CA-τP, CA-τR, and CA-po—as

12One might wonder why fewer SP calls matter so much. It turns out that in
this case, thanks to precomputed prefix-sums, SR is much faster than SP,
so the cost of SP calls dominates. This effect also explains why Base did
not see visible improvement with fewer SR calls in Figure6a. In practice,
when query evaluation is more expensive, the opposite may hold.

we change the data size by taking prefixes of the AUTO time se-
ries with varying lengths (from 10% to 100% of the whole series).
For CA-τR (Figure 7b), Enum shows a rate of increase in running
time similar to Base, while DiCo shows a slower rate of increase.
This increasing trend is expected because more data points lead to
more counterarguments with required strength threshold. For CA-
τP (Figure 7a) and CA-po (Figure 7c), Base continues to suffer
from bigger data sizes, but Enum and DiCo remains fast. The rea-
son is that Enum and DiCo limit their search within high-sensibility
neighborhoods around the original claims; a bigger dataset span-
ning a longer time period does not necessarily increase the size of
these neighborhoods. For all three variant problems of CA, Enum
and DiCo are orders of magnitude faster than Base.

Varying τττPPP in CA-τττPPP for TSS-CAaaabbb on VOTE As a sample of
experiments on TSS claims, we now turn to VOTE data. Figure 8
compares the three algorithms for TSS-CAab, i.e., fixing two vot-
ers and perturbing the time period [a, b] to find counterarguments
that show lower vote correlation than originally claimed. Here, we
consider the CA-τP variant of the problem, and decrease the pa-
rameter sensibility threshold τP (thereby enlarging the region of P
meeting this threshold). We observe trends similar to those in Fig-
ures 6a and 6d for WAC claims: DiCo performs best, while Base is
the slowest by a big margin. The only notable difference is that the
parameter space is 3-d for WAC but only 2-d here. Hence, Enum
and DiCo fare better here with an increasing search space.

7 Related Work
A large body of work on uncertain data management [9, 1, 17] con-
siders the effect of data perturbations on query results. Our study of
query parameter perturbations offers a conceptual counterpoint—
while uncertain databases consider one query over many database
instances (possible worlds), we are interested in many queries (per-
turbed versions of each other) over one database instance. Interest-
ingly, one could, at least in theory, mimic query parameter per-
turbations by constructing tables of uncertain query parameters,
and “joining” them with data tables in some fashion to compute
the QRS. However, the resulting query will be awkward and dif-
ficult to optimize. Furthermore, we are interested in certain ques-
tions about QRS—beyond computing a representation of the sur-
face or computing expectations from it—that have not been the goal
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of query evaluation in uncertain databases. Nonetheless, uncer-
tain data management offers many ideas relevant to fact-checking.
For example, our future work (further discussed in Section 8) in-
cludes investigating sampling and approximation, and extending
our model to consider parameter and data perturbations jointly.

The notion of response surfaces has appeared in various contexts,
but usually with specific uses different from ours. In parametric
query optimization [16, 11, 15, 8], a response surface represents the
best query execution plan (and its cost) over the space of parame-
ters relevant to query optimization, including system parameters,
selectivity factors, and/or query parameters. In our recent work on
publish/subscribe, we use QRS to succinctly represent (and index)
answers to a large number of continuous linear preference top-k
queries with different parameter settings [29]. Similar ideas have
been used in understanding the sensitivity of such top-k rankings
with respect to their parameter settings [23, 21]. Lin et al. [19] uses
a surface to concisely represent how the set of association rules
varies with support and confidence settings.

The reverse-engineering problem is related to recent work on
query by output [26] and view synthesis [22], which tries to find
queries returning a given result. Unlike these problems, we are
given not only the claim result but also additional information—the
context of the original claim (including any explicitly mentioned
parameter values) and the query template. Tran and Chan [25] con-
sider how to modify a query such that it returns both the original
result as well as additional desired tuples. He and Lo [14] tackle
the specific setting of linear preference top-k queries. Wu and Mad-
den [27] study how to use queries to explain away outliers in ag-
gregate results. While the work discussed above is similar to our
problem in spirit, their search spaces and goals are very different,
and none of them models query perturbations probabilistically.

The idea of ordered enumeration, used by one of the meta algo-
rithms discussed in this paper, has been applied in many settings.
In particular, the problem of enumerating multidimensional vec-
tors under a scoring function has been studied by Luo et al. [20] in
the context of supporting keyword searches, and by Agrawal and
Widom [2] in the context of joining two uncertain relations.

8 Conclusion and Future Work
In this paper, we have shown how to turn fact-checking into a com-
putational problem. Interestingly, by regarding claims as queries
with parameters, we can check them—not just for correctness, but
more importantly, for more subtle measures of quality—by per-
turbing their parameters. This observation leads us to a powerful
framework for modeling and for developing efficient algorithms
for fact-checking tasks, such as reverse-engineering vague claims
and countering questionable claims. We have shown how to han-
dle real-world claims in our framework, and how to obtain efficient
algorithms by supplying appropriate building blocks.

Our proposed framework has opened up more research problems
than we can possibly hope to address in a single paper. There are
several lines of work underway, including efficient computation of
quality measures, approximation algorithms, unified modeling of
parameter and data changes, and going from fact-checking to lead-
finding. Specialized building blocks for many other claim types
remain to be discovered. Besides the interesting problems at the
back-end, we are also working on making our techniques easier to
apply. Along this line, we are investigating a learning-based ap-
proach that rely on user feedback to help specify functions SR and
SP. The culmination of this work will be an end-to-end system to
empower journalists and the public in combating the “lies, d—ed
lies, and statistics” that permeate our public life today. To that end,

we also need advances in complementary research areas such as
source identification, data integration, data cleansing, natural lan-
guage querying, and crowdsourcing.
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